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Abstract 

Image annotation is generating the human-understandable natural language sentence for images. Annotating the 

image with sentence is one kind of the computer vision process that includes in the artificial intelligence. 

Annotation is working by combining computer vision and natural language processing. In image annotation, 

there are two types: sentence based annotation and single word annotation. Deep learning can get the more 

accurate sentence for the image. This paper is the survey for image annotation that applied the deep learning 

model. This discusses existing methods, technical difficulty, popular datasets, evaluation metrics that mostly 

used for image annotation.  
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1. Introduction 

Image annotation, converting image with natural language sentence, is still challenges in computer vision 

processes. Image annotation basically derived from Artificial Intelligence. In Artificial Intelligence, there are 

many sub fields such as computer vision, NLP, Robotics, and many others. Computer vision has two fields: 

image processing and image analysis. Image processing can be thought of as a transformation that takes an 

image into an image. The input of image processing is image and the output is also an image, such as histogram 

equalizing, image de-blurring. Image analysis is the extraction of meaningful information from images. So, the 

input is image and output is a description or a decision. Image analysis processes are object detection, image 

annotation, object recognition, and many others. In image annotation, there are two types: sentence based 

annotation, and single word annotation. Image annotation hierarchy shows in figure 1.  
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Image annotation has two kinds of approaches: top-down and bottom-up to success the machine translation. The 

Top-down approaches apply the encoder-decoder network architecture (Convolutional Neural Network as 

encoder and LSTM as decoder). It initially takes the image into the encoder to get the feature and the features 

were fed into the decoder to generate the image description. The bottom-up approaches include several 

separated tasks, such as identifying objects or attributes, arranging words and sentences, describing sentences 

using a language model to generate the image caption [18]. 

Deep learning is also a technique that learns data from image to encourage the implementation of machine 

learning that is the function and structure of the brain known as artificial neural network. Deep learning is also 

called hierarchical learning or deep structured learning. Deep learning’s neural network differ from traditional 

neural network because  it has more hidden layers; and they can be trained in a supervised and unsupervised 

method for both supervised and unsupervised learning task. Neural network architecture was typically applying 

for deep learning. The term “deep” point the number of network layers. Although the neural networks 

traditionally contain only two or three layers, deep neural networks can contain hundreds. So more layers is that 

the deeper network.  

This research paper is constructed with following sections. Section 2 presents related literature review for this 

research. Section 3 discusses different image annotation models that commonly used by different researchers. 

Section 4 describes the most famous datasets which have been applying for annotation of image. Different 

evaluation metrics are examined in section 5. Section 6 summarizes the annotation approaches by literature 

review. 

 

 

 

 

 

 

 

 

Figure 1: Image Annotation Hierarchy 
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contents of images. This learned based on attention mechanisms that work on convolutional neural network, and 

gated recurrent neural networks. A bidirectional recurrent neural network (BiRNN) was used for an encoder, 

and a recurrent neural network learning model (RNN-LM) that based on attention was used for a decoder in 

neural machine translation [6]. Xu and his colleagues (2015) introduced soft deterministic attention and hard 

stochastic attention that are the two types of image caption generators based on attention. It attended by focusing 

on the visualizing of “where” and “what”; and quantitatively validated the advantages of attention for generating 

image caption. This operated by combining Convolutional Neural Network (CNN) for the vectors that extract 

features from input image and long short-term memory (LSTM) for generating word at every step on context 

vector [7]. Wang and his colleagues (2016) proposed deep bidirectional LSTM model that designed for image 

caption generation. This model is based on a deep CNN and two separate LSTM network for learning long-term 

interaction between image and text. This caption generation model is evaluated with Flickr8K, Flickr30K, and 

MSCOCO benchmark datasets. Bidirectional LSTM model achieve highly performance on both generation and 

retrieval tasks. As the future scope, more sophisticated language representation, multitask learning and attention 

mechanism can extend in the model [10]. Wang and his colleagues (2016) demonstrated parallel-fusion RNN-

LSTM architecture for image captioning by combining the advantages of simple RNN and LSTM. This 

approach improves the performance and the efficiency by evaluating with BLEU and METEOR on Flickr8K 

dataset. To focus the higher performance, future work need to examine the limitation of parallel threads by using 

more complex image features [11]. 

