The Cationic Copolymerization of B-Pinene and Styrene

William David McIver
Union College - Schenectady, NY

Follow this and additional works at: https:// digitalworks.union.edu/theses
Part of the Chemistry Commons

Recommended Citation

McIver, William David, "The Cationic Copolymerization of B-Pinene and Styrene" (1973). Honors Theses. 1982.
https://digitalworks.union.edu/theses/1982

THE CATIONIC COPOLYMERIZATION OF B-PINENE AND STYRENE
by
William D. ${ }_{1 / 1}^{\text {whl }^{\nu / d}}{ }^{\text {McIver }}$, U.C. 1973

Senior Thesis Submitted
in Partial Fulfillment
of the Requirements for Graduation

DEPARTMENT OF CHEMISTRY
UNION COLLEGE
June, 1973

The cationic polymerization process is least well known of the polymerization mechanisms. Copolymerization by cationic initiation is not well understood. Charles Snyder began investigating the copolymerization of B-pinene and styrene in the fall of 1971, and found some interesting things. He reported, however, that the project was incomplete.

This project was based on the work that Snyder began. The products he made, in addition to several others, were completely analyzed in an effort to obtain information about the cationic polymerization process. DSC, GPC and solvent studies, along with VPO, were the methods of analysis.

This thesis is dedicated to Gregory Olson, Union, Class of 1967.
It was he who encouraged my interest in both chemistry and Union College.

This Thesis
 Submitted by

to the

Department of Chemistry of Union College
in partial fulfillment of the requirements of the degree of Bachelor of Science with a Major in Chemistry
is approved by
Howe. Shaffer

TABLE OF CONTENTS

Abstract 11
Dedication iii
Acknowledgment iv
Table of Contents v
Table of Figures and Tables vi
Introduction 1
Background 4
Experimental Work 13
Conclusions 38
Suggestions for Future Work 38
Footnotes 48
Bibliography 49
TABLE 1 POLYMERIZATION VARIABLES USED BY SNYDER 3
FIGURE 1 SOLUBILITY PARAMETERS 5
FIGURE 2 CALIBRATION CURVE FOR GPC/ALC 301 7
FIGURE 3 MOLE PERCENT STYRENE BY GPC PEAK HEIGHT 9
FIGURE 4 CALIBRATION OF THE VPO CALIBRATION 12
FIGURE 5 DSC of BATCH \#16 14
FIGURE 6 DSC of BATCH \#17 15
FIGURE 7 DSC of BATCHES \#16 \& \#17 17
FIGURE 8 DSC of BATCH \#6 18
FIGURE 9 DSC of BATCH \#9 19
FIGURE 10 DSC of BATCHES \#6 \& \#9 21
FIGURE 11 DSC of BATCH \#15 22
FIGURE 12 DSC of BATCH \#13 23
FIGURE 13 GPC of BATCH \#16 25
FIGURE 14 GPC of BATCH \#17 26
FIGURE 15 GPC of BATCHES \#16 \& \#17 27
FIGURE 16 GPC of BATCH \#9 28
FIGURE 17 GPC of BATCH \#6 29
FIGURE 18 GPC of BATCHES \#6 \& \#9 31
FIGURE 19 GPC of BATCH \#25 32
FIGURE 20 GPC of BATCH \#26 33
FIGURE 21 GPC of BATCH \#13 34
FIGURE 22 GPC of BATCH \#15 35
TABLE 2 POLYMERIZATION VARIABLES AT $30^{\circ} \mathrm{C}$ in METHYLENE DICHLORIDE 39
TABLE 3 POLYMERIZATION VARIABLES AT $-78^{\circ} \mathrm{C}$ in METHYLENE DICHLORIDE 40
TABLE 4 POLYMERIZATION VARIABLES AT $-78^{\circ} \mathrm{C}$ in m-XYLENE 41
TABLE 5 MOLECULAR WEIGHTS OF TABLE 2 POLYMERS 4243
TABLE 7 MOLECULAR WEIGHTS OF TABLE 4 POLYMERS 44
TABLE 8 DSC PRIMARY INFLECTION POINTS 45
APPENDIX A THE MECHANISM OF CATIONIC POLYMERIZATION 46
APPENDIX B CALIBRATION CONDITIONS FOR THE WATERS GPC/ALC 301 47

INTRODUCTION

It has been reported that the cationic copolymerization of B-pinene and styrene in methylene dichloride has given a product of two homopolymers. 1 Also it has been found that a one to one molar ratio in m-xylene yaelded some copolymer. ${ }^{2}$ Finally it was shown that the amount of copolymer obtained in the methylene dichloride depends upon the molar ratio of the B-pinene to styrene, with one to one giving little, and one to four giving considerable copolymer. ${ }^{3}$ Since all three papers may have some validity, this project was begun in the fall of 1971 by Charles Snyder 4 to investigate the polymerization of B-pinene and styrene.

