
International Journal of Computer (IJC)
ISSN 2307-4523 (Print & Online)

© Global Society of Scientific Research and Researchers

http://ijcjournal.org/

119

Modelling a Policy Role Based Access Control Mechanism

for Task Delegation in a Nomadic Environment

Osaremwinda Omorogiuwaa*, Stella Chinyere Chiemekeb

aDepartment of Computer Science & Information Technology Igbinedion University, PMB 001, Okada, Edo

State, Nigeria
bDepartment of Computer Science, University of Benin, Benin City, Nigeria

aEmail: ask4osas@iuokada.edu.ng
bEmail: schiemeke@uniben.edu

Abstract

Nomadic environments are governed by standard principles and lay down rules that should be followed to

enable it meet set aim and objectives. More recently, nomadic environments have virtually employed the use of

Role Based Access Control (RBAC) Mechanisms to proffer access control solutions to role assignments which

ordinarily would have be accomplished manually. In modelling systems for users in a nomadic environment,

most RBAC mechanisms does not effectively consider the security lapses related to human to human task

delegation. To avert this lapses, during system modelling and design, there is the need for software developers

to consciously put into consideration the inclusion of organizational policy rules guiding role assignment and

task delegation in a secured manner. Failure to do so, may create usability and security issues resulting from a

delegatee abusing his privileges in performing other tasks of the delegator. This paper is therefore aimed at

using mathematical and algorithmic methods to model a policy based approach in implementing the Role Based

Access Control mechanism for users in a nomadic environment. With this approach, task delegation can be

implemented in a usable and secured manner.

 Keywords: Nomadic Environment; Policy Based RBAC; Algorithms; Tasks; Delegation; Mathematical

Modelling.

* Corresponding author.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by International Journal of Computer (IJC - Global Society of Scientific Research and...

https://core.ac.uk/display/229656152?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

International Journal of Computer (IJC) (2018) Volume 29, No 1, pp 119-131

120

1. Introduction

In this current trend of Information Technology (IT) and a dynamic shift in IT service delivery, system users are

essentially nomads. Users want to be able to get access to their resources and render services to their

organization where ever they are with minimal limitations. A distinguished scholar in [1] argues that

Information world must no longer be seen through the traditional client/server eyes where wired computers are

exchanging data packets with fixed servers in a Local Area Network. This is because computing devices have

become portable, integrated and are in the possession of almost every users of an organization. It is important to

note that the next generation networks is considered to be a “user-centric” in the technological world [2]. .As a

result, current IT services are leveraged on cloud computing, ubiquitous computing and nomadic computing

platforms.

The concept “user-centric” implies developing applications that is highly platform independent and usable to

users irrespective of their portable devices or the network environment they find themselves. At design time

considering “users satisfaction” is becoming core in software requirement specification. Software development

is no longer only geared towards efficiency and functionality, but also towards portability and usability.

Concerted effort is therefore required that while trying to make a system more usable, the security level is not

compromised and vice versa.

Explicitly [3] defined nomads as the users who are mobile and have electronic appliances (such as PocketPc,

Palmtop, Personal Digital Assistant (PDA) in their pockets to get access to the remote information spaces no

matter which device they currently are working with and no matter where they are. Nomads want to be able to

use their portable devices to gain access to organization applications while still carrying out other personal

functionalities. Nomadic environment can be found in hospitals, banks, government and business organizations

provided the ICT infrastructure in such environment allows for users to freely access and render services from

any terminal irrespective of their location.

In nomadic environments, providing users with the system support needed to provide rich set of computing and

communication capability as they move from one location to another is highly needed. Comparatively [4]

observation conforms to [1] concept that user can use any access to services and any terminal in environments

where the infrastructure exists to meet organizational needs.

2. Some Related Literatures

Different literatures have explained nomadic environment from different perspectives, Reference [5] explained a

nomadic environment to be a well-connected communication infrastructure that provides users with services

they require. In such environment, users (known as Nomads) move from one location to another to carry out

services. Reference [6] described “a nomadic environment as one in which users carrying wirelessly connected

devices to enter places and use local services associated with those places. The services may be implemented

and provided locally by the appliances in the place”. There is consistency in both [5,6] concepts of a nomadic

environment. There is however a fairly different perceptions coming from [7] who argued that following the

International Journal of Computer (IJC) (2018) Volume 29, No 1, pp 119-131

121

technological intention of the initiators of nomadic computing, anyone who accesses his or her computing

environment from different locations is a computing nomad or simply a nomad.

