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1 Introduction
Simulation continues to be the primary method by which 
engineers obtain information about analysis of complex 
stochastic systems, such as production assembly lines, 
flexible manufacturing systems, and reliability systems. 
Almost all stochastic system performance evaluation can be 
formulated as an estimation of an expected value. Consider 
a system with continuous parameter 
v ∈V ⊆ R, where V is an open interval. Let

J(v) = EY | v [Z (Y)], (1)

be the steady-state expected performance measure, where Y 

is a random vector with known probability density function 
(pdf), f(y;v) depends on v, and Z is the performance 
measure. For example, in a reliability system, J(v) might 
be the mean time to failure; Z is the lifetime of a system; 
Y is the lifetime of the components; and v might be the 
components’ mean lifetimes. In general, v is the shape or 
scale parameter of the underlying pdf. Another example 
could be a queueing system, where Y is the sequence of a 
two-dimensional vector of inter-arrivals and service times, 
Z is the delay in the system, and v is the arrival rate.
 Before proceeding further, we distinguish between 
discrete event static systems (DESS) and discrete event 
dynamic systems (DEDS). Dynamic systems evolve over 
time; static systems do not evolve over time. Examples of 
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Načrtovanje in planiranje z metodo simulacije

Uporaba simulacije kot orodja za načrtovanje kompleksnih stohastičnih sistemov je pogosto časovno zahtevna naloga. Potereben 
je izdaten računalniški čas da se najde vrednost vhodnih parametrov ki ustrezajo željenim performansam sistema. Načrtovalec 
simulira proces numerično za izbrane vhodne parametre da dobije oceno želene vrednosti izhoda. Cilj je da dobimo kar se da slične 
vrednosti experimentalnih in simulacijskih rezultatov z variranjem vhodnih parametrov simulacijskega modela. Pproblem je da ne 
obstaja enostaven način računanja da direkto dobimo zahtevanno rešitev problema. Ker izhod (rešitev) mora odgovarati enoj od 
možnih vrednosti vhodnih parametrov metoda reševanja je nujno iterativna kar zahteva veliko računalniškega časa. V tem članku 
predlagava postopek “stohastičnega približka” za oceno potrebnih controlabinih vhodnih parametrov za določitev željene vrednosti 
sistema v mejah predpisane zanesljivosti. Predlagani algoritam temelji na Newtonovi metodi, kjer spomočjo (enega) simulaciijskega 
teka ocenimo prvi odvod potreban za optimizacijo kriterijske funkcije. Predlagani postopek lahko razumemo kot optimizacijsko shemo, 
kjer funkcijo izgube je treba minimizirati. Predlagani postopek je preizkušen in ovrednoten na nekaj primerih zanesljivosti in sistemov 
strežbe z znanimi analitičnimi rešitvami.
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dynamic systems are the queuing systems; examples of static 
systems are reliability systems. Note that while in DESS, 
Y is a multidimensional vector; in DEDS, Y represents a 
stochastic process. This paper deals with perturbation 
analysis of both DESS and DEDS.
 In systems analysis, we resort to simulation when 
Z is either unknown or is too complicated to calculate 
analytically. Simulation is needed to estimate J(v) for most 
DESS and DEDS. The principal strength of simulation is 
its flexibility as a systems analysis tool for highly complex 
systems.
 In discrete event systems, Monte Carlo simulation is 
usually needed to estimate J(v) for a given value v = v0. By 
the law of large numbers 

^        n
J(v0) = 1/n   Σ Z (yi), (2)
        i =1

converges to the true value, where yi, i = 1, 2, ..., n are 
independent, identically distributed random vector 
realizations of Y from f (y; v0), and n is the number of 
independent replications. The numerical result based on 
(2) is only a point estimate for J(v) at v = v0. The numerical 
result based on (2) is a solution to a system analysis: Given 
the underlying pdf with a particular parameter value v0, 
estimate the output function J(v0). The direct problem is 
widely used in stochastic systems analysis. Now we pose the 
system design problem: Given a target output value of the 
system and a parameterized pdf family, find an input value 
for the parameter which generates such an output. The 
solution to the design problem has potential application 
in stochastic systems analysis and design. Mathematical 
formulation of the design problem is as follow: 

Given τ, find v ∈ V ⊆ R subject to J(v) = τ, where

J(v) = EY | v [Z (Y)] = ∫ Z(y) f(y; v)dy, (3)

Z: Rm → R is a system performance measure
Y ∈ Rm is a random vector (or a truncated stochastic 
process) with pdf f (y; v)

