
 

International Journal of Computer (IJC) 

 
ISSN 2307-4523 

 
http://gssrr.org/index.php?journal=InternationalJournalOfComputer&page=index 

 

  

Efficient Text Compression Algorithm Based on an Existing 

Dictionary 

Chouvalit Khancome* 

Department of Computer Science, Faculty of Science, Ramkhamhaeng University, Huamark District, Bangkok 

10240, Thailand. 

Email: chouvalit@hotmail.com  

 

Abstract 

This research article presents a new efficient lossless text compression algorithm based on an existing 

dictionary. The proposed algorithm represents the target texts to be compressed in a bit form, and the 

vocabularies are stored in the existing dictionary. Regarding to the results, the time complexity only takes O(n) 

time of both cases of encoding and decoding scenarios. The space complexity is O(d) bit(s) per 2d  words where 

d=1,2,3,…The theoretical results showed bits per words and maximum spaces to be saved. These results 

indicated that the maximum original texts could be compressed more than 99 %.  

Keywords: text compression; bit-level compression; dictionary base compression. 

1. Introduction 

Text compression is among the most important principles in computer science especially when the target sources 

are very large. Solving the problem of text compression algorithm is by reading a target document, and 

algorithms try to resize the target document(s) to minimal space before keeping in the storage. In contrast, 

decompression algorithms extract the compressed file(s)  to the original document(s). Traditionally, the principle 

of text compression can be divided into lossy compression and lossless compression.  

------------------------------------------------------------------------ 
* Corresponding author.  
E-mail address: chouvalit@hotmail.com, chouvalit.comsci.ru@gmail.com. 

29 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by International Journal of Computer (IJC - Global Society of Scientific Research and...

https://core.ac.uk/display/229654861?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


International Journal of Computer (IJC) (2014) Volume 15, No  1, pp 29-41 

The lossy compression is viewed as some data of original texts can be loss when the decompression algorithm is 

worked. Meanwhile, the lossless compression algorithm extracts a compression file(s) for all data as well as 

original texts. 

  Basically, famous algorithms (e.g.,Huffman, Ziv-Lempel, and Factor) are shown in [11] and called the classic 

algorithms. Recommended on classic algorithms, [1, 2, 3] and [19, 20, 21] used the keyword to handle text 

compression. The good reviews can be seen in  [19, 20] and [26, 27]. Another principle is the bit representation 

for target texts. Efficient algorithms are shown in [4, 5, 6, 7] and [16, 17, 18]. Up until now, the bit-level is 

always challenging of researchers how to keep a more space when the source will be compressed into data in the 

storage.   

In granular of compression methods, dictionary-based algorithms are the method accommodated the keywords of 

the classic algorithm even the bit-level algorithms. There are several dictionary-based algorithms such as [22, 23, 

24, 25, 26, 27]. These algorithms are efficient algorithms to keep the unique keywords called vocabularies of 

original texts to be compressed. Moreover, the dynamic of dictionary is also shown in [27] for a new algorithm of 

principle. Recently, a big data is highly important principle; as well as, the storage is larger. Additionally, the 

speed of network is faster to access the data source such as an existing dictionary, which is stored in somewhere 

of network (e.g., storage on cloud computing).  

Thus, this research article introduces the new bit-level algorithms employing the bits to represent the target texts. 

The new algorithm employs an existing dictionary which stores the vocabularies to be appeared in the target 

texts. The new method solves the problem by analyzing the keywords in each document; and, these keywords are 

added into the provided dictionary. Afterwards, all original keywords are represented by a single integer one by 

one. In the last step, these numbers are converted to the bit forms for storing in a secondary storage or a 

compressed file.  

This algorithm was evaluated by (1) proofing time and space complexities, and (2) using the demonstration texts 

to illustrate the theoretical results. Regarding to the results, the time complexity only takes O(n) time in the both 

cases of encoding and decoding scenarios; where n is the length of documents. In theoretical results and based on 

2 words to 1024 Mega-words with the length of 8, 16, and 16 characters, the new solution was able to save a 

maximum space of 99.61 % when using long lengths of words.  

