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CREDAL PROBABILITY

D.H. Kaye*

A COMMENT ON PAUL BERGMAN AND AL MOORE’S “MISTRIAL
BY LIKELIHOOD RATIO: BAYESIAN ANALYSIS MEETS
THE F-WORD”

“Rabbi” Bergman and “Reverend” Moore (“Bergman &
Moore’’) doubt that “ideal triers of facts” would ‘“be Bayesians.”! In-
voking the majesty and mystery of the due process clause, they posit
that ideal jurors “must make individualistic judgments about how
they think a particular event (or series of events) occurred.”? Think-
ing that “Bayesian methodology [compels] triers to make frequency
assessments, not believability judgments,”® while the law requires
them “to make believability judgments at trials,”* they conclude that
Bayes’ rule (and hence the whole apparatus of probability theory),
while “relevant to certain trial tasks,” nevertheless *“fails as a theoret-
ical factfinding model.”®

Generations of statisticians, philosophers, and logicians have dis-
cussed probability as a measure of belief in empirical propositions and
of the validity of inductive arguments.” These individuals, I daresay,
would find the thesis that probabilities cannot measure or grade be-
liefs puzzling if not shocking. An extensive literature on inductive

* Regents Professor, Arizona State University College of Law.

1 Bergman & Moore, Mistrial by Likelihood Ratio: Bayesian Analysis Meets the F-Word ,
13 CarRDOZO L. REV. 589, 591 (1991).

2 Id.

3 Id. at 596; see also id. at 595 n. 29 (“‘Bayesian methodology . . . produces a subjective
frequency assessment’); id. at 596 n. 32 (‘‘Bayes’ Theorem produces frequentist assessments”).

4 Id. at 594-95.

5 Id. at 592 n. 16.

6 Id. at 592. Inasmuch as Bergman & Moore concede that likelihood ratios are “well
suited” to modeling the rules of evidence involving relevance and probative value, id. at 614, it
is difficult to know what practical consequences follow from their thesis. They seem to object
to a juror’s relying on Bayes’ rule to come to a belief, but not to relying on legislative or
judicial use of conditional probabilities in formulating or applying presumptions and admissi-
bility rules.

7 See, e.g., C. HOWSON & P. URBACH, SCIENTIFIC REASONING: THE BAYESIAN AP-
PROACH (1989); B. SKYRMS, CHOICE AND CHANCE: AN INTRODUCTION TO INDUCTIVE
LoGic (3d ed. 1986); A.W. BURKS, CHANCE, CAUSE, REASON: AN INQUIRY INTO THE NA-
TURE OF SCIENTIFIC EVIDENCE (1977). By an inductive argument, I mean an argument with
premises that support a conclusion to some degree, even though these premises can be true
while the conclusion can be false. In contrast, a deductive argument must have a true conclu-
sion if its premises are true. See B. SKYRMS, supra, at 6-13. Factfinding in law (as in all other
endeavors) involves assessing inductive arguments and their conclusions.
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648 CARDOZO LAW REVIEW [Vol. 13:647

logic concerns probabilities—variously denominated ‘“credal,” “epi-
stemic,” “personal,” or “subjective”’®—that, in the judgment of many
writers, constitute an acceptable measure of belief in propositions.®

Nevertheless, the fact that Bergman & Moore’s thesis seems to
fly in the face of this received wisdom does not prove it wrong. Fur-
thermore, it is fun to deal with the examples they develop. Part I of
this Comment demonstrates how the examples that are supposed to
show the “frequentist” character of “Bayesian methodology” or the
fallacies in “Bayesian analysis” are easily handled without a frequen-
tist interpretation of probability.'® Part II very briefly describes one
or two reasons to think that an ideal juror’s partial beliefs will con-
form to the calculus of probabilities.

I. HYPOTHETICAL CASES
A. Sherry’s Coin

Bergman & Moore’s first major example of *“a subjective frequen-
tist notion of probability”'! is a dispute between a nine year-old child,
Sherry, who tells a parent that a fair coin she flipped three times came
up heads each time, and her seven year-old brother, Orin, who insists
that it came up heads only twice. Apparently, the parent must decide
how many heads appeared. The proper Bayesian analysis is straight-
forward and revealing. It indicates that the parent cannot believe be-
yond all doubt that Sherry (or Orin) is correct, and it reveals the
partial belief that the parent should have in either story.

