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ABSTRACT 

 

 

Lake Junín (11.0°S, 76.2°W) is an intermontane lake at an elevation of 4085 masl in 

Junín, Peru. The lake spans ~300 km2 and has a water depth of ~12m. It is dammed at its 

northern and southern ends by glacial alluvial fans that have been dated >250 ka, indicating that 

the lake is at least this old. Lake Junín has never been overridden by ice in the past 1 million 

years making it one of the few lakes in the tropical Andes that predates the last maximum extent 

of glaciation and has a continuous record of waxing and waning of nearby Cordilleran glaciers. 

In July and August of 2015, piston cores were obtained from three sites in Lake Junín. These 

cores were overlapped to form a continuous record spanning the past ~700 ka. Siliciclastic flux, 

magnetic susceptibility (MS), mean grain size, and Ti/Ca of sediments from Lake Junín provide 

proxy records of glacial erosion and glaciation in adjacent valleys. Seven periods of glaciation 

are determined by relatively high magnetic susceptibility, low CaCO3, high clastic flux and 

Ti+Si+Al /Ca ratio. Mean grain size during all glacial cycles, irrespective of glacial extent is ~1-

2 microns. The dominance of fine glacial sediments and absence of coarse sediments in the lake 

core indicate that there is no ice rafted debris (IRD) in Lake Junín. This supports the hypothesis 

that while the glaciers reached the lake edges, it never calved into the lake. The oldest glacial 

cycle has relatively coarser sediments (>3 microns) but this distinctive change in grain size is 

hypothesized to indicate a fluvial depositional environment indicating the birth of Lake Junín to 

be around ~600,000 years. Despite smaller ice extent in the LLGM, siliciclastic flux between 

MS2-4 is higher than in other glacial periods which indicates that the glacier at the time was 

warm based with a higher activity ratio. Furthermore, comparison between skewness and mean 

grain sizes of glacial sediments in Lake Junín show that the two are inversely related. Coarser 

sediments have negative skewness with a finer tail while finer sediments have a positive 
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skewness. This variation in mean grain size distributions reflects a mixed signal of different 

mean grain sizes either from a single dominant valley with different rock types or from different 

valleys with prominently different rock types. In general, mean grain sizes are very fine (1-2 

microns) so the sediments would have followed Stokes Law and travelled into the lake either as 

an interflow or overflow.  
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INTRODUCTION 

 

Earth’s climate has varied naturally for billions of years (Ruddiman., 2001). However, 

increasing use of fossil fuel by humans since the Industrial Revolution has resulted in an 

unprecedented change in global climate (Ruddiman., 2001). Instrumental measurements have 

helped quantify these changes although they are only able to record climate variations for a span 

of about 150 years (Ruddiman., 2001). However, this is only a tiny fraction of the actual record 

of Earth’s long climatic history. Thus, climate proxies such as ice cores, corals, speleothems, 

pollen grains, tree rings, marine and lake sediments are used as natural archives of paleoclimate 

(Bradley., 1999). Proxies chronicle climatic fluctuations and indirectly reconstruct variations in 

precipitation and temperatures that induced climate change. Proxies can also be used to estimate 

concentrations of CO2 in the atmosphere in the past in order to compare and predict future CO2 

levels and infer changes in global climate due to increased concentrations of greenhouse gases 

Figure 1).  

Paleoclimatologists therefore study the natural variability in climate that extends back 

from instrumental records. Extensive paleoclimate studies can help understand the frequency and 

amplitude of long term cycles of climate change (Bradley., 1999). A record of natural variability 

in climate helps to recognize any human induced climatic trends. Long records of climate change 

are obtained through the study of climate dependent natural phenomena. These phenomena 

provide proxy records of climate and form the basis for testing climate models about climate 

change (Bradley., 1999). This is imperative in recent years, where increased human activities 

have already started to affect global climate. Paleoclimatology can thus help tune models that 

can be used to predict future patterns of climate change based on past climatic trends.  
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Figure 1. CO2 measurements are used as a proxy for climate over the past. Different proxies such as 

forams, stomata, paleosols are used to infer CO2 levels in the times beyond instrumental measurements 

(from Inglis et al., 2015). 

 

Climate is a product of the interactions between the atmosphere, oceans, biosphere, land 

surface and cryosphere. Each proxy records climatic variation, which is a result of the feedbacks 

between these components. The oceans cover about 70% of the earth’s surface and are major 

reservoirs of CO2 in solution. A small variation in dissolved oceanic CO2 could have 

ramifications in the radiation balance of the atmosphere and consequently the climate (Bradley., 

1999). Thus, oxygen isotopic composition of calcium carbonate from the remains of calcareous 

organisms, variations of species assemblages and morphologies, dissolution rates of deep sea 

carbonates all indicate paleoclimatic variations in marine sediments (Bradley,1999). 

 Ice cores can be used to discern changes in past temperatures by melting the ice cores 

and analyzing stable isotopes of oxygen and hydrogen of melted ice (Figure 2,3). Additionally, 

ice cores have pockets of atmospheric air stored in them that provide detailed records of carbon 
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dioxide, methane and other gases that help reconstruct atmospheric conditions when the snow 

was deposited (Bradley., 1999).  

 

   

Figure 2. Atmospheric carbon dioxide, methane and nitrous oxide concentrations for the last 

800,000 years derived from air bubbles trapped in ice cores from Dome C, Antarctica. Units are in ppm 

for CO2 and ppb for CH4 and N2O. Year 0 indicates 1950 of the Common Era (C.E) (from Luthi et al., 

2008). 
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Figure 3. Atmospheric Carbon dioxide and Methane concentrations for the past 400,000 years 

derived from air bubbles trapped in ice at Vostok Station, Antarctica. Units are ppm for CO2 and ppb for 

CH4. Year 0 indicates 1950 of the Common Era  (from Petit et al., 1999). 

 

Terrestrially, tree rings record annual climate in mid and high latitudes unless their 

growth is disturbed. Climatic conditions influence tree rings producing annual thick light layers 

alternating with thin dark layers’ indicative of climate variations. The light layers are thick due to 

rapid growth in spring while the dark layers are thin due to cessation of growth in summer or 

fall-winter (Ruddiman, 2001). Multiple records from different trees can also be combined to 

form a climate record longer than the timespan of a single tree. Similarly, annual bands in coral 

skeletons provide information about annual climatic variability. Coral skeletons are made of 

calcite which incorporates oxygen from the surrounding water. The ratio of oxygen isotopes 

changes in ocean water changes on the basis of temperature and rainfall and this is reflected in 

ratio of heavy and light oxygen isotopes in coral growth bands (Ruddiman, 2001). These growth 
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bands can therefore provide information on past climate change and ocean salinity and 

temperature.  

Sedimentary archives of paleoclimate are usually derived from low energy undisturbed 

marine environments where the degree of disturbance depends upon the amount of turbulent 

storms and bioturbation (Ruddiman, 2001). Lakes are another excellent high resolution 

sedimentary archive of paleoclimate (Cohen., 2003). Glacial, tectonic or fluvial processes form 

most lakes. Glacial and tectonic lakes have the greatest area while tectonic lakes have the 

greatest volume and are well-preserved (Cohen., 2003). Most lakes lie in mid latitudes where air 

pressure systems and evapotranspiration rates results in high precipitation. Lakes are also 

abundant near the equator, which similarly has low pressure, high ratio of precipitation to 

evaporation. 