The presented sections are organized as follows. Section 2 shows the related works. Section 3 indicates the basic 

definitions and demonstrates how to accommodating the target text in a bit-level form including the algorithm 

scenarios. Section 4 presents the compression algorithms and the decompression algorithms. Section 5 illustrates 

the theoretical results, and section 6 is the discussion. The conclusion and planned future woks are shown in 

section 7. 

2. Related Works 

The well known algorithms (Huffman, Ziv-Lempel, and Factor) shown in [11], are implemented by the keyword 

based algorithms. These algorithms saved a minimum space of 0.09% and the maximum space 73.74 %. For the 

30 

 



International Journal of Computer (IJC) (2014) Volume 15, No  1, pp 29-41 

past few years, [1, 2, 3, 12, 13] have been the keyword based algorithms which represented the data source by 

analyzing the keywords in the source data and representing their code in the suitable structure. Emergent 

principle of keyword base is the dictionary-based compression. These keywords are stored in the dictionary. 

There are many algorithms shown as follows. Two-Level Dictionary-Based Text Compression Scheme [1] 

showed two-level to keep the data. The original text could be approximately saved in 75%; however, the 

granular algorithm employed  gzip and bzip for compression. Meanwhile, the compression ratio is 2.01 bits per 

input character.  

StarNT [2] is the fast lossless text transform algorithm.  This algorithm utilizes ternary search tree to expedite 

trans-form encoding. It’s improvement in compression performance  were shown as 13% over bzip2-9, 19% 

over gzip-9, and 10% over PPMD. In the details of algorithms used PPM,  Huffman  in the dictionary.  Data 

Compression Using Encrypted Text [3] is  to  define  a unique  encryption or  signature. This algorithm could 

save the text in 30-60%. Other one is the survey in [26] shown the parsing problem for dictionary-based text 

compression, and it’s efficient compression shown in 22.51-36.45%. The greedy parsing optimality for 

dictionary-based text compression [27] showed how to create the dynamic dictionary for text compression and 

referred to classic algorithms such as LZ77.  

Algorithms [4, 5, 6, 7] and [14, 15] are optional bit-level algorithms. The low efficiency algorithm [14] used the 

Boolean function to implement a set of groups to bits which were then considered as minimum terms. This 

solution could save more than 10% of space. A more efficient algorithm was shown in [15], which could save a 

maximum space of about 20%. This solution used a fixed-length Hamming (FLH) algorithm which displays 

such an enhancement in Huffman code. This algorithm used to compress the multimedia file. More information 

can be archived in [7]. Superior algorithms such as [4] and [7] can save a maximum space of about 80-97%. The 

algorithm [4] used the technique called ACW(n) (Adaptive Character Word-length). This principle converted 

the source data into the binary sequence using the curtain character-to-binary format which uses the ASCII code. 

Then, the sequence was subdivided into n-bit lengths which use d ≤ 256 where d is the size of the alphabet. 

Afterwards, this method finds the optimum variable of n (n=9 and n=10).   

The algorithm [7] was  called the enhanced algorithm of [4]. This solution known as ACW(n,s) added a new 

technique using a subsequence of bit called s value. When using the value of n equal 14, the space was saved 

about 80-97%. However, some cases showed poor performance such as 2% or 50% (see the experimental results 

in [7]). The new idea is that using the clustering technique to store the original file illustrated in [19]. Other one 

is the idea of semi-document for keeping data shown in [20]. Another last idea is that the dictionary could be 

updated all time mentioned in [27].    

3. Basic Definitions and Algorithm Scenarios 

The new algorithm depends on existing dictionary, which stores the vocabularies in the target texts. This section 

shows the basic definitions and the algorithm scenarios. 

3.1. Basic Definitions 

31 

 



International Journal of Computer (IJC) (2014) Volume 15, No  1, pp 29-41 

Definition 1. A single file which consists of several words w1, w2, w3,..,wn, is called a single document and 

represented by D={ w1, w2, w3,..,wn}. 

Example 1. If the target text to be compressed is  ‘aaaa  bbbb cccc dddd’, then the details of text can be 

described as the single document, shown below.  

D={aaaa,  bbbb, cccc, dddd}, then w1=Aaaa,  w2=bbbb, w3=cccc, and w4=dddd. 

