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ABSTRACT 

SHORR, BRIAN The Impact of State-Level Naloxone Access Policies on Opioid Related 

Mortality and Admissions 

Department of Economics, June 2018 

 

ADVISOR: Professor Jia Gao 

 

Opioids, both prescription painkillers and illegal drugs, were responsible for over 33,000 

deaths in the United States during 2015. Naloxone treatment to combat opioid overdoses has 

been used in hospital settings for decades, and during recent years legislation has expanded 

training and distribution to first aid responders and high risk groups. Several studies have 

projected the efficacy of community-based opioid overdose prevention programs (OOPPs) and 

prescription drug monitoring programs (PDMPs), but few have examined state naloxone access 

policies. This paper investigates the impact of three state policies – non-patient specific 

prescriptions, third-party prescriptions, and layperson legal immunity when administering 

naloxone – on reducing opioid related mortality and treatment admissions. Data is collected from 

the National Center for Health Statistics, SAMHSA, the National Survey of Substance Abuse 

Treatment Services (N-SSATS), Legal Science database, and the Behavior Risk Surveillance 

System. A difference-in-difference method has been adopted. I find that from 1999 until 2017, 

naloxone access policies, especially non-patient specific prescriptions, have increased opioid 

mortality and admissions. Issues of moral hazard and policy endogeneity indicate that these 

results may not be reliable. 
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CHAPTER ONE 

INTRODUCTION 

Drug-related overdose is the leading cause of accidental death in the US and deaths from 

opioid overdose are significant contributors to these statistics, having quadrupled since 1999 

(Public, 2017). According to the Centers for Disease Control and Prevention (CDC), there were 

47,055 lethal drug-related overdoses in 2014, the highest rate of deaths from overdose of any 

year on record. Deaths from opioid overdose accounted for 62% of those fatalities, with 18,893 

overdose deaths related to prescription opioids and 10,574 overdose deaths related to heroin 

(Public, 2017). The US Department of Health and Human Services has recognized opioid related 

overdose as a major public health concern, resulting in more than 33,000 deaths just in 2015 

(Kerensky, Todd, & Walley, 2017). Opioids also cause hundreds of thousands of non-fatal 

overdoses resulting in exorbitant levels of preventable healthcare expenses each year (Legal, 

2017). The economic costs of the heroin and opioid abuse crisis are exorbitantly high, and 

continue to rise yearly. These drug related costs include increased medical care use, worker 

absenteeism, lost productivity, and the direct costs of police enforcement and interdiction 

(Evans, Lieber, & Power, 2018). In addition, there are lost earnings due to mortality. 

This paper explores the effect of three state policies designed to decrease opioid fatalities 

and treatment admissions by promoting greater use and distribution of naloxone medication as 

opposed to restricting the illicit use of opiates. In this paper, a dynamic difference-in-difference 

(DD) model is used to evaluate opioid related mortality rate and treatment admission trends over 

time and between states. I hypothesize that the adoption of naloxone non-patient specific 

prescription, third-party prescription, and Good Samaritan policies will result in decreasing 

trends of opioid related mortality and treatment admissions. I also expect a delay or lag in the 

effects of the increased naloxone access policies. Once a policy has been enacted it will take time 
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to produce elevated quantities of naloxone, distribute it to newly legalized customers, and train 

these individuals to properly use the application device. To study this question, I use annual state 

opioid mortality data from National Center for Health Statistics and opioid treatment admissions 

data from the National Survey of Substance Abuse Treatment Services (N-SSATS). I find that 

the adoption of naloxone access policies, have increased average state opioid mortality and 

admissions, which is opposite to their intended purpose.  

This paper seeks to contribute to existing literature by exploring the efficacy of state-

level naloxone access policies on opioid mortality and admission outcomes. The content of this 

paper can potentially help identify the most effective state legislation for preventing opioid 

overdose and abuse.  It will provide vital information to policy makers and government bodies, 

which will allow them to better allocate funds towards efforts that will be most beneficial to 

reducing negative opioid outcomes. 

The next chapter of this paper provides background information regarding economic 

factors which affect opioid outcomes and information about the clinical effectiveness of 

naloxone medication. It also provides an explanation of each of the major policies that will be 

discussed in this paper. Chapter three reviews literature on community programs and previous 

legislation designed to limit opioid abuse. A description of the data and empirical methods are 

presented in chapters four and five respectively. The results are analyzed in section six, with a 

conclusion presented in chapter seven. 
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CHAPTER TWO 

BACKGROUND 

Physical health has declined in recent years coinciding with increases in drug poisoning 

deaths, often involving opioid analgesics including hydrocodone and oxycodone. Understanding 

the relationship between local economic conditions and drug-related adverse outcomes is 

important because the United States is experiencing an epidemic of drug overdose fatalities 

(Hollingsworth, Ruhm, & Simon, 2017). According to Hollingsworth et al. there is strong 

evidence that suggests opioid related deaths and emergency department (ED) visits increase 

during times of economic weakness (2017). Increased availability of prescription opioids and 

reductions in heroin prices, have created a path of increased drug consumption when economic 

conditions deteriorate because people attempt to comfort themselves through increased drug 

abuse. ED visits involving narcotic pain relievers increased 117% between 2005 and 2011, and 

opioid related ED visits grew by 39.5% from 2006 to 2014. Trends of elevated opioid deaths and 

ED visits were observed during periods of increased national unemployment rate. These results 

indicate that a one percentage point increase in the unemployment rate will raise predicted opioid 

mortality rates by 0.19 per 100,000 people. 

Opioid tolerance, dependence, and addiction are all manifestations of brain changes 

resulting from chronic opioid abuse. The opioid abuser’s struggle for recovery is in great part a 

struggle to overcome the effects of these changes. Brain abnormalities resulting from chronic use 

of heroin, oxycodone, and other morphine-derived drugs are underlying causes of opioid 

dependence and addiction (Kosten, Thomas, & George, 2002). Opioids attach to specialized 

proteins, called mu opioid receptors, on the surfaces of opiate-sensitive neurons. The linkage of 
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these chemicals with the receptors triggers the same biochemical brain processes that reward 

people with feelings of pleasure (Kosten, Thomas, & George, 2002). 

Repeated exposure to escalating doses of opioids alters the brain so that it functions more 

or less normally when the drugs are present and abnormally when they are absent. Two clinically 

important results of this alteration are opioid tolerance (the need to take higher and higher 

dosages of drugs to achieve the same opioid effect) and drug dependence (susceptibility to 

withdrawal symptoms) (Kosten, Thomas, & George, 2002). Opioid tolerance occurs because 

brain cells with opioid receptors gradually become less responsive to opioid stimulation. In the 

presence of excessive opioids, these cells will reduce the number of mu opioid receptors and 

require higher doses of the drug to receive the same physiological response (Kosten, Thomas, & 

George, 2002). 