Nomadic environment does not only exist on a Local Area Network, but may also exist on other networks. The

emphasis on nomadic computing is user-centric, it is centered on system support that will enable a user (nomad)

to carry out specific task or gain access to resources from any location within any given network platform.

Implementing role assignment and task delegation in a nomadic environment, Reference [8] suggested the use

of a Role Based Access Control mechanism where the rights an employee has are determined by its position in

the enterprise. The decision to grant or deny access is delegated to the server, which maintains the mapping

between agents and roles, and a database listing the privileges of each role. Also, Reference [9] proposed a

concrete design of a mechanism that supports policies for regulating access to information via corporate

Intranet. They argued that in order for corporate webs to reach their full potential, access control mechanisms

that can express regulations and practices governing businesses are needed and showed that current web

technologies provide only limited support for this purpose.

3. Entities, Roles and Groups in a Nomadic environment

Users Role Assignment in nomadic environment provide a superficial resemblance to already established

concept of user groups, Entities, which is widely used for access control purposes, especially in association with

Role Based Access Control systems. However, it is imperative to discuss these three components.

(i) The main aim of having GROUPS in nomadic environment is to collect users according to their

responsibilities. Figure 1 depicts this group (user, roles and the entities contained). Groups are

classification of users according to their responsibilities (roles). In contrast, roles are created to collect

unique sets of permissions, each being the set of permissions necessary to carry out some associated

(assigned) duty responsibilities [10].

(ii) A user after being assigned to a group is a member of this group at all times and in all circumstances.

However, users can be assigned different roles in a group.

(iii) Entities are sets of task(s) contained in a role. A user must belong to role in an organization before he

can be assigned any job functions.

In any organization, the division of work produces many roles with differing responsibilities and job functions.

Although the final set of roles depends on the structure of the organization. An organization consists of persons

belonging to various administratively or physically divided staff groups, such as a department, a division, or a

project team that are referred to as structural units. Various job positions and specific activities arising in

structural units of an organization are represented by user roles. A user role is associated with users that fill a

job position or perform a specific activity and permission that describes this position or activity. The task(s)

performed by users are referred to as Entities.

International Journal of Computer (IJC) (2018) Volume 29, No 1, pp 119-131

122

Figure 1: A Schematic diagram illustrating the relationship between Groups, Roles and Entities.

4. Research Focus

This paper focuses on modelling activities that will allow user to user task delegation in a nomadic environment.

As such concerted effort to model organizational policy set and rules that will enhance secured task delegation

in a nomadic environment will be represented.

First, a role (R) is a job functions or job title within the organization that represents authority and responsibility

conferred on members of the role. A role can be seen as a collection of objects (entities) to accomplish a job

function. These objects consist of the unique tasks that can be performed by job title. To represent this

mathematically, if R defines a role then

R = {task1, task2, task3 … taskn} (1)

Whereby task1, task2, task3 … taskn represents the various tasks assigned to a role. A role therefore is a

collection of tasks that can be performed by a user.

For example, in the hospital environment, a doctor can perform surgery (task1), diagnose illness (task2), and

administer treatment (task3) on a patient. In performing these roles, the doctor has access to all information

contained in the patient database. However, doctors are expected to perform numerous shifts and attend to

various patients within shifts, and as a result, they are obliged to delegate another doctor to assist them in

carrying out some of these tasks. And to accomplish this procedure, he must transfer his access rights to the

delegatee who must assume the privileges of the delegator.

This approach has some security flaws as the delegatee may explore other unauthorized tasks contained in the

role of that particular delegator. Given an access control policy of groups an equivalent role based policy can be

International Journal of Computer (IJC) (2018) Volume 29, No 1, pp 119-131

123

constructed by assigning a user to a role if that user is a member of a group that maps to the same set of

permissions as that access control policy can be transformed to groups. This is can be achieved by making the

user a member of the groups and associating this group with the set of permissions that were assigned to a role

to which the user was authorized.