Let X stand for the number of heads.’> Let R be the event that
Sherry reported three heads and that Orin reported two.!* The parent
wonders whether X = 3 given R. Bayes’ rule tells the parent that the

8 I. LEvl, THE ENTERPRISE OF KNOWLEDGE: AN ESsaY ON KNOWLEDGE, CREDAL
PROBABILITY, AND CHANCE § 4.5 (1980); J. POLLOCK, NOMIC PROBABILITY AND THE
FOUNDATIONS OF INDUCTION 4 (1990); B. SKYRMS, CAUSAL NECESSITY: A PRAGMATIC IN-
VESTIGATION OF THE NECESSITY OF LAWS A4 (1980); A.W BURKS, supra note 7; C. How-
SON & P. URBACH, supra note 7.

9 Compare J.S. MILL, A’SYSTEM OF LOGIC: RATIOCINATIVE AND INDUCTIVE ch. 18,
§ 1, at 535 (8th ed. 1974) (“the probability of an event . . . to us means the degree of expecta-
tion of its occurrence, which we are warranted in entertaining by our present evidence”) with
Fishburn, The Axioms of Subjective Probability, 1 STATISTICAL Sci. 335, 335 (1986) (*‘Per-
sonalistic views hold that probability measures the confidence that a particular individual has
in the truth of a particular proposition™).

10 One could think of a personal probability as an estimate of a hypothetical relative fre-
quency, but this interpretation is strained and unnecessary. See Ellman & Kaye, Probabilities
and Proof: Can HLA and Blood Group Testing Prove Paternity?, 54 N.Y.U. L. REv. 1131, 1157
(1979).

11 Bergman & Moore, supra note 1, at 594.

12 For simplicity, I take it as certain that Sherry flipped the coin exactly three times.

13 T take this joint event to be certain.
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probability that X takes on any particular value x, given the reports
that comprise event R, is directly proportional to the product of two
probabilities: the “prior probability” that a fair coin would come up
heads in x out of three tosses, and the conditional probability, or
“likelihood,”'* of the reports comprising R for the corresponding
value x. In symbols:

p(R) o p(x) p(R|x) - (AD

The prior probability function p(x) is known from the rules
governing fair coins. As Bergman & Moore observe, the probability
that a fair coin will come up heads three out of three times is p(3) =
1/8; the probability of two out of three heads is p(2) = 3/8; the
probability for one head is p(1) = 3/8; and that for no heads is p (0)
- l /8.15

The likelihood function p(R[x) is more subtle. Since R is a
unique event, there is no frequentist probability that can give the
parent this number. It follows from the information that Bergman &
Moore characterize as “‘subjective frequentist”—the track records of
children like Sherry and Orin—and from all the individual
circumstances that Bergman & Moore would have the parent employ
in making “believability judgments.”’¢ Based on all such knowledge
pertinent to the children’s behavior, the parent, let us imagine, lists
the probabilities that the children would say what they did for each
possible number of heads. The list might look like this:

p(R) = .01; p(R|D) = .02; p(R2) = .20; p(RP3) = .77.

Substituting these values p(R[x) and those for p(x) observed
above into equation A.1 tells the parent the “posterior probability”
p(x|R) of each possible number of heads. Notice that p(3R) o (1/
8)(.77) a 77, p(2R) a (3/8)(.20) a 60, p (1|R) a (3/8)(.20) a 6, and
p(OR) a (1/8)(.01) a 1. Since the sum of the posterior probabilities
must be one, we normalize these numbers to find that p(3R) = 77/
(77 + 60 + 6 + 1) = .53. '

On the available information, the parent cannot be certain of
Sherry’s story, but can entertain just this degree of actual belief—this
partial belief—in her claim that X = 3. Whether it is right or
wrong,'” this partial belief in “what really happened”'® is not

14 Likelihoods differ from conditional probabilities, but the distinction is not important
here. See Kaye, Quantifying Probative Value, 66 B.U.L. REv. 761 (1986).

15 Bergman & Moore, supra note 1, at 594.

16 Id. at 595.

17 1f the consequences of mistakenly concluding that Sherry’s statement is false are neither
better nor worse than the consequences of wrongly concluding that Sherry spoke truly, the
parent should conclude that the coin always came up heads as Sherry said.

