Union College
Union | Digital Works

Honors Theses Student Work

6-1987

Making a rainbow workstation for a chemistry lab

John D. Bak
Union College - Schenectady, NY

Follow this and additional works at: https://digitalworks.union.edu/theses
b Part of the Chemistry Commons

Recommended Citation

Bak, John D., "Making a rainbow workstation for a chemistry lab" (1987). Honors Theses. 2008.
https://digitalworks.union.edu/theses/2008

This Open Access is brought to you for free and open access by the Student Work at Union | Digital Works. It has been accepted for inclusion in Honors

Theses by an authorized administrator of Union | Digital Works. For more information, please contact digitalworks@union.edu.

https://digitalworks.union.edu?utm_source=digitalworks.union.edu%2Ftheses%2F2008&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalworks.union.edu/theses?utm_source=digitalworks.union.edu%2Ftheses%2F2008&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalworks.union.edu/studentwork?utm_source=digitalworks.union.edu%2Ftheses%2F2008&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalworks.union.edu/theses?utm_source=digitalworks.union.edu%2Ftheses%2F2008&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/131?utm_source=digitalworks.union.edu%2Ftheses%2F2008&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalworks.union.edu/theses/2008?utm_source=digitalworks.union.edu%2Ftheses%2F2008&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalworks@union.edu

Making a Rainbow Worl jon for a Chemistry Lab

— By —

> John D. Bak <
2

0000000 0C000

Submitted in partial fulfullment
of the requirements for

Hopors in the Department of Chemistry

Union College
June 1987

ABSTRACT

BAK, JOHN D. Making a Rainbow Workstation for a
Chemistry Lab. Chemistry Department, June 1987.

Chemical kip:tics is the study of how quickly and by what
means chemical reactions proceed. Some reactions are so fast and
complicated that data must be taken very quickly and then lengthy
calculations must be done to get results. Computers speed these
studies greatly. The system to be described uses a DEC-Rainbow
microcomputer as a terminal for a workstation. The system may
collect 8k of buffered data at a rate of IMHz and then upload the
data to a VAX for analysis using the same Rainbow as a graphics
terminal. The program for data analyeis, called KinSim, will then
accept the data and also other information about the chemical
reactions in the same symbolic format that chemists use so that
the analysis may be done. The analysis consists of simulating the
chemical reactions from the information provided and compare
it with the experimental data that was collected earlier on the

Rainbow.

Table of Contents x

Making a Rainbow Worl fon for a Chemistry Lab

Chapter 1. s

Overveiw of the Project ittt 1

Chapter 2.

D ion for the Interface Circuit 12
Chapter 3.

Documentation for the KinSim Program 24
Appendix A.

Program Listing for KinSim 34

Making a Rainbow Work 1

Table of Figures

for a Chemistry Lab

Flgure 1.

Block Diagram for Interface Circuit .

Figure 2.

Timing Circuitry

Figure 3.

Input Amplification

Figure 4.

Circuit Diagram . . .

16

18

19

.22

Chapter 1

Overveiw

Chapter 1: Overveiw of the Project.

Introduction

This system was specifically designed to collect and analyze data from an instrument called
a flash photolysis spectrophotometér, but it may also be used with ~ther instruments. The way

the “Hash rig” works is that the chemicals to be reacted are put 1u a glass container, and then -

flashed by high intensity light from a xenon flash lamp or a laser. The length of this flash is
typically less than 10 microseconds. Some of the energy of the light is absorbed by the chemicals

and causes them to react. The reactions studied by this method may go to completion in as

short a time as a hundred microseconds. The reaction is monitored by passing a continuous probe

light through the sample cell and measuring the variation in transmitted intensity at a particular

wavelength as a function of time. The transmitted light intensity can usually be correlated with the

concentration of particular reactants, transients or products in the sample cell. This transmitted "

light is first converted to an electric current by a photomultiplier tube and then converted to a

voltage by passing the current through a known resistance. This voltage is directly proportional to
transmitted light intensity at the selected wavelength through the sample cell. This is the input to

the interface circuit between the instrument and the Rainbow.

There are two basic needs that we want this system to fulfill. First we want to be able to

collect data by computer. Second, we want to be able to analyze this data using the college’;

VAX cluster. The basic system is an instrument connected to an interface circuit with a buffer

which is connected to a Rainbow. The Rainbow acts as the data collection station and also as a

VAX terminal for the school’s VAX cluster, where data analysis software resides. These +wo basic

p , the data collection system and the data analysis software will be described herein.