5. Human to Human Delegation

In this paper we explore the concept of delegation in context of RBAC. The basic idea of delegation is that some

active entity in a system delegates authority to another active entity to carry out some functions on behalf of the

former. Delegation in computer systems can take many forms: human to human, human to machine, machine to

machine and perhaps even machine to human. In this research we focus on the human to human form of task

delegation in computer systems. Specifically we consider the ability of a user in a role to delegate his role

membership to another user who belongs to some other role. To perform specific task, we develop a simple but

practically useful policy based approach to advert the problems associated ordinarily with the use of the Role

Based Access Control (RBAC) Mechanism. It is a known fact that the most flexible form of delegation is

impersonation, whereby the rights grantor allows the receiver to assume the identity of the grantor and perform

any action on the grantor’s behalf. However, this is also the least secure, since the delegated rights could be

easily abused. Therefore, delegation should be limited to the specific task that is required.

6. Methodology

First a policy based access control mechanism was formulated based on the generic context-based access control

policies in [11]. The generic policy as represented in [11] is shown in equation 2.

Generic_Policy (Pi) = [U, Pset, (ac, e) enable_bit] (2)

Whereby

i. U (User) is an identity assigned to resource requestor (eg login, identifier, name group, role) in the

current access context.

When the identity of requestor is omitted or it is assigned the value one, only the resource requestor

assigned to the access context (ac) that meets the context constraint described in the expression (e) will

get access permissions on the perfected resources.

ii. Pset is a set of one or more permission. Let P be permission in the set Pset. P is a tuple that defines the

relationship between a resource and an operation (Pi = (r, 0) P = 2Rx0).

iii. Ac is access context (ac AC) that restricts the set of permission Pset to users. Only the users that are

part of the context activating that ac will get the set of permission Pset.

iv. e is a context constraint expression defined using the Generic Context Condition Language (GCCL).

This expression can be enforced by attributing the current value of access context objects;

v. Enable_bit indicates if the associated policy is enabled or disabled. Enable_bit has the value 1 if the

International Journal of Computer (IJC) (2018) Volume 29, No 1, pp 119-131

124

policy is enabled and 0 if the policy is disabled. By using this bit, it will be possible to maintain a

policy register on access control policy repository.

For each enabled access control policy in the policy repository, we need to verify the ac by replacing the current

values of context objects on the context constraint expression e. If the expression e is true, then the associated

set of permission will be granted to affected users.

However, to implement organizational policies, equation 3 is formulated to represents a definition of a policy set

that will be suitable for users in nomadic environment as follows;

NPi = [Nu, Pset, (ac), binary_bit] (3)

i. NPi represents Nomadic Policy Set

ii. Nu represents the various Nomadic users

iii. Pset represents the various policy sets that can be used to allow/disallow users to carry out job functions.

iv. ac represents access context. For this research study, we will consider time and organizational job

schedule as our contextual information. With this, we do not need the e in the generic policy definition.

In the Nomadic Policy set, the time and organizational job schedule can be used by the system to

determine whether a nomadic user can be allowed or denied access to performing task(s). Other

contextual information can be used as constraints and policy decision rule to allow/deny users.

v. Binary _bit is used to represent a true or false value or a 0 or 1 value at the end of the policy evaluation.

If a 1 value is returned then user can access privileges to carry task else user is denied privileges.

Nomadic users (during task delegation) and system administrators can define a set of policies that is represented

formally in equation 4 as follows:

Nomadic-Policy _ Set (Polset) = {Pi| Pi is a policy, i >= 0 and i  N} (4)

Therefore in a nomadic environment the policy sets consist of system administrator defined policy sets which is

based on the roles contained in the organization, role hierarchies and permission granting. The user level

policies consists of delegation policies that allow a user who belong to a role to delegate responsibilities to

another user.