Definition 2. If there are several single documents D1, D2, D3, …, Dm where D1 = { w1, w2, w3,..,wn1}, D2 ={ w1, 

w2, w3,..,wn2}, D3 ={ w1, w2, w3,..,wn3}, ..., Dm={ w1, w2, w3,..,wnm}, then all of them are called the multi-

documents, denoted by MD. 

Example 2. Shows the multi-documents mentioned in definition 2 and 5 files to be demonstrated where MD 

consists of D1, D2, D3,D4,D5.  

      MD    Text Files to be compressed 

D1= aaaa bbbb cccc dddd   (file 1) 

 D2=dddd fffff  cccc eeee    (file 2) 

D3= bbbb bbbb cccc dddd   (file 3) 

D4= aaaa  gggg hhhh dddd  (file 4)                                                

D5= hhhh gggg eeee  dddd   (file 5)                                                         

Definition 3. All unique keywords are contained in MD, which are analyzed and contained in the temporary 

space, is called the temporary dictionary and denoted by TD. 

 Example 3. Followed by definition 3, example 3 shows the TD of example 2 shown in Fig.1. 

Definition 4. The integer represented the occurrence of wi in TD, which is shown in  MD, is called RN. 

Example 4. Followed by definition 4, example 4 represents RN of TD in example 3 shown in Fig.2. 

Definition 5. RN is converted to the bit form called DBF. 

      Example 5. Followed by definition 5, example 5 Show DBF of RN in example 4; e.g.,10001, 20020, 

and 30011, shown in Fig.3. 

 

32 

 



International Journal of Computer (IJC) (2014) Volume 15, No  1, pp 29-41 

 

Fig. 1. TD of example 2. 

 

 

Fig. 2. RN of TD in example 3. 

 

 

 

Fig. 3. DBF of RN in example 4. 

33 

 



International Journal of Computer (IJC) (2014) Volume 15, No  1, pp 29-41 

Definition 6. all keywords in TD are stored a special space called application temporary dictionary, denoted by 

ATD. 

Definition 7. If DBF is the compressed bits and stored into the storage, then the file which stores the 

compressed DBF is called the compression file, denoted by CF. 

Definition 8. If all items in CF are decompressed into a new file, then that file is called the original file and 

denoted by OF. 

3.2.  Algorithm Scenarios 

According to the mentioned definitions, this sub-section shows the steps of algorithm scenarios. There are 4 

steps for text compression shown as below.   

Step 1: Read the input, analyze the keywords, and create the dictionary such a Fig 1. 

Step 2: Represent data into RN such a Fig 2. 

Step 3: Convert RN to bits form DBF such a Fig 3. 

Step 4: Use the text compression algorithm to compress employing the existing dictionary, and write the bit forms 

to the compressed files. 

For the decompression algorithm, there are 4 steps to be done. 

Step 1: Read the CF file 

Step 2: Convert to RN one by one block of integer 

Step 3: Decompress to original words using the existing dictionary 

Step 4 : Write the words wi to the decompressed file one by one. 

4. Compression and Decompression Algorithms 

4.1. Compression Algorithm 

      Let nm be the number of documents or target texts,   sm be the total words of each document where sm 

depends on the size of each document. The compression algorithm is shown as follows.  

Algorithm 1: Text Compression Algorithm 

Input: MD, TD, RN[nm] 

Output: CF 

34 

 



International Journal of Computer (IJC) (2014) Volume 15, No  1, pp 29-41 

1. Initiate empty CF  

2.   For i=1 to nm  Do 

3.      For k=1 to sm  Do     

4.          If wk not exists in ATD Then  

5.             Add current keyword  to ATD 

6.          End If   

7.          Add number of related wk  in ATD into RN[i][sk] 

8.      End For 

9. End For 

10. Convert the RN to DBF 

11. Convert DBF to CF 

12. Write CF to storage 

Theorem 1.  All words in MD can be compressed in O(n) time where n is the total word in MD.  