Data Collection

System Requirements

There are several characteristics that this system must Lave in order to be used to study the

reactions that we have in mind. The minimum needs are:

® Variable timing: 1Mhz maximum rate
® A 2000 data point buffer

@ Greater than 8 bits per data word

Chapter 1 Overveiw

e Capability to upload data to the VAX
@ Graphics with hardcopy

e Must be inexpensive

The core of our system is a Rainbow microcomputer with a graphics board and an LAS50
printer. This gives us our graphics and hardcopy capabilities as well as being a terminal to the
VAX, so that data may be uploaded right after it is collected. The analog to digital (A/D)
converter in the interface between the instrument and the Rainbow is a HAS1201 made by Analog
Devices. This converter has a maximum rate of 1.05MHz at 12 bits per word. We wanted more
than 8 bits to give us the sensitivity to make accurate readings in areas where the converter’s
full range was not being utilized. To get variable timing an 8253-5 programmable interval timer
is used. It is configured in such a way that it gives us data sampling intervals ranging from 1usec
to about 8.9 years(more about how that is done later). The interface circuit has a 16k byte buffer
which gives it 8k words of storage capacity. Finally an 8251A USART is used to communicate
between the Rainbow and the buffer circuit. The cost for the interface circuit was under $1000
(thia does not include the price of the Rainbow and printerj. The most expensive item was the

A/D converter at $512. The final characteristics we ended up with are:

® Variable sampling rate from lusec to 8.9 years per data point
o 8k word buffer for data

e 12 bits per data word

o Rainbow graphics and LAS50 printer

® Also usable as a VAX terminal

® Inexpensive: less than $1000

Using the System

The system has an 8085 microprocessor which re -eives commands from the Rainbow and then
acts on them. To use it one first sets up the internal registers of the circuit by sending them
commands from the Rainbow. The data collection process is started either by sending a command
from the Rainbow, or through the remote start input on the circuit itself. The circuit then sends
the data it collects back to the Rainbow and the process can start over again.

The circuit operates in three possible modes :

o Buffered operation.
® Real time operation.

® Programmed operation.

Chapter 1 Overveiw

Buffered Operation

This inode allows rapid collection rates of up to IMHz. This is possible because all the data
is first stored in the 8k buffer before it is sent to the Rainbow. The number of sets of data to be
taken must first be specified. Each of these sets of data w'll be taken in succession after the start
collecting signal is received. This is a very nice feature because the rate at which each set is taken
can be different, so that in the beginning data may be taken quickly, but at the end data may be
taken more slowly as the reaction slows. After the number of sets of data to be taken is loaded, the
periods for each set are loaded. The restriction on the data collection intervals is that each period
after the first must be an integer multiple of the period before it. In other words, the period for
data set two will equal the period for data set one times the number entered for data set two’s timer
register; data set three's pericd will equal the period for data set two times the value entered for
data set three’s timer register. The number entered for period one is in halves of microseconds—1
and is between 0 and 65535. So if a period of 60psec is desired, the register is loaded with 119, and
if a rate of 1MHz is desired a 1 would be loaded. The next thing to be loaded would be the number
of points to be taken for each set. The total number of points taken cannot exceed 8191 because of
the buffer size. Finally, the remote start input would be enabled if the start collection signal is to
come from outside, or the data collection could be started from the Rainbow. After data collection,

the data would be transmitted to the Rainbow where it may be stored on floppy disk.

Real Time Operation

This mode is only usable at lower rates of data collection. Because the data words are 12 bits
long, two bytes are required to transmit one word, so the maximum rate of data transfer into the
Rainbow is about 600 words per second at the rate of 9600 baud. To use this mode the timer
registers are loaded with the period of the sampling rate as before and then either the remote start

is enabled or the timer is started from the Rainbow. Now the circuit will send each data word to

the Rainbow as it is collected without buffering it. To stop the process, a command to stop is sent
from the Rainbow.

Programmed Operation

Since there is an 8085 microprocessor in the interface circuit, small programs may be loaded

into the circuit. This option is included for p and imum flexibility.

Commands
The commands that the interface circuit can accept are:
e Stop and reset

e Get 1,2 or 3 sets of data

Chapter 1 Overveiw

Set up to take buffered data at one, two or three different rates
¢ Set up for real time coliection
o Get one data point
o Load timer register 1,2 or 3
Loads the timer registers. Each register is 16 bits
e Load count registers 1,2 or 3
Loads number of points to be taken with each rate for the buffered data. Total cannot
exceed 8191.
o Select timing from counter 1,2 or 3
When taking real time data, selects which timer the timing will be taken from.
o Start/Stop Timer
Starts or stops timer without waiting for remote start.
o Allow/Disallow remote start
» Load Temporary program
May load a temporary program. Up to 15 may be loaded as long as they fit into the
memory restrictions.
¢ Run Temporary program.
¢ Run diagnostic tests
» Load Status Reglster
This is an important register with hardware switches. More will be explained later.