However, mid latitude lakes are generally glacial in origin while modern equatorial lakes 

are formed either tectonically or fluvially. In contrast, subtropical lakes receive low precipitation 

and high evapotranspiration lakes and are usually tectonically formed closed basin lakes with no 

outlets (Cohen, 2003).  

Lakes accumulate sediments, which includes terrigenous sediments, chemical/biogenic 

sediments, cosmogenic/volcanogenic sediments, exogenic /endogenic fossils, aerosol and 

waterborne pollutants from the lake catchment, surrounding area and even the atmosphere for 

thousands of years or even longer (Cohen, 2003). Sediment coring retrieves deposits from deep 

within the lake providing paleolimnological data. Fossils in lakes demonstrate lake responses to 

changes in lake ecosystem. Fossil diatoms, biomass and water species from multiple lakes are 

used to evaluate impacts of human activities on regional and global scale. Additionally, varves, 

which are the smallest scale events recognized in stratigraphy, provide information about annual 
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sedimentation and paleoclimate of the region. While there has been extensive paleolimnological 

research in the northern latitudes, research in the tropical lakes of the Southern Hemisphere have 

only been done since the late twentieth century. 

Sabana de Bogota is one of these lakes located in the high plains of Cordillera Oriental in 

Colombia. At an elevation of 2500 masl, Sabana de Bogota is a remnant lake that has collected 

sediments over millions of years. A study drilled long cores up to 350 m in length, which 

documented fifty-five pollen zones corresponding to 27 major climatic cycles spanning 3.5 Mya 

(van der Hammen, 1985). This record was further correlated with oxygen isotope records from 

deep sea. Primarily, pollen grains, which are sensitive to temperature changes, infer changes in 

climate. Three different phases are recorded in the sediments at Sabana de Bogotá based on 

pollen grain analysis, K-Ar and fission track dating of volcanic layers (van der Hammen, 1985). 

The first phase before 25 ka was cool and humid causing ice extension. The next phase between 

21 ka and 14 ka was cold and dry (Van Der Hammen 1985). This dry period is global but was 

especially severe in the tropics. This period of aridity is also in the sediments of Laguna De 

Fuquene in “Valle de Ubate- Chiquinquira’, another high plain in Cordillera Oriental, north of 

Sabana de Bogotá (van Geel and van der Hammen, 1973).  Pollen analysis and 14C dating of 

Laguna De Fuquene’s core show an arid period between 21-12 ka (van Geel and van der 

Hammen, 1973).The last phase after 10 ka is thought to have been relatively warm and humid 

causing high vegetation and smaller glacial extent (van der Hammen, 1985). Lowering of mean 

annual temperatures in tropical Andes and climatic fluctuations during the Holocene correspond 

in magnitude with temperature changes in the northern temperate latitudes. 

  Lake Titicaca is another intermontane lake located in the northern Altiplano which has 

had continuous sedimentation >20 ka. A study collected a 136-meter-long drill core of sediments 
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from Lake Titicaca recorded four cycles of glacial and interglacial period over the last 370,000 

years based on 14C, U-Th dating and tuning methods (Fritz et al., 2007). Ages were derived by 

radiocarbon dating of bulk organic carbon samples from the upper 25 m of the core and U-Th 

dating of aragonite laminae relatively free of detrital sediments in the upper 48 m of the core 

(Fritz et al., 2007). The chronology of the core >48m was based on interpolation of control 

points between the lake stratigraphy and the Vostok CO2
 record assuming constant sedimentation 

rates (Fritz et al., 2007). This study concluded that alternating cold-wet and warm-dry periodic 

trend in Lake Titicaca was similar to Sabana de Bogotá and was a result of global and local 

climate forcings such as insolation, precession, global ice volume and Pacific and Atlantic SSTs.  

A smaller sediment record at Lake Titicaca provides a very high-resolution data of 

precipitation in the region for the past 25 ka (Baker et al., 2001). The study concludes that the 

annual rise of Lake Titicaca is inversely correlated to the North Equatorial Atlantic sea surface 

temperature (SST) indicating that Amazonia and the Altiplano had wet conditions when 

Northern Equatorial Atlantic sea surface temperatures was anomalously low. Lake sediments 

therefore provide a high-resolution record of precipitation and hydrologic balance of the region 

as well (Baker et al., 2001).  

Another example of a lake with high-resolution record of paleoclimate in Southern 

America is Salar De Uyuni located on the Bolivian Altiplano. A 220 m long drill core from Salar 

De Uyuni yielded significant information of precipitation in the region for the past 50,000 years. 

The youngest lake that existed in the Salar has been dated at around 12.5 ka coincident with the 

Younger Dryas Event in the North Atlantic (Baker et al., 2001). A dry period between 12.5-14.9 

ka marks the Bolling-Allerod interstadial in the northern latitudes (Baker et al., 2001). Two 

periods between 14.9-16.6 ka and 24.3-26.1 ka mark the existence of paleo lake Tauca that 
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coincides with Heinrich events 1 and 2a (Baker et al., 2001). Heinrich events are brief dry and 

cold periods when massive icebergs floated into the North Atlantic due to changes in the ice 

sheets. These icebergs eventually melted and deposited ice-rafted detritus, thus changing ocean’s 

circulation (Roberts et al., 2014). Studies also hypothesize that a reduction in the mass of ice 

sheet along with a change in ocean circulation would have changed atmospheric circulation and 

climate. This shows that wet events in the tropical South American region were coeval with cold 

sea surface temperatures in the Northern Hemisphere. Lacustrine muds in the Salar De Uyuni 

drill core indicate cold and wet periods where precipitation would have been much higher than 

modern rates. Since variability in precipitation aligns with summer insolation maxima and 

minima, the authors suggest that the South American Summer Monsoon (SASM) is controlled by 

variable summer insolation, which induces prolonged wet and dry periods in South America 

(Baker et al., 2001). As such, a long wet period, coincident with the Last Glacial Maximum is in 

phase with summer insolation maxima. Shorter wet events were coincident with cold events in 

the temperate North Atlantic such as Heinrich events 1, 2 and the Younger Dryas events (Baker 

et al., 2001). Diatom fraction and salt deposits, mostly halite and gypsum, identified wet and dry 

phases by natural gamma radiation measurements, which is higher for lacustrine deposits than 

for salt deposits (Baker et al., 2001). Diatom fraction is a measure of the ratio between benthic 

diatom to freshwater planktonic diatoms in lake sediments. 