Snyder prepared both homopolymers and copolymers of styrene and B-pinene using aluminum trichloride as the catalyst. The catalyst concentrations were 0.5 mole percent, one mole percent, and five mole percent. Polymerations were conducted at $30^{\circ} \mathrm{C}$ and $-78^{\circ} \mathrm{C}$, dry-ice acetone temperature. Methylene dichloride and m-xylene were used as solvents. The molar ratio of solvent to monomer was kept constant at three to one. Two different molar ratios of B-pinene to styrene were used: one to one, and one to four. Table 1 shows the reaction variables, a yield of products and the solubilities of those products. Having prepared 20 batches of homopolymers and copolymers, Snyder tried to characterize his products. His first method of analysis was by extraction of products with either acetone or hexane. Acetone will dissolve only polystyrene homopolymer, and hexane will dissolve only polyB-pinene homopolymer. His second method of characterization was to determine molecular weights by Vapor Phase Osmometry. Thirdly, a one meter gel permeation chromatography column packed with Sephadex LH-20 in chloroform was used to obtain separation of homopolymers based on molecular weight. Next, a Waters Gel Permeation

Chromatograph was used to obtain separation, also by molecular weight. Lastly, Snyder used NMR analysis to determine mole percent styrene in each product. Snyder reported that more work needed to be done.

POLYMERIZATION VARIABLES USED BY C. SNYDER ${ }^{4}$

RUN	SOLVENT	$\operatorname{TEMP}\left({ }^{\circ} \mathrm{C}\right)$	FEED RATIO	$\left[\mathrm{AlCl}_{3}\right]$	$\begin{aligned} & \text { YIELD } \\ & (\text { WT\% }) \end{aligned}$	WT\% INSOLUBLE IN ACETONE	WT\% INSOLUBLE IN HEXANE
3	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	30°	1:1	0.5	66	100	0
4	"	" ${ }^{\text {, }}$	1:1	1.0	82	84	1
6	"	"	styrene	1.0	100		
7	"	11	1:1	5.0	97	64	2
8	11	"	1:1	0.5			
9	"	${ }^{\prime \prime}$	B-pinene	1.0	62		
10	"	"	1:4	1.0	85	68	83
11	" ${ }^{\text {+ }}$	"	1:4	5.0			
12	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	-78°	$1: 1$	1.0	0		
13	"	"	1:1	5.0	94	100	2
14	"	"	1:1	1.0	0		
15	"	"	1:4	5.0	100	98	98
16	"	"	B-pinene	5.0	23		
17	"	"	styrene	5.0	100		
18	"	11	1:4	1.0	93	99	100
19	"	"	B-pinene	5.0	33		
23	m-xylene	-780	1:4	5.0	59	0	0
24	"	."	$1: 1$	5.0	71	0	0
25	"	"	B-pinene	5.0	84		
26	"	"	styrene	5.0	79		
27	"	${ }^{\prime \prime}$	1:4	1.0	LOW	31	66
28	"	"	$1: 1$	1.0	LOW	3	7

The first method of characterization used by Snyder was solubility studies. Polymers, and the solvents which will dissolve those polymers, are given a number called the solubility parameter. Solubility parameters are both calculable and experimentally derived. The calculation is based on a summation of molar attraction constants of the solvent (or repeating unit), times its density, divided by the molecular weight. Solubility of a polymer in a given solvent can be expected within 1.1 solubility parameter units. 5

B-pinene and hexane have equal solubility parameters, 7.2, whereas polystyrene is 9.2 and acetone is 9.8 . Thus B-pinene dissolves in hexane but not in acetone, 2.6 units away. Polystyrene still dissolves in acetone, 0.6 units away, but not in hexane, with a difference of 2.0 units. This information can be applied to the copolymer studies. (See Figure 1).

Beginning with a one to one molar ratio feed of B-pinene to styrene a copolymer product may dissolve completely in one, or in the other, or neither solvent depending on its solubility parameter. If two homopolymers form from an equimolar ratio feed, about 56 percent by weight should dissolve in hexane, and 44 percent by weight should dissolve in acetone. (The variation from 50 percent is because B-pinene has a molecular weight of 136 and styrene a molecular weight of 104 - a ratio of 56 to 44). Unfortunately, molecular weight of polymer plays a part in solubility studies.

A method was devised to analyze the copolymer products. NMR was used to determine the mole percent styrene in the portion which was insoluble in acetone. Since acetone will dissolve any polystyrene in a product, the insoluble portion should be polyB-pinene homopolymer, copolymer (very low in styrene content), or a mixture of both. An NMR

$$
\begin{aligned}
& \text { FIGURE I } \\
& \text { THE RANGE OF } \\
& \text { EACH SOLVENT } \\
& \text { IS INDICATED } \\
& \text { BY BRACKETS } \\
& \text { ACETONE } \\
& \text { SOLUBILITY PARAMETERS BONNE }
\end{aligned}
$$

is run on an acetone washed portion in deuterated chloroform and the mole percent styrene determined from the integration. Since styrene has five aromatic protons, and B-pinene has none, a simple ratio is used to calculate an approximate mole percent styrene content.

