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Abstract 

The fingerprint is one of the most important biometrics, with many acquisition methods developed over the 

years. Traditional 2D acquisition techniques produce nonlinear distortions due to the forced flattening of the 

finger onto a 2D surface. These random elastic deformations often introduce matching errors, making 2D 

techniques less reliable. Inevitably non-contact 3D capturing techniques were developed in an effort to deal with 

these problems. In this study we present a novel non-contact single camera 3D fingerprint reconstruction system 

based on fringe projection and a new model for approximating the epidermal ridges. The 3D shape of the 

fingerprint is reconstructed from a single 2D shading image in two steps. First the original image is decomposed 

into structure and texture components by an advanced Meyer algorithm. The structural component is 

reconstructed by a classical fringe projection technique. The textural component, containing the fingerprint 

information, is restored using a specialized photometric algorithm we call Cylindrical Ridge Model (CRM). 

CRM is a photometric algorithm that takes advantage of the axial symmetry of the ridges in order to integrate 

the illumination equation. The two results are combined together to form the 3D fingerprint, which is then 

digitally unfolded onto a 2D plane for compatibility with traditional 2D impressions. This paper describes the 

prototype 3D imaging system developed along with the calibration procedure, the reconstruction algorithm and 

the unwrapping process of the resulting 3D fingerprint, necessary for the performance evaluation of the method.  
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1. Introduction 

The term biometrics derives from the Greek word “βιομετρία” (viometria), meaning “the measurement of living 

things”. Fingerprint is one of the most important and easy to acquire biometrics and has been widely 

investigated over the years. 2D ink based techniques came first at the middle of the 19th century. Since then 

many automated systems have emerged along with the advance of technology. Today fingerprint images are 

commonly captured with the help of touch based techniques that record high ridge-valley contrast [1]. However, 

the fingerprint is a 3D feature and when it is forced onto a flat 2D surface during image acquisition it gets 

distorted, generally in a nonlinear way [2,3,4]. These distortions are irregular and depend on a number of 

random factors regarding the amount of pressure applied on the finger, the overall shape of the fingertip and 

possible rolling of the finger. As a result intra-class variations are introduced among fingerprints of the same 

person, making the 2D contact techniques less reliable and objective.  

In order to tackle these problems 3D non-contact imaging techniques began to develop. 3D fingerprint 

acquisition methods can be considered the future of fingerprint biometrics, as the 3rd dimension provides an 

additional parameter for biometric coding. Generally, these methods capture the skin surface from a distance, 

and then use a specific computer vision algorithm to reconstruct the fingerprint. They can be categorized into 

three main groups: multi-view reconstruction, laser scanning and structured light scanning. Multi-view 

reconstruction methods can give satisfactory results, but they utilize multiple camera systems, fact that increases 

the complexity and the cost of the system and can lead to inconsistencies due to false camera calibration and 

multi-image correspondence errors [5,6]. Laser scanning is more reliable but the 3D data acquisition procedure 

usually requires a substantial amount of time, which is not very practical for living subjects due to its sensitivity 

to movement [7,8]. Fringe projection techniques can combine speed with simplicity, making them more suitable 

for “online” capturing of fingerprints [9]. Despite their indisputable advantages, all fringe projection techniques 

fall short in the case of highly detailed surfaces as a substantial volume of data gets lost between the projected 

fringe lines, resulting to low resolving power. Therefore the reconstruction of fingerprints with these methods 

becomes extremely challenging, since skin comprises both small scale (epidermal ridges) and large scale 

(overall finger curvature) characteristics [10,11]. The phase-shifting fringe techniques attempt to solve the above 

problem, but they involve expensive hardware (e.g. DLP projectors) and complicated algorithms [3,12].  

In this study we present a simple single-view non-contact imaging system for 3D fingerprint acquisition that 

involves a fringe pattern projection method. The solution we propose in order to increase the accuracy of the 

fringe method involves the decomposition of the captured shading image If into a structural and a textural 

component. The structural part u contains the large scale geometrical features of the fingertip (finger curvature) 

while the textural component v the small scale oscillating variations that correspond to the epidermal ridges. 

Since the structural part u may contain some unwanted information, like albedo variations of the skin, it is 

replaced by the geometrical reconstruction provided by the fringe projection process, and the result is a rough 

approximation of the original surface without the small scale details. The detailed component v is reconstructed 

by approximating the epidermal ridges with a curved cylindrical structure in a photometric process called 

Cylindrical Ridge Model (CRM). This model ignores the tangential component of the normal vector and 

integrates the photometric data of v in order to determine the ridge shape at any point. Then, the two 3D surfaces 
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u and v are combined to produce the final result which is the 3D fingerprint.  

The presented imaging system is simple and fast as it requires only one CCD camera, a fringe projector and a 

white light source for data acquisition and does not employ laser scanners or DLP projectors. Additionally, the 

photometric CRM algorithm takes advantage of the entire pixel resolution provided by the shading image, 

maximizing the resolving power of the method. 

The rest of the paper is organized as follows: Section 2 describes the theoretical background and calibration 

processes needed for the understanding of the method. In Section 3 the experimental apparatus and the 

reconstruction algorithm are explained. The experimental results are presented in Section 4 and the discussion 

and conclusions in Sections 5 and 6 respectively. 