Naloxone’s effectiveness as a mu-opioid antagonists and its ability to reverse opioid 

overdoses is well established in clinical research. Ling, Amass, Shoptaw, Annon, Hillhouse, 

Babcock, & Brigham (2005) conducted a multicenter randomized trial to investigate and 

compare the clinical effectiveness of buprenorphine–naloxone (bup‐nx) to alternative clonidine 

treatments for opioid detoxification in inpatient and outpatient community treatment programs. A 

total of 59 of the 77 (77%) inpatients assigned to the bup‐nx condition achieved treatment 

success criterion compared to eight of the 36 (22%) assigned to clonidine (Ling et al, 2005). 

Additionally, 46 of the 157 (29%) out‐patients assigned to the bup‐nx condition achieved 

treatment success criterion, compared to four of the 74 (5%) assigned to clonidine (Ling et al, 

2005). This research provides evidence in support of naloxone use for opioid detoxification. 

Although several states still consider naloxone to be a prescription drug, it is not a 

controlled substance and does not have abuse potential. It is regularly utilized by medical first 
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responders and can be administered by ordinary citizens with little or no formal training (Legal, 

2017). Despite the overwhelming benefits to its use, naloxone is often not available when and 

where it is needed. Opioid overdoses most often occur when the victim is with friends or family 

members, but in many cases neither the victim nor his or her companions have the medication on 

hand. Legal restrictions are at least partially responsible for this lack of access. Several state 

practice laws prohibit the prescription of naloxone to a person other than the one to whom 

treatment will be administered. Many states also prevent pharmacies and physicians from 

distributing naloxone to any individuals with whom the prescriber does not have a prescriber-

patient relationship (Legal, 2017). Many medical professionals are wary of dispensing naloxone 

because of fears of misuse and liability consequences. Compounding this issue, people who 

witness an overdose may be afraid to call for help due to concerns of being prosecuted for 

possession of illegal drugs, drug paraphernalia, or other crimes (Legal, 2017).  

Naloxone will be most effective when placed in the hands of those individuals most 

likely to respond to an overdose. New naloxone access laws have simplified the process for 

obtaining naloxone. These updated laws have expanded naloxone availability and decreased 

restrictions on those who can purchase, distribute, and administer the drug (Public, 2017). An 

increasing number of states have allowed third-party prescriptions – permitting naloxone to be 

issued to third parties, who are not at risk of overdose, for use on someone else. These include 

close friends of at risk individuals, family members, and professionals working with at risk 

populations (Naloxone Access, 2018). Nearly all states have also established legal protections for 

those who distribute, carry, or administer naloxone as permitted by law. These Good Samaritan 

laws provide laypersons immunity from civil and criminal liability when administering naloxone 

(Naloxone Access, 2018). Many states have authorized non-patient specific prescriptions 
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allowing individuals and organizations that meet specific criteria to purchase naloxone without 

needing to interact with a prescriber beforehand (Naloxone Access, 2018). A variety of models 

have emerged for non-patient specific prescriptions, but from the viewpoint of the patient these 

different types of programs are largely non-distinguishable. 

As of 2016, fourteen states have made naloxone available over the counter at pharmacies 

for individuals vulnerable to opioid overdose or members of their families, significant others, or 

companions. By July 15, 2017, all fifty states and the District of Columbia had passed legislation 

designed to improve layperson naloxone access. Forty states and the District of Columbia have 

also passed Good Samaritan laws that provide some protection from arrest or prosecution for 

individuals who treat or report an overdose (Legal, 2017). In most cases, considerable 

educational material and training have been developed for each respective program to ensure that 

those who administer naloxone in response to an overdose are adequately prepared for safe and 

effective administration. In 2014, it was reported that more than 150,000 laypersons had received 

naloxone training and rescue kits resulting in more than 26,000 reported overdose reversals 

(Public, 2017). Studies have found that increasing access to naloxone among people who use 

drugs is associated with decreases in overdose deaths and that there is no associated increase in 

the use of opioids or other addictive substances (Public, 2017). 
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CHAPTER THREE 

LITERATURE REVIEW 

 There has been an ample amount of research regarding the effectiveness of local 

community programs that deal with overdose prevention and naloxone utilization. These 

facilities train individuals to perform proper overdose treatment protocols and help increase the 

distribution of naloxone within high risk communities. These community programs have been 

extremely successful, but many struggle to promote contact of emergency medical services 

(EMS) in the event of an opioid overdose. The fear of legal ramifications has been cited as the 

primary reason for not calling EMS. Researchers have also examined the impact of state and 

federal policies which have altered access to opioid prescriptions. Prescription drug monitoring 

programs and doctor shopping laws have been shown to greatly reduce opioid related mortality 

rates, but other policies such as Medicare part D have had unintentional effects resulting in 

greater opioid abuse. Despite its ability to reverse opioid overdoses in both inpatient and non-

clinical settings, little research has been completed to investigate the potential benefits of state 

policies designed to increase access to naloxone. Initial evidence suggests that state naloxone 

access policies may be able to reduce opioid related mortality by as much as 11%, but additional 

research is required to confirm these findings. 

A: Overdose Prevention and Naloxone Distribution Community Programs 

Although naloxone is a highly effective drug, to achieve the best outcomes, it must be 

used appropriately in combination with other life saving interventions. Various community 

programs have been designed to educate people about proper naloxone use and overdose 

treatment protocols. Despite these efforts to educate people, there have been many cases in 

which bystanders did not administer naloxone or call EMS after witnessing an opioid overdose 
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because they feared legal repercussions. Clark, Wilder, and Winstanely (2014) conducted a 

systematic review of nineteen community opioid overdose prevention and naloxone distribution 

programs (OOPPs). The researchers’ analysis of existing nonrandomized studies suggests that 

bystanders, especially opioid users, will use naloxone to reverse opioid overdoses when properly 

trained, and OOPP is effective in addressing opioid abuse. It has been recognized that most 

OOPP participants do not call EMS when they witness an overdose. Additional research has 

been suggested to investigate whether laws that provide civil and criminal protection for 

bystanders would result in increased notification of EMS during an overdose occurrence. 

To evaluate the effectiveness of these community education programs Strang, Manning, 

& Mayet (2008) examined the impact of OOPP training on the knowledge and confidence of 

opiate users in managing overdoses. The researchers noted statistically significant improvements 

in knowledge of risk factors for overdose, overdose signs, appropriate responses to overdose, and 

use of naloxone immediately after OOPP training. Three months after the initial training, 78% of 

participants demonstrated retention of overdose management knowledge. These overdose 

management programs can train opiate users to execute appropriate actions to assist the 

successful reversal of a potentially fatal overdose. The researchers suggest future studies that 

examine whether public policy of wider overdose management training and naloxone provision 

could reduce the extent of opiate overdose fatalities, particularly at times of recognized increased 

risk. 