Generally, a mathematical model representing the Nomadic Environment Policy Set (NP for short) is shown in

equations 5 and 6 as follows;

NPset = PSysDfnPolset + UserDfnPolSet (5)

and

PSysDfnPolset  UserDfnPolSet =  

 

International Journal of Computer (IJC) (2018) Volume 29, No 1, pp 119-131

125

Equation 6 implies that the system administration component cannot be responsible for user to user delegation

of responsibilities.

i. PSysDfnPolset represents the policy sets that can be defined by the system administrator.

ii. UserDfnPolset represents the policy set that can be defined by the user during task delegation. This is

required because this research focus on nomadic user task delegation which is often the case in

nomadic work environment. However, it should be noted that this policies can only be used during

delegation period for a delegatee. After revocation, the policy is erased from the policy repository.

However, there is always an audit trail that keeps track of all activities within the nomadic work

environment.

PSysDfnPolset can be seen as long time organizational policies while UserDfnPolset represents short term

temporary policy set specified by a user to carry out task(s) on behalf of another user for a specified time period.

6.1 The Policy Set

The Policy Set consist of various policy rules that allows the system to functionally assign a nomadic user to a

specific role. The policy engine component of the system is crux and it forms the nucleus of the entire system

design and implementation. The policy engine is based on the inference rules (security, functional and non-

functional rules) to make policy decision and enforcement.

6.2 Functional and NonFunctional Policy Rules

Functional rules are static users’ requirement to role assignment. This is mainly based on users’ bio data,

academic credentials and the organization lay down rules to assign a role to a user. For instance, the conditions

needed to assign a doctor to a particular role is required to define the functional rule requirement for that role.

The NonFunctional Rules are required to implement additional responsibilities that can be assigned to a role-

member (such as contextual information, schedule, delegation criteria etc.).

For example, a functional role requirement for a clerical officer in a given nomadic environment (e.g. nomadic

hospital environment) can be represented as follows

 Candidate must have a leaving school certificate (Rule 1)

 Candidate must have a computer Application Certificate (Rule 2)

Non-functional rules are based on transaction process that can be implemented by the candidate having satisfied

the Functional rule. E.g.

IF Candidate (Functional rule → True)

International Journal of Computer (IJC) (2018) Volume 29, No 1, pp 119-131

126

 CHECK (Candidate contextual information)

 CHECK (Schedule → ScheduleList)

If (CHECK) IS True))

ALLOW Candidate PERFORM Task(s)

 STORE Transaction Trail IN Database

ERASE (Non-functional rule) FROM (Candidate policy set)

By this illustration a Non-functional rule is only implemented during task delegation and permission granting.

During implementation, such privileges are included to temporary functional rule set to perform action.

A policy set is therefore a set of rules which hold for a particular role having considered its security, functional

and nonfunctional requirements.

Mathematically;

To perform role assignment, we define a function NF(r) and FN(r) where NF(r) represents NonFunctional Rule

for a role and FN(r) represents Functional Rule for a role. 𝑟𝑟1 → 𝑟𝑟 represents all rules contained in r. This is

represented in equation 7 as follows:

𝑁𝑁𝑁𝑁(𝑟𝑟),∀𝑁𝑁𝑁𝑁 ∈ 𝑈𝑈,∀ 𝑟𝑟 ∈ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅,∀𝑟𝑟1 ∶ 𝑟𝑟1 → 𝑟𝑟 𝑎𝑎𝑎𝑎𝑎𝑎 𝐹𝐹𝐹𝐹(𝑟𝑟) 𝑠𝑠𝑠𝑠𝑠𝑠ℎ 𝑎𝑎𝑎𝑎 ∀𝑟𝑟 ∈ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,∀𝑟𝑟1: 𝑟𝑟1 → 𝑟𝑟 ⟹ 𝑐𝑐𝑐𝑐𝑐𝑐 −

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (𝑁𝑁𝑁𝑁,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅) (7)

An algorithm for role assignment in the nomadic environment as contained in equation 7 is represented in

algorithms 1 and 2 as follows;

Algorithm 1: PolicySet formulation ()

START

CREATE Role Table (role-id, role name)

DEFINE Max functcount = N

SET Initial functcount = 1

again: WHILE (Functional Rule (functcount) < N)

 READIN (Functional Rule (functcount))

International Journal of Computer (IJC) (2018) Volume 29, No 1, pp 119-131

127

STORE and LINK functional rule →Role Table

 functcount = functcount + 1

 GOTO again

 ENDWHILE

END

In algorithm 1, all users are first organized into different roles. Each role defines the class of job function to be

assigned some set of task(s) that can be performed. Initially, the functional rules are required to be defined. This

enable the system to have a specified number of roles in the organization.