2. Theoretical background  

2.1 Reflectance model 

The choice of the reflectance model depends on the properties of the examined surface, and is crucial for the 

success of the reconstruction. There is no universal reflectance theory to represent all known surfaces, thus each 

surface is described by a different reflectance equation. The Lambertian is a widely used reflectance model, 

adopted in many cases of diffuse surfaces. At this stage in order to use this model we will ignore subsurface 

scattering and specular reflection on the skin’s surface due to the presence of sebum. For a scene consisting of a 

Lambertian surface illuminated by a single distant (parallel rays) light source, the observed surface intensity I 

can be simply written as the product of the composite albedo KD, the source intensity I0 and the cosine of the 

incidence angle ωs, i.e. the angle between the direction of the incident light and the surface normal. The 

illumination equation involves two unit vectors, S, describing the light direction, and n̂  the surface normal [13]: 

I = KD I0(S· n̂ ) = KD I0cos(ωs)           (1) 

We assume constant albedo value on the entire finger surface. The constant albedo assumption affects only the 

CRM procedure, because only there the illumination equation is used. As we explain in Par. 3.5, the major 

albedo variations are excluded from v, since their frequency is smaller than the decomposition threshold. 

2.2 Coordinate systems 

In order to describe the properties of telecentric lenses, the equations of orthographic projection are used. In 

orthographic projection the magnification is independent of the object’s distance from the lens, making the 

projection equations very simple. Their accuracy increases when the variation of the object’s size along the 

direction of projection (conventionally the z-axis) is small compared to the mean distance between the object 

and the sensor [14,15]. In our experiment the height variations across the finger surface are insignificant 

compared to the overall distance from the camera, fact that meets the above requirements. The coordinates 

(xs,ys) of a random point at the sensor system ocxsys relate to the pixel values (i,j) of the image through the 

following expression: 
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where α, β, γ, i0 and j0 are the intrinsic parameters of the camera. The projected coordinates (xs,ys) connect with 

the camera system ocxcyczc coordinates through orthographic projection: 
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The camera coordinates (xc,yc,zc) are linked with the lab coordinates (X,Y,Z) of the absolute system OXYZ 

through translation and rotation: 
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where Rcw = [rij] is the rotation matrix and Tcw = [tx ty tz]T the translation vector. These two matrices define the 

extrinsic parameters of the system. For the sake of simplicity we choose the axes yc-Yw to be parallel to each 

other and xc-X to lie on the X-Z plane. Additionally xs and ys are parallel to xc and yc respectively. All the above 

restrictions translates to r12=r21=r23=r32=0 and r22=1. Given these conventions we have:

cw

sin 0 cos
R 0 1 0

cos 0 sin

c c

c c

θ θ

θ θ

− 
 =  
  

         (5) 

where θc is the angle formed between the X axis and the cameras optical axis zc. The Rcw and Tcw matrices 

define the extrinsic parameters of the camera system. We consider only topographic surfaces represented by a 

height variable fZ(X,Y). Additionally we assume Lambertian reflectance, constant albedo for the surface and a 

distant point light source with known direction S. The height Z is the elevation over the X-Y plane which is 

marked as the reference plane P0. At every point (X,Y) a normal vector ˆ ( , )Χ Υn  is assigned:

( , ) ( , )1ˆ , , 1
ˆ

T
Z Zf f∂ Χ Υ ∂ Χ Υ − ∂Χ ∂Υ 

n =
n

        (6) 

2.3 Camera calibration 

The camera must be calibrated, both in respect of its intrinsic and extrinsic parameters. For the camera 

calibration the process described in [16] was followed, in which the calibrating object is an orthogonal prism 

containing a grid of equally spaced circular points (38×38) on the two orthogonal sides. The photogrammetric 

equations are solved and the camera parameters are estimated. 
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Figure 1: The coordinate systems used. 

 

Figure 2: Left: the camera calibration object. Right: the reconstructed white points. From Gorpas et al. [16]. 

2.4 Light source calibration  

The CRM process requires known properties for the light source, and therefore calibration of the lighting system 

is needed. For that purpose we used a sphere with known radius R and a diffuse surface. It is known that in the 

case of a smooth surface the light source vector is perpendicular to the point where the illumination maximum 

occurs. Considering orthographic projection, on the camera coordinate system ocxcyczc the illumination 

maximum A has coordinates ( )2 2
p p pR cos ,R sin , R Rϕ ϕ − , where Rp=(O΄A΄). Figure 3 shows that ˆ

→
′= ΟΑn  

and ˆS = -n . The lighting apparatus used has the capability of multiple light directions (Figure 5), so we chose 

the optimum position with the highest illumination coverage.  

2.5 Fringe pattern calibration 

If we assume that the fringe projection beam is perfectly collimated and with regular line spacing, it can be 

described by just two parameters: the angle formed between the beam vector vp and plane P0, and the fringe 
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spacing Dc,i (Figure 6). As it is shown in Par. 3.4 only the component φf,x of the angle projected onto the X-Z 

plane is required.   

 

Figure 3: Light source calibration scheme. 

The acquisition of these parameters is done during the fringe pattern calibration process. The angle φf,x is 

estimated from the displacement of the fringes along X axis for various vertical positions of the reference plane. 