B: Opioid Prescription Policies 

Federal, state, and local governments have enacted a range of policies designed to combat 

nonmedical use of prescription opioids. The most common and well-studied policy is the 

mandatory use of prescription drug monitoring programs (PDMPs). Such programs require retail 
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pharmacists to enter information about controlled substance prescriptions and recipients into an 

electronic database within a specific period of time, typically 7 to 14 days (Popovici, Maclean, 

Hijazi, & Radakrishnan, 2018). Healthcare providers can access this database to determine if a 

patient is engaging in doctor shopping behavior – visiting several physicians to obtain multiple 

prescriptions for otherwise illegal drugs. Numerous studies suggest that PDMPs have been the 

best deterrent in the attempt to reduce prescription opioid abuse. Evidence on the effectiveness of 

other laws designed to address nonmedical use of prescription opioids is limited (Popovici et al., 

2018). 

Healthcare providers who regularly conspire in the dispensing of prescription opioids 

outside the scope of prevailing medical standards or in violation of state laws are viewed by 

policymakers as a key contributing factor to the prescription opioid epidemic (Popovici et al., 

2018). Nine states have enacted pain management clinic laws with the objective of reducing 

providers' ability to prescribe opioids for use beyond acceptable medical standards. Popovici et 

al. (2018) used a difference‐in‐difference (DD) regression model to study the effect of pain 

management clinic and doctor shopping laws on state opioid outcomes. On average, pain 

management clinic laws reduced prescription opioid overdose deaths by 9.6%, doctor shopping 

law reduced prescription opioid overdose deaths by 8.5%, and the implementation of a PDMP 

programs reduced prescription opioid overdose deaths by 4.8%. 

Opioids have legitimate medical functions, but improving access to these potentially 

deadly drugs may increase abuse rates. Powell, Pacula, and Taylor (2015) used the Treatment 

Episode Data Set (TEDS) to study annual opioid abuse treatment admissions by state following 

the implementation of Medicare Part D. The researchers’ estimates imply that a 10% increase in 

medical opioid distribution through Medicare Part D lead to a 7.4% increase in opioid related 
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deaths and a 14.1% increase in treatment admission rates for the Medicare-ineligible populations 

(Powell et al., 2015). Medicare Part D increased opioid utilization for the 65+ population. This 

increase in utilization led to significant growth in the overall supply of opioids in high elderly 

share states relative to low elderly share states, but the expansion in opioid supply through 

Medicare Part D also resulted in an escalation in opioid related treatment admissions and opioid 

related mortality among the Medicare-ineligible population. This implies that increases in opioid 

distribution through Medicare Part D may be causing a spillover of these drugs into populations 

that are not Medicare beneficiaries and an increased diversion of prescription opioids for 

nonmedical purposes. 

C: Impact of OxyContin Reformulation 

Evans, Lieber, & Power (2018) examined how changes to the reformulation of OxyContin 

impacted the subsequent rise in heroine abuse and mortality rates. The paper shows that between 

1999 and 2009, opioid death rates were rising rapidly but heroin death rates were much lower 

and increasing slowly. Between 2010 and 2014, heroin death rates increased by a factor of four 

while opioid death rates remained fairly flat. The researchers attributed this rapid rise in the 

heroin mortality rates to the 2010 reformulation of OxyContin. The makers of OxyContin, 

Purdue Pharmaceutical, removed the existing drug from the market and replaced it with an 

abuse-deterrent formulation (ADF) that made it more difficult for the drug to be abused. This 

made the drug far less appealing to opioid addicts and led many to shift to heroin as a potent 

substitute that was readily available and cheaper in cost. Heroin deaths began rising during the 

month following the distribution of the reformulated drug. The reformulation did not generate a 

reduction in combined heroin and opioid mortality because each prevented prescription opioid 

death was replaced with a heroin casualty. Efforts to restrict opioid prescriptions may not 
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decrease opiate overdose and mortality because abusers will turn to heroine as an affordable 

alternative. Legislators should focus on improving opioid treatment, prevention, and access to 

naloxone as these are likely the best means to counteract overdoses. 

D: Naloxone Access Policies 

In an effort to address the opioid epidemic, the majority of states have recently passed 

some version of a naloxone access law (NAL) or a Good Samaritan law (GSL). The study 

conducted by Rees, Sabia, Latshaw, & Dave (2017) is the first to examine the effect of these 

NALs and GSLs on opioid related casualties. The researchers utilized a difference-in-difference 

model to examine temporal and geographic variation in the passage of NALs and GSLs to gain a 

better understanding of their effects. Using data from the National Vital Statistics System 

multiple cause-of-death mortality files for the period 1999-2014, the researchers have found that 

the adoption of a NAL is associated with a 9 to 11 percent reduction in opioid related fatalities. 

The estimated effect of GSL on opioid related deaths is of comparable magnitude, but not 

statistically significant at conventional levels (Rees et al., 2017). The relationship between NALs 

and opioid related deaths that do not involve heroin appears to be stronger than the relationship 

between NALs and heroin related deaths. This indicates that NALs are more effective at 

preventing overdoses from prescription opioid painkillers than illicit drugs. Critics and 

supporters of the laws debate whether NALs and GSLs benefit drug users and reduce mortality 

rates. Many believe they will promote greater drug use, but the researchers have discovered little 

evidence to suggest that these laws increase the recreational use of prescription painkillers (Rees 

et al., 2017). 
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CHAPTER FOUR 

DATA 

A: Outcome Measurements 

In order to assess the issue of opioid abuse and misuse, I focus on two broad measures of 

opioid related outcomes: treatment admissions (2002–2017) and state-level overdose mortality 

from opioid medications (1999–2017). Due to the recent rise in heroin use, particularly in 

response to a 2010 reformulation of OxyContin, I am considering treatment admissions and 

overdose mortality for a combined category of heroin and prescription opioids, which together 

will be referred to as opiates. All data variables are measured by state and year. Washington D.C. 

has also been included in the analysis of each state. 

Opioid related mortality is measured as the number of annual deaths from prescription 

opioids and heroine per 100,000 populations. The second dependent variable is the number of 

opioid related treatment admissions by state and year per 100,000 populations. Opioid related 

mortality from 1999 to 2017 is obtained from the National Center for Health Statistics. My focus 

is on estimating the impact of  NALs and GSLs on drug overdose deaths involving opioids 

identified and defined by the International Classification of Diseases, Tenth Revision multiple-

cause-of-death codes: T40.0 (opium), T40.1 (heroin), T40.2 (other opioids), T40.3 (methadone), 

T40.4 (other synthetic narcotics), and T40.6 (other unspecified narcotics). This is useful for 

creating operational definitions for measurements of opioid related mortality rates. It should be 

noted that the ICD-10 defines the term “narcotic” to include both cocaine derivatives and 

opioids, so that some portion of the deaths identified by the multiple cause-of-death code T40.6 

could have been caused by cocaine. Deaths from cocaine use represent only a small fraction of 

total opioid related fatalities. A total of 29,650 opioid related deaths occurred in the United 
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States in 2014, but only 1,635 (5.5 percent) involved unspecified narcotics and no other type of 

opioid (National, 2017). 