Hardware Design

The interface circuit itself is a small microprocessor system with DMA. {Direct Memory Access)
capabilities for storing data from the A/D converter. The CPU is an 8085A and is used to control
the states of the circuit and also to generate a 2MHz system clock from which all the timing is
derived.

The A/D converter is s HAS1201 made by Analog Devices. This unit has a 1.05MHz maximum
conversion rate, internal track and hold circuitry and 12 bit resolution. The one drawback to this
unit is that there is no end of conversion signal. This is gotten around by tying the start conversion
signal and the register strobe together so that the start conversion signal is also used as a pseudo
end conversion signal. This does mean that the output will be delayed one period of the clock but
this is only a minor problem that can be compensated for by programming.

4

Chapter 1 Overveiw

Tke system’s DMA control circuitry consists mainly of two sets of four 74LS191 presettable
up/down counters. The first set is operated in count-up mode and is used to generate the addresses
for DMA operations. When the CPU is held, the outputs of these counters are put on the address
lines and they are incremented every time there is a start conversion signal. The other set is
preloaded with the number of data points to be collected and then counts down wit' each start
conversion signal until it reaches zero and then it interrupts the CPU.

The system has four memory chips. The first one is an 8k EPROM with the operating system
on it. The next is an 8k RAM for variables, the stack and any temporary programs that might be
loaded. The last two are set up for DMA operations to be performed on them. One chip stores
the most significant byte (MSB) and the other stores the least significant byte (LSB) of the A/D
converter’s data word. These two chips share the same address space when the CPU is held, but
not the same data bus. When the CPU is not held, the data bus is rejoined into one peice and the
two memory chips are moved into seperate address spaces.

The USART (Universal Synchronous/Asynchrenous Receiver/Transmitter) is the circuit's link
to the outside world. The data received pin of the chip has been tied to the RST5.5 interrupt on
the 8085A, so that whenever a command is received, it will be able to get the CPU’s attention.
This allows the chip to be stopped in the middle of an operation.

The timing circuitry is the most complex part of the circuit. The heart of the circuitry is the
8253-5 programmable interval timer. This chip has three 16-bit gated, presettable repeating down
counters. The outputs of these counters are tied to the clock input of the next counter, with the
first tied to the 2MHz system clock. Timer one has a 2MHz input, timer two gets its input from
timer 1 and timer 3 gets its input from timer 2. This gives the chip the range of a 48 bit counter,

but more flexibility, b the outputs of these s are also multiplexed so that the counter

that the start conversion signal is derived from may be chosen from among the three. The fourth
input to the multiplexer is taken from the device select logic for the A/D converter, so that a
conversion may be started by the CPU directly. The gates for the counters are active high and the
flip/flop that controls this may be set either from the remote start signal, or from a bit in the
status register. The flip/flop is reset when a terminal count is reached in the DMA counter for the
number of points to collect, or when it is reset by setting the status register bit to zero. The final
piece of the timing circuitry ia the status register. This important register is used to set the modes

of operation for the circuit. Its contents are as follows:

Bit: Use:
0,1: Used as address for multiplexer to get start conversion source.
2: 1 allows remote start for timer,

0 remote start will not start timer.

e e e A ORI

Chapter 1 Overvesw
3: Start timer
4: DMA/CPU.
6: Remote start mask: 0 blocks remote start completely.
6,7: Unused

Bits 2 and 5 work in conjunction with each other where bit 5 will block the remote start signal
completely, but when it is set to allow the signal in, bit 2 will select what happens with the signal,
a 1 starting the timer and a 0 interrupting the CPU. Bit 3 will start the timer regardless of what
else is on. Bit 4 selects what happens when the timer starts. If it is a 1, then the CPU is held and

a DMA operation will be performed to collect the data, otherwise ihe start conversion signals will
also be sent as CPU interrupts so the CPU will be able to collect the data from the A/D converter
directly. Finally bits 0 and 1 are used to encode the multiplexer, a 00 being the device select for

the A/D converter and the other numbers being the respective timer registers on the 8253-5 timer.