Algorithm 2: PolicySet Enrollment ()

START

ENTER users’ credentials

ENTER value for N

 CALL Subprocedure (PolicySet formulation (role-id, role name)

 FOR functional rules (1→N)

 X = 1

LOOP: COMPARE (Selected Credentials WITH functional rule (X)) FROM role-table

 WHILE (Selected Credentials MATCHED WITH functional rule(X))

 DISPLAY (“Candidate has being successfully assigned :”) role (role name, username, dept)

 ELSE

 DISPLAY (“Candidate does not meet policy standard, cannot be assigned by the policy engine”)

 ENDWHILE

IF (X < N) THEN

X = X + 1

International Journal of Computer (IJC) (2018) Volume 29, No 1, pp 119-131

128

 GOTO Loop

ENDIF

ENDFOR

END

In algorithm 2, each nomadic user is assigned to a role name by first inputting the user credentials at the point of

enrollment. The sub procedure call PolicySet formulation (role-id, name) is required to bring in the functional

rules used to define the various role names in the organization. The user credentials is then compared with the

organizational set standards on credentials that users must have before he can be assigned to a role. If the user

credentials matches with the set standard for any particular role, then the user is assigned to that role name, a

role-id is equally assigned to identify the user in the assigned role. The user department or unit is equally

assigned. The department is required to enable us formulate concatenated key that can be used in querying the

database.

6.3 Permission Granting in the Nomadic Environment

Permission Granting is the process of assigning access right and privileges to a nomadic user to carry out a

specific task(s). In the design approach, we represent each role member with its role-id and represented each

task with a task-id. With this representation, the nomadic user is independent to a particular role

responsibilities. This makes tasks delegation in a nomadic environment implementable.

Instance

Suppose a user belong to a role which has task1, task2 and task3. A procedure for granting permission to perform

the task(s) is shown in Algorithm 3.

Algorithm 3: PermissionGranting()

 Start

 INPUT User

CREATE role-id

 CREATE task1-id, task2-id, task3-id

 ASSOCIATE Role-id WITH task1-id, task2-id, task3-id

 STORE in Task Table

International Journal of Computer (IJC) (2018) Volume 29, No 1, pp 119-131

129

‘If a user wants to perform task1 and task2 only, the procedure is as follows

 CALL User role-id, task-id FROM task table → role table

 ASSIGN task1-id, task2-id to User role-id

 CREATE Temptask table

 STORE User, role-id, task1-id, task2-id, IN Temptask table.

 AFTER Authentication, GRANT User access right to Temptask table

END

In Algorithm 3, all users assigned to a role. Each role is identified by the role-id which is appended to the user.

The permissible task(s) are not assigned directly to user but rather to the role the user belong to. However, each

role has a collection of organizational responsibilities that they can perform. This are represented as tasks.

Each of these task(s) equally has a task identification number (task-id). Therefore granting permission to a user

will require the user’s name, role name, role id and the task-ids permissible by the role name. With this

approach, tasks are not directly assigned to users but rather to roles; the users will be assigned to a role and the

role has permissible task-ids already. However, during a transaction process, the task-ids required by the users

is pulled into a Temptask table and the user can only be granted access to perform task(s) contained in that

Temptask table. Therefore during task delegation, the delegated task-id(s) is pulled into a TempTask table and

made visible to the delegatee. The delegatee can only have access to this TempTask table after proper

authentication.

7. Implementation Scenario using the Hospital environment

Consider a nomadic hospital environment, the Role Based Access Control mechanism allows the delegated

doctor to have access to all the permissions contained in the delegator’s role. And in the course of delegating

only specific task, the delegatee will still have access to the permissions of the delegator. These drawback

associated with implementing task delegation in a secured manner is addressed by appending a policy engine as

a top layer to the RBAC mechanism.

Typically, the policy engine consist of the following:

i. All policy rules of all the roles in the organization in assigning roles, granting permissions, task(s)

delegations,

ii. all terminal addresses in the nomadic environment,

iii. all users credentials, all users job schedules and access to all users authentication information, etc.