Mortality rates due to drug overdoses are reported per 100,000 population and are based 

on April 1
st
 bridged-race census counts for 2000 and 2010, on July 1

st
 bridged-race estimates for 

1999 and 2001–2009, and on vintage 2015 post census estimates for 2011–2017. From 1999 to 

2017, almost 218,000 people died in the United States from overdoses related to prescription 

opioids. Overdose deaths involving prescription opioids were five times higher in 2017 than in 

1999 (Wide-ranging, 2016). Mortality rates from prescription opioids were highest in the states 

of West Virginia, Maryland, Kentucky, and Utah (Scholl et al., 2018). 

Opioid related treatment admissions data from 2002 to 2017 was obtained from the 

National Survey of Substance Abuse Treatment Services (N-SSATS), which is an annual survey 

of facilities providing substance abuse treatment conducted by the Substance Abuse and Mental 

Health Services Administration (SAMHSA). The N-SSATS collects data on the location, 

characteristics, services offered, and number of clients in treatment at alcohol and drug abuse 

treatment facilities. My interests are in estimating the effects of non-patient prescription, third-

party prescription, and Good Samaritan laws on opioid related treatment admissions throughout 

the 50 states and the District of Columbia. 

B: Data Summary 

From 1999 to 2017 an average of 7.925 ± 5.484 per 100,000 people living in the US died 

from opioid overdose or other opioid related complications. In 2017, West Virginia had the 

highest recorded state opioid related mortality rate at 45.873 deaths per 100,000 people living in 

the state. Conversely, 1999 Iowa had the lowest recorded state opioid related mortality rate at 

0.514 deaths per 100,000 people. 
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Annual admissions rates to opioid treatment programs also tend to vary greatly from state 

to state as well as year to year. During the period from 2002 to 2017 – excluding 2014 – the 

national average for opioid related admission was 115.224 ± 103.609 patient admissions per 

100,000 people. State treatment admission rates were highest in 2015 Rhode Island. 715.208 

people per 100,000 population in Rhode Island were admitted for opioid overdose or related 

complications. In 2013, South Dakota had the lowest admission rates of 0.119 people per 

100,000 population. 

Between 1999 and 2017, several states enacted legislation with the intent to reduce opioid 

related admissions and mortality. Previous studies have examined the effects of prescription drug 

monitoring programs (PDMP) and pain management clinic laws (PMCL) on opioid abuse 

outcomes. Implementation of these laws has resulted in a significant reduction in opioid related 

admission and mortality rates for many states. Between 1999 and 2017 an average of 68.717% 

and 7.904% of states had passed PDMP and PMCL legislation respectively. By 2014, every state 

with the exception of Missouri required physicians and pharmacies to participate in prescription 

drug monitoring programs. It is important to note that there have been rumors that Missouri’s 

state legislators will propose a plan to implement its own statewide drug monitoring program by 

the end of 2019 (Hauswirth, 2018). 

Little is currently known about the effects of legislation designed to promote naloxone 

use and accessibility. Non-patient specific prescription laws (NPL), third-party prescription laws 

(TPL), and Good Samaritan laws (GSL) are meant to increase naloxone availability with the 

hope that this will reduce the number of preventable admissions and deaths due to opioid 

overdose. On average, between 1999 and 2017, 18% of states had implemented NPLs, 22.401% 

of states had implemented TPLs, and 19.365% of states had implemented GSLs. Illinois was the 
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earliest adopter of NPLs, and the second adopter of TPLs as well as GSLs in 2010. New Mexico 

was the earliest adopter of TPLs and GSLs in 2001. 

All state-year-level demographic controls were obtained from the CDC’s BRFSS 

database including statistics for age, gender, race, education level, employment, income level, 

marital status, smoking status, and binge drinking. This evaluation was conducted with a test 

group between the ages of 18 and 65. All individuals below the age of 18 or above the age of 65 

have been excluded. Between 1999 and 2017, approximately 6.435% of the US population was 

between the ages of 18 and 24, 17.460% of the population was between the ages of 25 and 34, 

22.709% of the population was between the ages of 35 and 44, 27.108% of the population was 

between the ages of 45 and 54, and 26.288% of the population was between the ages of 55 and 

64. On average, 47.061% of the US population was male and 81.869% was white. On average, 

44.588% of people had a bachelor’s or advanced degree in higher education, 28.025% of people 

had some college education, 23.156% had a high school education, and 11.625% did not 

complete high school. The average unemployment rate between 1999 and 2017 was 5.044%. On 

average, 77.861% of the population was employed and the remaining 17.095% was not 

considered part of the labor force. On average, only 38.859% of households earned more than 

$75,000 each year while more than 17% of households had an annual income less than $25,000. 

Approximately 17% of US households would be in poverty based on the 2019 poverty line, 

which sets the poverty level at  $25,750 annual income for a four person household (2019 

Poverty, 2019). 59.314% of people were married and 19.174% were divorced.  On average, 

21.617% of the US population smoked and 10.928% binge drank within the last 30 days. 
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CHAPTER FIVE 

EMPIRICAL MODEL 

Independent variables are broken down into three categories: naloxone policies of 

interest, other policy controls, and demographic characteristics. The Legal Science dataset 

provides details on state policies regarding naloxone administration and overdose prevention. For 

the purpose of this paper, I am interested in evaluating the effects of three specific policies on 

opioid related mortality and treatment admission outcomes. I use a series of dummy variables to 

indicate whether a state allows prescriptions of naloxone to third-parties, whether pharmacists 

are allowed to dispense or distribute naloxone without a patient-specific prescription from 

another medical professional, and whether a layperson is immune from criminal liability when 

administering naloxone. If a state has a law allowing one of these policies in year “t” then the 

respective dummy variable will receive a value of one. If a law allowing a policy has not been 

enacted in year “t” then the dummy variable for state “s” in year “t” will receive a value of zero.  

Other control policies include PDMP must access laws and pain management clinic laws 

(PMCL). If physicians are required to access PDMP records before writing a prescription for an 

opioid in state s and year t then the PDMP dummy variable will be one. Otherwise the variable 

will be zero. Similarly states with PMCL policies in year t will have a dummy variable of one 

while states without PMCL policies will have a dummy variable of zero. 