For that purpose we used the high accuracy Thorlabs LJ750 focusing stage with of 0.01mm precision (Figure 

5d). If the increase of the vertical position of P0 by ΔZ (where “Δ” denotes difference) leads to horizontal 

displacement ΔX of the fringes, then the angle φf,x will be: 

,
Zarctan
Xf xϕ ∆ =  ∆ 

          (7) 

The quantity measured directly out of the image is the projected displacement Δxs in the sensor system osxsys, so 

transformation into world coordinates using Eq. 2-4 is required.  

For the various vertical positions of P0, the average spacing between the fringes is also measured, in order to test 

the beam’s collimation. A perfectly collimated beam leaves the spacing of the projected pattern unaffected, 

regardless of the position of the reference plane.  

The last stage of the fringe calibration is the measurement of the fringe spacing regularity. The pattern is 

projected on an optical flat surface and the field of view is divided into a number of segments lc,i parallel to the 

xc axis. The spacing Dc,i between the projected fringes is measured along lc,i. An evenly spaced fringe pattern 

results to a perfect square grid of sample points, so any deviation is due to irregularities in the pattern. The 

fringe pattern calibration process resulted to φf,x = 66,3˚, collimation error less than 1˚ and average deviation 

from square grid less that 5%.  
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Figure 4: Fringe pattern calibration. (a) Part of the fringe pattern projected on the reference plane with sample 

lines lc,i marked with blue lines. (b) Collimation testing data. (c) Grid regularity testing. 

3. Materials and Methods 

3.1 Hardware Premises 

The Computer Vision System used in the experiment was developed in Biomedical Optics and Applied 

Biophysics Laboratory in National Technical University of Athens. It includes one 1/1.8˝ progressive scan 

digital color CCD PointGrey Scorpion SCOR-20SO camera with IEEE 1394 interface as described in [16]. The 

image size is 1600×1200 pixels, with pixel size of 4.4×4.4μm. A telecentric lens system is used, which is 

designed to minimize perspective distortion so that the equations of orthographic projection can be 

implemented. All telecentric lenses must be optically corrected for perspective distortion, so that objects have 

the same perceived size, regardless of their location in the lens field of view. Considering all these premises, the 

lens chosen as the most appropriate was a 0.29X Melles Griot Invarigon-R™ Telecentric Gauging Lens. 

The lighting apparatus consists of an array of LED light sources, which allows us to test the method with many 

different lighting directions. Each LED source can be considered as a point distant ideal light source. The fringe 

projector consists of four parts. A blue LED source provides the illumination needed for the fringe pattern 

generation. A collimating lens converts the rays into a parallel beam, before passing through the fringe pattern 

transparency. An imaging lens projects the fringe pattern on the imaging plane. The color of the LED is blue 

because short wavelengths are less scattered on the skin surface in comparison to red light, making the fringes 

sharper. 

3.2 Image acquisition process 

The image acquisition process runs as follows: Two images of the finger are acquired, one with the fringe 

pattern projected on it and one with the fringe projector switched off. The switch between the two images is 

done with the camera control software Flycap2. The fringe image is reconstructed with a geometrical algorithm, 

as shown in Par. 3.4, resulting to the large scale component fu of the 3D fingerprint. 
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Figure 5: The experimental setup. (a) Imaging camera, (b) fringe pattern projector, (c) white light sources, (d) 

focusing and rotation stage. 

 

Figure 6: The experimental setup. 

The shading image is decomposed into two parts with the help of an advanced Meyer algorithm. A small scale 

component v contains the ridge details while a large scale component u the geometric information of the finger 

along with the albedo changes. Small scale v is reconstructed via CRM, as shown in Par. 3.5, while u is replaced 

by fu from fringe reconstruction. The image acquisition process is very fast, as it requires only two images. The 

computational time for the reconstruction takes a few seconds in a latest generation computer. These facts make 

the proposed process very fast and cost effective. Below we present a schematic description of the above 

process. 
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3.3 Image decomposition 

It is widely accepted that the nature of the finger skin with its large scale (low frequency) and small scale (high 

frequency) features, poses many problems to reconstruction [17]. As any highly detailed surface, the finger can 

be regarded as a combination of a structural part, representing the large scale geometrical features, and a textural 

part containing the small scale finer details of the epidermal ridges. The definition of texture is quite unclear, as 

the threshold that separates “structure” from “texture” is subjective and depends on the nature of the surface. 

However, in the case of the finger the absence of most of the intermediate frequencies create a large “gap” 

between structural and textural components, fact that helps us separate them more easily.  

 

Figure 7: Schema showing the 3D fingerprint reconstruction process, form image acquisition to the extraction 

of the 3D fingerprint. 

The solution we propose in order to deal with the complicated nature of the finger is to decompose the 2D 

shading image If  into two components u and v, where u represents the large scale geometrical information of the 

surface (finger curvature) and v the small scale details (epidermal ridges). The scope of the image 

decomposition is to isolate all the high detailed features of the 2D image and reconstruct them separately, taking 

advantage of some special geometrical properties of the epidermal ridges in CRM. The structural part of the 

finger represents a rough estimation of the finger 3D surface and will be reconstructed by the fringe projection 

technique. For the image decomposition we use the algorithm adopted in the A2BC model [18][19] to solve the 

Meyer problem [20]. The image decomposition is reduced to the following procedure consisting of two steps. 