Lake Potrok Aike, one of the few lakes in the Southern Hemisphere with a high-

resolution continental archive of paleoclimate, is a 770,000-year-old maar lake located in Santa 

Cruz, Patagonia, Argentina. In 2008, The “Potrok Aike Maar Lake Sediment Archive Drilling 

Project” (PASADO) obtained a 106 m-long drill core extending back up to 51,000 years (Hahn 

et al., 2013). Multi proxy methods including physical properties, geochemistry, CNS elemental 
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analysis, stable isotopes, pollen and diatom fraction and magnetic susceptibility determined the 

lake level and environmental and climate change in Lake Potrok Aike over the past 51 ka. From 

51-33.1 ka, glacial conditions pervaded and lake levels were high (Hahn et al., 2013). However, 

calcite precipitation was low during this period and a northerly position of Southern Hemispheric 

Westerlies (SHW) would have resulted in decreased wind speeds and evaporation (Hahn et al., 

2013). Further, Atlantic precipitation due to the SHW blocking easterly winds could have 

enhanced precipitation in the area. In fact, from 49-44 ka and 34-17 ka,the lake levels were at its 

highest levels.. At around 40 ka, lake levels dropped indicating higher temperatures which were 

supported by diatom and biogenic silica concentrations (Zolitschka et al., 2013).  Decrease in 

magnetic susceptibility and increase in clay content until 33.1 ka suggest that the lake had 

interstadial warm and productive conditions. Until the next glacial extension occurred (Hahn et 

al., 2013). According to PASADO, local Last Glacial Maximum (LGM) from 33.1 ka-17.2 ka is 

consistent with other LGM records in Patagonia (Hahn et al., 2013).  Deglaciation started 17 cal 

ka BP and there was an increase in productivity in this warm and humid period as shown by the 

decrease in MS record and high total organic carbon (TOC), biogenic silica (BSi) and C/N 

values. After the LGM, the SHW moved southward but only reached their modern position over 

Lake Potrok Aike in the early Holocene.  After 16 ka, productivity was low for about one 

millennium followed by further low productivity after 14.7 ka (Hahn et al., 2013). While tephra 

deposits do provide nutrients, the research concluded that increased lake turbidity reducing light 

penetration and thus photosynthetic activity could have reduced productivity instead (Hahn et al., 

2013). On the other hand, low productivity after 14.7 ka is thought to have been due to Antarctic 

cold reversal, which might have influenced climate as far as Lake Potrok Aike inducing cold 

conditions (Hahn et al., 2013). However, this is highly controversial and disputed. Pollen based 



16 

 

 

data shows that at 13.5 -11.4 ka temperatures at Potrok Aike were warm.  After 9.4 ka, low lake 

levels occurred due to warm Holocene climate along with strong dry winds (Hahn et al., 2013). 

The controversy surrounding paleoclimate in Potrok Aike around ~14 ka could be due to dating 

problems in the cores since the cores at Potrok Aike did have some gaps. Core chronology was 

based on age depth model created from linear interpolation of median calibrated radiocarbon 

ages. However, when the age model was compared to Optical stimulated luminescence (OSL), 

the radiocarbon dates were older than the OSL by a range of 0.85-8.3 ka. 

  In 2005, a 623-m long drill core recording 1.5 Mya of paleoclimate in the Eastern 

African Rift valley was retrieved from Lake Malawi, a 40-km wide and 560-km long lake. A 

complementary drill core encompassing 100 ka was taken from Lake Tanganyika, another 

eastern rift valley lake (Scholz et al., 2007). Similarly, Lake Bosumtwi, a meteorite impact crater 

lake in Ghana was drilled in 2004 to retrieve sediments that recorded about 1.1 million years of 

West African paleoclimate. In 2007, research based on the lake sediment record from Lake 

Tanganyika in East Africa, Lake Bosumtwi in West Africa, and Lake Malawi concluded that 

between 135 and 75 ka, a massive drought event occurred in the region that reduced water 

volume by 95% (Scholz et al., 2007). This period of drought was more severe than the Last 

Glacial Maximum, which is one of the most arid periods during the Quaternary period (Scholz et 

al, 2007). Lake Malawi too reflects this period of drought indicating that this was a continent- 

wide drought event. The drought period eventually transitioned into a progressively wetter 

climate and it is thought that Milankovitch variations resulted in this period of aridity during the 

early late Pleistocene (Scholz et al., 2007). This is because the end of the drought coincides with 

reduced eccentricity and precession driven climate events. Ocean sediment cores support this 
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evidence since they show that tropical African lakes respond effectively to changes in insolation 

due to Milankovitch cycles (Scholz et al, 2007).  

As seen from aforementioned examples, lake deposits provide long, continuous records 

of glaciation and climate change. While there has been extensive paleolimnological work done in 

the Northern Hemisphere only a few tropical South American lakes and African rift valley lakes 

have been studied. Thus, there is a need for a well dated long core from the Andes with a record 

of regional paleoclimate .  

Lake Junín is one of the few lakes that provides an extensive record of paleoclimate in 

the tropical Andes in the Southern Hemisphere. Glaciers in the Junin basin reached the lake 

edges during the late Cenozoic glaciation but the lake itself hasn’t been covered by ice in the last 

1 million years or more, making it one of the few lakes that predate the last maximum extent of 

glaciation (Rodbell et al., 2008). Furthermore, the position of the lake between the Eastern and 

Western Cordilleras helps it to capture sediments and record the activity of glaciers in nearby 

cordilleras. In 2015, three overlapping sediment cores from Junin extending up to 100 m below 

lake floor (mblf) were extracted. 

This research aims to add to prior work done in Lake Junín by characterizing and 

comparing glacial periods in the Junín core. Siliciclastic flux, magnetic susceptibility, mean 

grain size and Ti+Si+Al/Ca of sediments from the sediment core are used as proxy records of 

glacial extent and erosion in adjacent valleys. A secondary objective of the research is to focus 

on the Last Glacial Maximum and to compare mean grain size parameters such as skewness and 

kurtosis with other sediment characteristics. Prior research of Lake Junín sediments has only 

extended through the last 50 ka. Thus, the Lake Junín core, which spans over 700,000 years 
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provides a unique opportunity to compare characteristics of glacigenic sediments from the Late 

Quaternary.  

 

STUDY AREA  

Lake Junín (11.0°S, 76.2°W) is a proglacial lake that sits in an intermontane basin 

between the Eastern and Western Cordillera of the Central Peruvian Andes (Rodbell, 2008). 

Roughly 320 km northeast of Lima, the lake is located at an elevation of 4080 m on a grassy 

altiplano and has a catchment area of about 300 km2 (Figure 4). More than 40 ka ago, glaciers 

from the Cordilleras deposited moraines at the northern end while outwash fans from the two 

cordilleras blocked drainage on the southern side and formed the lake (Hansen 1984).  

                 

Figure 4. Location map of Lake Junin and its drainage basin in Peru (from Rodbell, 2014)  
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The lake basin occupies roughly one third of its drainage basin and has a maximum water 

depth of approximately 15 m (Flusche et al., 2005). Precipitation in this grassy altiplano is a 

product of the easterlies crossing the Amazon Basin during the austral summer from December-

February, along with the development of South American summer monsoon.  

 

In the Eastern Cordillera, Mesozoic siliciclastic, carbonate and crystalline rocks dominate 

along with some exposed Precambrian crystalline rocks (Figure 5). Bedrock in the Western 

Cordillera is primarily Jurassic carbonates and Tertiary volcanics. Glacial outwash and marshes 

in the north and unglaciated bedrock and marsh in the south (Figure 6) primarily surround Lake 

Junín.  Annual precipitation in the lake is  ~875 mm/yr, which is mostly derived from the 

easterlies during the austral summer with about 80% falling during austral summer between 

November and April (Seltzer et al., 2000) .

 

Figure 5. Bedrock cross section of Lake Junin shows bedrock ranging from Devonian to Jurassic 

(After Rodbell., 2018). 

 



20 

 

 

Lake Junin is also one of the few lakes in the Southern Hemisphere that has never been 

overridden by glaciers and lies beyond the maximum limit of glaciation. As such, it has had 

continuous sediment accumulation that can help determine glacial advance and retreat in the 

Tropical Andes (Seltzer et al., 2002). Glacial lakes upstream of Lake Junín also act as sediment 

traps magnifying the signals of deglaciation in Lake Junín sediments (Seltzer et al., 2002).  