Buffered Data Collection Process

The multiple data sampling rates of the buffered data are achieved through programming.
First the timer registers are each loaded. The first timing rate is put into timer register one, the
second into two, and the third into three. Then the number of points to be taken is loaded into the
DMA register and the DMA address register is set to the beginning of the DMA memory. Next the
status register is loaded to allow remote start on the timer and to select DMA operation and finally
start conversions from timer 1. When the remote start comes, the data will be collected until the
end count is reached and the CPU will be interrupted. The end count register will now be loaded
with the number of points to be collected at the second rate and then the status register will be

loaded. DMA will be selected with the start conversions from timer 2, but this time the start timer

bit will be set so that as soon as the register is loaded the timer will start and the CPU will be
held again. Now data collection will proceed and when the terminal count is reached, the CPU will

be interrupted again. Now if a third set is to be taken the process will be repeated but with data

for the third collection rate. The neat part of this system is that the address register is only loaded
at the beginning of the process, so that it will continue to be incremented as the data is taken, but i
the first point taken in a set of data will be right after the last point taken in the previous set L
because the register still contains the old number. After the last set is taken the data will be sent

out to the Rainbow.

Data Analysis

The program that was written to analyze the data is in FORTRAN-77 and uses routines

from IMSL to integrate the equations and RGL (ReGIS Graphics Library) to generate the

‘ |

Chapter 1

Overveiw
graphics output on the Rainbow.

Some Basic Chemistry

In order to understand the program it is y to first uad d how equations for the
rates of chemical reactions are derived. First, all chemical reactions can be broken down into a
series of steps which describe the reaction. These steps describe the interactions between each of

the species in the reaction. For le, take the following i

A+B+C—D+E
This equation means that reactants A, B and C combine to give products D and E. This might be
broken down into the following mechanism:
A+BAup
F+chig
GLp+E
F*A+B
(e LN
D+EEG
A+clg g
Reactions 1 to 3 are the basic mechanism which gives us the products, but there are other
processes which also occur. Reactions 4 to 6 are the reverses of 1 to 3, and 7 is a reaction that uses
the reactants up, but does not contribute to the reaction of interest; this is a competing or side
reaction. All of these things must be taken into t when devel

1 hani

ping
The ks over the arrows are called the rate constants. This is a proportionality constant that helps
tell how quickly each step of the mechanism proceeds with respect to the others.
These mechanism steps are important because they can be easily converted into differential
equations showing the rate that the step proceeds at. There are four types of mechanism steps:
Aty products
A — products
A+ B — products

A+ B+ C — products
These may be converted to a rate equation as follows:

v=20I,

v = k[A]

v =k[4][8]

v = k[4](B)[C}]

7

Chapter 1 Overveiw

In these equations the v is the rate of each step in the mechanism above. The first equation is a
photochemical reaction so it is different from the rest. Here the rate is proportional to the amount
of light absorbed (I,) and the quantum yield (®) which is the ratio of the number of molecules
that react to the number of photons of light absorbed. The other ones are casier. The rate of the

step is proportional to the product of the i (denoted by the square brackets) of the

reactants. Since the rate for each step is proportional to the ation of the reactants, the

rate constant converts this proportionality to an lity. The rate are very important

H (N d h

a step does not dep on what it is in. If the rate

constant for a particular mechanism step can be found in one mechanism it will be exactly the
same if that mechanism step is fouad in an entirely different chemical reaction.

Now that we have the rates for each step in the mechanism we can find the rate of change of
each species in the reaction. This is done by adding together the rate of all steps where the species
is formed and subtracting the rate of all steps where the species is used up. For example, take this

sample mechanism:
A+B—C+D

C+E—F
F—C+E

C+D—A+B

With rate equations:
v = £ [A)(B)

vz = ka[C]|E]
vy = k3| F]
v4 = ky[C][D)

From this we can see the rates of change for the some of the species in the reaction would be:

o __
a1 v+ vy
aiF]
at

=uyz—vs

alC]
at
These are a set of coupled linear differential equations whick can be numerically integrated,

=V — U+ U3 — vy

using the Gear method because of the sizes of the terms involved, to give concentration versus time
for each species in the reaction.

Now that concentration versus time data can be generated for a given mechanism and set
of rate constants, we can compare this with the experimental data for the same reaction. When

we find agreement between the two this shows that we have discovered a plausible mechanism

Chapter 1 Overveiw

and the corresponding set of rate constants. This approach is used in the program to solve for

the mechanism and rate constants. Ouve puts in a proposed mechanism and rate constants, the

computer integrates the differential equations corresponding to that mechanism and then plots both
the experimental data and the calculated data on the screen. The mechanism and rate constants

can then be modified until there is agreement between the two.