 The design problem is essentially backwards. The 
output is given, but the input must be determined. This 
is easiest to appreciate when a designer wants to match 
experimental data in order to obtain some basic parameters. 
The designer simulates the process numerically and obtains 
an approximation for that same output. The goal is to match 
the numerical and experimental results as closely as possible 
by varying the values of input parameters in the numerical 
simulation. Analyzing this, clearly, the output is there, and 
it is the input quantity that needs to be determined. The 
most obvious difficulty in solving the design problem is that 
one cannot simply calculate a straightforward solution and 
be done. Since the output must be set by varying the input, 
an iterative method of solution is implied. Our approach 
may be viewed as an optimization scheme where a loss 
function must be minimized. Therefore, the process of 
solving a design problem often comes down to finding the 
best method of minimizing the loss function. The key part 

of optimization is to compute the derivative of the output 
with respect to an input parameter.
 There are strong motivations for both problems. In the 
case when v is any controllable or uncontrollable parameter, 
the designer is interested in estimating J(v) for a small 
change in v = v0 to v = v0 + δv0. This is the so-called what-if 
problem which is a direct problem. However, when v is a 
controllable input the decision maker may be interested in 
the goal-seeking problem; i.e., “What perturbation of the 
input parameter will achieve a desired change in the output 
value?”. Another application of the design problem is where 
we may want to adapt a model to satisfy a new constraint 
with stochastic function. While the what-if problem has been 
extensively studied, the goal-seeking simulation problem is 
relatively new. Design interpolation based on regression 
models provides an indirect approach to solve the design 
problem. In this treatment, one simulates the system for 
many different values of v = v0 and then one approximates 
the response surface function J(v), see e. g. (Kleijnen, 1979). 
Finally, the fitted function is used to interpolate to obtain 
the unknown parameter v. Since the shape of J(v) function 
is unknown, this approach is tedious, time-consuming and 
costly. Moreover, in random environments, the fitted model 
might have unstable estimates for the coefficients. The only 
information available about J(v) is general in nature, for 
example, continuity, differentiability, invertability, and so 
on.
 The simulation models based on (2), although simpler 
than the real-world system, are still a very complex way 
of relating input (v) to output J(v). Sometimes a simpler 
analytic model may be used as an auxiliary to the simulation 
model. This auxiliary model is often referred to as a local 
response surface model (known also as a metamodel 
(Friedman, 1996). Local response surface models may have 
different goals: model simplification and interpretation (Yu 
& Popplewell, 1994), optimization (Arsham, 1996), what-if 
analysis (Arsham, 1996a), and generalization to models of 
the same type. The following polynomial model can be used 
as an auxiliary model.

J(v) = J(v0) + δv.J' (v0) + (δv)2 J'' (v0) / 2 + ..., (4)

where δv = v-v0 and the primes denote derivatives. This 
local response surface model approximates J(v) for small 
δv. To estimate J(v) in the neighborhood of v0 by a linear 
function, we need to estimate the nominal J(v) based on 
(2) and its first derivative. Traditionally, this derivative is 
estimated by crude Monte Carlo; i.e., finite difference which 
requires rerunning the simulation model. Methods which 
yield enhanced efficiency and accuracy in estimating, at 
little additional cost, are of great value.
 There are few ways to obtain efficiently the derivatives 
of the output with respect to an input parameter (Arsham, 
1998). The most straightforward method is the Score 
Function (SF). The SF approach (Arsham et al., 1989) is 
the major method for estimating the performance measure 
and its derivative, while observing only a single sample path 
from the underlying system (Rubinstein & Melamed, 1998). 
The basic idea of SF is that the derivative of the performance 
function, J'(v), is expressed as expectation with respect to 
the same distribution as the performance measure itself.
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 This paper treats the design problem as a simulation 
(as opposed to regression) problem. By this approach, we 
are able to apply variance reduction techniques (VRT) used 
in the direct problem. Specifically, we embed a stochastic 
version of Newton's method in a recursive algorithm 
to solve the stochastic equation J(v) = J for v, given J at a 
nominal value v0. 
The explicit use of a linear local response surface model is 
the target parameter design: Given a desired value J = J(v), 
find the prerequisite input parameter v. 
 Most engineering design methods essentially involve a 
framework for arriving at a target value for product, process, 
and service attributes through a set of experiments which 
include Monte Carlo experiments. To solve the product 
design problem, we will restrict our model to the first order 
expansion. For a given J(v) the estimated δv using (4) is 
^                 ^           ^ 
δv = [J(v)-J(v0)] / J' (v0), (5)

provided that the denominator in (5) does not vanish for all 
v0 in interval V.
 The remainder of this article is divided into eight 
sections. The next section contains the construction of a 
polynomial local response surface model using estimated 
derivatives of J(v). Section 3 deals with the target setting 
problem in design of a system. This is followed by 
construction of an accuracy measure. Section 5 develops 
an iterative solution algorithm for the parameter selection 
problem. Sections 6 and 7 illustrate the proposed method 
for reliability and queueing systems, respectively. Finally, 
Section 8 provides some concluding remarks and ideas for 
further research and extensions.