 

Figure 6. Bedrock Geology of Lake Junín. Lake Junín is surrounded by marsh, glacial outwash and 

unglaciated bedrock. The lake drains into Rio Mantaro (After Wright et al., 1983). 
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PAST WORK 

In 1983, a 25 m core spanning about 50 ka was extracted from Lake Junin. Wright, 

Hansen and Bradbury conducted moraine morphology studies on glacial valleys in Junín using 

this core and delineated two phases of glaciation in the Junín Plain, which they named the 

Punrun and Rio Blanco glaciations (Hansen et al., 1984). This study provided the first 

continuous record of glaciation and regional vegetation change spanning the last local glacial 

maximum and Holocene in the Peruvian Andes. The study was also the first to observe that 

interglacial periods in Junin were marked by marl in the lake sediments.  Radiocarbon dating of 

lake cores and other samples from the site showed that the Rio Blanco glaciation started before 

42 ka while the Punrun glaciation occurred from 24 ka to 12 ka (Smith et al., 2005) 

In 1996, another study by Seltzer et al, extracted a 19 m core from Lake Junín to examine 

lake glacial-interglacial sedimentology. According to their study, magnetic susceptibility sharply 

dropped at around 21 ka, which they associated with glacial retreat (Seltzer et al., 2008). As 

glaciers retreated behind their terminal moraines, proglacial lakes would have trapped glacial silt. 

Magnetic susceptibility records thus show a glacier retreat around 21 ka, a minor glacial advance 

between 21 ka and 16 ka, and significant deglaciation after 16 ka (Seltzer et al., 2008).  

Moraine dating has shown that glacial advancement in Junín occurred >150 ka especially 

around 175–225 and 340–440 ka (Smith et al, 2008). Surface exposure dating, cosmogenic 

nuclide dating and geomorphic setting indicates glaciation from around 31-21 ka and 19-15 ka 

while the most recent period of glaciation is dated at around 12-14 ka (Smith et al, 2008). In 

2005, a study by Smith et al. (2005) dated 146 moraines using 10Be exposure dating in the Junín 

region showed that the glaciers reached their maximum extent as early as ~34 ka preceding the 

Global Last Glacial Maximum by as much as 10-12 ka. The study suggested that shifting 
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temperature and precipitation changes resulted in increased precipitation and cool temperature in 

the tropical Andes, which promoted early glaciation compared to continental ice sheet expansion 

(Smith et al., 2005). Precipitation in the region increased as early as ~60 ka expanding into ~34 

ka when a sharp SST cooling occurred (Smith et al., 2005). Glacial retreat started at ~21-16 ka 

and was followed by steady retreat after 15 ka. The glaciation from 31-21 ka represent an early 

Last Glacial Maximum in Lake Junín compared to global records. This is consistent with other 

research based on Lake Junín sediment records, which indicates an early LGM advance. Thus, 

glaciation in Junín corresponds with increased tropical moisture and sea surface temperature 

gradients in the North Atlantic (Smith et al., 2008).  

Moraine records also show that the glaciers reached the edge of Lake Junin but the lake 

itself was never overridden by glaciers (Smith et al., 2005). This indicates that the lake has had 

continuous sedimentation spanning earlier than the LLGM. The best estimate of deglaciation 

after the Last Glacial Maximum in the Southern Tropics comes from Laguna Kollpa Klota in 

Bolivia. Radiocarbon analyses of organic matter from basal lake sediments show deglaciation at 

around 23-20 ka before present (Seltzer et al., 2002). Lake stratigraphy also indicates that 

deglaciation occurred under relatively wet conditions and that climatic warming in the tropical 

Andes was at least 5000 years earlier than in the Northern Hemisphere (Seltzer et al., 2002). The 

authors also state that early onset of warming in the Southern Hemisphere could have stimulated 

deglaciation in the Northern Hemisphere by atmospheric or ocean circulation processes. A 

negative and asymmetric relationship is observed between precipitation trends has also been 

observed in the south compared to northern tropics (Seltzer et al., 2002). According to the δ18O 

ostracod records from Lake Miragoane, Haiti (11°N), the northern tropics experienced the most 

precipitation in the middle of the Holocene. However, there is a time lag in the peak aridity at 
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Lake Junín, which occurred at least a thousand years earlier than peak precipitation in the 

Northern Hemisphere, attributed to the impact of precession on insolation. δ18O records from 

Junín along with speleothems and other carbonate lake records also show the isotopic shift from 

Late Glacial to Holocene (Bird et al., 2011). Another study looked at the  δ18Ocalcite
  record which 

showed a 6‰ enrichment during the late glacial followed by a gradual depletion during the 

Holocene. These isotopic changes were interpreted as a decrease in effective moisture followed 

by a long-term increase. Furthermore, the δ18Ocalcite
  record followed closely with mean annual 

temperature and rainy season insolation which indicates that changes in precipitation are linked 

to orbital variations (Seltzer et al., 2000). The δ18O values thus provide a record of change in 

strength of the South American Summer Monsoon on regional Andean hydrological balance 

(Seltzer et al., 2000). Factors that affect the SASM include the mean position changes of the 

intertropical convergence zone over the tropical Atlantic Ocean, the El Nino Southern 

Oscillation (ENSO) and long-term insolation changes (Seltzer et al., 2000).  

 

RESULTS FROM PRIOR RESEARCH AT LAKE JUNIN 

 

In 2008, prior to the Junín drilling project in 2015, preliminary seismic profiling was 

done on Lake Junín in conjunction with retrieval of surface cores to determine shallow lake 

stratigraphy (Figure 7). The short cores showed that during the Holocene, Lake Junín 

precipitated marl at all water depths while the seismic profiles and short cores showed that lake 

level changes resulted in fluvial channels and reworked sediment during the early-middle 

Holocene (Drilling Project Proposal).  
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Figure 7. Bathymetric map of Lake Junin with black lines indicating 4-24 kHz sources measured from 

seismic surveys in 2008-2011. Open circle lines indicate air gun seismic work from May, 2011 (After 

Rodbell., 2018). 

 

In 2011, another study followed with a seismic survey of Lake Junín to record lake basin 

stratigraphy. The survey demonstrated that the lake stratigraphy had no large scale deformation, 

lake level fluctuation, tectonic deformation or widespread gases. Two major reflectors, R1 and 

RD (Figure 8) marked changes from glacial to post glacial sediments and base of lacustrine 

deposits. The section below RD are coarse and inferred to be of fluvial origin. Thus, these 

conclusions were used to consider Lake Junín as an appropriate site for drilling and paleoclimate 

study.  
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Figure 8. Airgun seismic section through lake middle showing echoes of airgun seismicity. The green line 

indicates lake floor while the red lines indicate major reflectors. The upper reflector is R1 and the lower 

reflector is named RD. Yellow lines indicate discontinuous reflections (After Rodbell., 2018). 

 

We also observe that the lake has a moraine coming in through the eastern side of the lake 

(Figure 9). The moraine is linked to a downstream alluvial fan and provides evidence that Lake 

Junin was continuously fed sediments from moraines originating in neighboring valley glaciers 

during glacial periods.  



26 

 

 

 

Figure 9. Google Earth Image of Lake Junín with the three coring sites labeled DS1, DS2, DS3. Three 

cores were extracted from these sites in 2015. The lake is flanked by the Western Cordillera on the left 

and the Eastern Cordillera on the right (After Rodbell., 2018).  