E.g. a possible policy rule for a doctor can be:

International Journal of Computer (IJC) (2018) Volume 29, No 1, pp 119-131

130

A doctor can perform a task say task1 if and only if doctor has being authenticated; he is a qualified doctor; he is

on duty; he is assigned to the patient and he is not busy.

To articulate this convoluted conditions, a Structured English is used to represent the implementation process

logic as follows:

SET UP policy rule for task 1

 SET UP user credentials, User Role Assignment Set and User Permission Set

IF authentication is true THEN proceed ELSE abort

ELSEIF doctor is qualified (CHECK doctor credentials component to assert this)

ELSEIF doctor is assigned (CHECK Role Assignment register component to assert this)

ELSEIF doctor is on duty (CHECK Permission Assignment component to assert this)

ELSEIF doctor is available (CHECK doctors Schedule Register component to assert this)

 ELSE

 Doctor is not permitted to handle patient case file

 ENDIF

 ENDIF

ENDIF

ENDIF

The policy engine is essentially a set of Control Statements; in this case a Nested If statements which based on

certain axioms can carry out deductive reasoning from its inference module; the policy repository

8. Conclusion

A Policy Role-Based Access Control Model was formulated using mathematical modelling, algorithms and

Structured English. A model representing the Policy Role Based Access Control Mechanism for a nomadic

environment was developed. Algorithms to represent PolicySet formulation, PolicySet enrollment and

permission granting in a nomadic environment was carefully represented and discussed. Task-ids was used

expressively to implement user to user task delegation. A possible implementation scenario was illustrated using

the hospital environment. A full system implementation of this model in any nomadic environment will enhance

International Journal of Computer (IJC) (2018) Volume 29, No 1, pp 119-131

131

role assignment and task delegation. The modelling approach is expressive enough to support a wide sphere of

organizational policies.

References

[1] L. Kleinrock. “Nomadic Computing UCLA Computer Science Department”. Supported by Advanced

Research Projects Agency, ARPA/CSTO, J-FBI, 1996, pp. 93-112.

[2] E. Mikoczy, I. Kotuliak, and O. V. Deventer O.V. “Evolution of the Converged NGN Service Platforms

Towards Future Networks”. Future Internet Journal, 2011, Vol. 3, No. 1, pp. 45-55.

[3] S. Vytautas, D. Robertas, V. Jonas, Z. Giedrius, L. Virginija, and T. Eugenijus. “Generation of

Database Interfaces for Nomadic Users”. Informacines Technologijos ir Vadymas, 2003. Vol. 2, No.

27, pp. 1 – 10.

[4] A. Tatiana, and S. Noemie. “ Service creation and self-management Mechanism for Mobile Cloud

Computing., V. Tsaoussidis et al., (Eds). WWIC 2013, pp.43 - 55.

[5] A. Naveed and J. Christian. “A delegation framework for nomadic users”. International Conference on

Computer and Information Technology, CIT, 2009, Vol. 8, No. 11, pp. 66 -72.

[6] K. Zhang and T. Kindberg . “An Authorization infrastructure for nomadic computing”, Mobile Systems

and Services Laboratory, Hewlett-Packard Laboratories, USA, 2000, pp. 1- 9.

[7] P. Vartan. “Nomadic Computing with Mobile Devices”. Cognizant 20-20 Insights., 2012, pp. 1 – 12.

[8]D. Ferraiolo, J. Barkley, and R. Kuhn. “A Role Based Access Control Model and Reference

Implementation within a Corporate Internet. ACM Transactions on Information and System Security,

2(1),1999, pp.554-563.

[9] V. Ungureanu, F. Vesuna, and N. H. Minsky. “A Policy-Based Access Control Mechanism for the

Corporate Web. 16th Annual Computer Security Applications ConferenceP2000, New Orleans, pp 1 –

9.

[10] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. “Role-Based Access Control Models,”

IEEE Computer 29(2), 1996, pp. 38-47. http://dx.doi.org/10.1109/2.485845.

[11] J. M. Convington and M. R. Sastry. “A Contextual Attribute-Based Access Control Model, In

Meersman et al., 2006, pp. 64-74.