18 Bergman & Moore, supra note 1, at 593.
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frequentist. The belief is the posterior probability of three heads given
the children’s reports as the parent evaluates them in the light of what
the parent knows about Sherry, Orin, child development, coins, and
anything else pertinent to the dispute.

B. Taxicabs

An even simpler analysis disposes of the hypothetical taxicab
case that so worries Bergman & Moore.!® We are told that a cab was
involved in a hit-and-run accident in a city in which 85% of all cabs
are green and 15% blue, that the only witness (apparently unbiased)
testified that he saw a blue cab in the accident, and that tests of this
witness under identical conditions show that he identifies blue cabs as
blue 80% of the time and green cabs as green 80% of the time.

According to Bayes’ rule, the conditional probability that the cab
was blue is proportional to the prior probability times the likelihood.
That is,

p(B|WB) a p(B) p(WB|B), (B.1)
where B stands for a blue cab, and WB for the witness’s testimony of
a blue cab. Likewise, the posterior probability that the cab was green,
given the witness’s report that it was blue, is

p(GIWB) a p(G) p(WB|G), (B.2)
where G represents a green cab. Dividing equation B.1 by equation
B.2 gives the “likelihood ratio” version of Bayes’ theorem that
Bergman & Moore discuss:
BWB) = p(B) WB|B
pGIWB)  p(G) p(WBIG) (B.3)

Assuming that the chance of a cab’s being at the accident
location and that the degree of care with which a cab is driven are
independent of color, the prior odds of a blue cab having been
involved in the accident are

p(B)/p(G) = 15/85 = 3/17. (B.4)

Since the experiment establishes that p(WB|B) = .8 and p(WB|G) =
1 — p(WG|G) = 1 — .8 = .2, the ratio of the likelihoods is

p(WB|B)/p(WB|G) = 8/.2 = 4. (B.5)

Substituting equation B.4 and equation B.5 into equation B.3 gives the

posterior odds for a blue cab:
p (BIWB)/p(G\WB) = 4(3/17) = 12/17. (B.6)
The corresponding posterior probability is p (B|WB) = 12/(12+17)

19 Id. at 599.
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= 12/29 = .41. The partial beliefs of the ideal juror who relies on
this specified information point to a green cab as the culprit.

Bergman & Moore object that this analysis produces a “bizarre
result.”’?° They imagine a plaintiff who introduces the statistics on the
prevalence of blue and green cabs as well as the witness who testifies
that the cab he saw was blue—and then argues that since p (G|WB) =
1 — p(B|WB) = .59, the culpable cab is green. To reveal what
actually causes the difficulty, imagine instead (and perhaps more
realistically) that plaintiff merely produces the prevalence statistics
(without the witness) to show that the cab is green and argues that
since p(G) = .85, the case against a green cab should go to the jury
and that the ideal juror who follows Bayes’ rule must find a green cab
liable. Of course, this is just the much mooted problem of naked
statistical evidence. The obvious gap in plaintiff’s case, which could
well justify the opposite verdict, is only exacerbated when plaintiff
produces a witness who supplies no link to a green cab and weakens
rather than strengthens the naked statistical case.

All this can be, and has been, incorporated into an explicitly
Bayesian framework.?! The juror who understands how Bayes’
Theorem works with missing evidence may not be persuaded that
simply because most cabs are green, the cab in question was green.
This Bayesian juror will be even less impressed with the argument
that because most cabs are green and a witness reports a blue cab, the
cab is green. In short, this ideal juror will avoid any ‘“bizarre result”
that follows from a naive or superficial application of Bayesian
decision theory.

Still, Bergman & Moore are unhappy with the solution for
another reason. They think it assumes that the witness knows that all
the cabs are either blue or green and will always make a positive
identification.?> But this too is not a telling objection to the analysis.
By hypothesis, there are only blue and green cabs in the city, and the
likelihood ratio for the witness’s accuracy came from an experiment
in which the witness was presented blue and green cabs and
responded “correctly” 80 % of the time.>® If the only “correct”
response is a report of ‘“blue’” when the cab is blue and “green” when
the cab is green, then the likelihood ratio is 4, as shown in equation
B.5. If “correct” identifications also include reports of “I don’t

20 Id. at 600 n. 46.

21 E.g., Kaye, Apples and Oranges: Confidence Coefficients and the Burden of Persuasion,
73 CorNELL L. REV. 54 (1987); Kaye, Do We Need a Calculus of Weight to Understand Proof
Beyond a Reasonable Doubt?, 66 B.U.L. REV. 657 (1986).