Fu and his colleagues (2017) described automatic image captioning system by transforming images to accurate 

and meaningful sentences. Before generating the words, giving the other ones as the input and then it was 

arranged to the visual perception experience. An image was encoded with higher-level semantic information by 

introducing scene-specific contexts. Some benchmark datasets including Flickr8K, Flickr30K and MSCOCO 

were used to produce the results by applying both human evaluation and automatic evaluation metrics. The 

performance of the work were improved either scene-specific context or region-based attention. The 

combination of two modeling ingredients suggests attaining the achievement of state-of-the-art as the future 

scope [13].  

Qu and his colleagues (2017) propounded visual attention mechanism based on long-short term memory to stare 

on salient object for image captioning. In this work, CNN is used for extracting features such as colors, size, and 

location; LSTM is used to generate a sentence; and attention mechanism is used to describe the important 

objects in image. CNN extract features from image with VggNet. LSTM is work with four gates (input gate, 

output gate, forget gate, and attend gate) and a memory cell. Attention has two aspects: color stimulus-driven 

and dimension stimulus-driven.  The proposed model was validated on three benchmark datasets: Flick8k, 

Flick30k, and MS COCO and the performance show by using standard evaluation metrics: BLEU. The proposed 

model can generate more interpretability sentence and get more accuracy in object recognition.  The future work 

should use unsupervised data to understand comprehensively and precisely about a whole picture [14]. 

Lu and his colleagues (2017) introduced an adaptive attention encoder-decoder framework for image caption 

generation. Adaptive attention learns when to attend and where to attend on the image. This framework tests on 

the Flickr30K dataset and the 2015 MSCOCO image captioning dataset to analyze the adaptive attention. The 
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framework is efficiently evaluated on image captioning, and it can have useful in other applications domains 

[15] Chen and his colleagues (2017) developed the Spatial and Channel-wise Attention in Convolutional Neural 

Network (SCA-CNN) for image caption generation. In multi-layer feature maps, SCA-CNN concise for the 

sentence generation by encoding what and where the visual attention is. This is evaluated on three benchmark 

datasets: Flickr8K, Flickr30K and MSCOCO. Future work intends to work temporal attention in SCA-CNN, by 

attending video frames features for video captioning and to increase the attentive layers without overfitting [16]. 

Gan and his colleagues (2017) initiated a Semantic Compositional Network (SCN) for image captioning and 

video clip captioning. SCN detect semantic concepts from the image and use the probability of each task for 

parameter composition in LSTM. This is quantitatively evaluated and qualitatively analyzed on COCO, 

Flickr30K and Youtube2Text datasets; and the performance significantly outperforms with multiple evaluation 

metrics [17]. Liu and his colleagues (2017) found a quantitative evaluation metric by focusing on evaluating and 

improving the correctness of attention in neural image captioning. The metric evaluates between human 

annotations and the generated attention maps by using Flickr30K and COCO datasets. This can close the gap 

between human perception and machine attention and can experiment in related fields [18].  

Gu and his colleagues (2017) exploited CNN language model for image caption generation. MSCOCO and 

Flickr30K datasets have been using to conduct the experiments for analysis. Model can generate sentence that is 

relevant with image but model is wrong when visual attributes are predicted. It can integrate extra attributes that 

learn for image captioning as future scope [19]. Vinyals and his colleagues (2017) presented a neural network 

system (NIC) that generates the sentence description of an image. NIC firstly uses convolutional neural network 

to encode the image and then it uses recurrent neural network to generate the sentence that correspond with 

image. This measured the performance with the standard evaluation metrics and also evaluated with human 

judgements on five benchmark datasets [20]. 

Li and his colleagues (2018) proposed the global-local attention (GLA) method for describing image caption. 