Another method of characterizing the polymer products is by gel permeation chromatography. Gel permeation chromatography is a separation techique based on particle size and shape. The column or columns are packed with a porous gel, crosslinked dextran, containing many holes of different sizes. If a large polymer molecule is placed on the column, it will find very few pores which it can fit into, thus it will flow through and elute quickly. A small molecule, conversely, will fit into many of the holes and be retained for a longer time. Medium sized molecules will spend intermediate lengths of time on the column. Thus, a molecular weight versus retention time graph is recorded, the largest molecules coming out first. ${ }^{\text {b }}$

Our work involved three variations on this basic principle. A Waters GFC/ALC. 301 Gel Permeation Chromatograph was used to determine molecular weight, dispersity and an approximate mole percent styrene content. The retention time of a peak is determined by calibrating the instrument with known weight samples and plotting elution volume versus molecular weight. The best resolution was found at a high pump speed, 3.74 milliliters per minute ($\mathrm{ml} / \mathrm{min}$) using an injection time of six seconds, and samples containg three milligrams per milliliter ($3 \mathrm{mg} / \mathrm{ml}$). (Figure 2).

The dispersity of a polymer is a measure of how uniform the polymer is. The more disperse a polymer is, the more varied the chain lengths are. The dispersity is defined as the weight average molecular weight, divided by the number average molecular weight. The number average molecular

GEL PERMEATION CHROMATOGRAPHY CALIBRATION CURVE

weight ($\overline{\mathrm{Mn}}$) is defined as the total weight divided by the total number of molecules present. The weight average molecular weight $\left(\overline{M_{W}}\right)$ is the sum over all chain lengths of the weight of that length (i) times the number of chains of that weight fraction.? It turns out that Mn and Nw are always different ($\overline{\mathrm{Mn}}$ is less than $\overline{\mathrm{Mw}})$, except for pure compounds. Thus the dispersity, $\overline{M w} / \overline{M n}$ can be calculated using a standard sample. Since the peak width at half the peak height is constant for a given sample, independent of concentration, a ratio can be set up. Let W_{c} be the peak width at half height for the standard, W_{s} be the width at half height of the sample, and d_{c} be the dispersity of the calibration sample. Then d_{c} is to W_{c} as d_{s} is to W_{S}, where d_{s} is the dispersity of the unknown sample. The standard polystyrene sample used was 5000/4600; $\mathrm{d}_{\mathrm{c}}=1.06$ and $\mathrm{W}_{\mathrm{c}}=0.66$ centimeters.

It was observed that polystyrene homopolymer peak heights were very large and the polyB-pinene peak heights were very small. Using the styrene content of samples from NMR analysis, a relationship between peak heights and percent styrene content was observed (Figure 3), whichallows a quick estimation of mole percent styrene on the basis of peak heights alone.

Another method of gel permation chromatography was also tried: a one meter by two centimeter column filled with Sephadex LH-20 in a polar solvent. This method is different than the method used by C. Snyder and H. Sheffer in 1971-1972. ${ }^{8}$
"It is known that Sephadex G-types have an affinity for aromatic and cyclic compounds. Pronounced aromatic adsorption occurs mostly when lower alcohols are used as eluting solvents with Sephadex LH-20."9

It was by this method we hoped to separate the aromatic polystyrene and

the cyclic polyB-pinene.
A one to one mixture (by weight) of homopolymers was run in a three to one mixture (by volume) of chloroform and isopropanol. (The polymers were insoluble in isopropanol alone.) Two milliliter samples were collected for about five hours in 200 test tubes. The weight difference for each test tube was plotted after the solvent was evaporated and the results. showed a wavy line. It is apparent that there is a competition between processes here. High molecular weight polystyrene in pure chloroform should elute first (by molecular weight), but last in pure isopropanol (by adsorption). The lower moleculas weight polyB-pinene should elute last in chloroform, and first in isopropanol.

The next method for separation of homopolymers was solubility. If the solubility parameters of a solvent and a polymer are within 1.1 units, solution occurs. Since acetone (solubility parameter $=9.8$) and polystyrene (solubility parameter $=9.2$) have differing parameters, acetone will remove only polystyrene homopolymers. B-pinene and hexane have equal parameters (7.2) and hexane is able to dissolve both polyB-pinene and copolymer with a high B-pinene content. If we could find a solvent with a solubility parameter of about six, then we could selectively remove polyB-pinene homopolymer and leave behind any copolymer rich in B-pinene, just as acetone removes only polystyrene and leaves behind copolymer. Unfortunately, only fluorinated alkanes were calculated to have solubility parameters of 6.5 . The idea was dropped since fluoroalkanes have a cost of nearly one dollar per gram.

Another procedure considered for characterizing copolymer products was differentral scanning calorimetry.. Differential scanning calorimetry operates on the principle that a phase change requires energy to occur.