2  Polynomial Local Response Surface 
Model Construction by Single-Run 
Simulation

Simulation models, although simpler than real-world 
systems, are still a very complex way of relating input 
parameters (v) to performance measures J(v). Sometimes 
a simple analytical model may be used as an auxiliary to 
the simulation model. This auxiliary local response surface 
model is often referred to as a metamodel (Friedman, 
1996). In this treatment, we have to simulate the system 
for some different values of (v) and then use a "goodness-
of-fit" regression. We fit a response surface to these data 
(Kleijnen, 1979). Clearly, coupling the simulation model 
with the Score Function method enhances the efficiency of 
local response surface model construction. A local response 
surface model can also be constructed by using sensitivities 
in a Taylor expansion of J(v) in the neighborhood of v = 
v0. The resulting local response surface model can be used 
for characterization (such as increasing/decreasing, and 
convexity/concavity) of the response surface.
 Let
J(v) = EY | v [Z (Y)] = ∫ Z(y) f(y; v)dy, (6)

Z is a system performance measure
Y ∈ Rm is a random vector (or a truncated stochastic 

process) with pdf f (y; v)
be the steady state performance measure, then
 
J' (v) = ∫ [ Z(y).f (y;v)]' dy, (7)
 
where the prime (') denotes the derivative with respect to 
v. Note that despite the fact that y depends on v, only the 
function Z.f is subject to differentiation with respect to v. 
From (7) it follows that 

J'(v) = ∫ Z(y) f ' (y; v)dy = EY | v [Z(Y) S], (8)

where S = f '(y;v) / f(y;v) is the Score Function. Differentiation 
is with respect to v. This is subject to the assumptions 
that the differentiation and the integration operators are 
interchangeable, f '(y;v) exists, and f(y;v) is positive for all 
vεV, where V is an open interval. A necessary and sufficient 
condition for the interchangeability used above is that there 
must be no discontinuity in the distribution with position 
depending on the parameter v (Arsham, 1996a). Similarly, 
the second derivative is

J''(v) = ∫ [ Z(Y) S' f(y; v) + Z(Y) S f ' (y; v)]dy = 
EY | v [Z(Y) H] (9)

where 

H = S' + S2. (10)

 In the multidimensional case, the gradient and 
Hessian of J(v) could be obtained in a straightforward 
manner by generalizing these results (Arsham, 1998). The 
estimator for the first and second derivatives based on (8) 
and (9) are given by:
 ^      n
J' (v0) =  Σ Z(yi ).S(yi ; v)/n (11)
      i =1 
 
^               n
J'' (v0) =  Σ Z(yi).H(yi ; v0) /n (12)
                i =1 
where

 S(yi; v0) = f ' (yi ; v0) / f (yi ; v0) (13)

and 

 H(yi ; v0) = f '' (yi ; v0) / f (yi ; v0). (14)

Notice that both (11) and (12) estimators are evaluated at 
v = v0, and yi ‘s are the same n independent replications 
used in (2) for estimating the nominal performance J(v0); 
therefore they are quite efficient in terms of CPU cost. 
Estimates obtained by using (11) and (12) are unbiased, 
consistent, and they converge to the true values in the sense 
of the mean squared error (Arsham, 1998). The estimated 
gradient can also be used in solving optimization problems 
by simulation using the stochastic version of the classical 
nonlinear programming algorithms (Arsham, 1996). Other 
applications of sensitivity information include stability 
analysis (Arsham, 1996a). 
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3 Design-setting Problem
Most engineering system designs such as product, process, 
and service design, involve a framework for arriving 
at a target value for a set of experiments, which may 
include Monte Carlo experiments. A random quality loss 
function L(Zi) for a given system can be expanded in the 
neighborhood of the target value τ as follows:

L(Zi) = L(τ) + (Zi-τ)L'(τ) + (Zi-τ)2 L"(τ)/2 + ..... (15)

It can be shown that L(Zi) converges in mean squared error 
if *Zi-τ*<1 and derivatives are finite. Since the optimal loss 
is zero at τ, equation (15) reduces to the following quadratic 
approximation