Features based on object-level integrated with image-level by applying attention mechanism. This used VGG16 

for image feature extractor, Faster R-CNN for object detector, attention mechanism for integration of global 

feature and local feature, and stacked two-layer LSTM for the model of language. The proposed GLA method 

implemented on Microsoft COCO caption data set by checking with many favored evaluation metrics such as 

BLEU-1,2,3,4, CIDEr, METEOR, and ROUGE-L. This can create more appropriate and reasonable sentences 

that related the image context but cannot jointly the language model and train CNN part. So, the integration of 

image feature extractor and object detector is still as the future study to train and test of end-to-end model [21].   

Ye and his colleagues (2018) initiated attentive linear transformation (ALT) for automatically generating of 

image caption as a novel attention framework. That model used Convolutional Neural Network (CNN) for 

encoding an input image to features, the high-dimensional transformation matrix for converting from the image 

feature to the context vector and Recurrent Neural Network (RNN) for decoding from the vector to a sentence 

that related with image. This experiments on the benchmark dataset such as MS COCO and Flickr30k by 

measuring evaluation metrics. ALT’s advantage is that the linear transformation's weight can show information 

unless a concrete form use like feature channel or spatial region. ALT can nicely describe than existing attention 
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models but cannot correctly recognize words on the sign, cannot distinguish some-part-redundant object, cannot 

correctly count the quality of object, and mistakes the gender. This paper suggested using text detector to 

recognize the words and objecting detector to count the quantity of the objects as the future works [22]. 

Zhu and his colleagues (2018) developed a Captioning Transformer (CT) model by applying stacked attention 

modules without the time dependencies to address the issues of long-short-term-memory (LSTM) structure and 

also proposed multi-level supervision training. The encoder of this model is Convolutional Neural Network 

(CNN) that used ResNet and ResNext as image classification models to extract image features and the decoder 

is transformer model with stacked attention mechanism to decode from image features to the sentence. There are 

three methods for integrating image features to transformer model: 1) image spatial feature map, 2) spatial 

image feature map that combine the image feature with each word embedding, and 3) spatial image feature map 

that used image feature before the start of the text embedding. This used MSCOCO dataset and standard 

evaluation metrics for evaluating the performance by comparing with several start-of-the art methods. The 

accuracy of the study is better than original models. This pointed to study the method in the digital virtual asset 

security field for future scope [23]. 

Aneja and his colleagues (2018) explored a convolutional image captioning technique, demonstrated its efficacy 

on the MSCOCO dataset and the performance with baseline. The model with attention can improve the 

performance [24]. Wang and his colleagues (2018) discovered a framework that only employs convolutional 

neural networks (CNNs) to generate captions. They conduct extensive experiments on MSCOCO and 

investigate the influence of the model width and depth. Compared with LSTM-based models that apply similar 

attention mechanisms, our proposed models achieves comparable scores of BLEU-1,2,3,4 and METEOR, and 

higher scores of CIDEr [25]. 

3. Image Annotation Models 

There are many image annotation models in the previous literature. Many research groups have commonly 

implemented little famous architecture. In image annotation processes, CNN, RNN, and LSTM are mostly used 

as the famous architectures. Table 1 shows an overview of the deep learning model that applied in image 

annotation methods. These techniques will be discussed with the subsections.  

3.1. CNN 

Convolutional Neural Network (CNN or ConvNet) is a feed-forward neural network for machine learning and 

applies in many artificial intelligences (AI) research areas. CNNs are mostly used for speech and image 

recognition, video analysis, pattern recognition and natural language processing. CNN is one type of deep neural 

network, and also used as the encoder network that extract the image features. In CNN, there are many pre-

trained model such as VGGNet, AlexNet, DenseNet, MobileNet, etc.. In image annotation, CNN pre-trained 

model are used for the feature extraction of image. 

3.2. RNN 
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Recurrent Neural Network (RNN) is also the neural network that based on the looping process. RNNs can apply 

their internal state (memory) to perform sequences of inputs, unlike feed forward neural networks. In image 

annotation process, RNN is used to predict the next word by learning on the current word. So, RNN is also 

called language model or the decoder network. RNN is also implemented as encoder-decoder network in image 

annotation model.  