For melting, this energy is the heat of fusion. The instrument itself, a Perkin Elmer DSC-1B, has a pair of sample pans, one is empty, the other contains sample. The two pans are heated at the same rate, and the difference in energy needed to keep the sample pan at the same temperature is plotted versus the average temperature.

The differential scanning calorimetry plot gives what has been referred to as a fingerprint of the polymer. Our work shows that the history of the polymer, to some extent, determines some of the differential scanning calorimetry curve.

Another method for characterizing the polymers was to determine $\overline{\mathrm{Mn}}$ by Vapor Phase Osmometry. The rate of evaporation of a pure solvent will be greater than the rate of evaporation of a solution of known concentration in a saturated atmosphere. The molecular weight is derived by measuring slight temperature differences between solvent and solutions of known concentration. The values obtained on a readout dial are plotted versus concentration, and extrapolated to zero. Having calibrated the instrument with Benzil (molecular weight $=210$), a constant is obtained. and the reading at zero concentration is used to calculate $\overline{\mathrm{Mn}}$.

Compared to our samples, Benzil has a much lower molecular weight. High molecular weight substances have fewer particles per unit concentration, introducing a slight error. This error can be eliminated by calibrating with standard samples of known $\overline{\mathrm{Mn}}$. This was done and a graph of $\overline{\mathrm{Mn}}$ observed versus $\overline{\mathrm{Mn}}$ known is shown in Figure 4. It is essentially a calibration of a calibration.

FIGURE 4
served
14000

The first method used chronologically to characterize the polymer batches was differential scanning calorimetry. The area under the curve of a differential scanning calorimetry plot is a direct measure of the heat of transition from glass to amorphous or amorphous to liquid polymer. 10 The batches were run under constant conditions in a nitrogen atmosphere. Approximately 150 milligrams was used for each sample. The slope was 400 to 430 , the sensitivity 16 , and the temperature was increased $2.5^{\circ} \mathrm{C}$ per minute.

The first of the samples to be analyzed was polyB-pinene, RUN \#16. (Figure 5). Endothermic disorientation takes place from $62^{\circ} \mathrm{C}$ to $128^{\circ} \mathrm{C}$. Melting begins at $138.2^{\circ} \mathrm{C}$ and there is a loss of rigidity beginning at $143^{\circ} \mathrm{C}$ (visible observation), and decomposition (smoke) begins at $148^{\circ} \mathrm{C}$. At $165^{\circ} \mathrm{C}$ there is a second slope in the decomposition and the pattern of heat loss changes to a complex pattern of exotherms and endotherms which we will call spiking.

The second differential scanning calorimetry run is of polystyrene, RUN \#17 (Figure 6). Polystyrene was thermally stable to the limit of the instrument, $320^{\circ} \mathrm{C}$. (It was liquid, without smoke or discoloration.) The plot was very smooth and yielded some difficulty in obtaining the melting range. The melting point was visually confirmed in an open sample pan at $154^{\circ} \mathrm{C}$. The melting range was deduced to be $151^{\circ} \mathrm{C}$ to $172^{\circ} \mathrm{C}$ by noting slope changes.

If the results of these first two runs are compared, then a mixture of homopolymers of about one to one by weight should yield the sum of the two graphs. One would expect an endotherm at the beginning, and also melting ranges beginning at $138^{\circ} \mathrm{C}$ and $151^{\circ} \mathrm{C}$ to be visible. Spiking from decomposition should occur about $160^{\circ} \mathrm{C}$ and always be an indication that poly (homo) B-pinene is present.

A one to one by weight mixture of RUN \#16 and RUN \#17 was done next.

(Figure 7). The actual run shows an endotherm due to reorientation from $60^{\circ} \mathrm{C}$ to $110^{\circ} \mathrm{C}$. The first melt begins at $120^{\circ} \mathrm{C}$, ending at $134^{\circ} \mathrm{C}$. The second melts at $150^{\circ} \mathrm{C}$, and at $160^{\circ} \mathrm{C}$, a large mess with with several slopes evolves, indicating that polyB-pinene is decomposing. A second trial run produced much the same results with temperatures slightly higher.

Thus, one would conclude that mixing pure homopolymers together causes changes in the melting points of each individual homopolymer, but 1) homopolymeric mixtures may be found by this technique 2) each component which is differentenough will add its own characteristicsto the plot and 3) polyBpinene decomposes above $150^{\circ} \mathrm{C}$ and is easily recognized. Any polyB-pinene homopolymer will cause an endotherm between $138^{\circ} \mathrm{C}$ and $148^{\circ} \mathrm{C}$. Any polystyrene homopolymer will cause an endotherm between $151^{\circ} \mathrm{C}$ and $172^{\circ} \mathrm{C}$. Since the polystyrene is more crystaline than the polyB-pinene, it should have a higher melting point. The copolymer should melt between the ranges of the two homopolymers, as it will have an inbetween crystalinity. Copolymers of a one to four molar ratio should melt higher than one to one molar ratio of B-pinene to styrene because of the higher styrene content.