L(Zi) = K (Zi-τ)2 (16)

In (16), K is some constant which can be determined in 
terms of the customer's tolerance limit 
(τ - δ), which suggests that the product performs 
unsatisfactorily when Zi slips below this limit. Given that 
the cost to customer is A dollars, then K = A/δ2. Without 
loss of generality, for simplicity let K=1. 
 The goal of parameter design is to choose the setting 
of the design parameter v that minimizes the average loss 
(the risk function). The risk function R(τ) is the expected 
value of the loss function, which can be shown as:

R(τ) = E {L(Zi)} = (J - τ )2 + Var (Zi), (17)

This risk function measures the average loss due to a 
product performance which is proportional to the square 
of the deviation from the target value τ .
 The non-adjustable variational noise; i.e.; 

Var (Zi |v) = Var (Zi), (18)

is a measure of variation among products. However, the 
role of product design is to reduce the (J - τ )2 part of risk, 
which is our interest in this paper. Note that all estimates 
involved in computing δv based on (5); i.e., in 
^                   ^                ^  
δv = [J(v)-J(v0)] / J' (v0) (19)

are computed simultaneously from a single-run simulation 
of the nominal system (v = v0). This was achieved by 
transforming all probability space to the nominal one. Note 
that to estimate the derivative we do not need to rerun the 
simulation. To estimate the derivatives adds only moderate 
computational cost to the base simulation.

4 Accuracy of the Estimate
In the design problem, input parameter is random, while 
the output is fixed and given as a target value. Upon 
estimating the input parameter, we must provide a measure, 
such as a confidence interval, to reflect the precision of the 
estimate. To construct a confidence interval for δv using the 
estimator (19), let

 Ai = J(v) - Z(yi; v0), (20)
 Bi = Z(yi ; v0) S(yi; v0) (21)

and denote 

A = Σ Ai /n , and B = Σ Bi /n, (22)

then 

S2 = S    
11  - 2^v S12 + (^v)2 S22 (23)

where

S11 = Σ (Ai - A)2/(n-1), S22 = Σ (Bi - B)2/(n-1), (24)

and 

S12 = Σ (Ai -A)(Bi - B) /(n-1), (25)

An exact 100 (1- α ) % confidence interval for δv is given 
by

    |δv –v |
P [ n½ ---------- ≤ tn-1, 1- α / 2 ] ≥ 1-α, (26)
       S/B 

where tn-1,1- α / 2 is the 100 (1- α / 2) percentile of Student's t 
distribution with (n-1) degrees of freedom (Kleijnen & Van 
Groenendaal, 1992). 

5 A Recursive Solution Algorithm
The solution to the design problem is a solution of the 
stochastic equation J(v) = J, which we assume lies in some 
bounded open interval V. The problem is to solve this 
stochastic equation by a suitable experimental design to 
ensure convergence as δv approaches zero. The following 
algorithm involves placing experiment j+1 according to the 
outcome of experiment j immediately preceding it. That is, 
                  ^           ^ 
 vj+1 = vj+dj [τ - J(vj)] / J'(vj), (27)

where dj is any sequence of positive numbers satisfying the 
following conditions:
∞   
Σ dj = ∞, (28)
j =1 

and 

∞ 
Σ dj

2 < ∞, (29)
j =1 

The first condition is a necessary condition for the 
convergence δv to approach zero, while the second condition 
asymptotically dampens the effect of the simulation random 
errors. These conditions are satisfied, for example, by the 
harmonic sequence dj = 1/j. With this choice, the rate of 
reduction of di is very high initially but may reduce to very 

2
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small steps as we approach the root. Therefore, a better 
choice is, for example 
dj = 9 / (9 + j).
 Since the adjustments are made in proportion to the 
recent value, we must be sure that the results remain finite. 
This requires that J'(v) does not vanish for v∈V, where V 
is an open interval. To prevent excessive over-correction, 
we assume further that the solution lies in some finite 
interval V. Under these not unreasonable conditions, this 
algorithm will converge in mean square; moreover, it is an 
almost sure convergence. For some generalizations and 
studies concerning speed of convergence and acceleration 
techniques, see (Dippon & Renz, 1997). Finally, as in 
Newton's root-finding method, it is impossible to assert that 
the method converges for just any initial v = v0, even though 
J'(v) may satisfy the Lipschits condition over V. Indeed, if 
the initial value v0 is sufficiently close to the solution, which 
is usually the case, then this algorithm requires only a few 
iterations to obtain a solution with very high accuracy. 