3.3. LSTM 

RNN is composed with LSTM units that are often called an LSTM network. Long-and-Short-Term Memory 

(LSTM) is one type of recurrent neural network (RNN). LSTM is developed with the gates: input gate, output 

gate, forget gate, and cell. LSTM is applied for sentence representation in image annotation process.  LSTM is 

also implemented to extract the feature for image and word.  

4. Datasets 

There are various kinds of datasets that applied for image detection, image classification, image recognition, and 

image caption generation of image.  MSCOCO [4], FLICKR 8K [3], and FLICKR 30K [8] are the standard 

benchmark datasets that are famous and mostly used for image annotation. In table 1, we summarized the 

datasets that mostly used for image annotation. 

4.1. MSCOCO 

MSCOCO [4] dataset is mostly implemented for image annotation. There are three parts in this dataset: the 

training set, the testing set and the validation set. Each image is described with five sentences for training and 

validation but images for testing do not have annotated sentences. This dataset have many updated version by 

years such as 2014, 2015, and 2017. The dataset, which released in 2014, have 82,783t images for training 

40,775 images for testing and 40,504 images for validation. In 2015, this cumulatively released 165,482 train 

images, 81,434 testing images and 81,208 validation images. The 2017 dataset release, that is the last, contain 

118,287 training images, 40,670 testing images, and 5,000 validation images. 

4.2. Flickr8k 

The images from Flickr.com website is collected for Flickr8k [3] dataset. It consists of 8,092 images that 

performed the action of animals or people. There have been using 6,000 images to train, 1,000 images to test 

and 1,000 images to validate. Five sentences are created for each image in the dataset by characterizing with 

entities (animals, people and objects), situation, scenes and events.  The grammar of images in the dataset is 

tested with the workers and spelling is checked with United State format.  

4.3. Flickr30k 

Flickr30k [8] is a standard benchmark dataset for sentence-based image description. In this dataset, there are 

513,644 images for scene and entity and there has been working with five sentences per image. Among them, 
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28,000 images are to train, 1,000 images are to test and 1,000 images are to validate. This dataset emerges by 

combining the embedding of image and text, common object detectors, color classifier and bias that select larger 

objects.  

5. Evaluation Metrics 

For image annotation, the evaluation metrics are commonly used to evaluate the accuracy and effectiveness. The 

popular evaluation metrics are Bilingual Evaluation Understudy (BLEU) [1], Recall-Oriented Understudy for 

Gisting Evaluation (ROUGE) [2], Metric for Evaluation based Image Description Evaluation (METEOR) [5], 

Consensus-based Image Description Evaluation (CIDEr) [9], and Semantic Propositional Image Caption 

Evaluation (SPICE) [12]. All of these methods calculate with similarity based measure between ground truth 

sentence and machines generated sentence. Each of these evaluation methods are introduced in the following 

subsections. 

5.1. BLEU 

BLEU [1] is an automatic human-like evaluation and extensively used for machine translation. It is language-

independence, speedy, and cheaply evaluation method. The semantic similarity between human description of 

image and machine generated caption can be determined by applying BLEU score. It measures n-grams' fraction 

that are in common between a reference and a hypothesis. The strength of BLEU [24] evaluation metrics highly 

correlates with the judgments of human by average of judgment errors of individual sentence. The judgment 

over a test corpus is divine rather than the judgment of human for every sentence. 

5.2. ROUGE 

ROUGE [2] is an automatic evaluation package for the comparison of the quality of a summary and human-

created summaries. It is very effective for automatic evaluation of machine translation. Four different ROUGE 

measures are: ROUGE-L, ROUGE-N, ROUGE-S, and ROUGE-W. ROUGE-L identifies the longest common 

subsequence (LCS) and it has sentence-level LCS and summary-level LCS. ROUGE-N is a recall-related n-

gram measure between a set of reference summaries and a candidate summary. ROUGE-S named skip-bigram 

co-occurrence statistics and measure the skip-bigram overlapping between a set of reference translations and a 

candidate translation. ROUGE-W calls the weighted longest common subsequence (WLCS) and use the 

polynomial function to calculate.  