In this paper, a dynamic difference-in-difference (DD) model is used to evaluate temporal 

and geographic variation in the passage of NALs and GSLs to gain a better understanding of 

their effects on opioid related mortality rate and treatment admission. Specifically, we estimate 

the following baseline Poisson regression: 
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(1)  Yst = β0+β1*NPLst+β2*TPLst+β3*GSLst+β*Xst+θs+τt+Ωst+ϵst 

 

where Yst represents an opioid outcome – either the expected number of opioid related deaths or 

the expected number of opioid related treatment admissions in state s and year t. The 

independent variables of interest are NPLst, TPLst, and GSLst where NPLst is a dummy variable 

equal to one if a non-patient specific prescription law was in effect in state s and year t and equal 

to zero otherwise. The indicators TPLst and GSLst are defined analogously for third-party 

prescription and Good Samaritan laws respectively. The inclusion of state fixed effects, 

represented by the term θs, ensures that the estimates of β1, β2, and β3 are identified using within-

state variation. The year fixed effects, represented by τt, account for common shocks to the 

opioid related deaths caused by such factors as the reformulation of OxyContin in 2010 or 

changes in drug enforcement priorities at the federal level. State‐specific linear time trends (Ωst) 

are also used to control for time‐varying, unobservable state characteristics. I interact state fixed 

effect with a linear time trend that takes on a value of one for 2002, two for 2003, and so forth. εst 

is the error term. 

In subsequent regressions, policy and demographic indicators are added to the vector of 

state characteristics, Xst. Policy indicators such as PDMP and PMCL are equal to one if there is a 

relevant law operating in state s and year t. There is reasonably strong evidence that the 

implementation of a PDMP and PMCL reduces opioid prescriptions and drug treatment 

admissions (Haegerich et al. 2014; Bao et al. 2016). Although, the evidence with regard to 

PDMPs and opioid related deaths is decidedly mixed (Johnson et al. 2011; Reifler et al. 2012). 

Xst also includes demographic controls including age, sex, race, education, and marital status 

taken from the Behavioral Risk Factor Surveillance System (BRFSS). 
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CHAPTER SIX 

RESULTS 

A: Sample Analysis – Opioid Overdose Mortality 

  The beta-coefficients for the NPLst, TPLst, and GSLst dummy variables indicate the 

average change in opioid related mortality per 100,000 people in state s at year t when the law 

has been enacted within the state. It was expected that states with non-patient prescription (NPL), 

third-party prescription (TPL), and Good Samaritan laws (GSL) would experience lower average 

opioid mortality rates. Table 2 presents the results on opioid related mortality using the full 

sample. As shown in Column 1, none of these policies have any effect on opioid mortality. In 

Column 2, I exclude the control for smoking and binge drinking because they might be one of 

the mechanisms in which these policies affect opioid mortality. I find that the results are similar 

to Column1 – none of the policies have any effect on opioid related mortality.  

 States that passed an NPL were also very likely to have passed TPL and GSL legislation. 

Columns 3, 4, and 5 examined the impacts of each policy variable separately due to concerns of 

high levels of multicollinearity (Table 2). Columns 3 and 4 indicate non-patient specific 

prescription and third-party prescription policies increased mortality, but Column 5 indicates that 

Good Samaritan policies did not significantly impact opioid mortality rates. On average, NPLs 

increased a state’s opioid related mortality rate by 1.869 ± 0.884 people per 100,000 population 

(p-value < 0.05). On average, TPLs increased a state’s opioid related mortality rate by 1.321 ± 

0.660 people per 100,000 population (p-value < 0.1). 

B: Sample Analysis – Opioid Related Treatment Admissions 

Table 3, Columns 1 to 6  contain beta-coefficients for the NPLst, TPLst, and GSLst dummy 

variables, which indicate the average change in opioid related treatment admissions per 100,000 
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people in state s at year t when the law has been enacted within the state. It was expected that 

states with non-patient prescription (NPL), third-party prescription (TPL), and Good Samaritan 

laws (GSL) would experience lower average opioid admission rates. According to the Column 1 

results, states which enacted the NPLs experienced a significant increase in opioid admission 

rates. On average non-patient specific prescription laws increased a state’s opioid related 

treatment admissions by 33.137 ± 14.682 admissions per 100,000 people (p-value < 0.05). 

Changes due to TPL and GSL legislation were not statistically significant (Table 3, Column 1).  

 Column 2 examines the impact of smoking and binge drinking on opioid admission rates. 

As with mortality, removal of the smoker and binge_drink variables did not significantly alter the 

beta-coefficients or the standard error for any of the policy variables of interest. Multicollinearity 

between NPLst, TPLst, and GSLst is an issue for predicting admission as well as mortality 

outcomes.  Columns 3, 4, and 5 contain results for regressions when NPLst, TPLst, and GSLst are 

separated (Table 3). In Column 3, non-patient specific prescription laws increased a state’s 

opioid related treatment admissions by an average of 29.246 ± 15.096 admissions per 100,000 

people (p-value < 0.1). Separating the three policies lowered the NPLst beta-coefficient and its 

significance level (Table 3, Column 3). Changes due to TPL and GSL legislation were still 

statistically insignificant (Table 3, Columns 4 and 5). 

C: Subsample Analysis – Opioid Overdose Mortality and Treatment Admissions 

While the initial results may not have been very substantial or significant for the sample 

population, it is possible that NPL, TPL, and GSL could have a greater impact on specific groups 

within the sample. Age, income, and education status are all potential factors which may 

influence the effectiveness of naloxone access policies. The rates of drug overdose deaths have 

increased from 1999 to 2017 for all age groups studied, but adults age 35-44 and 45-54 
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demonstrated significantly higher rates of drug overdose fatalities than any other age group 

(Figure 1). Individuals age 35-54 are more likely to die from an opioid overdose than any other 

age group. These individuals are also most likely to receive the maximum benefit from increased 

naloxone access. Analyzing and comparing the results presented in Table 4, Columns 1 to 6 

indicate that the effects of NPL, TPL, and GSL on opioid related mortality are very similar to 

those presented in Table2, Columns 3 to 5. Changes in opioid mortality rates in response to 

naloxone access policies do not significantly vary between the various age groups. 

There is strong evidence that suggests opioid related deaths and ED visits increase during 

times of economic weakness (Hollingsworth et al., 2017). While research has mainly focused on 

the relationship between opioid overdose and unemployment rate trends, it is possible that low 

income groups may also be highly susceptible to opioid overdose as well as benefit more from 

naloxone access policies. Table 5, Columns 1 to 3, examines the impact of NPLs, TPLs, and 

GSLs for a subsample of households with an annual income less than $25,000. The results for 

low income households do not meet expectations as they are very similar to those for the whole 

sample population. Table 5 results suggest that income level will not impact changes in opioid 

mortality rates in response to naloxone access policies. 