22 Bergman & Moore, supra note 1, at 617.

23 Id. at 599 n. 43.
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know,” then the likelihood ratio involving a report of “blue” has been
wrongly computed, but the use of a properly computed likelihood
ratio is not impeached. Properly stated, the likelihood ratio must
involve the conditional probability that the witness (who knows
whatever he knows about the color of cabs in the city) reports “blue”
given a blue cab relative to the conditional probability that the witness
reports anything else (including an “I don’t know” or an “I can’t
remember’’) given a blue cab.

Now, if there is no experiment of the sort originally
hypothesized, then a juror must construct the likelihood from what is
known about this witness and the circumstances of the witness’s
observation of the cab. These conditions can include the
considerations Bergman & Moore identify.>* If the witness is more
likely to err by reporting “green” (or something else besides blue—an
event that I now designate as G) when the cab is blue than by
reporting “‘blue” when the cab is green, then p (WG|B) > p(WB|G).
This contrasts with the previous experiment thought to establish that
p(WG|B) = p(WB|G) = .2. By way of illustration, let us now
assume that Bergman & Moore’s arguments convince the juror that
while p (WG|B) is still .2, p(WB|G) is smaller, say, .1. The pertinent
ratio remains p (WB|B)/p (WB|G) and it relates only to the accuracy
of the witness at bar, but its value is now (1—.2)/.1 = 8. The
posterior odds become

pGWB) = pWBIG) p@G) ~ ' ~ 1 ®F
and the posterior probability is 24/(24+17) = 24/41 = .59. There is
nothing “illogical”?® in a juror adopting this number as a measure of
partial belief in the proposition that the cab was blue.

o (B|WB) p(WBB) p(B) _ IS 24

C. Potter v. Schrackle

How would a Bayesian handle the fact that Shrackle knew that
the truck that he was driving had expensive cabinets in it when it
struck Potter??® Again, the Bayesian formulation is straightforward.
Let S be the event that Schrackle was speeding, let —C be the event
that he was not speeding, let C be the event that he knew that his
truck contained expensive cabinets and let —C be the event that he
did not know this. The odds that Schrackle was speeding are

24 Id. at 617-18.
25 Jd. at 618 n. 103,
26 Potter v. Schrackle is a hypothetical discussed in Bergman & Moore, id. at 602.
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pSIC)  _ 2(CS)  p(S) .
p(S|-0C) p(Cl=S) p(=S) '

The prior odds can be obtained by envisioning all the evidence in

plaintiff’s story except for the stipulated event C. In other words, the

Bayesian asks, if Potter and Schrackle had told the same stories

without the bit about the cabinets, what would be my partial belief in

Potter’s claim that Schrackle was speeding? For concreteness,
suppose this juror feels that these prior odds are 3 to 2:

pSYp(=S8) = 3/2. (C2)

To elicit the likelihood ratio for the juror, we engage in the
following dialogue with the juror:

Q. Continue to keep in mind the stories as told by Potter and
Schrackle, excluding the bit about the cabinets. You have before
you all the evidence except for the testimony about the cabinets.
Given everything you know about Schrackle and the events on the
day of the accident, is it more likely that Schrackle would drive
fast if he had expensive cabinets in the truck than if he didn’t?

A. It is hard for me to ignore testimony I have already heard.

Q. I know. Even though courts ask jurors to do this all the
time, everyone knows these instructions do not always work. But
you are an ideal juror, not a flesh-and-blood creature like me.

A. OK. I have erased my memory of the testimony about . . .
what was it?

Q. You don’t remember any testimony about expensive
cabinets?

A. Expensive cabinets? No, were there any?

Q. Before we get to that, I want you to estimate the
probability that Schrackle was speeding in light of everything you
remember.

A. 1 believe the odds are 3 to 2.

Q. Now that I can inform you that there were some expensive
cabinets in the truck, please think about the likelihood of there
being such cabinets if Schrackle were speeding as opposed to
Schrackle’s not speeding.