Proof. The main complexity is from the loop of line 2 and line 3. Line 2 is run equal to nm times that equals n 

time; meanwhile, the loop of line 3 is run from 1 to each sm of each document. Thus, each n needs to run by 

inner loop of sm word. Then, all times of running time equal all of vocabularies in MD. The time to convert RN 

to DBF and DBF to CF are also n time. The other lines (1, 5, 7, 10,11,and 12) take O(1). Therefore, overall time 

complexity is O(n). 

Theorem 2.  The space complexity of all words in MD is O(d) bit(s) per 2d  words where d=1,2,3,….  

Proof. Supposing that the exiting dictionary contains the order of the integer number and the series of keywords, 

and they are ordered by increasing numbers. If there are one or two words, then the represented bits referring to 

the number of vocabulary in the dictionary uses only one bit of 21 words. Then, if there are 22,23,24,…, 2d words, 

then the space are  2,3,4,…, d  bits.  Therefore, the space of all words in MD takes O(d) bit(s) per 2d  words.  

4.2. Decompression Algorithm 

Using the decompression algorithm, the temporary space is initiated and denoted by TM. Then, the algorithm 

reads a related block of RN one by one and converts the bit form to words, which will be stored in TM. If all bits 

are converted, then the words are stored in the storage (OF). Additionally, let mmax be the maximum length in sm. 

The main algorithm is shown as below.  

Algorithm 2: Decompression Algorithm 

Input: CF, ATD, mmax,n 

Output: OF 

1. Initiate the space DBF with size mmaxxn (TM) 

35 

 



International Journal of Computer (IJC) (2014) Volume 15, No  1, pp 29-41 

2. While CF not EOF Do 

3.         Read data from CF  

4.         Convert each data to RN form 

5.         Read record which corresponds RN of ATD and get word form ATD 

6.         Write that word to TM  

7. End While 

8. Write TM to OF 

 

Theorem 3.  If there are the compressed file CF, which is compressed by algorithm 1, then extracting CF to OF 

takes O(n). 

Proof. Line 1 takes O(1) time. The loop of ‘while’ from line 2 to line 7 needs to be explained. If the size of CF 

is n, then the line 3 takes O(n). As well as, the line 4, 5 and 6 also take O(n). Thus, the time complexity from the 

line 2 to line 7 takes 4n which is O(n). In the last line, line 8 takes O(1). Therefore, the time complexity of 

decompression algorithm is only O(n).  

Theorem 4.  If there are the compressed file CF, then the extraction of CF to OF takes O(mmaxxn) space where n 

is the size of CF , mmax is the maximum length of blocks in CF.  

Proof. Assuming that each line or block in CF keeps n1,n2,n3,… words where n1+n2+n3+,.. = n. The length of 

lines, which contains n1+n2+n3+,.. words,  are m1,m2,m3,... mmax,… where mmax is the maximum length of them 

and m1+m2+m3+..+mmax,,…=m. Corresponding to line 1 of algorithm, the required space for keeping TM is mxn 

space which implies O(mmaxxn).  

5. Theoretical Results 

The theoretical results are focused on the saved space per word and the target texts from kilo-word(s) to mega-

word(s) within the given length of words. Table 1 to table 3 show the space could be saved per word when the 

vocabularies 2-1024 words while the length of word 8, 16, and 32 characters, respectively.  Table 4 to table 6 

show the saved spaces when the target texts are 2 -1024 words. Additionally, table 7 shows the large target texts 

from 2-1024 Mega-words when the word length is 32 characters. 

The formula for calculation of table 1 to table 3 is shown as below. 

 

% of Saved Space (per word) = ((Original Bits)-Required Space)/Original Bits)*100           (1) 

 

 

36 

 



International Journal of Computer (IJC) (2014) Volume 15, No  1, pp 29-41 

Table 1. Saved space per word when the length of word is 8 (Original Bits=64 ASCII, 128 Unicode).  

# of 

vocabularies(words) 

The required 

space  per 

word (bits)  

Saved space of 

ASCII text (% per 

word) 

Saved space of 

Unicode  text (%) 

2 1 98.43 99.21 

4 2 96.87 98.43 

8 3 95.31 97.65 

16 4 93.75 96.87 

32 5 92.18 96.09 

64 6 90.62 95.31 

128 7 89.06 94.53 

256 8 87.50 93.75 

512 9 85.93 92.96 

1024 10 84.37 92.18 

Table 2. Saved space per word when the length of word is 16 (Original Bit=128 ASCII, 256 Unicode). 