Firstly with v being fixed, u comes as a solution of: 

21inf ( )
2u X

J u f u v
λ Χ∈

 + − − 
 

         (8) 

and with u being fixed, v comes as a solution of: 

( )2inf
dG

f u v
µυ Χ∈

− −           (9) 

The discrete total variation J of u is defined by: 
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( ) ,
1 ,

( ) i j
i j N

J u u
≤ ≤

= ∇∑           (10) 

According to [19], the iterative algorithm for the computation of u, v is: 

• Initialization of u, v: 

u0 = v0 = 0           (11) 

• Iterative process: 

1 ( )dn nG
u P f u

µ
+ = −           (12) 

1 1 1( )dn n nG
u f v P f v

λ
+ + += − − −          (13) 

• Iterations stop if: 

( )1 1max ,n n n nu u v v ε+ +− − ≤          (14) 

Chambolle in [21] suggested the following method for computing the nonlinear projection 
dG

P
λ iteratively: 

( )( )( )
( )( )( )

,
,0 1

,

,

/
0,  and 

1 /

n n
i j

i jn
i j

n

i j

p div p f
p p

div p f

τ λ

τ λ

+
+ ∇ −

= =
+ ∇ −

       (15) 

with τ ≤ 1/8. It is proven that λdiv(pn) converges to dG
P

λ
 as n→∞. This algorithm needs two parameters to 

perform the decomposition, λ and μ. The smaller λ is, the smaller the L2 norm of the residual f - u - v is, and most 

of the times a value of λ = 1 works fine. On the other hand, parameter μ controls the G norm of the oscillating 

component v, and the larger μ the more information v contains and u is more averaged. There is no universal 

criterion for finding the right value for the μ parameter, and mostly is done through trial and error. A proposed 

method for choosing the optimum value for μ is the correlation function [22-24]. In our experiments we tried 50 

steps for μ determination. We concluded that λ = 1.0 and μ = 80 give the optimum results (Figure 14).  

3.4 Reconstruction of u with fringe projection 

The reconstruction of u is performed by a sinusoidal fringe projection system. The fringe projector consists of a 

blue LED light source, a fringe pattern transparency and the collimating lens (Figure 6). A series of equally 

spaced straight fringes are projected on the examined surface and if the point of view deviates from the direction 

of the projected beam the fringes appear deformed. Given a collimated beam and a telecentric optical system, 

the departure of a viewed fringe from a straight line shows the departure of the examined surface from a 
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reference plane. 

The deformed fringes are the traced and sampled along the lines lc,i. The sampling density chosen depends on 

the amount of down-sampling intended for the reconstruction of u and is directly linked to the scale of the 

details planned to be restored from v by the CRM algorithm. The calibration process described above resulted to 

two vectors, vp describing the direction of the fringe beam and vc the camera orientation. We measure the 

distances dxc,i between the original and the deformed fringes along the segments lc,i in ocxcyczc. The departure 

Δhw,i of a fringe above P0 in OXYZ will be: 

,
, ,

, ,

sin
sin( )

f x
w i c i

f x c x

h dx
ϕ

ϕ θ
∆ = ⋅

+
         (16) 

where, θc,x and φf,x the angles formed between the reference plane P0 and the projected on the X-Z plane 

components of vectors vc and vp. This process is performed on all sample points and the 3D shape of u, denoted 

by fu, is extracted. The points between the measurements are calculated via interpolation. This model works 

under the condition of a perfectly collimated fringe beam. Although perfect collimation is not feasible, the 

fringe testing process showed that for the height scales of the measured objects (1∼2cm) the error due to poor 

collimation is negligible.   

 

Figure 8: The fringe pattern projection. We measure the distance dxc,i  = (CijCij΄) along  the line lc,i between the 

reference and the deformed fringe. 

3.5 Reconstruction of v with the Cylindrical Ridge Model 

In CRM the integration of the illumination equation is performed along the cross-section of the ridge and since 

the ridges have a comparatively small cross section, the albedo change in the integration interval is considered 

negligible. Truly, in Figure 14 we can see that the major albedo variations are observable only in the structure 

component u, as their scale is too large to be included in v. 

Unlike u, the small scale component v has a very complicated superficial structure, particularly difficult to 
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reconstruct with fringe projection, due to the technique’s limited resolving power [11-12]. For the restoration of 

v we will use CRM, in which the epidermal ridges are considered to have a high degree of axial symmetry, 

resembling a system of curved semi-cylinders of almost constant height and width. The intensity gradient can be 

locally analyzed into two components, one tangential to the axis of cylindrical symmetry and one vertical to that 

axis (Figure 9). CRM relies on the assumption that on the surface of the ridges the tangential gradient 

component varies much slower than the transverse component, meaning that the width of the ridges changes 

relatively slowly. If the tangential component of the gradient is considered negligible the unknown parameters 

can be reduced and the reconstruction of the ridges from v is possible. We establish a local coordinate system 

oxyz    that follows the path of the ridges in 3D space, with x  and y  axes always maintaining transverse and 

tangent orientations respectively in relation to the ridge principle axis of symmetry at any given point. The 

orientation of z  axis depends on the curvature of the finger as it is always vertical to the xy  plane. That 

information is provided by fu. 