 

 

 

Consequently, the lake was drilled at three sites: DS1, DS2 and DS 3 (Figure 9). DS1 had 

a maximum water depth ~10m and distal to glacial outwash sources. DS2 had a water of ~5 m 

and is near glacial outwash sources while DS3 has an intermediate water depth (~8m) at an 

intermediate position with respect to glacial sources.  The drill cores were then brought back for 

further analysis and dating at University of Minnesota and MIT. Chronology was derived from 

radiocarbon dates of terrestrial macrofossil, paleomagnetic data and U/Th dates on authigenic 

calcite (Figure 10). This data was then processed through the Bacon Age Model to create an 

extensive chronology of Lake Junín sediments. 
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Figure 10. Age depth model for Lake Junín sediments based on multiple methods of chronology such as 

radiocarbon dating, U/Th dating, paleomagnetism and Bacon Age modelling. (After Rodbell., 2018) 

 

A stratigraphic column from Drill Site 1 was used to preliminarily infer approximate 

number of glacial cycles preserved in Lake Junín sediments (Figure 11).  Various parameters 

such as magnetic susceptibility (MS), calcite (CaCO3%), organic carbon and dry density were 
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compared with depth in the core to show that there were 7 intervals of glacial and interglacial 

sediments preserved in ~95 m of fine grained sediments from DS1(Figure 11). Glacial sediments 

are high in siliclastic material with high magnetic susceptibility (MS) and density with low 

organic and inorganic carbon. Sediments from interglacial periods have low magnetic 

susceptibility and density but high organic carbon levels indicating low lake levels.  

 

Figure 11. Stratigraphic column at Lake Junin Drill Site 1. Yellow columns are interglacial periods 

marked by high calcite and TOC, low MS and density. Pink columns are glacial periods marked by low 

calcite and TOC but high MS and density (After Rodbell., 2018). 

 

In 2005, Lisiecki and Raymo compiled a stack of δ18O records from globally distributed 

benthic foraminiferal calcite (Lisiecki and Raymo, 2005). Stacks are averages of δ18O records 

from multiple sites and the benthic δ18O signal is due to combination of relative contributions of 

ice volume and temperature. Lisiecki and Raymo’s δ18O record spanned beyond 850 ka and 
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recorded Pliocene-Pleistocene marine isotope stages (Lisiecki and Raymo, 2005). The δ18O stack 

also acts as a proxy for global ice sheet volume but does not clearly indicate the proportion of 

sources of ice sheet signals. Thus, there is a need for distinguishing sites contributing to the δ18O 

stack and determining whether the tropics contribute to the global signal and if tropical glaciation 

is synchronous with glaciation throughout the globe.  

Initial results from Lake Junín sediments were therefore compared to proxies of global 

the δ18O stack to see if the two were in sync and if tropical glaciation followed global trends 

(Figure 12). MS is used as a proxy for glaciation since it is usually indicative of terrigenous 

clastic flux and siliciclastic rocks are rich in magnetic minerals such as magnetite and 

maghemite. During periods of glaciation thick layers of ice rapidly eroded the underlying 

siliciclastic bedrock producing sediments that are eventually deposited in the lake resulting in 

high MS peaks. MS is also compared with solar insolation and EPICA (European Project for Ice 

Coring in Antarctica) Dome CH4 values which are proxies for temperature and moisture 

respectively (Spahni et al., 2005). Similarity in glaciation patterns are seen from comparison of 

MS record from Junín Site 1. MS record of tropical glaciation with proxy records of global ice 

volume, temperature, methane and tropical solar insolation (Figure 12).  

 



30 

 

 

 

Figure 12. Comparison of glaciation in Lake Junín record with proxies of global ice volume (Stack δ18O), 

moisture (solar insolation) and temperature (methane). Cyclicity of Lake Junín glacial cycles is 

synchronous with global ice volume and tropical insolation. (After Rodbell., 2018) 

 

MS peaks follow peaks in tropical insolation suggesting that greater exposure of solar 

radiation could have resulted in greater convection and precipitation which would have increased 
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glacier mass balance consequently resulting in higher erosion. CH4 and δD records from the 

EPICA (European Project for Ice Coring in Antarctica) Dome, which are used as proxies for 

temperature and global ice volume, seem to be in sync with tropical trends and solar insolation 

(Spahni et al., 2005). The Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O also 

show Marine Isotope Stages which are periods of cool or warm climate (Lisiecki and Raymo, 

2005). The comparisons also show that the seven glacial cycles recorded in Junín record is 

similar to global ice volume record. 

 

METHODS 

 

In 2015, The NSF-ICDP Junín drilling project obtained multiple long sediment cores up 

to 105 m below the lake floor from three sites at Lake Junín, Peru. Site 1 extends to ~100 mblf, 

while Sites 2 and 3 extend to ~23 and 51 mblf, respectively. The cores were stratigraphically 

correlated to each other to obtain a sediment record spanning the past ~700 ka. Samples were run 

through Coulter LS 230 TM Laser Diffraction Particle Sizer to obtain grain-size distribution. We 

measured samples at every 5 cm in the Last Glacial Maximum and at every 16-20 cm for every 

glacial interval in the core. 380 samples were used and their grain sizes were analyzed with the 

help of Union College Core Lab.  

For grain size analysis, it is imperative to remove any non-terrigenous material so three 

extraction steps removed carbonates, organic matter and biogenic silica respectively (Core Lab 

Manual, Union College). While some carbonates in the samples might be detrital, it is difficult to 

separate detrital carbonates from authigenic so we extracted all carbonate material. For carbonate 

extraction, 20 ml of 15% HCl was added to samples weighed between 0.5 to 0.7 g in centrifuge 

tubes. We then heated the samples in hot water baths at 50oC for 2 hours and placed them in a 
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reciprocating shaker for 30 minutes. Subsequently, we added 5 ml of concentrated (30%) H2O2 to 

the samples and left them overnight to ensure removal of organic matter. Finally, we added 10 

ml of 1M NaOH to the centrifuge tubes to completely dissolve and remove any biogenic silica in 

samples. We placed the centrifuge tubes in a hot water bath at 50oC for 4 hours and immediately 

placed in a reciprocating shaker for 30 minutes again. After each extraction step, we centrifuged 

and decanted the sample with distilled water three-times. We then used 10 ml of 0.05 M sodium 

metaphosphate to disperse the grain size samples and placed them in a reciprocating shaker for a 

few hours before placing them in an ultrasonic vibrator for 10 minutes. We then processed the 

samples for grain size analysis by using the Coulter LS 230TM Laser Diffraction Particle Sizer. 

We also obtained XRF data measured at the University of Minnesota, Duluth.  

 

DATA AND INTERPRETATION 

 

My study followed previously done research on Junín by relating various parameters such 

as Ti+Si+Al/Ca, siliciclastic flux, mean grain size, calcite, magnetic susceptibility with ages 

derived from Bacon Age Model (Figure 13). During glaciation, erosion and clastic input is high 

and we see this reflected in Lake Junín sediment characteristics. Thus, we aim to characterize 

and compare glacial periods by looking at various geochemical parameters of sediments from the 

Lake Junín and focus on mean grain size distribution of sediments to determine possible sources 

of sediment supply.  

We used Ti+Si+Al/Ca as a measure of allochthonous clastic input because most 

siliciclastic rocks have Ti,Si,Al incorporated into their mineral structure. During periods of 

glaciation and glacial erosion, high siliciclastic flux results in high Ti, Si, Al concentrations 
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while Ca correlates to the amount of calcite precipitated in the lake. Lake Junín is surrounded by 

carbonate bedrock which dissolves and provides HCO3 and Ca ions to the lake resulting in 

authigenic calcite precipitation. The ratio of Ti+Si+Al/Ca accounts for allochthonous clastic 

input where Ti+Si+Al and Ca tracks siliciclastics flux and detrital sources of CaCO3, 

respectively. CaCO3 is also used as a proxy for degree of evaporative enrichment of the lake. 