# of 

vocabularies(words) 

The required space  

per word (bits) 

Saved space of 

ASCII text (% per 

word) 

Saved space of 

Unicode text (%) 

2 1 99.22 99.61 

4 2 98.44 99.22 

8 3 97.66 98.83 

16 4 96.88 98.44 

32 5 96.09 98.05 

64 6 95.31 97.66 

128 7 94.53 97.27 

256 8 93.75 96.88 

512 9 92.97 96.48 

1024 10 92.19 96.09 

Table 3. Saved space per word when the length of word is 32 (Original Bit=256 ASCII, 512 Unicode). 

# of 

vocabularies(words) 

The required space  

per word (bits) 

Saved space of 

ASCII text (% per 

word) 

Saved space of 

Unicode (%) 

2 1 99.61 99.80 

4 2 99.22 99.61 

8 3 98.83 99.41 

16 4 98.44 99.22 

32 5 98.05 99.02 

64 6 97.66 98.83 

128 7 97.27 98.63 

256 8 96.88 98.44 

512 9 96.48 98.24 

1024 10 96.09 98.05 

37 

 



International Journal of Computer (IJC) (2014) Volume 15, No  1, pp 29-41 

The formula for calculation of table 4 to table 6 is shown as below. 

% of Saved Space = ((Original Bytes)-Required Byte Spaces)/Original Bytes)*100              

(2) 

Original Byte = Kilo-Words *8, Required Byte = Required Bits/8              

(3) 

 

Table 4. Compression results when the original text equals 1 Kilo-Words with 8 character lengths (ASCII=8192 Bytes, Unicode=16394 

Bytes) 

# of 

vocabularies(words) 

The required space  

(Bytes) 

Saved spaces (%) 

of ASCII code 

Saved space (%) 

of Unicode 

2 256 96.88 98.44 

4 384 95.31 97.66 

8 512 93.75 96.88 

16 640 92.19 96.09 

32 768 90.63 95.31 

64 896 89.06 94.53 

128 1024 87.50 93.75 

256 1152 85.94 92.97 

512 1280 84.38 92.19 

1024 1408 82.81 91.41 

 

 

 Table 5. Compression results when the original text equals 1 Kilo-Words with 16 character lengths (ASCII=16384 Bytes, Unicode=32768 

Bytes)  

# of 

vocabularies(words) 

The required space  

(Bytes) 

Saved spaces (%) 

of ASCII code 

Saved spaces (%) 

of Unicode 

2 256 98.44 99.22 

4 384 97.66 98.83 

8 512 96.88 98.44 

16 640 96.09 98.05 

32 768 95.31 97.66 

64 896 94.53 97.27 

128 1024 93.75 96.88 

256 1152 92.97 96.48 

512 1280 92.19 96.09 

1024 1408 91.41 95.70 

 

 

38 

 



International Journal of Computer (IJC) (2014) Volume 15, No  1, pp 29-41 

Table 6. Compression results when the original text equals 1 Kilo-Words with 32 character lengths (ASCII=32768 Bytes, Unicode=65536 

Bytes)  

# of 

vocabularies(words) 

The required space  

(Bytes) 

Saved spaces (%) 

of ASCII code 

Saved spaces (%) 

of Unicode 

2 256 99.22 99.61 

4 384 98.83 99.41 

8 512 98.44 99.22 

16 640 98.05 99.02 

32 768 97.66 97.66 

64 896 97.27 98.83 

128 1024 96.88 98.63 

256 1152 96.48 98.44 

512 1280 96.09 98.05 

1024 1408 95.70 97.85 

 

The formula for calculation of table 7 is shown as below. 

% of Saved Space = ((Original Mega-Bytes)-Required Mega-Byte Spaces)/Original Mega-Bytes)*100              

(3) 

Original Mega-Byte = Mega-Words *1048576*word length,                 (4) 

Required Mega-Byte = (Required Bits* (Mega-Words *1048576))/1048576              

(5) 

 Table 7. Compression results when the original text in Mega-Words with 32 character lengths and 32-bits per word.  