Running the Program

In order to use the program, the experimental data must first be loaded into VAX data files.
For photochemical reactions, a VAX file must also be created giving the light intensity versus time
profile for the incident light. After this is done the program may be run. It is menu driven to
make it easy to use. A mechanism, a set of rate constants, and the initial concentrations are
entered into the program. They may be saved for later use. The program will then automatically
calculate the differential equations so that they may be integrated. This is an improvement over
other kinetic simulation programs where the differential equations are coded into subroutines of the
program and every time the mechanism is changed that subroutine has to be rewritten. When the

lated tration versus time data for

program is run, it will plot both the experi al and si
any chemical species in the reaction. Changes may be made to the mechanism and the data may’
be replotted, all interactively, unti! agreement is reached between the experimental and simulated
data. The program also gives hardcopy of the graphs and the mechanism, as well as tabular resuits
of the data.
How the mechanism ia stored
The data structure that was developed for storing the mechanism is interesting. It consists of a
series of arrays where mazm is the maximum number of steps that can be stored in the mechanism:
rtyps{maxm): Type of reaction step.
plhs(maxm): Number of rcactants in step.
1hs(4.maxm): Internal code for each reactant in the step.
nrhs(maxm): Number of products in step.

rhe(4.maxm): Internal code for each product in the step.

The data structure is simple and it allows a general routine to evaluate the velocities (v) for

each step as follows:

function evalv(eqn, j. i,t .c)
implicit none
integer eqn, j. 1p

C eqn is the step being evaluated
double precision t. c(j;. 1

Chapter 1 Overveiw

C t is current time, c(j) is concentration of each mpecies in the reaction
external i

C evaluates light intensity at time t
include’commondef.for/nolist’

C data structure for mechanism

goto(10, 20, 30, 40). rtype(eqn)

write(6,%)’ Error, no mechanism step’

write(6,%) type ', rtype(eqn)
stop
10 evalv= k(eqn) » i(t)
return
C photochemical
20 evalv= k(eqn) * c(1hs(1,eqn))
return
C single reactant
30 evalv= k(eqn) * c(lhs(i,eqn) * c(1lhs(2,eqn))
return
C two reactants
40 evalv= k(eqn) * c(lhs(1,eqn) * c(1hs(2,eqn) * c(1hs(3,eqn))
return
C three reactants

end

This function will return as its value the velocity of the mechanism step specified. It may be
called by another routine (see below) that evaluates the first derivative of the function called by
the DGEAR integration routine in IMSL. This subroutine is defined as follows:

subroutine evmech(j, t, c, dc)
integer j. q. ¢
double precision t, ¢(j), dc(j). v, evalv
€ c(j) is concentration of each species
C dc(j) is the firet derivative returned by this routine.
C t is current time
external evalv
C function for velocity of mechanism step

include ‘commondef.for/molist’

10

Chapter 1 Overveiw

C mechaniem and other information
do 6 q=1,j
§ dc(q)=0.0d0
C zero array
do 10 q=1.,m
v=evalv(q, j, ¢, ¢)
C get rate of current mechanism step
do 20 r=1,nlhs(q)
20 dc(1hs(r.q)) = dc(3hs(r,q)) ~ v
C subtract velocity from ist der. of each specied being reacted.
do 30 r=1,nrhs(q)
30 dc(rhe(r.q)) = dc(rha(r,q)) + v
C add velocity to 1st der. of each species produced by step.
10 continue
C do this for each step in mechanism
return

end

This sut ine will sy ically go through the entire mechanism and adjust the rate of

change for each species in the reaction by the velocity of each mechanism step that it appears in.

Conclusion

This system is a system for ing and analyzing kinetic data in a chemistry

laboratory. The rate of data collection is variable up to IMHz 30 a wide variety of systems may

1 Y

be explored. The data analysis gives ch and rate All of this may be

done from the same DEC Rainbow in the laboratory.

We are currently using this system at Union in a variety of research projects, most notably
studies on the photochemical kinetics of alkyliodides and organometalic hydrides. The system
is also being integrated into the physical chemistry laboratory to provide students with some

1

experience with chemical reaction si

11

i JONVERN ot

Chapter 2 Interface Documentation

ion for the I Circuit.

The interface circuit is a small dedicated microprocessor system with the following

characteristics:

e 8085A microprocessor.
o HAS1201 A/D converter.
o 1.05MHz conversion rate.
o 12 bit data word.
® 8251A USART (Universal Synchronous/Asynch
nication via RS232 line at 9600 baud.
® 8253-5 Programmable Interval Timer.

o DMA data collection system.
o Initiated by an outside signal or by 8085A.
o 16k byte buffer (holds 8k words) from A/D converter.

o Variable collection rate, from lusec to about 8.9 years per data point.
e 8k EPROM with operating system.
o 8k RAM for system variables and stack and other data.