During glaciation, calcite precipitation is low since it is diluted by a large amount of meltwater 

and siliciclastic flux into the lake. However, during interglacial periods, absence of meltwater 

source coupled with high temperatures leads to evaporation and higher concentrations of 

dissolved solids causing calcite concentrations to be higher. 

 Clastic flux is a proxy for glacial erosion and thus glaciation in Lake Junín. We 

calculated the flux of clastic material by using the following formula which subtracts biogenic 

and authigenic material from the bulk sediment record (Rodbell, 2018).   

Fluxclastic = SR (BD- ((BD x TOM) + (BD x TCC))  

Here, SR is the bulk sedimentation rate (cm yr-1), BD is bulk density (g cm-3), TOM is the weight 

fraction organic matter of bulk sediment and TCC is weight fraction authigenic calcite of bulk 

sediment (Rodbell, 2018). Magnetic Susceptibility (MS) is also a proxy for terrigenous clastic 

sediment input since siliciclastic flux is rich in magnetic minerals. On the other hand, mean grain 

size of sediments can give insight about the transport medium or sources of sediments. 

 We observe seven periods of glaciation preserved in Lake Junin sediments determined by 

relatively high magnetic susceptibility, low CaCO3, high clastic flux and Ti+Si+Al /Ca ratio 

(Figure 13). Glacial periods have higher rates of erosion resulting in high siliciclastic flux, MS 

and Ti+Si+Al /Ca ratio. Mean grain sizes for the past six glacial cycles are between 1-2.5 μm. 

However, the oldest glacial cycle recorded in Lake Junín sediments (~ >600,000 years) has very 
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coarse mean grain sizes (>3.5 μm) suggesting these sediments to be fluvial sediments deposited 

in the valley prior to the formation of the lake. The stratigraphic column also shows a change to 

coarser gravels and sands (>600,000 years) indicating that these sediments could have been 

deposited during the first main phase of glaciation that dammed the northern and southern sides 

of the valley forming Lake Junin.  

There are no other proxies which define the birth of Lake Junín so the clear difference in 

sediment grain size beyond 600,000 years helps us detect a possible time of lake formation on 

the sediment record.  

We also observe that siliciclastic flux is strikingly higher in the Local Last Glacial 

Maximum which corresponds to MIS 2-4 (Figure 13). All other parameters including MS, 

CaCO3and Ti+Si+Al /Ca ratio do not vary greatly from other glacial cycles. This high 

siliciclastic flux in the LLGM is especially interesting because the LLGM is thought to have 

been less extensive implying that ice cover was smaller compared to previous glacial cycles 

(Smith et al., 2005). The smaller ice extent inferred from cosmogenic radionuclide dating of 

moraines surrounding the lake should result in lower erosion rates and lower siliciclastic flux for 

LLGM (Smith et al., 2005). However, our conflicting siliciclastic flux data suggests that despite 

smaller ice cover in the LGM, the glacier was more erosive in the LLGM.  
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Figure 13. Comparison of MS, CaCO3, Clastic flux and Ti+Si+Al/Ca in Junín record. Seven periods of 

glaciation are observed. Yellow column corresponds to the Last Glacial Maximum during MIS 2-4.  

 

This indicates that the glacier at LLGM could have had a higher activity ratio compared 

to other glacial cycles resulting in higher erosion and siliciclastic flux. Activity ratio is a measure 

of the amount of ice that flows through the ELA in a year and is the inverse of the mass balance 
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gradient at the equilibrium line altitude (ELA). The ELA is a key measure of mass balance in a 

glacier and is the point in the glacier where accumulation is equal to melting. Mass balance is the 

difference between snow accumulation and snow/ice loss from glacier.  

 The Last Glacial maximum in Lake Junín was particularly warm and humid which could 

have caused the warm based glacier to have a high activity ratio so more ice flowed through the 

ELA in a year, resulting in more erosion (Seltzer, 2002).  On the other hand, older glacial events 

could have involved either cold based glaciers or warm based glaciers with lower activity ratios 

resulting in lower erosion and siliciclastic flux. This hypothesis is consistent with paleoclimate 

records of LGM from other tropical South American Lakes such as Colombia and Bolivia. Lake 

records from Salar De Uyuni in Bolivia show that the LLGM was long, warm and wet since it 

coincided with summer insolation maxima. Similarly, lake sediment records from Sabana de 

Bogota and Lake Titicaca indicate that the Last Glacial Maximum was warm and humid.  

 We then magnified the resolution of LLGM recorded in Lake Junín sediments to 

compare and contrast clastic flux, MS, Ti+Si+Al/Ca, skewness and kurtosis of mean grain sizes, 

mean grain sizes and δ18O record from Pacupahuain Cave (Figure 14). The δ18O record from a 

speleothem record in Pacupahuain Cave, Peru is used as a proxy for local hydroclimate because 

the cave lies in close proximity to Lake Junín. Mean grain sizes and parameters such as skewness 

can provide valuable information about the sources of sediment and the travelling medium as 

well.  

Ti+Si+Al/Ca, MS and clastic flux data closely follow each other since both parameters 

are used as proxies for the flow of glacigenic sediments into the lake. Higher clastic flux is 

related to depleted δ18O values from Pacupahuain Cave indicating higher amounts of 

precipitation. Precipitation and clastic flux are thus coupled. Higher moisture can lead to increase 
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glacial expansion and erosion which could have increased siliclastic flux into the lake. Magnetic 

susceptibility peaks further support this and can be correlated with peaks in δ18O, clastic flux and 

Ti+Si+Al/Ca. Interestingly, we observe that between ~28,000 and ~15,000 years, mean grain 

sizes are relatively lower while clastic flux is high, which could have been due to the 

transporting medium carrying huge amounts of fine grained sediments. 

Prior studies have shown that changes in statistics describing grain size distributions can 

be used to determine direction of transport (McLaren and Bowles, 1985).  A study done in 1985 

presented a model where distributions of sediment in transport are related to their source by a 

sediment transfer function. According to the study, grain size distributions changed in the 

direction of transport to the shape of the transfer function where negatively skewed distributions 

result from low flow rates low energy function and positively/near symmetrical distributions 

result from high flow rates high energy function (MacLaren and Bowles, 1985). They used flume 

experiments to show that sediment transfer function is seen to define the relative probability that 

a grain will be eroded and transported. Finer sediments are more likely to go into transport and 

therefore have more negative skewness than the remaining sediments at source which become 

coarser and positively skewed on a phi scale (Figure 15). However, this study was done with 

mean grain sizes in phi scale so converting it to an arithmetic scale inverses the relationship. Our 

mean grain sizes were collected on an arithmetic scale so it is imperative to inverse the 

relationship. Thus, on an arithmetic scale, finer sediments will have a positive skewness while 

coarser sediments are likely to have a negative skewness. We observe this relationship to be true 

in our data set as well (Figure 16).  
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Figure 14. Comparison of LLGM MS, Clastic flux and Ti+Si+Al/Ca,skewness, kurtosis and mean grain 

sizes in Junín record with an oxygen isotope record from a speleothem in Pacupahuain Cave. High clastic flux is 

strongly coupled with the oxygen record which is a proxy for local moisture pattern. 
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Figure 15. Summary of the changes in grain size measures (in phi scale) that may occur in a 

given direction of transport (From McLaren and Bowles, 1985) 

 

We then explore the relationship between skewness and mean grain size in order to 

hypothesise the type of transportation system that could have resulted in high clastic flux but low 

mean grain sizes. In general, skewness is defined as a measure of symmetry. It helps identify the 

extent to which a distribution differs from normal distribution. However, skewness of lacustrine 

grain sizes can also be used as a parameter that responds to transport direction and supply 

sources. Thus, skewness is compared with mean grain size to understand the distribution of mean 

grain sizes in our samples. We observe that skewness is a function of grain size and that the two 

parameters are inversely related to each other (Figure 16). Our data shows that low mean grain 
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sizes correspond with higher skewness and kurtosis values indicating that fine sediments have 

positive skewness and kurtosis.  