# of 

vocabularies(Mega-

words) 

The required space  

per word (bits) 

ASCII text 

(Bytes)/Unicode 

(MB) 

The required space  

(MB) 

Saved spaces (%) 

of ASCII code 

Saved spaces (%) 

of Unicode 

2 21 64/128 5.25 91.80 95.90 

4 22 128/256 11 91.41 95.70 

8 23 512/1024 23 95.51 97.75 

16 24 1024/2048 48 95.31 97.66 

32 25 2048/4096 100 95.12 97.56 

64 26 4096/8192 208 94.92 97.46 

128 27 8192/16384 432 94.73 97.36 

256 28 16384/32768 896 94.53 97.27 

512 29 32768/65536 1856 94.34 97.17 

1024 30 65536/131072 3840 94.14 97.07 

6. Discussion 

This algorithm only shows the theoretical results that need the space to keep the packed filed less than 20% per 

each result. However, the algorithm was assumed that there is an existing dictionary. That is, the dictionary 

39 

 



International Journal of Computer (IJC) (2014) Volume 15, No  1, pp 29-41 

could be used to keep all unique words. If there are several unique keywords and no redundant of words, then 

this algorithm could be used space more than the original text. Suggestion that the dictionary should use the 

efficient algorithms (e.g., [16,17, 18] or [26, 27]) to stored the vocabularies.   

7. Conclusion 

Based on an existing dictionary, the new algorithm was presented. The proposed algorithm employed the bit-level 

to store the target texts. The time complexity of the compressing algorithm takes O(n) time, and the time 

complexity of the decompressing algorithm also takes O(n) time where n is the length of the source data. In 

compressing phase, the space complexity takes O(d) per 2d  words where d=1,2,3,…, and takes O(mmaxxn) space 

in decompressing phase where mmax is the maximum words in the block of compressed files. The theoretical 

results showed that the average spaces to be saved per word were from 87.66-99.41% when target texts were 

from 2-1024 mega-words. As well as, a maximum saved space was 99.80%.  

References 

[1] A. Mofat, and R.Y.K. Isal. Word-based text compression using the burrows-wheeler transform.  

Information Processing and Management, Vol. 41, No. 5, 2005, 1175-1192. 

[2] J. Adiego, and P. de. la Feunte, On the use of words as source alphabet symbols in PPM.  In 

Proceedings of Data Compression Conference, IEEE, 2006,  435. 

[3] J. Lánský and M. Žemlička. Text compression: Syllables. In Proceedings of the Dateso Workshop on 

Database, Texts, Specifications and Objects, 2005, 32-45. 

[4] H. Al-Bahadili and S. M. Hussain. An adaptive character wordlength algorithm for data compression. 

Computers & Mathematics with Applications, Vol. 55, No. 6, 2008,  1250-1256. 

[5] S. Nofal. Bit-level text compression. In Proceedings of the 1st International Conference on Digital 

Communications and Computer Applications, Irbid, Jordan, 2007,  486-488. 

[6] A. Rababáa. An Adaptive  Bit-Level Text Compression Scheme Based on the HCDC Algorithm. M.Sc., 

dissertation, Amman Arab University for Graduate Studies, Amman, Jordan, 2008. 

[7] H. Al-Bahadili and S. M. Hussain. A Bit-level Text Compression Scheme Based on the ACW 

Algorithm. International Journal of Automation and Computing, Vol. 7 No. 1, 2010, 123-131. 

[8] C. Monz and M. de. Rijke, (2006, August, 12). Inverted Index Construction. Available:  

http://staff.science.uva.nl/~christof/ courses/ir/transparencies/clean-w-05.pdf. 

[9] O. R. Zaïane, (2001, September 15), CMPUT 391:  Inverted Index for Information Retrieval, 

University of Alberta. Available: http://www.cs.ualberta.ca/~zaiane/courses /cmput39-03/. 

[10] R. B. Yates and B. R. Neto. Mordern Information Retrieval. The ACM press. A Division of  the Association 

for Computing Machinery, Inc. 1999, 191-227. 