The circuit is used by sending commands over the RS232 line to the 8085 which will in turn
respond. The commands set up different registers for different modes of operation in the system.

There are two basic modes of operation and a third included for completeness. They are:

o Buffered data collection mode.
® Real time data collection mode.

® Programmed mode.

Buffered mode collects data using DMA operation, and then will send out the data via the
RS232 port. Real time collection wili have the timing elements interrupt the 8085A and it will then
take a data point and send it over the RS232 line immediately. This mode is limited in speed to
the rate at wich data may be transmitted over the RS232 line - about 600 samples per second. In

programmed mode, a program in 8085 machine language is loaded into the circuits memory and is

then d. This is included for imum flexibility and for completeness.

12

Chapter 2 Interface Documentation

The circuit receives these commands,sent from the host computer via the RS232 port, in the

format like so:

< 1 byte command > [n byte argument]

The command is always one byte, and can be followed by any number of bytes for an argument,
which depend on the particular command.

The commands that the system is programmed to respond to are:

Commands Sent to Interface

General Commands
Cmd Action
00 Stop and Reset.
01 Load Status Register.
— + 1 byte value.

02 No Register Reset Mode.
03 Register Reset Mode.
04 Start Timer.
06 Stop Timer.
08 Use Timer 1
07 Use Timer 2
08 Use Timer 3
09 Get 1 Data Point.
OA Allow Remote Start.
0B Inhibit Remote Start.
0C Not Used
00 Dump DMA Memory.
OE Complete Memory Dump.
OF Run Diagnostic Program.

Program Mode Commands:
10-1F Load Temporary Program 0 to F.

— + length of program (2 bytes) + starting location (2 bytes) + program.

20-2F Run Temporary Program 0 to F.

Chapter 2 Interface Documentation

Buffered Operation

30 One set of data with timer 1.

—+ + 2 byte value for timer 1.

— + 2 byte value for cumber of points to be collected.
31 One set of data with timer 2.

— + 2 byte value for timer 1 + 2 byte value for timer 2.

— + 2 byte value for pumber of points to be collected.
32 One set of data with timer 3.

— + 2 byte values for timera 1,2 and 3 (6 bytes).

— + 2 byte value for number of points to be collected.
33 Two sets of data with timers 1 and 2.

~ + 2 byte values for timers 1 and 2 (4 bytes).

= + 2 byte value for number of points to be collected for each set(4 bytes).
34 Two sets of data with timers 1 and 3.

— + 2 byte values for timers 1,2 and 3 (6 bytes).

— + 2 byte value for number of points to be collected for each set{4 bytes).
36 Two sets of data with timers 2 and 3.

— + 2 byte values for timers 1,2 and 3 (6 bytes).

— + 2 byte value for number of points to be collected for each set(4 bytes).
36 Three sets of data with timers I, 2 and 3.

— + 2 byte values for timers 1,2 and 3 (6 bytes).

— + 2 byte value for number of points to be collected for each set(6 bytes).

Real Time Operation

40 Collect data using timer 2.

— + 2 byte values for timers 1 and 2 (4 bytes).
41 Collect data using timer 3.

— + 2 byte values for timers 1,2 and 3 (6 bytes).

Each command is sent in by the RS232 line, which interrupts the CPU so it can respond to

the d. The ¢ d is then followed by the arguments, if any.
The niemory map of the system is:
0000-1FFF: EPROM - Operating System.
2000-3FFF: RAM - Stack, variables and temporary programs.
4000-4FFF: Status Register.

14

Chapter 2 Interface Documentation

B000-BFFF: 8253-5 Timer.
5000: Counter 1.
6001: Counter 2.
6002: Counter 3.
5003: Control word.
6000-6FFF : DMA end count register.
6000: LSB
6001 MSB
7000-7FFF: DMA address register.
7000: LSB
7001: MSB
8000-9FFF : HAS1201 A/D converter.
8000: LSB
8001 : MSB
AOCO-BFFF: 8251A USART.
A000: Data word.
A001: Coutrol word.
CO00-DFFF: LSB RAM buffer.
EO000-FFFF: MSB RAM buffer.

None of the components listed above requires its full address space other than the memory

chips, and any addresses not specified will only contai Itiple images of the component listed.

This is b the add: are not pletely decoded to simplify the device select logic.
g1

The Status Register is a software loadable register with hardware switches.