  

Figure 16. Comparison of mean grain size of glacigenic sediments in Junín record with skewness. An 

inverse relationship is observed for the two parameters.  

 

Furthermore, we compared five samples to understand the frequency distribution of 

sediments with low negative and high positive skewness values (Figure 16). The samples with 

positive skews, 0.252 and 0.378 have greater distribution of fine sediments and have peaks at 

around 1 um. The sample with negative skews, -0.758, -0.373 and -0.307 all have peaks >1 um. -

0.307 and -0.758 have peaks > 4 um indicating greater distribution of coarse sediments (Figure 
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17). These values complement the previous comparison between mean grain size and skewness 

where we observed coarser sediments with negative skewness and finer sediments with positive 

skewness. 

 

 

Figure 17. Frequency of mean grain size distribution for two positive skewness and three negative 

skewness show that coarse sediments have negative skewness and fine sediments have positive skewness.  

 

The comparison between grain size frequency and mean grain size shows that as grain 

size becomes coarser, skewness becomes negative. Negative skewness has a right modal 

distribution with a fine tail indicating an excess of fine particles. Additionally, our mean grain 

size distributions show bimodal distributions or various humps in the statistical distribution 

indicating that there is a mixed signal of different mean grain sizes. This bimodal distribution can 
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be interpreted to be in various ways. One hypothesis suggests that the mean grain sizes are all 

derived from one valley. The variation in mean grain sizes from that particular valley could be 

due to different types of bedrock within a valley. Carbonates result in finer grained sediments 

while quartzites and gneisses are coarser so it is possible that as the glaciers transported 

sediments from the valley into the lake, it carried all the coarse silicates and finer clays or calcite 

along with it.  

A second hypothesis is that the the mix of different mean grain sizes comes from 

different valleys. The bedrock geology of the eastern side of the Junin basin (Figure 5) comprises 

of mostly carbonates (fossiliferous limestone) to the north of Lake Junin and siliciclastics 

(gneiss, quartzite, volcanics) to the south. It is likely that our distribution shows a mixing 

population of the coarser siliciclastics and finer carbonate sediments from different valleys. Here, 

we make a major assumption about prominent uniform bedrock in different valleys in order to 

simplify the origin of sediments from these source valleys. Our simplistic interpretation therefore 

assumes that all carbonates are likely to come from north of lake Junín while siliciclastics might 

be from the south where there are gneisses, quartzites and other volcanics. However, it is more 

probable that each valley is comprised of different bedrock geology rather than a uniform 

bedrock. Similarly, we can also hypothesize that different transport distances from nearby 

valleys result in wide statistical distribution of mean grain size. In conclusion, it is much more 

likely that different bedrock types either from a single valley or multiple valleys are causing the 

variation in mean grain sizes.  

Finally, almost all of our mean grain sizes are for each glacial period is in the range of 1-

3 um, suggesting interflows as primary methods of sediment transportation into the lake. 

Overflows occur when the incoming water is less dense than the lake water they flow into. 
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However, if a sediment plume is slightly less dense than the hypolimnion the flow can spread 

into the lake at an intermediate depth as an interflow.  

Most of the sediments in the core are very fine (1-3 um) and these fine sediments coupled 

with the absence of coarse sediments indicate that there is no ice rafted detritus/debris (IRD) in 

Lake Junín sediments. The absence of IRD further supports the hypothesis that sediment 

transport into the lake was either through interflows or overflows. In fact, the mean grain sizes of 

sediments prior to the LGM do not vary greatly and are ~1-2 um. Consistent mean grain in each 

glacial cycle suggests that mean grain size is a function of bedrock type rather than ice cover at 

Lake Junín. Additionally, the absence of IRD provides evidence that while there were glaciers 

that reached the edge of the lake, they never calved into Lake Junín.  
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CONCLUSION 

Long lake records from the Southern Tropics hold enormous potential for understanding 

cyclicity of temperature change and glaciation in the Southern Hemisphere. Our Junín sediment 

record, which spans over 700,000 years is one of the few lakes in the Tropical Andes that has 

never been glaciated and has received continuous sediment deposition from alpine glaciers in the 

nearby Eastern and Western Cordilleras. The comparison and characterization of seven periods 

of glaciation recorded in the Junín record provides an insight into glaciation and glacial erosion 

in Junín.  

Firstly, we see that the mean grain size during all glacial cycles, irrespective of glacial 

extent is ~1-2 microns. This indicates that erosion resulting in consistent mean grain sizes are 

probably a function of the bedrock type rather than glacial extent. The fine glacial sediments and 

absence of coarse sediments also indicate that there is no ice rafted debris (IRD) in lake 

sediments. This supports the hypothesis that while glaciers reached the lake edge, ice never 

calved into the lake or covered it. The oldest glacial cycle differs from other glacial cycles since 

it has relatively coarser sediments (>3 microns). This distinctive change in grain size and 

stratigraphy is thus hypothesised to indicate the birth of Lake Junín when the valley was dammed 

by glacial outwash. It is also worth noting that the high siliciclastic flux between MS2-4 during 

the Local Last Glacial Maximum in Lake Junín occurred when the ice sheet volume was smaller 

compared to other glacial periods.  Mean grain sizes during the LLGM and other erosion proxies 

such as Ti+Si+Al/Ca are also low despite high siliciclastic flux. These observation lays down the 

framework for future research into the factors leading to high siliciclastic flux during the LLGM.  

Furthermore, comparison between the the skewness and mean grain sizes of glacial 

sediments in Lake Junín indicates that the two are inversely related. Coarser sediments have 
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negative skewness with a finer tail while finer sediments have a positive skewness. This 

variation in mean grain size distributions shows a mixed signal of different mean grain sizes 

either from a single dominant valley with different rock types or from different valleys with 

prominently different rock types. Therefore, the difference in mean grain size distribution could 

be due to abrasion of different rocks in glacial valleys feeding sediments into the lake. Since the 

mean grain sizes are very fine (1-2 microns), the sediments would have followed Stokes Law and 

been transported into the lake either as an interflow or overflow. Thus, comparison between the 

different proxies has helped characterize and compare glaciation and glacial erosion in Junín.  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



46 

 

 

REFERENCES 
 

 

Baker, P.A., Seltzer, G.O., Fritz, S.C., Dunbar, R.B., Grove, M.J., Tapia, P.M., Cross, S.L., Rowe, H.D. and Broda, J.P., 2001. 

The history of South American tropical precipitation for the past 25,000 years. Science, 291(5504), pp.640-643. 

 

Baker, P.A., Rigsby, C.A., Seltzer, G.O., Fritz, S.C., Lowenstein, T.K., Bacher, N.P. and Veliz, C., 2001. Tropical climate 

changes at millennial and orbital timescales on the Bolivian Altiplano. Nature, 409(6821), pp.698-701. 