[11] M. Crochemore, and W. Rytter, (2010, March, 18). Text Algorithms. Available: http://monge.univ-

mlv.fr/~mac/REC/text-algorithms.pdf. 

[12] R. Y. K. Isal and A. Moffat. Word-Based Block-Sorting Text Compression. ACSC '01: Proceedings of the 

24th Australasian conference on Computer Science, IEEE Computer Society, 2001,  92-99. 

40 

 



International Journal of Computer (IJC) (2014) Volume 15, No  1, pp 29-41 

[13] R. Y. K.  Isal, A. Moffat and A. C.H. Ngai.  Enhanced Word-Based Block-Sorting Text Compression.  

ACSC '02: Proceedings of the twenty-fifth Australasian conference on Computer  science, Australian Computer 

Society, Inc., Vol. 4, 2002, 129-137. 

[14] G. Caire, S. Shamai and S. Verdu. Noiseless data compression with low density parity check codes. 

Advancees in Network Information Theory, DIMACS Series in Discrete Mathematics and Theoretical Computer 

Science, P. Gupta, G. kramer, A. J. van Wijingaarden, Ed., Vol. 66, 2004,  263-284. 

[15] A. A. Sharieh. An enhancement of Huffman coding for the compression of multimedia file. Transactions 

of Engineering Computing and Technology, Vol. 3, No. 1, 2004,  303-305. 

[16] C. Khancome.  Bit-level Text Compression Algorithm Using Position of Characters. 2010 2nd 

International Conference on Information and Multimedia Technology (ICIMT 2010). Vol. 1-242, 2010,   242-

245. 

[17] C. Khancome. New Full Text Compression Algorithm Based on Position of Character  .2010 3rd 

International Conference on Computer and Electrical Engineering (ICCEE 2010). IEEE Conference,  Vol. 5, 

2010, 631-634.  
[18] C. Khancome. Text Compression Algorithm Using Bits for Character Representation.  International Journal of 

Advanced Computer Science. Vol. 1, No. 6, 2010, 215-219.  

[19] J. Dvorsk´y, J. Martinoviˇc. J. Pokorn´y, V. Sn´aˇsel, and K. Richta (Eds.). Improvement of Text Compression 

Parameters Using Cluster Analysis, Dateso 2007, 115–126 

[20] L. Galambos, J. Lansky, M. Zemlicka, and K. Chernik. Compression of Semistructured Documents. INTERNATIONAL 

JOURNAL OF INFORMATION TECHNOLOGY VOLUME 4 NUMBER 1 2007. 

[21] M. Crochemore and F. Mignosi and A. Restivo and S. Salemi. Text Compression Using Antidictionaries. In 26th 

Internationale Colloquium on Automata, Languages and Programming (ICALP). 1998, 261-270. 

[22] Z. Karim Zia, D. Fayzur Rahman, and C. Mofizur Rahman. Two-Level Dictionary-Based Text Compression Scheme . 

Proceedings of 11th International Conference on Computer and Information Technology (ICCIT 2008) 25-27 December, 

2008, Khulna, Bangladesh, 13-18. 

[23] W. Wen-Yen and J. W. Mao-Jiun, "Two-dimensional object recognition through two-stage string matching," Image 

Processing, IEEE Transactions on, vol. 8, 978-981, 1999. 

[24] F.  Amar Mukherjee. Data Compression Using Encrypted Text  Robert. Proceedings of  ADL ’96 ,1996,  130-138. 

[25] G. Hwee Ong and S. Ying Huang. A  Data  Compression  Scheme  for  Chinese  Text  Files  Using  Huffman  Coding  

and  a  Two-Level  Dictionary.  INFORMATION  SCIENCES  84,  85  99  (1995) 85-99. 

[26] A. Langiu. On parsing optimality for dictionary-based text compression—the Zip case, Journal of Discrete Algorithms, 

20 (2013) 65–70.  

[27] M. Crochemore, A. Langiu, and F. Mignosi. Note on the greedy parsing optimality for dictionary-based text 

compression. Theoretical Computer Science 525 (2014) 55–59. 

41 

 


	References