5.3. METEOR 

METEOR [5] score has been highly applied in comparison with other metrics because of highly correlated with 

human subjects' annotations. It can evaluate on any target language to construct the system of statistical 

translation by applying the same resources. It is freely available as open source software.  

5.4. CIDEr 
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The goal of CIDEr [9] is to automatically evaluate for image. This evaluation metrics show how many matching 

the consensus of image description sets with a candidate sentence. This is more suitable for the evaluation of 

image description generation for consensus measuring. 

5.5. SPICE 

SPICE [12] is an automatic evaluation metric for caption generation that captures with the human judgments. It 

work by comparing semantic propositional content and it is better than other automatic evaluation metrics. It 

tested on the MSCOCO dataset and compare with CIDEr and METEOR. It can also use for question and 

answering process. 

Table 1: Summarization of Methods, Datasets and Evaluation Metrics 

Reference Image 
Encoder 

Language 
Decoder Datasets Evaluation Metrics 

Ref. [6] BiRNN RNN-LSTM Flickr8K, Flickr30K, 
MSCOCO BLEU, CIDEr 

Ref. [7] CNN LSTM Flickr8K, Flickr30K, 
MSCOCO BLEU, METEOR 

Ref. [10] VGGNet, 
AlexNet LSTM Flickr8K, Flickr30K, 

MSCOCO BLEU 

Ref. [11] VGGNet Parallel fusion 
RNN-LSTM Flickr8K BLEU, METEOR 

Ref.  [13] VGGNet, 
AlexNet LSTM Flickr8K, Flickr30K, 

MSCOCO 
BLEU, METEOR, CIDEr, 
ROUGE_L 

Ref. [14] VGGNet LSTM Flickr8K, Flickr30K, 
MSCOCO BLEU 

Ref. [15] ResNet LSTM Flickr30K, MSCOCO BLEU, METEOR, CIDEr 

Ref.  [16] VGGNet, 
ResNet LSTM Flickr8K, Flickr30K, 

MSCOCO 
BLEU, METEOR, CIDEr, 
ROUGE_L 

Ref.  [17] ResNet LSTM Flickr30K, MSCOCO BLEU, METEOR, CIDEr 

Ref.  [18] VGGNet LSTM Flickr30K, MSCOCO BLEU, METEOR 

Ref.  [19] VGGNet Language CNN, 
LSTM Flickr30K, MSCOCO BLEU, METEOR, CIDEr, SPICE 

Ref.  [20] Deep CNN LSTM MSCOCO BLEU, METEOR, CIDEr, 
ROUGE_L 

Ref.  [21] VGGNet, 
Faster R-CNN LSTM MSCOCO BLEU, METEOR, CIDEr, 

ROUGE_L 

Ref.  [22] VGGNet LSTM Flickr30K, MSCOCO BLEU, METEOR, CIDEr, 
ROUGE_L, SPICE 

Ref.  [23] ResNet and 
ResNext LSTM MSCOCO BLEU, METEOR, CIDEr, 

ROUGE_L 

Ref.  [24] VGGNet GLU Flickr8K, Flickr30K, 
MSCOCO BLEU, METEOR, CIDEr 

Ref. [25] VGGNet CNN MSCOCO BLEU, METEOR, CIDEr, 
ROUGE_L 

6. Conclusion and Recommendations 

This paper presents the comprehensive study of deep learning model for image annotation process. For image 

annotation, deep learning is very useful and powerful to annotate the image with sentence description. In recent 
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years, deep learning based image annotation achieves remarkable progress. In deep learning models, CNN is 

mostly used to extract image feature and RNN/LSTM is commonly applied to generate the sentence description. 

This paper also presented a brief review of the benchmark datasets and standard evaluation metrics that mostly 

applied for image annotation. According with the comparison table, CNN and LSTM is mostly used for image 

encoder and language decoder respectively. MSCOCO dataset is commonly applied for image annotation; and 

BLEU, METEOR, and CIDEr are usually worked as evaluation metrics. This study only learns from the 

previous literatures and also attentively explains the deep learning models, datasets, and evaluation metrics that 

most applied for image annotation. This paper, however, did not emphasize about the attention mechanism 

which used on deep learning model to more accurate the performance.  
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