First we extract the morphological skeleton of the texture image v in order to find the thinned ridges. The 

skeletonization requires a binary image Xv of the ridges, which is acquired by thresholding v. The skeleton 

SK(Xv) of the binary image Xv is the union of a series of skeleton subsets: 

( ) ( )
0

( )v v v
r

SK X X rB X rB drB
>

= −            (17) 

where rB denotes the open disk of radius r and drB is a closed disk of infinitesimally small radius dr. The small 

protrusions along the ridge trails are ignored. The integration of the normal vectors along a cross-section of an 

illuminated ridge from valley to valley can retrieve its shape. If we accept that the tangential component of the 

gradient is negligible in respect to the transversal, Eq. 1 can be integrated along the x  dimension. This process 

can be repeated along all the ridges and finally v will be reconstructed. The difficulty posed is to find the 

projected orientation of the x  axes on the image plane, which depending on the curvature of the finger is not 

always vertical to the projected SKi trails. We map the SKi on the reconstructed fu surface and determine the 

orientation of the x  axes in XYZ space. Afterwards the x  axes are projected on the osxsys system in order to 

find the cross-sections CSi = (AiBi) along which the integration of the brightness values will be performed 

(Figure 10). If we assume Lambertian reflectance with almost constant albedo, the illumination intensity along 

the segment according to Eq. 1 (KD = I0 = 1) will be: 

( ) , , , ,
T

x y z x y zI x S S S n n n   = ⋅ = ⋅   S n               (18) 

It is important not to forget to express the ˆ,S   n  vectors in the oxyz    system. The CRM model ignores the 

component z
y
∂
∂



, fact that leads to 0yn =  and 

z dz
x dx
∂

=
∂
 

 
. The height difference z∆  between two points Ai and Bi 

can be found by integrating the normal along the x  direction: 
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( )1 ( )
i

i

B

z
x

z I x S dx
SΑ

∆ = −∫  


         (19) 

We divide the cross-section Si along x  axis into k discrete points with ix∆  distance between them. The discrete 

version of Eq. 19 is used to compute the height kz  at the kth position of the section Si in an iterative process: 

( )1 1
1

k k k z k
x

z z I S x
S+ += + − ∆  


         (20) 

Note that the v reconstruction process, in contrast to u, produces the relative height map of the ridges and not 

their absolute values, and therefore the result must be multiplied by a constant to match the ridges real depth. 

During the normal integration the initial height 0z  above the finger surface is always set to 0. After the 

integration process, the kz  heights are converted to world coordinates. After the computation of the heights 

along the segment we move to the next cross-section CSi+1 along the ridge until the sample points are covered. 

After the reconstruction of v and the extraction of fv, the final 3D model is synthesized by the two components, 

fu and fv. 

3.6 Combining fu and fv 

When u and v are reconstructed, they are combined to produce the final 3D fingerprint.  

fZ(x,y) = fu(x,y) + ωv⋅fv(x,y)         (21) 

The two reconstructed surfaces fu and fv are combined with different weights 1 and ωv respectively. The value of 

these weights depends on an estimation of the contribution that fu and fv have on the final surface, information 

that is lost during image decomposition, since the decomposed components are normalized before 

reconstruction. It is known that the average depth of the adult man’s epidermal ridges is approximately 0.1mm 

[10]. The size of the reconstructed by the fringe projection process component fu comes in real height units, 

since the camera and the fringe system are both calibrated. If we calculate the average ridge depth dv of fv, the 

weight ωv will be equal to 0.1/dv if fv is measured in mm.   

3.7 Digital unwrapping of the fingerprint  

The 3D fingerprint introduced in this work has many advantages over the 2D one. However, it needs to be 

compatible with fingerprint impressions taken at crime scenes or with samples stored in fingerprint databases 

acquired by traditional 2D Automated Fingerprint Identification Systems (AFIS), the majority of which are 

touch-based devices [1]. Furthermore, all the matching methods used today in fingerprint identification, either 

minutiae-based or singular point-based, are based on 2D algorithms, [25]. Therefore an ‘unwrapping’ process 

needs to be integrated in our algorithm in order for it to be compatible with the current fingerprint identification 

and matching procedures. 
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Figure 9: The Cylindrical Ridge Model geometry. Left: the ideal semi-cylindrical model. Right: CRM assumes 

ˆ 0yn ≈  for small tangential variations. 

 

Figure 10: Left: the SKi mapped on the finger surface provided by fu. Right: some of the skeleton trails SKi with 

corrected cross-sections (blue lines). Notice that the deviation from projected normal increases as the normal of 

the surface departs from the zc axis. 

 

 

Figure 11: Left: the local system and the valley-to-valley section (AiBi) around sample point Si. Right: the 

intensity I profile measured at (AiBi). 

This unwrapping algorithm must take into account the flattening and rolling of the finger that occurs in standard 

touch-based acquisition systems. The shape of the finger affects the way the unwrapping of the fingerprint is 

performed, since it is not a perfect cylinder. During the orthographic projection on the CCD sensor in our 

system, regions of the finger with greater surface slope appear more shrunk and must be distorted proportionally 

in order to perform the unwrapping. Here we introduce a specialized unwrapping algorithm that takes into 
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account the finger curvature and its axial symmetry around the finger baseline, in order to simulate the rolling 

effect of the finger.   