ALGORITHM
Step 0. INPUTS
 τ = Desired output
 j = Iteration number
 vj = Controllable input parameter v
 n = Sample size
 U =  Desired upper limit for absolute increment u = 

vj+1 - vj
 α = A desired significance level 

Step 1. INITIALIZATION
 Set j=1
 Set vj = v0

Step 2. ESTIMATIONS
 J(vj) using (2) 
 J'(vj) using (9)

Step 3. COMPUTATIONS
                  ̂                        ^ 
 u = 9[ τ -J(vj)] / [(9+j) J'(vj)]
 If | u | < U
  Construct 100( 1- α )% confidence interval for v 
 using (20) 
 Stop.
 Otherwise
 set vj+1 = vj + u and j → j+1

Step 4. RESET: Reset the seeds of random number generators 
to their initial values. Go to step 2.
Note that, by resetting the seeds to their initial values, we are 
using the Common Random Variate approach as a variance 
reduction technique. 

6 Design of a Reliability System 
For most complex reliability systems, the performance 
measures such as mean time to failure (MTTF) are not 
available in analytical form. We resort to Monte Carlo 
Simulation (MCS) to estimate MTTF function from a family 

of single-parameter density functions of the components 
life with specific value for the parameter. The purpose of 
this section is to solve the design problem which deals with 
the calculation of the components’ life parameters (such 
as MTTF) of a homogeneous subsystem, given a desired 
target MTTF for the system. A stochastic approximation 
algorithm is used to estimate the necessary controllable 
input parameter within a desired range of accuracy. The 
potential effectiveness is demonstrated by simulating a 
reliability system with a known analytical solution.
 Consider a coherent reliability sub-system consists of 
4 homogeneous elements; i.e., manufactured by an identical 
process, components having independent random lifetimes 
Y1, Y2, Y3, and Y4, which are distributed exponentially with 
rates v = v0 = 0.5.
The first 2, and the last two elements are in series, while 
these tow series each with two components are in parallel. 
The system lifetime is Z (Y1,Y2,Y3,Y4; v0) = max [min 
(Y3,Y4), min (Y1,Y2)]. It is readily seen that the theoretical 
expected lifetime of this system is J(v0) = 3/(4 v0), (Barlow 
& Proschan, (1975). Now we apply our results to compute 
a necessary value for v to obtain a particular value for J(v), 
say J(v) = 2. For this reliability system, the underlying 
probability density function is:

f(y;v) = v4exp(-v Σ yi), i = 1, 2, 3, 4. (30)

The Score Function is 

S(y) = f ' (y; v) / f(y; v) = 4/v - Σ yi, i = 1, 2, 3, 4. (31)

H(y) = f '' (y; v)/ f(y; v) = 
[v2 ( Σ yi)

2 - 8v ( Σ yi) + 12]/v2, i = 1, 2, 3, 4. (32)

The estimated average lifetime and its derivative for the 
nominal system (v = v0 = 0.5) based on (2) and (9) are

J(v0) = Σ max [min (Y3,j,Y4,j), min (Y1,j,Y2,j)] / n, (33)

and

J'(v0) = Σ max [min (Y3,j,Y4,j), min(Y1,j,Y2,j)] . S(Yi,j) / n,  (34)

J"(v0) = Σ max[min(Y3,j,Y4,j),min(Y1,j,Y2,j)] . H(Yi,j)/n, (35)

respectively where Yi,j is the jth observation for the ith 
component (i = 1, 2, 3, 4). We have performed a Monte 
Carlo experiment for this system by generating n = 10000 
independent replications using SIMSCRIPT II.5 random 
number streams 1 through 4 to generate exponential 
variates Y1, Y2, Y3, Y4 , respectively, on a VAX system. The 
estimated performance is J(0.5) = 1.5024, with a standard 
error of 0.0348. The first and second derivative estimates 
are -3.0933 and 12.1177 with standard errors of 0.1126 and 
1.3321, respectively.
 The response surface approximation in the 
neighborhood v = 0.5 is: 

J(v) = 1.5024 + (v - 0.5) (-3.0933) + (v - 0.5)2 (12.1177)/2 + ....
 . 6.0589v2 - 9.1522v + 4.5638 (36)
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A numerical comparison based on direct simulation and 
local response surface model (36) is given in Table 1.
Notice that the largest error in Table 1 is 0.33% which 
could be reduced by either more accurate estimates of the 
derivatives and/or using a higher order Taylor expansion. 
A comparison of the errors indicates that the errors are 
smaller and more stable in the direction of increasing v. 
This behavior is partly due to the fact that lifetimes are 
exponentially distributed with variance 1/v. Therefore, 
increasing v causes less variance than the nominal system 
(with v = 0.50). 