Bit: Use:
0,1: Used as address for multiplexer to get start conversion source.
2: 1 allows remote start for timer,
0 remote start gives a CPU interrupt.
3: Start timer
4: DMA/CPU.
6: Remote start mask: 0 blocks remote start completely.
6,7: Unused

Bits 2 and 5 work in conjunction with each other where bit 5 will block the remote start signal

completely, but when it is set to allow the signa) in, bit 2 will select what happens with the signal

y

a 1 starting the timer and a 0 interrupting the CPU. Bit 3 will start the timer regardless of what

15

Chapter 2 Interface Documentation

else is on. Bit 4 selects what happens when the timer starts. If it is a 1, then the CPU is held and
a DMA operation will be performed to collect the data, otherwise the start conversion signals will

also be sent as CPU interrupts so the CPU will be able to collect the data from the A/D converter

directly. Finally bits 0 and 1 are used to encode the multiplexer, a 00 being the device select for

the A/D converter and the other numbers being the respective timer registers on the 8253-5 timer.

The interrupt structure of the system is:

TRAP Terminal Count in DMA cycle.
RST 7.6 Start Conversion from data collection timing.
RST 6.5 Remote Start signal.
RST 6.5 USART - received data.

INTR not used.

System Construction

The block diagram of the system is as follows:

¢ Y
P ATA/ ADUABSYConTReL BUS e
J R
3
6
< BR
T Dma
AEMoTR f\ con- om m | PmA y hal
ryca 3 D =
N TRoL !
¢ | w8 [l 7ok
L&?ﬁr—l?.mm
Figure 1.

After the timing elements have been properly loaded, start conversion signals may be generated
from the timing circuitry. These start conversion signals are use by the system to start conversions
on the A/D converter, to generate CPU interrupts and also to drive the DMA circuitry.

16

e S

Chapter 2 Interface Documentation

Timer system

The primary element of the timer system is the 8253-5 programmable interval timer. The
timers are set up in mode 2 (rate generator). The clock input of timer 1 is tied to the 2MHz system
clock, which is generated by the 8085 from a 4MHz crystal. The clock input of timer 2 is tied to
the output of timer 1. The clock input of timer 3 is tied to the output of timer 2. The outputs
of each of these timers is also put into a multiplexer and the start conversion signal is taken from
this multiplexer. In effect, the multiplexer is used to expand the size of the timer. If it is set to
the first timer the size is 16 bits, the second would be 32 bits and the third 48 bits. It is not quite
the same as having a normal 48 bit counter because each timer counts the number of times the
previous timer has rolled over, but the range is still there. The fourth input to the multiplexer is
taken from the device select logic for the LSB of the D /A couverter so that the CPU may generate
start conversion signals (e.g. the get one data point command).

The status register is the final element of the timer system, it is also shared by the interrupt
and DMA systems. The status register bits 0 and 1 are the addressing for the multiplexer. A 00 in
the first two bits selects the device select logic and a Ol timer 1, a 10 timer 2 and 11 timer 3. The
status register also controls how and when the gate to the timer is turned on. The gate input to
the timers allows the timers to count when it is set high, and inhibits counting when it is set low.
The gate is taken from a flip-flop that is set when bit 3 is set, or when bit 5 is set and a remote
start sigoal comes in from the instrument. The output from the flip-flop is then ANDed with bit 2,
and this is taken as the gate signal. The gate signal is then ANDed with bit 4 to give the HOLD
request to the CPU. NOT bit 4 is also ANDed with bit 5 and the remote start signal to give the
RSTé.5 signal, so if the remote start signal is enabled, and the timing is on, then the CPU will
either be interrupted or held. The flip-flop is reset by the Terminal Count signal from the DMA
circuitry, or by setting bit 3 to zero. The terminal count signal is also used for the TRAP interrupt
if the CPU is held.

17

Chapter 2 Interface Documentation

This is the schematic of the timing system.

START

CONVERSIEON 3

Slo

Th

A A

T |a

V4

Sls

RE:OTE — ST,
ENABLE

TERMEINAL

CoUNT

Figure 2.

The DMA system uses the previously described system for two things. First, the HOLD signal
for the CPU is taken from the GATE signal, and second, the start conversion signals are taken
from the multiplexer. When the CPU is held, the DMA system is turned on by the HLDA signal
from the CPU. This allows the two sets of counters to begin counting. the first set of counters is
the DMA address registers. These counters will increment for each start conversion signal sent on
the line. The outputs of these counters are put on the address line as long as the HLDA signal is
bigh. The second set is the DMA end count register. This register will decrement each time a
start conversion signal is sent. When this register reaches zero, the terminal count signal will be
sent which will interrupt the CPU and also reset the gate flip-fiop. The other thing that the HLDA
signal does is to separate the data bus into two sections. The first section is connected to Jjust the
most significant 4 bits of the A/D converter and one of the memory chips. The second section is
connected to the rest of the system. The other thing that happens is that the output from the A/D
converter is turned on, and the memory chips are write enabled. So every time a start conversion
signal occurs, the last data word from the A/D converter is put on the line, and the address is
incremented. The data on the bus will be stored in the address selected by address lines 0 to 12 of
the address bus in both of the memory chips, but since there are two separate sections on the data
bus, there is no data clash and the MSBs of the A/D word are stored in one memo-y chip, and the
LSBs in the other. The data may then be extracted one byte at a time after the CPU is released.