The next of the differential scanning calorimetry runs was done on Batch \#6. This batch is the room temperature polystyrene homopolymer. It shows several endotherms, at $132^{\circ}, 190^{\circ}$ and 198° C. It shows no downward slope, no spiking and was stable to the limit of the instrument. (See Figure 8.)

Next, Batch \#9, polyB-pinene synthesized at room temperature, was run. The plot (Figure 9) shows a downward slope, indicating a crystaline reorientation is occurring, from $70^{\circ} \mathrm{C}$ to $145^{\circ} \mathrm{C}$. Above 145° the polymer melts and decomposes.

If one adds together the differential scanning calorimetry plots of these two homopolymer runs, one would expect the following: exotherm beginning at $70^{\circ} \mathrm{C}$, melting endotherms at $132^{\circ}, 145^{\circ}$ and decomposition of one portion above

145° C. The differential scanning calorimetry plot of a one to one (by weight) mixture of Batches \#6 and \#9 was the next one done. (Figure 10). The exotherm begins at 84° and melting at 136°, with decomposition starting at 140° C. It noteworth that the exotherm is higher and the only melting inflection occurs between the values predicted. The polyB-pinene homopolymer decomposes at a slightly lower temperature than the previous batches, but the spiking is very evident. With this information, the rest of the batches were run.

Batch \#15, one to four molar ratio of B-pinene to styrene at $-78^{\circ} \mathrm{C}$, was the first. It shows a very smooth plot, melting occurring at $129^{\circ} \mathrm{C}$. There is no spiking, but there are two slight changes at 158° and $172^{\circ} \mathrm{C}$. (See Figure 11). Next, \#13, the same as \#15, except a one to one molar ratio, was done rext. (Figure 12). It shows slope changes at 165° and melting was visually confirmed at $178^{\circ} \mathrm{C}$. Decomposition begins above $180^{\circ} \mathrm{C}$ and the polymer smokes and turns brown.

From these two plots and the information gained from the plots of the homopolymer mixtures, it might be speculated that a mixture of homopolymers is present in Batch \#13 and a copolymer comprises \#15. Further work with other Batches showed that Differential Scanning Calorimetry was not a sufficient method for determining copolymer and homopolymer mixtures. This was because the instrument had an old sample holder, which reduced the reproducibility. The differential scanning calorimetry plots of solvent washed batches showed large differences, even when the product was totally insoluble in that solvent.

Despite the difficulties encountered, much useful information was obtained. The temperatures at which the polymers undergo thermal change is very important when considering whether to use that polymer for a specific application. The poly B-pinene homopolymer decomposes between 140° and 170°, and this is

an excellent sign that it is present in any concentration in a polymer batch. The polystyrene is very stable to high temperatures. A copolymer of the two monomers should have the stability of polystyrene and the workability of the polyB-pinene. In spite of the information gained, it could not be ascertained whether a batch was copolymer or homopolymers.

The next technique for separation of homopolymers was Gel Permeation Chromatography. A Waters Gel Permeation Chromatograph was calibrated using ten standard samples (See Appendix B). Once calibrated at the flow rate giving best resolution, an attempt to separate homopolymers was made. First, each homopolymer was run to determine molecular weight and dispersity. (Tables 2-7). The gel permeation chromatogram of Batch \#16 (polyB-pinene) is shown in Figure 13. The peak is small and disperse, with a peak retention volume of over 19 units. The gel permeation chromatogram of Batch \#17 (polystyrene) is shown in Figure 14. It is unusual that there are two peaks; the side shoulder is very high molecular weight. There is a very slight tail on the low molecular weight side.

If one predicts the graph for a mixture of Batches \#16 and \#17, one would expect a shoulder on the main peak and a long low molecular weight tail, rather than two peaks. This is because the poly \underline{B}-pinene has such small peaks. The results of a one to one (by weight) mixture of Batches \#16 and \#17 is a broad peak with a shoulder. A long tail on the low weight side can barely be discerned.

The procedure was then repeated for Batches \#6 and \#9, polystyrene and polyB-pinene, respectively. Figure 16 shows Batch \#9, polyB-pinene. The peak is very small and disperse, with a peak retention volume of 19 units. The gel permeation chromatogram of Batch \#6 is shown in Figure 17. It has a long low molecular weight tail on a large peak, with a retention volume of 18.6 units.