Studies focusing on trends in the 1990s and 2000s highlight stagnating life expectancy 

gains among less educated subgroups, particularly for non-Hispanic white women, and continued 

improvements among more educated subgroups (Ho, 2017). Increasing disparities in life 

expectancy gains among the less educated coincided with the rise of opioid overdose mortality 

that initiated in the late 1990’s, following FDA approval of the opioid pain reliever OxyContin. 

Among college graduates, drug overdose death rates have increased over time, but in the most 

recent period they are still lower than rates observed in the first recorded period for the least 
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educated (Ho, 2017). Education level may play a role in estimating potential risk to opioid 

overdose. Lower education groups may be more likely to overdose, but these subgroups may also 

receive greater benefit from NPL, TPL, and GSL policies. Table 5, Columns 4 to 6, examine the 

impact of NPL, TPL, and GSL for a subsample of individuals with less than a bachelor’s level of 

education. The results are very similar to those for the whole sample population. These results 

suggest that education level likely does not impact the effect of naloxone access policies on 

opioid mortality rates. 

A complete subsample analysis was conducted for opioid mortality outcomes to access 

whether specific subgroups within the sample population would respond differently to NPL, 

TPL, and GSL policies resulting in improved mortality outcomes. A similar analysis was 

completed for opioid related treatment admissions, but no significant changes in the impacts of 

naloxone access policies were observed. To see the results of this analysis please refer to Tables 

6 and 7, Columns 1 to 6. 
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CHAPTER SEVEN 

DISCUSSION 

A: Multicollinearity 

A key goal of regression analysis is to isolate the relationship between each independent 

variable and the dependent variable. The interpretation of a regression coefficient is that it 

represents the mean change in the dependent variable for each one unit change in an independent 

variable when all of the other factors are held constant. The idea is to be able to change the value 

of one independent variable and not the others to observe direct effects of each independent 

variable on the one that is dependant. However, when independent variables are correlated, it 

indicates that changes in one are associated with shifts in another. This is known as 

multicollinearity. The stronger the correlation, the more difficult it is to change one variable 

without changing another. Multicollinearity makes it difficult for a model to estimate the 

relationship between each independent variable and the dependent variable separately because 

the independent variables tend to change in unison. 

Multicollinearity causes coefficient estimates to change drastically based on which 

independent variables are included in the model, and the coefficients become very sensitive to 

small changes. Multicollinearity also reduces the precision of the estimate coefficients, which 

weakens the statistical power of the regression model. Due to the multicollinearity which exists 

between NPLst, TPLst, and GSLst policy variables, it is difficult to trust p-values to identify results 

that are statistically significant. States that have adopted one of the naloxone access policies are 

very likely to adopt the other policies. This makes it extremely difficult to determine whether the 

observed coefficients for NPLst, TPLst, and GSLst are the result of adopting each specific policy 

or the combined effect of multiple policies. 



23 
 

B: Moral Hazard and Endogeneity 

 States that have adopted any combination of the non-patient specific prescription, third-

party prescription, or Good Samaritan laws for naloxone were expected to experience reduced 

opioid overdose mortality rates and encounter fewer opioid related treatment admissions. While 

these laws have reportedly increased naloxone availability, my results indicate that NPL and TPL 

laws have also increased the average number of opioid related mortalities (Table 2). States which 

have adopted NPLs have also experienced increases in opioid treatment admissions (Table 5). It 

is strange that these laws designed to improve opioid outcomes would have such negative effects 

on the substance abuser population. 

 Two possibilities exist which could explain these unexpected results. First, increased 

access to naloxone due to adoption of these policies could have encouraged greater opioid abuse, 

resulting in additional opioid related admissions and fatalities. As naloxone became more widely 

available in each state, the immediate risk associated with opioid abuse would be lowered 

causing greater recreational use of prescription medications and illicit drugs. Increased access to 

naloxone may have created a moral hazard situation, in which the extra level of safety provided 

by naloxone promoted increased risky behavior with opioid drugs. This scenario is not very 

likely because if a naloxone moral hazard existed significant increases in mortality and 

admissions would be associated with all three policy variables – not only NPL. 

 There is also a possibility that states with high levels of opioid fatalities and admissions 

are much more likely to adopt naloxone access policies than states with lower previous mortality 

and admission rates. This would create an endogeneity issue in which a state’s opioid related 

mortality or admissions for the previous year are highly correlated with the independent policy 

variable for the current year. In this way, states that have a history of high mortality or 
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admissions will be more likely to adopt NPL, TPL, or GSL policies. This will affect future 

mortality and admission rates, which will ultimately affect the continued use or adoption of 

future policies. In order to evaluate potential issues of endogeneity, I estimate the following 

equation: NPLst = β0+β1* Y_lagst + ϵst, where NPLst is a measure of the probability that state s 

will adopt a non-patient specific prescription law in the year t. Y_lagst represents an opioid 

outcome – either mortality or treatment admissions – in state s and the year t-1. I find that the 

previous year’s opioid overdose mortality and treatment admissions are significantly correlated 

with the current year’s NPLst, which indicates that the adoption of non-patient specific 

prescription policies is non-random. 
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CHAPTER EIGHT 

CONCLUSION 

Significant research has determined that the adoption of NPLs and TPLs is associated 

with a 9 to 11 percent reduction in opioid overdose mortality. The estimated effect of GSL on 

opioid related deaths is of comparable magnitude, but not statistically significant at conventional 

levels (Rees et al., 2017). The relationship between naloxone access policies (NALs) and opioid 

related deaths that do not involve heroin appears to be stronger than the relationship between 

NALs and heroin-related deaths. This indicates that NALs may be more effective at preventing 

overdoses from prescription opioid painkillers than illicit drugs. Critics and supporters of the 

laws debate whether NALs benefit drug users or reduce mortality rates. Many believe increased 

accessibility to naloxone will promote greater recreational opiate use, but these concerns pale in 

comparison to the potential benefit of increased naloxone access (Rees et al., 2017). NAL 

policies are expected to greatly reduce the number of opioid related deaths, and prevent 

avoidable opioid related treatment admissions to healthcare facilities. This should assist in 

reducing medical care expenses within the United States.  