A. 1 think it less probable that there would be such cabinets if
Schrackle were speeding than if he weren’t.

Q. How much less probable?

A. On the basis of my stock of knowledge, Shrackle seems a
reckless guy. He might worry about the cabinets, but he might
not.

Q. Can you be more precise about the relative likelihood?

A. Of course. I am an ideal, not a real juror. And I am a
Bayesian. On balance, I would say that it is .9 times as likely to
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find expensive cabinets in the truck if Schrackle were speeding than
if he were not.

Q. Are you speaking of the one Schrackle and the unique
events in this case, or are you imagining the relative frequency of
cabinets given speeding for some hypothetical collection of
Schrackle-like drivers?

A. It does not help me to think about imaginary ensembles. I
have considered what I know of other people like Schrackle, of
course, and the likelihood ratio I have reported is informed, but
not dictated, by my sense of how frequently such people would
drive with cabinets. I am reporting my likelihoods for the events in
this case under the evidence that has been presented to me evalu-
ated in light of my knowledge of the world.

Conforming to the Bayesian ideal,?” this juror substitutes the
foregoing values for the prior odds and the likelihood ratio to con-
clude that the posterior odds are .9(3/2) = 27/20. The juror’s partial
belief in S conditioned on C (and everything else the juror knows) has
changed from p(S) = 3/(3+2) = .60 to p(S|C) = 27/(27+20) =
27/47 = .57. Because the juror felt that the presence of the cabinets
was a weak indicator of not speeding, the change in the partial beliefs
pertaining to the litigated event is slight. As in the previous hypothet-
ical cases, no frequentist interpretation of the prior probability or the
likelihood ratio is necessary.

II. PARTIAL BELIEFS AS PROBABILITIES

Bergman & Moore’s examples do not come close to proving the
thesis that, in principle, an idealized factfinder cannot reason as
Bayes’ rule prescribes to arrive at a set of partial beliefs that could
underlie a verdict.?® In every case, a simple Bayesian treatment pro-

27 Bergman & Moore’s juror says that he can’t form the likelihood ratio because (1) he
cannot remember the facts that would produce a story without C, (2) his “initial story, which
took into account the cabinets, would influence the story” without C, (3) it would be impracti-
cal to repeat this process for every item of evidence, and (4) “if I'm strongly persuaded [of]
Potter’s story in this case . . . I would assign zero weight to the cabinets evidence in this
particular case.” Bergman & Moore, supra note 1, at 609-13. My hypothetical juror (1) has a
better memory, (2) can clear his memory and construct a new story without knowledge of C,
(3) is not asked to repeat this process for every item of evidence because the posterior
probability is independent of the order in which conditionally independent evidence is re-
ceived, and (4) appreciates the fact that probative evidence has weight even when one already
has formed a strong belief. On the last point, see Kaye, Quantifying Probative Value, supra
note 14.

28 Neither do Bergman & Moore advance any clearly defined, general theory that under-
mines the Bayesian analysis. At most, they intimate that the descriptive psychological phe-
nomenon of embedding propositions in stories or schema precludes probabilistic assessments
of propositions. That is, they seem to think that real jurors accept stories and believe all
aspects of these stories with equal conviction. However, even this claim is doubtful. Why
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duces the probabilities of the events in question.

However, the question of whether these probabilities are the best
measure of partial beliefs remains. Why, after all, should a fact-finder
adopt probabilities as the measure of partial beliefs? Why should the
ideal juror in Bergman & Moore’s Potter v. Schrackle hypothetical
conclude that .57 is the number that specifies how firm the belief that
Schrackle was speeding should be? If intuitive, untutored story con-
struction produces a different degree of belief, why should the ideal
juror strive to reconcile the two?

There is no simple, short and sweet answer to this question. The
argument that has received the most attention in legal literature® is
that anyone who fails to post “coherent” betting odds (corresponding
to probabilities) on the full set of propositions that are partly believed
is open to a Dutch book—a series of bets in which he or she is sure to
lose money. I have nothing to add to these discussions, but it is worth
noting that other arguments can be used to motivate the identification
of probabilities with partial beliefs. The most fundamental analysis is
axiomatic,*® but less elaborate arguments may also serve to counter
the impression that Bayesians are compulsive gamblers.