Knowing that in touch-based AFIS the finger is rolled around its principal axis (baseline), the unfolding of the 

3D fingerprint will be performed in a way that preserves the geodesic distance along surface curves that lie on 

planes perpendicular to that baseline (Figure 12). We assume that due to the elongated nature of the finger the 

rolling mostly affects directions vertical to its baseline and any unwrapping in direction parallel to it will be 

negligible.  

The type of unwrapping we will perform is called “Equidistance Unwrapping”, and is a non-parametric 

technique that aims to preserve the geodesic distance between any two points in a local region of the finger 

surface. This is a desirable feature for the 3D unwrapping, as most minutiae-based matching procedures 

compare distances between minutiae (ridge bifurcation and ending points) for fingerprint matching and 

identification and any distortions could lead to matching errors. 

For simplification the image is rotated so that the projected baseline is parallel to ys axis in osxsys. 

A distortion map C(x,y) for all points (x,y) of the image will control the amount of stretching required in order 

to simulate the rolling of the fingerprint. The sampling grid consists of a number of lines lm vertical to the 

baseline (thus parallel to xs axis), divided into equal numbers of sampling points (Figure 12).  

Let k
mP′  denote the k-th point of the m-th sampling line on the 2D shading image and k

mP  its corresponding on 

the finger surface. The numbering of the k index starts at the baseline and ends at the finger edge. Positive 

values [1 k] account for the right side of the finger and the negative ones [-k 1] for the left. The distortion factor 
k
mC  at k-th point of the m-th line will be: 

k
k m
m k

m

L
C

Lproj
=            (22) 

where k
mLproj  is the projected distance from baseline 1

mP′  to point k
mP′  along line l΄m, and k

mL  the corresponding 

curve length from 1
mP  to k

mP  measured on the surface of the finger.  

The arc length 1 2P PL  between points P1 and P2 of a curve γ(t) = (x(t),y(t),z(t)) equals to the sum of all the 

infinitesimal arc lengths dl  between these two points:    

2
1 2

1

2 2 2( ) ( ) ( )PP P

P

dx t dy t dz tL dt
dt dt dt

     = + +     
     ∫        (23) 

In its discrete form, the arc length k
mL  at sample point k

mP  along line lm equals to the sum of all the infinitesimal 

arc lengths i
mdl  with i = 1 to k: 
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( ) ( )2 2

1 1

k k
k i i i
m m m m

i i
L dl x z

= =

= = ∆ + ∆∑ ∑         (24) 

Note that the y dimension is absent, as the sampling lines are parallel to xs axis. The differences 1i i i
m m mx x x−∆ = −  

and 1i i i
m m mz z z−∆ = −  are measured at the lab coordinate system OXYZ. After the computation of the discrete 

distortion map, the distortion factors for all the points of the image plane are calculated via interpolation. The 

new ‘unfolded’ coordinates ( ),u ux yΑ Α  of point A in relation to the original ones ( ),x yΑ Α  will be: 

( , )u

u

x C x y x

y y

Α Α Α Α

Α Α

= ⋅

=
          (25) 

The result of the application of the distortion map on the shading image is shown at Figure 13.  

 

Figure 12: Schematic of the sample grid used for unwrapping, with orthographic projection. 

 

Figure 13: Left: the captured image of the finger. Right: the same image unfolded by the unwrapping algorithm. 
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4. Experimental Results 

4.1 3D fingerprint reconstruction  

The image acquisition completed in two steps. First we acquired the fringe projection image and then the 

shading image If, which was decomposed into structure u and texture v. The structural part was reconstructed via 

the fringe projection process, while the textural component was restored with the CRM algorithm (Figure 15). 

The two results were combined to produce the 3D fingerprint biometrics (Figure 16). Finally, the 3D fingerprint 

was unwrapped on the 2D plane using the algorithm described in Par. 3.7 to produce a traditional AFIS 

compatible fingerprint (Figure 13).  

 

Figure 14: Image decomposition. (a) The original 2D image. (b) The structural part u. (c) The textural part v. 

For the decomposition we used λ = 1.0 and μ = 80. 

 

Figure 15: The reconstructed fu (left) and fv (right) components. 

4.2 Performance evaluation 

In order to evaluate the performance of our method, a reconstruction of the same finger by a reliable 3D imaging 
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system would be suitable for comparison. Sadly, commercial 3D non-contact systems are not common in the 

market, making it difficult to find one at a reasonable price to test the performance of our system.  

 

Figure 16: The 3D fingerprint with color sample by the original image and lighted. 

Instead we compared the unwrapped fingerprint with ink impressions of the same finger using an advanced 2D 

minutiae-based matching algorithm [26]. The matching score between the two fingerprints provided a measure 

of the performance of our method. Unfortunately ink-based fingerprint impressions suffer from non-linear 

distortions due to skin deformation caused by the forced flattening of the finger. However, if we acquire a 

number of ink impressions, for example three, and calculate the mean position of the detected minutiae, we 

expect the random distortions to be averaged out. 