	$\square-\quad$	－-1.			－－－	－-1	\square	\ldots	－- －u－u	－	\square		\square	2－	寿	－
				$\stackrel{\rightharpoonup}{0}$								$\stackrel{\rightharpoonup}{0}$				
6																
N		\cdots														
	\square															
				N								N				
－		\square										\bigcirc				
－																
				4												
－					－	＊ 209						O				
							\square									
							$-$									
			－		－			7． 7								
1.	1． $1 \cdot$		1－1	－	\square		Trawa	－ 1	\square			ث				
－		\cdots					1					－+	$\underline{\square}$	－	－smand	40
1					．		．		－				－	－		
－				Fin：	i in	L－0．4			＋	－						
$\underline{-}$	\cdots			－ 0	r	－	\cdots	i． 5	＊．．．｜	4	Lex	\％				
				Fi				a	i	5	－ $\bar{\sim}$	$=1$	is． 4	－－	$2{ }^{2}$	
－												$=$				
－				－ 0								8				
－				$\frac{1}{6}$												
－													，			
																$2-$
				σ								Ó				
－	\square		＝													
			－－${ }^{-}$	خ	91	$\# \#$	2160	d	Q	12						
	\cdots															
				\％				1	30त 1	T		\％				
	－－															
			－													
												8				
										第管						
				$\stackrel{\rightharpoonup}{0}$												
				O								8				

With the retention volumes as close as they are, it would be difficult to see any polyB-pinene homopolymer under the polystyrene. A one to one (by weight) mixture of the two batches was run and the chromatogram is shown in Figure 18. It is a large peak, very similiar to Batch \#6. The low weight tail is much longer than it was on Batch \#6, however. It seems that detection of a mixture might be plausible.

To further check the possibilty of separation by this method, the homopolymers made in \underline{m}-xylene were run (Figure 19 is Batch \#25, polyㅂ-pinene and Figure 20 is Batch \#26, polystyrene). The polyB-pinene shows a single medium sized peak with a low molecular tail. The polystyrene shows three peaks. With three peaks due to very low molecular weight, separation is possible, but not useful. This is because under copolymerization reaction conditions, the molecular weights of homopolymers being formed would probably differ by a large amount. Thus, the polystyrene homopolymer (Batch \#26) is not representative and cannot be used.

The next step is to apply the information to the other batches. The shape of a copolymer chromatogram would be almost gaussian. It would not show any excess material of higher or lower molecular weight. A mixture of two homopolymers would have a low molecular weight tail of polyB-pinene (in most cases polyB-pinene is lower molecular weight than polystyrene, and it should elute last). It is due to difficulties with the detector that the poly \underline{B}-pinene peaks are so small, hence; a tail, and not a second peak. This fact practically eliminates the ability to judge whether a peak represents a copolymer or a mixture of homopolymers.

The first Batch was \#13:(FIgure 21) is a one to one molar ratio. It shows nearly symetric peak with a retention volume of about 18 units. It also shows a. slight low molecular weight tail. The chromatogram of Batch \#15 (Figure 22), a one to four molar ratio of B-Dinene to styrene, is symetrical. It has no low

molecular weight tail. One could conclude that $\# 13$ is a mixture of homopolymers and \#15 is a copolymer. This is consistent with all previous work.

The rest of the batches were also run, for molecular weight and dispersity as well as the separation. Unfortunately, the problem of peak height difference and the fact that the room temperature homopolymer batches have nearly the same molecular weight made separation of homopolymers (assuming all one to one ratios are mixtures) impossible. The other information obtained is no less important.

Both Differential Scanning Calorimetry and Gel Permeation Chromatography are able to indicate if there is poly \underline{B}-pinene present. This is the only positive conclusion which can be reached.

May trends can be observed, however. With reference to the appropriate table, it is seen that: At $30^{\circ} \mathrm{C}$ in methylene dichloride and a one to one molar ratio, the yield and the mole percent styrene in the product increase with increasing catalyst; molecular weight decreases with increasing catalyst concentration; there is decreasing insolubility in acetone with increasing catalyst concentration (as per the increasing styrene content). At a four to one molar ratio of B-pinene to styrene, the insolubility in both solvents is greater; the acetone insoluble portion should have a higher molecular weight (the lower molecular weight polystyrene is washed away) and this is shown by the Vapor Phase Osmometry Molecular Weights.

Further trends can be seen for batches made at $-78^{\circ} \mathrm{C}$ in methylene dichloride: one to one ratios at one percent catalyst do not react; the poly-B-pinene is of much lower yield and molecular weight. Both one to one and one to four molar ratios show increasing yield with increasing catalyst concentration; all one to four batches are completely insoluble; all one to one batches are soluble in hexane. This suggests that the solubility parameter of Batch \#13 is lower than Batch \#15, thus, \#15 is insoluble in hexane, while

\#13 is totally soluble. The mole percent styrene content is constant both the crude and insoluble portions of the one to four batches. The molecular weights are generally higher than the batches reacted at room temperature, and the dispersities are lower. Generally, molecular weights of the crude and acetone insoluble portions should be the same.

At $-78^{\circ} \mathrm{C}$ in $\mathrm{m}-\mathrm{xy}$ lene it can be observed that: molecular weights are very low; polystyrene is the lower of the two homopolymers; yields are low in comparison to methylene dichloride work, except for B-pinene, which shows excellent yield in comparison. It appears that the roles of the monomers have been reversed in m-xylene. The low molecular weights and also the possibility that there is m-xylene in the product (chain transfer to solvent) allow for total solubility in both solvents. The molecular weight decreases with increasing catalyst concentration, solubility increases with increasing catalyst concentration.