TABLE 1:  A second order polynomial local response surface 
model and direct simulation

   v Analytic Simulutation  Metamodel Abs.error(%)

0.40 1.8750 1.8780 1.8723 0.14
0.42 1.7857 1.7885 1.7887 0.17
0.44 1.7045 1.7072 1.7098 0.31
0.46 1.6304 1.6330 1.6359 0.33

0.48 1.5625 1.5650 1.5667 0.27
0.50 1.5000 1.5024 1.5024 0.16
0.52 1.4423 1.4446 1.4430 0.05
0.54 1.3889 1.3911 1.3884 0.04

0.56 1.3393 1.3414 1.3386 0.05
0.58 1.2931 1.2951 1.2937 0.05
0.60 1.2500 1.2520 1.2537 0.29

Now assume that the manufacturer wants to improve the 
average lifetime of the system to 
J(v) = τ = 2. To achieve this goal, we have set v0 = 0.5 and U 
= 0.0001 in the proposed algorithm. The numerical results 
are tabulated in Table 2.

TABLE 2:  Iterative decision parameter estimate for the 
reliability system

(1) Iteration number j (4) Estimated derivative
(2) Fixed input vj   (5) Change in vj
(3) Estimated MTTF (6) New input parameter vj+1

(1) (2) (3) (4) (5) (6)
1 0.5000 1.5024 -2.9598 -0.1513 0.3487
2 0.3487 2.1544 -6.0862 -0.0208 0.3694
3 0.3694 2.0333 -5.4217 +0.0046 0.3740

4 0.3740 2.0083 -5.2888 +0.0011 0.3751
5 0.3751 2.0025 -5.2583 +0.0003 0.3754
6 0.3754 2.0009 -5.2498 +0.0001 0.3755
7 0.3755 2.0003 -5.2471 +0.0000 0.3756*

The estimated input parameter to achieve the output J(v) 
= τ = 2 is 0.3756. A 90% confidence interval based on this 
estimate using (20) is:

P[0.3739 ≤ v ≤ 0.3773] ≥ 0.90. (37)

Comparing the theoretical value v0 = 0.3750, obtained from 
J(v) = 3/4v0 = 2, with our computational value suggests 
that the results based on the proposed algorithm are quite 
satisfactory. In fact, running this system with v = 0.3756, 
and n = 10000, we obtained an estimated MTTF of J(v) 
= 2.0000. Hence the discrepancy in the estimated input 
parameter by this algorithm must be considered as a pure 
random error which can be reduced by increasing n. The 
metamodel (36) could also be applied to J(v) = 2 to estimate 
the desirable v. Solving the resulting quadratic equation, the 
relevant root is v = 0.3725. This result is an inferior estimate 
for v compared with the iterative method, although the 
accuracy of the latter comes with greater computational 
cost. 
 

7 Design of a Service System
This section presents implementation details and some 
statistical results on the efficiency of the proposed technique 
for a discrete event dynamic system. To evaluate the 
proposed single-run technique to solve the design problem, 
we have chosen to implement it on an M/G/1 queueing 
system with a known analytical solution. Consider, a single-
server, first-come-first-served, Poisson input queue with 
arrival rate of 1 customer per unit of time. The server works 
according to a Gamma density 

f(y;v) = y e-y/v / v2, v > 0, y ≥ 0.  (38)

The analytic solution for the expected steady-state waiting 
time as a performance measure, in this system is:  
    
J(v) = ρ + (ρ2 + σ2)/[2(1-ρ)]  (39)

which is obtained by using the Pollaczek-Khintchin formula 
(Gross & Harris, 1998), where σ2 = Var(y) = 2v2 and ρ = 
traffic intensity =1/service rate = 2v. If we set the nominal 
value v = 0.25 for the nominal system, then we have σ2 = 
0.125 and ρ = 0.5 resulting in J(0.25) = 0.875. 
 To estimate J' (v) for the nominal system, we will 
use the method of Batch Means. Other methods, such as 
Independent Replications or Regenerative Method could 
also be used. 
Batch Means is a method of estimating the steady-state 
characteristic from a single-run simulation. The single run is 
partitioned into equal size batches large enough for estimates 
obtained from different batches to be approximately 
independent. In the method of Batch Means; it is important 
to ensure that the bias due to initial conditions is removed 
to achieve at least a covariance stationary waiting time 
process. An obvious remedy is to run the simulation for a 
period (say R customers) large enough to remove the effect 
of the initial bias. During this warm-up period, no attempt 
is made to record the output of the simulation. The results 
are thrown away. At the end of this warm-up period, the 
waiting time of customers are collected for analysis.  T h e 
practical question is "How long should the warm-up period 
be?" Abate and Whitt (Abate & Whitt, 1987) provided a 
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relatively simple and nice expression for the time required 
(tp) for an M/M/1/4 queue system (with traffic intensity ρ) 
starting at the origin (empty) to reach and remain within 
100(1-p)% of the steady-state limit as follows:

tp(ρ) = 2C(ρ) Ln {1/[(1-p)(1+2C(ρ))]}/(1-ρ)2  (40)

where 
 
C(ρ)=[2+ ρ + (ρ2 + 4 ρ)½] / 4.  (41)

Some notions of tp(ρ) as a function of r and p, are given in 
Table 3.

TABLE 3:  Time (tp) required for an M/M/1 queue to reach 
and remain with 100(1-p)% limits of the steady-
state value

Traffic            100(1-p)%
Intensity ------------------------------------------------------
  ρ 95.0 99.0 99.9 99.99

0.10 3.61 6.33 10.23 14.12
0.20 5.01 8.93 14.53 20.14
0.30 7.00 12.64 20.71 28.79
0.40 10.06 18.39 30.31 42.23
0.50 15.18 28.05 46.47 64.89
0.60 24.70 46.13 76.79 107.45
0.70 45.51 85.87 143.61 201.36
0.80 105.78 201.53 338.52 475.51
0.90 435.74 838.10 1413.7 1989.4

Although this result is developed for M/M/1 queues, 
it has already been established that it can serve as an 
approximation for more general; i.e., GI/G/1 queues 
(Whitt, 1989). To compute the Score Function S, we need 
the density function of the steady-state process. 
Clearly, for computational implementation, we need a 
truncated (say m-truncated) version of this process. The 
waiting time of customer t at steady state depends on values 
of the (m - 1) previous customers interarrival and service 
times. The dependency order m must be chosen so that the 
correlation between the waiting time of customer t and (t-
m) is negligible. Notice that the order of dependency m is 
equivalent to the "Batch Size" widely discussed in simulation 
literature in connection with the method of Batch Means. 
We have chosen m = R large enough to ensure independency 
and not too large to create the singularity problem. 
 Let Xk and Yk be the interarrival and service times of 
the kth customer at steady state, k ≥ R+1. The underlying 
density function for the jth customer, j ≥ 2R+1, in batch 
number i is:
   j
f(v) = Σ f (yk) f (xk),       j = (i+1)R+1, (i+1)R+2,..., (i+2)R   (42)
  k=j-m+1

where

f (xk) = exp(-xk) 

and  

f (yk) = [yk exp(-yk / v)]/ v2.
 
The expected waiting time for the nominal system is:
^ n (i+2)R
J(v) =      Σ             Σ Li,j / (Rn) (43)
  i=1 j=(i+1)R+1

where Li,j is the waiting time of the jth customer in the ith 
batch. The Score Function S is:

S j,i = -2m / v + Σ x j,k / v
2  (44)

For the nominal system (v = v0 = 2), we have used n = 500 
independent replications. In each run, we set k = m = T = 
100. The estimated delay in the system and its derivative 
based on these simulation parameters are 1.007 and -0.951 
with computed variance 0.001 and 0.012, respectively. 
Clearly, derivative estimators discussed in this paper work 
much better for terminating models for which only small 
number of observations are generated. 
Consider the system described above. Assume we want to 
find a value for the controllable input parameter, service 
rate v, such that J(v) = J = 0.8. We have set v0 = 2 and U = 
0.0001 in the proposed algorithm. The simulation results 
are contained in Table 4. Our computations are performed 
on a PC computer using streams 1 and 2 of SIMSCRIPT II.5 
to generate the inter-arrival and service times, respectively. 

Table 4:  Estimated service rate to achieve a desirable steady 
state average delay in an M/G/1/∞ queue.