Upon review of available analytics, I have determine that the efforts of state legislators to 

reduce opioid abuse within the United States during the last nineteen years have at best been a 

deterrent but have not been effective in ending the opioid crisis. In contrast to policy 

expectations, non-patient specific prescription laws resulted in significant increases in both 

opioid related mortality and treatment admissions, but third-party prescription and Good 

Samaritan laws did not have any significant effect on opioid outcomes. In addition, subsample 

analysis did not reveal significant variation in the impact of state naloxone access policies 
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between high opioid risk subgroups and the full sample population. It should be noted that issues 

of moral hazard and policy endogeneity indicate that these results may not be reliable. 
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Table 1. Data Summary 

Variable Obs Mean Std. Dev. Min Max 

mortality 2,251,323 7.925 5.484 0.514 45.874 

admissions 1,876,978 115.224 103.609 0.119 715.208 

year 2,269,061 200920.200% 4.951 1999 2017 

npl 2,269,061 18.000% 0.384 0 1 

tpl 2,269,061 22.401% 0.417 0 1 

gsl 2,269,061 19.365% 0.395 0 1 

pdmp 2,212,447 68.717% 0.464 0 1 

pmcl 2,269,061 7.904% 0.270 0 1 

age_18to24 2,269,061 6.435% 0.245 0 1 

age_25to34 2,269,061 17.460% 0.380 0 1 

age_35to44 2,269,061 22.709% 0.419 0 1 

age_45to54 2,269,061 27.108% 0.445 0 1 

age_55to64 2,269,061 26.288% 0.440 0 1 

male 2,269,061 47.061% 0.499 0 1 

white 2,269,061 81.869% 0.385 0 1 

black 2,269,061 6.496% 0.246 0 1 

other 2,269,061 11.635% 0.321 0 1 

less_than_high_school 2,269,061 11.635% 0.321 0 1 

high_school 2,269,061 23.156% 0.422 0 1 

some_college 2,269,061 28.025% 0.449 0 1 

bachelor_and_above 2,269,061 44.588% 0.497 0 1 

not_in_labor_force 2,269,061 17.095% 0.376 0 1 

employed 2,269,061 77.861% 0.415 0 1 

not_employed 2,269,061 5.044% 0.219 0 1 

less_than_25k 2,269,061 17.161% 0.377 0 1 

less_than_50k 2,269,061 24.758% 0.432 0 1 

less_than_75k 2,269,061 19.222% 0.394 0 1 

greater_than_75k 2,269,061 38.859% 0.487 0 1 

married 2,269,061 59.314% 0.491 0 1 

divorced_widowed_separated 2,269,061 19.174% 0.394 0 1 

never_married 2,269,061 21.512% 0.411 0 1 

nonsmoker 2,269,061 78.383% 0.412 0 1 

smoker 2,269,061 21.617% 0.412 0 1 

binge_drink 2,269,061 10.928% 0.312 0 1 
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Table 2. Mortality Regression – Full Sample  

  Column 1 Column 2 Column 3 Column 4 Column 5 

VARIABLES mortality mortality mortality mortality mortality 

npl 1.386 1.386 1.869**     

  (1.219) (1.219) (0.884)     

tpl 0.782 0.782   1.321*   

  (0.889) (0.889)   (0.660)   

gsl 0.261 0.261     0.948 

  (1.207) (1.207)     (0.952) 

pdmp -0.789 -0.789 -0.824 -0.834 -0.833 

  (0.827) (0.827) (0.845) (0.846) (0.854) 

pmcl 1.617 1.617 1.612 1.616 1.673 

  (1.810) (1.810) (1.820) (1.805) (1.811) 

age_18to24 -0.062 -0.062 -0.062 -0.062 -0.063 

  (0.039) (0.040) (0.041) (0.039) (0.040) 

age_25to34 -0.103*** -0.103*** -0.104*** -0.103*** -0.105*** 

  (0.035) (0.035) (0.036) (0.035) (0.036) 

age_35to44 -0.104*** -0.103*** -0.105*** -0.105*** -0.105*** 

  (0.027) (0.027) (0.027) (0.026) (0.027) 

age_45to54 -0.030* -0.029* -0.030* -0.029* -0.026* 

  (0.015) (0.015) (0.016) (0.016) (0.015) 

male -0.015* -0.014* -0.014 -0.014 -0.014* 

  (0.008) (0.008) (0.009) (0.009) (0.008) 

black 0.007 0.006 0.006 0.007 0.014 

  (0.061) (0.061) (0.065) (0.064) (0.063) 

other -0.057 -0.056 -0.056 -0.056 -0.052 

  (0.037) (0.038) (0.037) (0.038) (0.038) 

high_school -0.004 -0.004 -0.004 -0.003 -0.003 

  (0.017) (0.017) (0.017) (0.018) (0.018) 

some_college 0.027 0.028 0.029 0.028 0.029 

  (0.019) (0.020) (0.019) (0.019) (0.020) 

bachelor_and_above 0.032 0.032 0.034 0.032 0.036 

  (0.029) (0.030) (0.029) (0.030) (0.031) 

employed 0.010 0.010 0.011 0.010 0.011 

  (0.014) (0.014) (0.014) (0.014) (0.014) 

not_employed -0.004 -0.005 -0.004 -0.007 -0.007 

  (0.019) (0.018) (0.018) (0.020) (0.019) 

less_than_25k 0.066* 0.066* 0.064* 0.071** 0.069** 

  (0.034) (0.033) (0.034) (0.034) (0.034) 

less_than_50k 0.039 0.039 0.038 0.043* 0.041* 

  (0.024) (0.024) (0.023) (0.024) (0.024) 

less_than_75k 0.014 0.014 0.014 0.015 0.014 

  (0.019) (0.019) (0.018) (0.018) (0.019) 

divorced_widowed_separated -0.021** -0.021** -0.020** -0.023** -0.022** 

  (0.010) (0.010) (0.010) (0.011) (0.011) 

never_married -0.044** -0.044** -0.043** -0.047*** -0.045** 

  (0.017) (0.017) (0.017) (0.017) (0.017) 

smoker -0.002   -0.002 -0.002 -0.003 

  (0.010)   (0.010) (0.010) (0.009) 

binge_drink 0.008   0.009 0.010 0.009 

  (0.008)   (0.008) (0.008) (0.008) 

Observations 2194709 2194709 2194709 2194709 2194709 

R-squared 0.734 0.734 0.732 0.731 0.730 
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Table 3. Admissions Regression – Full Sample 

  Column 1 Column 2 Column 3 Column 4 Column 5 

VARIABLES admissions admissions admissions admissions admissions 

  all no drugs npl only tpl only gsl only 

npl 33.137** 33.137** 29.246*     

  (14.682) (14.682) (15.096)     

tpl 5.166 5.166   7.524   

  (13.463) (13.463)   (13.173)   

gsl -16.042 -16.041     -7.715 

  (15.262) (15.262)     (14.409) 

pdmp 12.649 12.650 13.293 12.616 11.958 

  (12.213) (12.214) (12.654) (12.673) (12.569) 

pmcl -26.955* -26.957* -26.122* -25.449* -25.618* 

  (13.771) (13.772) (13.592) (13.704) (13.847) 

age_18to24 -1.221** -1.204** -1.242** -1.278** -1.275** 

  (0.488) (0.491) (0.502) (0.524) (0.515) 

age_25to34 -1.228*** -1.196*** -1.240*** -1.250*** -1.257*** 

  (0.396) (0.398) (0.409) (0.418) (0.413) 

age_35to44 -1.167*** -1.143*** -1.144*** -1.164*** -1.192*** 

  (0.330) (0.328) (0.332) (0.338) (0.344) 