There is a study of mole percent conversion versus time in progress. It is hoped that the analysis of these kinetic studies (percent styrene of the product which has reacted) will yield information which can be interpreted for or against the formation of copolymer products.

It is not yet possible to determine copolymer or homopolymer mixture using one instrument. Using the combined information from several instruments, it is only possible to speculate that one is copolymer and one is a mixturethe other eleven batches need further work. Each of the batches has been characterized by Mn (VPO), M MEAK (GPC), d_{4800}, DSC plots, and NMR data has been done on some. Further work on kinetic studies, NMR on crude and solvent washed products will probably lead to definite conclusion about the constituents of each product. Then it might be possible to predict what products will form under different reaction conditions, and ultimately, a further insight into cationic polymerization mechanisms may be gained.

SUGGESTIONS FOR FUTURE WORK
The NMR analysis of the remaining samples should be done. The role that the solvent plays in the polymerization reaction is an area which could be investigated. Other catalysts might be tried. Other methods for characterization might be tried; thermal gravimetric analysis is available and it might give valuble information regarding the decomposition of the polyB-pinene in the product. Other styrene to \underline{B}-pinene feed ratios might be tried to determine If there is any limit on copolymerization imposed merely by the feed ratio.

$$
\begin{gathered}
\text { TABLE } 2 \\
\text { COPOLYMERIZATION OF B-PINENE AND STYRENE IN METHYLENE DICHLORIDE AT } 30^{\circ} \mathrm{C}
\end{gathered}
$$

MOLE \％STYRENE
（HEXANE INSOLUBLE）
NMR GPC
さ FEED YIELD MOLE \％STYRENE WT\％INSOLUBLE MOLE \％STYRENE $\begin{gathered}\text { MCETONE INSOLUBLE）WT \％INSOLUBLE }\end{gathered}$空

FEED
RATIO

品 0 a m さ （GPC PEAK） （GPC PEAK）（ACETONE）NMR GPC（HEXANE）

さ

$$
0 \quad \rightarrow \quad N \quad \infty
$$

$0 \quad \sim \quad \infty \quad \infty$

100
84
64
68

68
∞

가 9 ㅇ
8
∞
∞
\square
Mole 5 styrene（GPC peak）is estimated from peak height graph（Figure 3）
（Figure 3） ： （GPC peak）is es

FEED YIELD MOLE \% STYRENE WT\% INSOLUBLE
FEED
RATIO

MOLE $\%$ STYRENE
(ACETONE INSOLUBLE)
NMR GPC
WT\% INSOLUBLE
(HEXANE)
NMR GPC
\therefore ㄱํ

$$
\circ
$$

 \(\therefore\)
 COPOLYMERIZATION OF B-PINENE 4
YIELD
(WT\%)

FEED RATIO
styrene
B-pinene

そ N N N さ N N N N N
table 5
MOLECULAR WEIGHT AND MOLECULAR WEIGHT DISTRIBUTION
FOR THE COPOLYMERIZATION OF B-PINENE AND STYRENE
IN METHYLENE DICHLORIDE AT $30^{\circ} \mathrm{C}$
FEED RATIO
ल్ర్ష
$\stackrel{\circ}{-}$
1:1
$\underset{-}{\because} \quad \underset{-}{\rightrightarrows}$
yankiod ranko
ACETONE INSOLUBLE
$\begin{aligned} & \mathrm{Mn} \\ & \text { (VPO) MPEAK } \\ & \text { (GPC) }\end{aligned}$
$\stackrel{\circ}{0}$
$\stackrel{7}{7}$
$\stackrel{\circ}{-} \stackrel{\bullet}{-} \stackrel{\bigoplus}{-}$
$\begin{array}{llll}\circ & 0 & \circ & \circ \\ \circ & 0 & 0 & 0 \\ \infty & \infty & 0 & 0\end{array}$

RUN	MOLECULAR WEIGHT AND MOLECULAR WEIGHT DIS' FOR THE COPOLYMERIZATION OF B-PINENE AND IN METHYLENE DICHLORIDE AT $30^{\circ} \mathrm{C}$				
	AlCl_{3}	FEED Ratio	CRUDE POLYMER		
			$\begin{gathered} \mathrm{Mn} \\ (\mathrm{VPO}) \end{gathered}$	$\begin{aligned} & \text { MPEAK } \\ & (\mathrm{GPC}) \end{aligned}$	d_{4800}
6	1.0	styrene	3500	9200	1.6
9	1.0	B -pinene	3200	4500	3.4
3	0.5	$1: 1$	3100	9200	1.5
4	1.0	1:1	3700	7000	1.6
7 A	5.0	1:1	1900	7000	1.8
10	1.0	1:4	3600	9500	1.6