For the extraction of the minutiae positions, a thinned image of the ridges is required. First the reconstructed 

ridge image fv is thresholded by choosing a mean height as threshold, resulting to a binary image of the ridges. 

Afterwards this binary image is subjected to the unwrapping process described in Par. 3.7 and thinned following 

the procedure described in Par. 3.5. The minutiae are found by tracing along the ridges, following the technique 

proposed in [27].  

Apart from the detection of the minutiae positions, it is essential to know the orientation of the ridges at these 

positions. We used a gradient-based combined method for the computation of fingerprints’ orientation field 

proposed by Mei et al in [28]. The orientation field calculation is completed in two levels. In the first level the 

orientation fields with three different size blocks are calculated. These three fields are combined together to 

form the second level orientation field. Finally, an iteration algorithm is used to predict orientation in areas with 

little or no information. In order to combine the three orientation fields [28] uses a logical process: for areas 

with small amount of detail the large size blocks are chosen, while for highly detailed areas the small size blocks 

are selected. Finally, these selected local orientations are combined together to form a new orientation field, 

which is both robust against noise and more accurate in detailed and damaged areas than the other methods that 

use a single size block.  
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There are two main kinds of minutiae, or Galton’s characteristics, considered in matching algorithms: ridge 

endings and ridge bifurcations. The matching algorithm we used completes in two steps. The first step is called 

registration, in which both fingerprints are aligned to the best degree possible. Most methods use a combination 

of translation, rotation and scaling for this task. After the completion of the registration process the matching of 

the two fingerprints follows. In the matching process a similarity score is determined by counting the 

corresponding minutiae pairs between the two fingerprints. Two minutiae correspond if a minutia from the test 

set is located within a bounding box or tolerant zone around a minutia from the template set. The matching 

score, which is a number in the range from 0 to 1, is calculated as the ratio of the number of matched minutiae to 

the total number of minutiae detected. 

Before the main registration process a preliminary registration is performed by detecting and aligning the 

baselines (the long axis of symmetry of the finger) of the two fingerprints. Additionally the captured areas 

scaled to the same size. This preliminary registration aims to allow the main registration to perform with fewer 

errors.  

Commonly a detected fingerprint minutia Mk can be described by a feature vector given by: 

Fk = (xk, yk, ψk),          (26) 

where (xk, yk) is its coordinates on the imaging plane and ψk is the local ridge direction at the location of Mk. 

The value of ψk is set in the range from -π/2 to π/2, since there is no discrimination between local ridges with 

orientations of 90° and 270°.  

Initially the image plane is sampled by three lines, with Nk sample points for each line and Mk at the center. The 

three lines l1, l2 l3 form angles θ1 = ψk, θ2 = ψk + 2π/3, θ3 = θ2 + 2π/3 with the x-axis respectively. The feature 

vector of minutia Mk is given by: 

{ }{ }3

k , 1
1

k
lmNk

i lm i
m

ψ
=

=

=F           (27) 

where , ,( , )
m

k k
i lm k i ldψ ϕ ψ ψ=  is a function that calculates the difference in respect of the orientation field between 

the local ridge direction ψk of the minutia and each one of the other two sample lines lm. The calculated feature 

vector is independent from any rotation or translation of the fingerprint images, and thus it can provide more 

reliable results for minutiae correspondences. 

After the feature vectors are calculated for all minutiae, the preliminary matching for registration is performed. 

A similarity level between two minutiae Mi, Mj is defined as: 

i j
i jif( , )    

0 otherwise

T
TS i j T

 − −
 − <= 



F F
F F          (28) 
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where T is a predefined threshold and i jF F−  is the Euclidean distance between the feature vectors Fi and Fj 

assigned at the two minutiae. S(i,j) = 1 implies a perfect match, while S(i,j) = 0 a certain mismatch. The values 

of the similarity levels help for the identification of minutiae corresponding pairs. The best matching pair is 

noted as the corresponding point pair and will be used in the registration process. The registration process aims 

to recover the geometric transformation between the test and the template fingerprint images. If the 

corresponding point pair is denoted by (b1,b2), with minutia b1 from the input fingerprint and b2 from the 

template fingerprint, the registration transformation will be: 

ψ = D(b2) − D(b1) and t = P(b2) − R(b1)        (29) 

where Rψ denotes the 2x2 rotation matrix of counterclockwise rotation at angle ψ and the position and ridge 

direction of a minutia b are denoted by P(b)=[x(b), y(b)]T and D(b), respectively. Applying the estimated 

geometric transformation onto the test fingerprint we obtain the registered minutiae and orientation field.  

Matching is performed both in respect to the position and the orientation information of the minutiae, with the 

use of feature vector Fk. The position-based matching score will be:  

,

1 2

( , )

max{ , }
i j

m

S i j
M

N N
=
∑

           (30) 

where S(i, j) is the similarity level of the (i, j) corresponding minutiae pair computed according to Eq. (28) and 

N1, N2 the number of minutiae detected in the common area of the test and template fingerprints, respectively. 