One such argument relies on “‘scoring rules.” Suppose that a ju-
ror is given a long list of many of the propositions relevant to a dis-
puted case. In Potter v. Schrackle, for example, the list might include
the following;:

(1) Schrackle was driving the truck that struck Potter.
(2) Schrackle was speeding.
(3) The collision damaged Potter’s back.

Next to each of the listed propositions is a space for a number that
represents, on a scale from zero to one, just how plausible the proposi-
tion seems. Suppose that 100 propositions are on the list, and let
Pl (p) represent the plausibility of each proposition p. If p is true, the
juror gets a score of [1 — Pl(p)]* for the assessment of p’s plausibility;
if p is false, the score is [0 — P/(p)]>. The objective is to assign plausi-
bilities so as to minimize this penalty score. Thus, if the juror as-
signed a plausibility of one to all true propositions and zero to all false

can’t a real juror think that some propositions in the story that imparts meaning to an other-
wise chaotic collection of sentences are more believable than others? And, might not a real
juror find it helpful to assess the competing stories spun by counsel in light of the insights that
can come from an explicitly probabilistic analysis? I do not purport to know the definitive
answers to these empirical questions, but I see no grand theoretical basis for insisting that they
must be answered in the negative.

29 See, e.g., PROBABILITY AND INFERENCE IN THE LAW OF EVIDENCE: THE USES AND
LiMITs OF BAYESIANISM (P. Tillers & E. Green eds. 1988).

30 For a survey of axiomatic foundations, see Fishburn, supra note 9.
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propositions, the total penalty would be zero. If the juror got it all
backwards, treating all true propositions as utterly implausible (ze-
" roes) and all false propositions as completely plausible (ones), then the
total penalty would equal 100. It has been shown that to minimize
the penalty score, one must assign plausibilities that behave like
probabilities.3!

Another argument builds on the same idea of assigning plausibil-
ities to all propositions p, ¢, 7, and so on, as well as more complex
propositions such as p & g, p or p, and —(p & ¢). It can be proven
that the only way to assign the same plausibility to all logically
equivalent propositions*? is to use plausibilities that obey the rules for
probabilities. In addition, the only way to maintain logical consis-
tency when a new proposition z is added to our stock of knowledge is
to readjust all the plausibilities by conditioning on z, that is, by
changing Pl(p), Pl(g), PI(r), . . ., to Pl(p|z), Pl(g|z), PI(rz), . . .,
where Pl(plz) = Pl(p & q)/PI(z), .. .. This rule of conditionaliza-
tion is just Bayes’ rule.??

Arguments like these, however, are not conclusive. Maybe the
ideal juror need not care about any penalty calculated from a scoring
rule like the one mentioned above. Perhaps this juror should feel no
need to regard a proposition as equally plausible when it is expressed
in another form. These are matters that deserve further analysis. But
the theology espoused by ‘“Rabbi” Bergman and “Reverend” Moore
will not prompt the ideal juror to lose faith in the rule of conditional-
ization discovered by the Reverend Bayes.

31 Lindley, Scoring Rules and the Inevitability of Probability, 50 INT’L STATISTICAL REV.
1 (1982). For example, consider the propositions p and its negation, —p. One familiar rule
for probabilities is that the probability of p plus the probability of not-p is one: Pr(p) +
Pr(—p) = 1. Suppose that the juror does not use plausibilities that have this property. Say,
the juror asserts that P!(p) = .S and PI(—p) = .4. If p is true, the score is (.5)? + (4)* = 41.
If p is false, then the score is (.5)* + (.6) = .61. The juror can do better by picking plausibili-
ties that sum to one. To see this, try PI(p) = .55 and PI(—p) = .45. The scores then are
reduced to .405 and .60, respectively. D. LINDLEY, MAKING DECISIONS 34 (2d ed. 1985).

32 By logical equivalence, 1 mean truth functional equivalence. For example, p and
—(—p) are equivalent because if p is true then —(—p) is true, and if p is false, then —(—p)is
false. In contrast, p and (p & ¢) are not equivalent because when p is true and g is false, one
expression is true and the other false. ’

33 B. SKYRMS, CHOICE AND CHANCE, supra note 7, at 193.
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