TABLE 6

MOLECULAR WEIGHT AND MOLECULAR WEIGHT DISTRIBUTION
FOR THE COPULYMERIZATION OF STYRENE AND B-PINENE
IN METHYLENE DICHLORIDE AT -78 ${ }^{\circ} \mathrm{C}$
TABLE 7
 MOLECULAR WEIGHT AND MOLECULAR WEIGHT DISTRIBUTION

RUN	AlCl_{3}	FEED RATIO	CRUDE POLYMER	
			Mn (VPO)	MPEAK (GPC)
				320
26	5.0	styrene	370	530
				700
25	5.0	B-pinene	3900	9000
24	5.0	$1: 1$	700	3500
				190
23	5.0	$1: 4$	500	310
				1050
28	1.0	$1: 1$	450	24000
27	1.0	$1: 4$	2600	11000

TABLE 8

RUN	FEED	EXOTHERM	MELT	DECOMPOSITION
16	B-pinene	61-108	138	145
17	styrene	none	137-193	
16817	mix	70	129-146	155
9	B-pinene	70-111	145	153
6	styrene	84-132	132, 190	
$9 \& 6$	mix	84-122	136	140
$\begin{aligned} & 15 \\ & 15 \mathrm{~A} \\ & 15 \mathrm{H} \end{aligned}$	1:4		$\begin{aligned} & 109-175 \\ & 125-180 \\ & 107-171 \end{aligned}$	140
$\begin{aligned} & 18 \\ & 18 \mathrm{~A} \\ & 18 \mathrm{H} \end{aligned}$	1:4	115	$\begin{array}{r} 132-167 \\ 112-118 \\ 62-182 \end{array}$	124
13	1:1	83-116	165	182
3	1:1	81-130	142	142
4	1:1	87-112	156-166\&172-176	
7A	1:1	83-113	162	
8	1:1	66-99	136	138
10	1:4	70-89	103-142	
11	1:4	72-106	148	155

APPENDIX B

CALIBRATION CONDITIONS FOR THE WATERS GPC/ALC 301
SOLVENT: Toluene
TEMPERATURE: Room ambient
COLUMNS: One coarse, one medium, three fine
FLOW RATE: $3.71 \mathrm{ml} /$ minute Pump at 99.0
STANDARDS USED: MPEAK ELUTION VOLUMES (One unit $=5 \mathrm{ml}$)
50000: $\quad 17.30$
$34500 \quad 17.48$
$19750 \quad 18.06$
$10000 \quad 18.32$
$4800 \quad 19.12$
$3900 \quad 20.80$
$2020 \quad 21.62$
$1220 \quad 22.90$
$790 \quad 24.76$
BENZIL $=210 \quad 30.70$
All inject times were for 6 seconds at a concentration of $3.33 \mathrm{mg} / \mathrm{ml}$

1. Sivola, H. and Harva, G. "Polymerization of Terpines in the Presence of Styrene and Isobutylene". Suomen Kemistilehti B 4312 (1970)
2. Pietila, H., Sivola, A.and Sheffer, H. "Cationic Copolymerization of B-pinene, Styrene and alpha-methylstyrene" Journal of Polymer Science A-1 $\underline{8}$ 727-737 (1970)
3. Huet, J.M. and Marechal, E. "Cationic Polymerization of B-pinene" C.R. Acad. Sc. Paris 27128 Oct 1970
4. Snyder, Charles. The Cationic Copolymerization of B-pinene and Styrene. Senior Thesis:Union College 1972
5. McCaffery, Edward M., Laboratory Preparation for Macromolecular Chemistry (New York: McGraw-Hill 1970) pp. 13-18
6. Gouw, T.H. Guide to Modern Methods of Instrumental Analysis (New York: Wiley-Interscience 1972) pp. 127-130
7. Odian, George. Principles of Polymerization (New York: McGraw-Hill 1970) pp.19-24
8. Snyder, Charles. Senior Thesis
9. Pharmacia Fine Chemicals Sephadex G-Types Product Specification Booklet Uppsala, Sweden (1972) p. 10

Snyder, Charles. The Cationic Copolymerization of B-pinene and Styrene. Senior Thesis (Union College) $\overline{197} \overline{2}$

Sivola, A. and Harva, G. "Polymerization of Terpine Hydrocarbons in the Presence of Styrene and Isobutylene". Suomen Kemistilehti B 4312 (1970)

Pietila, H., Sivola, A. and Sheffer, H. "Cationic Copolymerization of B-pinene, Styrene and alpha-Methylstyrene". Journal of Polymer Science A-1 8,727-737 (1970)

Huet, J.M. and Marechal, E. "Cationic Polymerization of B-pinene" C.R. Acad. Sc. Paris 271 280ct 1970

Odian, George. Principles of Polymerization. New York: McGraw-Hill 1970
Billmeyer, Fred W. Textbook of Polymer Science. New York: Wiley-Interscience 1971

McCaffery, Edward M. Laboratory Preparation for Macromolecular Chemistry. New York: McGraw-Hill 1970

Gouw, T.H. Guide to Modern Methods of Instrumental Analysis New York: Wiley-Interscience 1972