 

Bradley, R.S., 1999. Paleoclimatology: reconstructing climates of the Quaternary (Vol. 68). Academic Press. 

 

Cohen, S., 2003. Paleolimnology: the history and evolution of lake systems. 

 

Flusche, M.A., Seltzer, G., Rodbell, D., Siegel, D. and Samson, S., 2005. Constraining water sources and hydrologic processes 

from the isotopic analysis of water and dissolved strontium, Lake Junin, Peru. Journal of Hydrology, 312(1-4), pp.1-13. 

 

Fritz, S.C., Baker, P.A., Seltzer, G.O., Ballantyne, A., Tapia, P., Cheng, H. and Edwards, R.L., 2007. Quaternary glaciation and 

hydrologic variation in the South American tropics as reconstructed from the Lake Titicaca drilling project. Quaternary 

Research, 68(3), pp.410-420. 
 

Haberzettl, T., Fey, M., Lücke, A., Maidana, N., Mayr, C., Ohlendorf, C., Schäbitz, F., Schleser, G.H., Wille, M. and Zolitschka, 

B., 2005. Climatically induced lake level changes during the last two millennia as reflected in sediments of Laguna Potrok Aike, 

southern Patagonia (Santa Cruz, Argentina). Journal of Paleolimnology, 33(3), pp.283-302. 

 

Hahn, A., Kliem, P., Ohlendorf, C., Zolitschka, B., Rosen, P. and Team, T.P.S., 2013. Climate induced changes as registered in 

inorganic and organic sediment components from Laguna Potrok Aike (Argentina) during the past 51 ka. Quaternary Science 

Reviews, 71, pp.154-166. 

 

Hansen, B.C., Wright, H.E. and Bradbury, J.P., 1984. Pollen studies in the Junin area, central Peruvian Andes. Geological 

Society of America Bulletin, 95(12), pp.1454-1465. 

 

Inglis, G.N., Farnsworth, A., Lunt, D., Foster, G.L., Hollis, C.J., Pagani, M., Jardine, P.E., Pearson, P.N., Markwick, P., 

Galsworthy, A.M. and Raynham, L., 2015. Descent toward the Icehouse: Eocene sea surface cooling inferred from GDGT 

distributions. Paleoceanography, 30(7), pp.1000-1020. 

 

Lüthi, D., M. Le Floch, B. Bereiter, T. Blunier, J.-M. Barnola, et al. 2008. High-resolution carbon dioxide concentration record 

650,000-800,000 years before present. Nature 453: 379-382.  

Petit J.R., Jouzel J., Raynaud D., Barkov N.I., Barnola J.M., et al. 1999, Climate and Atmospheric History of the Past 420,000 

years from the Vostok Ice Core, Antarctica, Nature 399: 429-436. 

Roberts, W.H., Valdes, P.J. and Payne, A.J., 2014. Topography's crucial role in Heinrich Events. Proceedings of the National 

Academy of Sciences, 111(47), pp.16688-16693. 

 

Rodbell, D.T., Abbott, M.B. and 2011 ICDP Lake Junin Working Group, 2012. Workshop on Drilling of Lake Junin, Peru: 

Potential for Development of a Continuous Tropical Climate Record. Scientific Drilling, 13, pp.58-60. 

 

Rodbell, D.T., Seltzer, G.O., Mark, B.G., Smith, J.A. and Abbott, M.B., 2008. Clastic sediment flux to tropical Andean lakes: 

records of glaciation and soil erosion. Quaternary Science Reviews, 27(15), pp.1612-1626. 

 

Rodbell, D.T., Delman, E.M., Abbott, M.B., Besonen, M.T. and Tapia, P.M., 2014. The heavy metal contamination of Lake Junín 

National Reserve, Peru: An unintended consequence of the juxtaposition of hydroelectricity and mining. GSA today, 24(8), pp.4-

10. 

 

Rosenbaum, J.G. and Reynolds, R.L., 2004. Record of Late Pleistocene glaciation and deglaciation in the southern Cascade 

Range. II. Flux of glacial flour in a sediment core from Upper Klamath Lake, Oregon. Journal of Paleolimnology, 31(2), pp.235-

252. 

 

Ruddiman, W.F., 2001. Earth's Climate: past and future. Macmillan. 

 

Seltzer, G.O., Rodbell, D.T., Baker, P.A., Fritz, S.C., Tapia, P.M., Rowe, H.D. and Dunbar, R.B., 2002. Early warming of 

tropical South America at the last glacial-interglacial transition. Science, 296(5573), pp.1685-1686. 



47 

 

 

 

Seltzer, G., Rodbell, D. and Burns, S., 2000. Isotopic evidence for late Quaternary climatic change in tropical South America. 

Geology, 28(1), pp.35-38. 

 

Scholz, C.A., Johnson, T.C., Cohen, A.S., King, J.W., Peck, J.A., Overpeck, J.T., Talbot, M.R., Brown, E.T., Kalindekafe, L., 

Amoako, P.Y. and Lyons, R.P., 2007. East African megadroughts between 135, 75 thousand years ago, and bearing on early-

modern human origins. Proceedings of the National Academy of Sciences, 104(42), pp.16416-16421. 

 

Smith, J.A., Mark, B.G. and Rodbell, D.T., 2008. The timing and magnitude of mountain glaciation in the tropical Andes. Journal 

of Quaternary Science, 23(6‐7), pp.609-634. 

 

Smith, J.A., Seltzer, G.O., Farber, D.L., Rodbell, D.T. and Finkel, R.C., 2005. Early local last glacial maximum in the tropical 

Andes. Science, 308(5722), pp.678-681. 

 

Spahni, R. J. Chappelaz, T.F. Stocker, L. Loulergue, G. Hausammann, K. Kamamura, J. Fluckiger, J Schwander, D. Raynoud, V. 

Masson-Delmotte and J. Jouzel. 2005. Atmospheric Methane and Nitrous Oxide of the Late Pleistocene from Antarctic Ice Cores. 

Science 310, 1317-1321. 

Van der Hammen, T., 1985. The Plio-Pleistocene climatic record of the tropical Andes. Journal of the Geological 

Society, 142(3), pp.483-489. 

 

Van Geel, B. and Van der Hammen, T., 1973. Upper Quaternary vegetational and climatic sequence of the Fuquene area (Eastern 

Cordillera, Colombia). Palaeogeography, Palaeoclimatology, Palaeoecology, 14(1), pp.973-5592. 

 

Zolitschka, B., Anselmetti, F., Ariztegui, D., Corbella, H., Francus, P., Lücke, A., Maidana, N.I., Ohlendorf, C., Schäbitz, F. and 

Wastegård, S., 2013. Environment and climate of the last 51,000 years–new insights from the Potrok Aike maar lake Sediment 

Archive Drilling prOject (PASADO). Quaternary Science Reviews, 71, pp.1-12. 

 

Wright Jr, H.E., 1983. Late-Pleistocene glaciation and climate around the Junin Plain, central Peruvian highlands. Geografiska 

Annaler: Series A, Physical Geography, 65(1-2), pp.35-43. 

 

 

 

 


	Union College
	Union | Digital Works
	6-2018

	Characterization of glacial sediments from a 700,000-year-old Lake Junín drill core
	Tshering Lama Sherpa
	Recommended Citation


	tmp.1527690935.pdf.ei2Vj