Iteration Fixed Input Estimated Updated
Number Parameter v0 δv0 v0

1 2.000 0.236 2.236 
2 2.236 0.001 2.237 
3 2.237 0.001 2.238 
4 2.238 0.001 2.239 
5 2.239 0.000 2.239

The estimated input parameter to achieve the output 
J(v) = 0.8, is v = 2.239 with standard error 0.128. A 95% 
confidence interval for δv at the fifth iteration, based on the 
usual t-statistic is: 

P[ -0.016 ≤ δv ≤ 0.016] ≥ 0.95 (45)

A comparison of the analytical value v = 2.25, obtained 
from (39) with our estimated value suggests that the results 
based on the proposed algorithm are quite satisfactory. In 
fact, solving the direct problem using the same simulation 
parameters with v0 = 2.239, the estimated expected waiting 
time turned out to be 0.800 with variance equal to 0.001. 
Hence the discrepancy in the estimated input parameter by 
this algorithm must be considered as a random error which 
can be reduced by increasing n.
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 The method of Independent Replication has lower 
efficiency than the method of Batch Means for the steady-
state perturbation analysis. In the Independent Replication 
method, the output data are collected over a period of 
length T in a simulation run over a period of length R + m 
+ T; (T could be as small as 1). The ratio T/(R+m+T), which 
is the fraction of CPU time generating useful data, would 
be very small. Clearly, the method of Batch Means is more 
efficient.

8 Conclusions
Almost all discrete event systems simulation computation 
can be formulated as an estimation of an expected value of 
the system performance measure, which is a function of 
an input parameter of the underlying probability density 
function. In the ordinary system simulation, this input 
parameter must be known in advance to estimate the 
output of the system. From the designer’s point of view, 
the input parameters can be classified as controllable and 
uncontrollable (Morrice & Bardhan, 1995). The influential 
controllable input can be recognized by factor screening 
methods (Ruppert, 1985). In this paper, we considered 
the design problem: “What must be the perturbation of 
the current controllable input parameter value to achieve 
a desired output value?” The approach used in this study 
was:

n  To estimate the derivative of the output function with 
respect to the input parameter for the nominal system 
by a single-run, and on-line simulation;

n  To use this estimated derivative in a Taylor's expansion 
of the output function in the neighborhood of the 
parameter; and finally, 

n  To use a recursive algorithm based on the Taylor’s 
expansion to estimate the necessary controllable input 
parameter value within a desired accuracy. 

Under some mild and reasonable conditions, the algorithm 
converges to the desired solution with probability 1. The 
efficiency of the proposed algorithm in terms of accuracy 
is tested using an M/G/1/∞ queuing service, as well as a 
reliability product designs with satisfactory results. The 
approach may have major implications for simulation 
modelers and practitioners in terms of time and cost savings. 
As always, since this experiment was done on these specific 
numerical examples, one should be careful in making any 
other generalizations.

 In the course of future research:
1.  We expect to introduce other efficient variance 

reduction techniques (VRT). The Common Random 
Variates as a VRT is already embedded in the 
algorithm. Notice that since

 
 E[S] = E [Ln f ]' = ∫ [Ln f ]' f dx = ∫ f ' dx =
 [ ∫ f dx ]' = 0. (46)

  We can express the gradient in terms of covariance 
between Z and S 

 J' (v) = Cov [Z(Y), S ] = E[Z.S] + E[Z].E[S]. (48)

 and

 J'(v) = E[Z(Y).S] + α E[S] (49)

  where α could be the optimal linear control. Note also 
that (6) can be written as: 

  
 J'(v) = ∫ Z (y) f ' (y; v) dy 
 
 = ∫ Z (y)[ f ' (y; v) / φ(y; v)] φ(y; v) dy. (50)

  The best choice for φ is the one proportional to                
Z(y).f ' (y; v). This minimizes the variance of J'(v); 
however, this optimal φ depends on the performance 
function Z(y), which is not known in advance for 
most cases. One may use the empirical version of 
Z(y).f ' (y; v). We recommend a pilot run to study the 
effectiveness of these and other variance reduction 
techniques before implementing them.

2.  We expect to extend our methodology to higher 
order Taylor's expansion. We believe that there is a 
tradeoff between number of iterations, sample size in 
each iteration; and the order of Taylor's expansion. 
Clearly, estimating the second derivative requires a 
larger sample size n, but a fewer iterations to achieve 
the same accuracy.

3.  We also expect to extend our methodology to the design 
problems with two or more unknown parameters by 
considering two or more relevant outputs to ensure 
uniqueness. By this generalization, we could construct 
a linear system of stochastic equations to be solved 
simultaneously by multidimensional versions of the 
stochastic approximation proposed in (Ruppert, 
1985; Wei, 1987) as well as the Newton method in 
(Polak, 1997; Tyrtyshnikov, 1997) using the second 
order derivatives (e.g., Hessian).

4.  The algorithms in this paper are presented in English-
like step-by-step format to facilitate implementation 
in a variety of operating systems and computers, thus 
improving portability. However, there is a need to 
develop an expert system that makes the algorithms 
more practically applicable to stimulation in system 
design (Clymer, 1995).
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