age_45to54 -0.458** -0.441** -0.421** -0.399* -0.412* 

  (0.203) (0.202) (0.208) (0.213) (0.208) 

male -0.265 -0.255 -0.275 -0.271 -0.263 

  (0.176) (0.174) (0.171) (0.173) (0.178) 

black 0.489 0.477 0.580 0.629 0.620 

  (0.671) (0.672) (0.758) (0.770) (0.717) 

other -0.447 -0.456 -0.431 -0.423 -0.398 

  (0.499) (0.503) (0.497) (0.512) (0.499) 

high_school -0.095 -0.125 -0.087 -0.067 -0.071 

  (0.249) (0.257) (0.249) (0.253) (0.249) 

some_college 0.058 0.012 0.052 0.041 0.052 

  (0.264) (0.282) (0.260) (0.261) (0.270) 

bachelor_and_above 0.133 0.058 0.150 0.137 0.161 

  (0.375) (0.407) (0.395) (0.393) (0.405) 

employed 0.157 0.156 0.158 0.150 0.166 

  (0.178) (0.178) (0.174) (0.174) (0.173) 

not_employed 0.039 0.059 0.046 -0.010 -0.014 

  (0.222) (0.226) (0.220) (0.229) (0.227) 

less_than_25k -0.558 -0.520 -0.541 -0.475 -0.522 

  (0.486) (0.474) (0.526) (0.522) (0.531) 

less_than_50k -0.303 -0.286 -0.299 -0.232 -0.249 

  (0.336) (0.332) (0.350) (0.358) (0.356) 

less_than_75k -0.240 -0.234 -0.243 -0.230 -0.241 

  (0.178) (0.179) (0.181) (0.178) (0.180) 

divorced_widowed_separated 0.024 0.052 0.016 -0.025 -0.015 

  (0.204) (0.219) (0.212) (0.219) (0.217) 

never_married -0.052 -0.033 -0.040 -0.093 -0.083 

  (0.241) (0.243) (0.247) (0.258) (0.253) 

smoker 0.258   0.234 0.241 0.258 

  (0.191)   (0.198) (0.202) (0.192) 

binge_drink 0.153   0.129 0.145 0.160 

  (0.130)   (0.128) (0.125) (0.127) 

Constant 103.666*** 103.765*** 102.452*** 103.261*** 103.971*** 

  (9.723) (9.688) (9.683) (9.580) (9.758) 

Observations 1827853 1827853 1827853 1827853 1827853 

R-squared 0.832 0.832 0.831 0.829 0.829 
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Table 4. Mortality Regression – Age Subsample Analysis 

  Column 1 Column 2 Column 3 Column 4 Column 5 Column 6 

VARIABLES mortality  mortality mortality mortality mortality mortality 

  age 35-44 age 45-54 age 35-44 age 45-54 age 35-44 age 45-54 

npl 1.869** 1.869**         

  (0.884) (0.884)         

tpl     1.321* 1.321*     

      (0.660) (0.660)     

gsl         0.948 0.949 

          (0.953) (0.953) 

              

Observations 2194709 2194709 2194709 2194709 2194709 2194709 

R-squared 0.732 0.732 0.731 0.731 0.730 0.730 

Robust standard  

errors in 

parentheses             

*** p<0.01,  

** p<0.05,  

* p<0.1             

Notes: Only results for policy variables of interest are given. Complete results can be accessed 

upon request.  
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Table 5. Mortality Regression – Annual Household Income and Education Level 

Subsample Analysis 

 

  Column 1 Column 2 Column 3 Column 4 Column 5 Column 6 

VARIABLES mortality mortality mortality mortality mortality mortality 

  Annual 

Household 

Income 

<$25k 

Annual 

Household 

Income 

<$25k 

Annual 

Household 

Income 

<$25k 

Education 

<bachelors 

Education 

<bachelors 

Education 

<bachelors 

npl 1.869**     1.869**     

  (0.884)     (0.884)     

tpl   1.321*     1.321*   

    (0.660)     (0.660)   

gsl     0.949     0.948 

      (0.953)     (0.952) 

              

Observations 2194709 2194709 2194709 2194709 2194709 2194709 

R-squared 0.732 0.731 0.730 0.732 0.731 0.730 

Robust standard  

errors in 

parentheses             

*** p<0.01,  

** p<0.05,  

* p<0.1             

Notes: Only results for policy variables of interest are given. Complete results can be accessed 

upon request.  
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Table 6. Admissions Regression – Age Subsample Analysis 

  Column 1 Column 2 Column 3 Column 4 Column 5 Column 6 

VARIABLES admissions admissions admissions admissions admissions admissions 

  age 35-44 age 45-54 age 35-44 age 45-54 age 35-44 age 45-54 

npl 29.250* 29.252*         

  (15.099) (15.099)         

tpl     7.527 7.529     

      (13.174) (13.174)     

gsl         -7.716 -7.712 

          (14.412) (14.413) 

              

Observations 1827853 1827853 1827853 1827853 1827853 1827853 

R-squared 0.831 0.831 0.829 0.829 0.829 0.829 

Robust standard  

errors in 

parentheses             

*** p<0.01,  

** p<0.05,  

* p<0.1             

Notes: Only results for policy variables of interest are given. Complete results can be accessed 

upon request.  
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Table 7. Admissions Regression – Annual Household Income and Education Level 

Subsample Analysis 

 

  Column 1 Column 2 Column 3 Column 4 Column 5 Column 6 

VARIABLES admissions admissions admissions admissions admissions admissions 

  Annual 

Houeshold 

Income 

<$25k 

Annual 

Houeshold 

Income 

<$25k 

Annual 

Houeshold 

Income 

<$25k 

Education

<bachelors 

Education

<bachelors 

Education

<bachelors 

npl 29.245*     29.246*     

  (15.097)     (15.097)     

tpl   7.525     7.525   

    (13.173)     (13.173)   

gsl     -7.715     -7.715 

      (14.409)     (14.409) 

              

Observations 1827853 1827853 1827853 1827853 1827853 1827853 

R-squared 0.831 0.829 0.829 0.831 0.829 0.829 

Robust standard 

errors in 

parentheses             

*** p<0.01,  

** p<0.05,  

* p<0.1             

Notes: Only results for policy variables of interest are given. Complete results can be accessed 

upon request.  
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APPENDIX 1 

Notes: The results show increasing trends of drug overdose death rates from 1999 through 2017. 

2017 rates were significantly higher for age groups 25-34, 35-44, and 45-54 than for age 

groups15-24, 55-64, and 65 and over (p < 0.05).  

Source: Data is from the NCHS, National Vital Statistics System, Mortality (Drug, 2018). 
 

Figure 1. Drug overdose death rates, by selected age group: United States, 1999-2017 
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