For the orientation matching the fingerprint images are divided in a number of blocks. The orientation field 

matching score Mo is defined by: 

,
( , )

i j
i jB B

o

S B B
M

N
=
∑

          (31) 

where (Bi,Bj ) is the corresponding orientation block pair of the test and template fingerprint respectively, N is 

the number of overlapped blocks of both fingerprints, and S(Bi,Bj ) is the orientation similarity level calculated 

by Eq. (28). The final matching score Ms is computed as follows: 

Ms = ωmMm + ωoMo          (32) 

where (ωm, ωo) are weights associated with the minutia matching score Mm and the orientation field matching 

score Mo.  

The performance evaluation experiment showed a matching score of 85%, which is considered to be very 

satisfying. 

Note: As we can clearly see in Figure 17 the ridges at the border area of the fingerprint are distorted 
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disproportionally, mainly due to the fact that the surface slope is so great that pushes the orthographic condition 

assumed for the lens to its limits. It is known that in extreme surface slope angles all telecentric lenses deviate 

from ideal conditions, but in our case the distortion happens only to 5% or less of the captured area, which can 

be excluded from the experiments without significant loss.    

 

 

 

Figure 17: The corresponding minutiae pairs superimposed over the unfolded digital fingerprint (top-left) and 

the one of the ink impressions (top-right). At the bottom figure we can see the paired minutiae along with some 

that ended without a pair during the matching process. 

5. Discussion 

We proposed a touch-less, single-view 3D fingerprint acquisition method for 3D fingerprint reconstruction. This 

new method adds the third dimension (height) as an additional parameter for fingerprint coding. The detected 

minutiae can be assigned with two new features: the z-position and the z-component the orientation vector. 

These new features are able to increase the performance of the identification process and the new 3D fingerprint 

database has the potential of replacing the traditional 2D databases. 

Minutiae of this 3D fingerprint will be described by a new feature descriptor F = {r, ψ} that includes these new 
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parameters, where r = [x, y, z]T and ψ = [ψx, ψy, ψz]T denote the vectors describing the position and orientation 

of the minutiae in space respectively. The orientation vector ψ is computed by finding the tangent of the ridge 

curves in three dimensions. 

The main advantage of our method compared to traditional 2D techniques, besides the additional spatial 

dimension, is its non-contact nature, which makes it independent from nonlinear distortions due to skin 

flattening. The area of interest of the unfolded fingerprint has approximately the same size with the traditional 

ink impression, but it excels in clearness and is distortion free.   

Another main advantage of the experimental apparatus is its simplicity and low cost, as it includes a single 

camera, a simple lighting apparatus and a fringe projection system. The single camera feature does not require 

multi view stereo-calibration and the image combining algorithms, which are very complicated procedures and 

often introduce errors.     

In order to deal with the reduced resolving power of the fringe method, an innovative feature was proposed: the 

decomposition of the 2D shading image If into two components, u containing geometrical information of the 

finger and v containing textural information. In this way we managed to isolate the high details of the finger that 

correspond to the epidermal ridges. The u component was reconstructed with the standard fringe technique, 

while the v component with the Cylindrical Ridge Model (CRM) algorithm. Our method takes advantage of the 

simplicity of the fringe technique, while exploiting the entire pixel resolution of the image with CRM, which is 

a photometric algorithm.  

The experimental technique proposed is a prototype and we plan to examine some important issues in order to 

improve it. Future work will include the generalization of the skin reflectance model towards more realistic skin 

conditions. This new model will take into account the propagation of light through the epidermis and the 

subsurface scattering that occurs [29,30]. Studies with multilayer models that include backscattering, [31-32], 

are being considered. Furthermore, our intentions are to integrate an albedo calculating algorithm like [33-35] 

into our method, in order to correct albedo micro-variations on the human skin. Another step towards the 

upgrading of our technique is the adjustment of the illumination equations so that non-ideal light sources can be 

used. Finally, a pressure distortion model like [36] is planned to be integrated into the unwrapping algorithm, in 

order to simulate the elastic deformations of the skin during the rolling procedure.  

6. Conclusions 

In this paper we presented a complete non-contact, single-camera imaging system for 3D fingerprint 

reconstruction. This system implements an advanced hardware apparatus with telecentric vision, fringe pattern 

projection and photometric reconstruction. The single-view feature makes the system simple while its non-

contact nature prevents errors due to skin distortion caused by forced flattening of the finger.  

The reconstruction method we propose includes two innovative features: the image decomposition feature and 

the implementation of a new photometric reconstruction technique referred to as the Cylindrical Ridge Model or 

CRM.  
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Image decomposition separates structure from texture with the implementation of an advanced Meyer algorithm, 

in order to reconstruct the two modules separately. The structural part of the shading image is reconstructed with 

a fringe projection technique, while the textural component is restored by CRM. CRM takes advantage of the 

symmetrical nature of the ridges in order to treat them as a semi-cylindrical structure. The reconstructed texture 

is then combined with the structural to produce the final 3D fingerprint.  

In order for the 3D fingerprint to be compatible with legacy rolled images acquired by traditional AFIS, an 

advanced unwrapping algorithm was implemented to digitally unfold the 3D fingerprints on a 2D surface. The 

performance of our method was evaluated by a matching experiment between the unfolded reconstructed 

fingerprint and an ink impression of the same finger. The results were very satisfying.  

Conclusively, the proposed system provides a promising standard for 3D non-contact fingerprint acquisition ad 

reconstruction with the advantages of being simple, low-cost, and reliable. 
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