As stated before, CPU interrupts are used for real time collection. The CPU 15 interrupted on

the remote start signal, and then each start conversion signal will interrupt the CPU again so it

18

B T sy e g

Chapter 2 Interface Documentation

can get the data word that the A/D converter is producing. The data is then directly sent out via
the USART to the controlling computer.
More on buffered operation

A major portion of the abilities of the buffered operation mode is achieved by programming.
In buffered operation it is possible to change speeds in the middle of collecting data up to three

times. This is lished by preloading these times into the 8253-5 timer and then changing
the value of the multiplexer address after a certain amount of time. After the time values are
pre-loaded into the timer, the number of points to be collected at each rate is then stored in the
CPU registers and the first is loaded into the count register. The address register is then set to the
beginning of the DMA buffer, and the status register is loaded to allow DMA operation, and either
the timer is started or the remote start is enabled. When the first set of data is collected, the count
register is loaded with the number of points to be taken at the second rate and the status register
is loaded, selecting the next timer the rate is to be taken from, and also starting the timer. After
the second set of data is taken, a third may be taken in a similar manner. After all the data is

taken, it will then be sent out via the USART to the controlling computer.

Analog Amplification

The analog signal is assumed to be in the range of about 0 to 50mV. It is then put through an
op-amp to amplify the signal to about a 0 to 10V signal. There is a variable gain on the op-amp
feedback loop to allow for adjustment and there is also a baseli and gain adj b the
op-amp and the A/D converter to allow a £10% full scale adjustment and an offset adjustment of

+5%. The diagram of the input amplification circuit is:

YWY

RFoKQ.

[s9xa

t][.,

ANmoe
ZNPUT

Soan,

Figure 8.

Components of the system

The parts of the system is constructed from are as follows:

19

Chapter 2

1
1
1
1
1
4
3
1
3
1
4
3
1
1
8
1
1
1
1
2
1
1
1
1
1
1
2
1

HAS1201 A/D converter.
1489 Quad receiver.

1488 Quad driver.

555 multivibrator.

AD-OP37 op-amp.

74LS373 octal latches.
7415245 octal buffers.

8251 USART.
HM6264LP-12 8k RAM.
HN482764K-2 8k UV-EPROM.
74LS08 Quad AND gates.
741832 Quad OR gates.
74LS00 Quad NAND gate.
74LS08 Hex inverter.
74LS191 presettable up/down counters.
74LS153 Dual 4 input MUX.
8253-5 programmable interval timer.
7415138 3 input decoder.
8085A microprocessor.

50011 trim pots.

250k(? trim pot.

10k0 trim pot.

3.9k} resistor.

39k} resistor.

1k{1 resistor.

4.00MHz crystal.

20pF capacitors.

1000pF capacitor.

Assorted leveling capacitors.
35V ct transformer.

12.6V ct transformer.
LM232K +5V regulator.
L7815 +15V regulator.
L7805 —5V regulator.

L7815 —15V regulator.

s

S 2

Interface Documentation

Chapter 2

Interface Documentation
8 Diodes.

8 1000uF capacitors.

References:

MCS-85"™ User's Manual. Intel Corporation ©1978.

Interface Documentation

g
|53
k:
a
.omu.
&
(]

Chapter 2

Interface Documentatiou

Figure § (cont)

n,
a
Q

<
&

=
=]
=

3

]

©

Chapter 2

e R

B PRENS T e, DI WA s e s o

Chapter 3 KinSim Documentation

Ch 3: D, tation for the KinSim Program.

Introduction:

KinSim is a software package designed to allow you to simulate a chemical reaction. The
input to the program consists of a trial mechanism written in symbolic form, (e.9. A + B —
C + D) and a set of trial rate constants (and branching ratios for photochemical steps). The
program will calculate and plot as a fanction of time the concentration of any species in the system.
Superimposed on this plot will be the corresponding experimental versus time data for this same

species. Congruence of the si and experi | curves suggests the validity of the trial

h

and rate

One of the most attractive features of this package is that all the inputs are prompted for and,
because the differential equations are constructed internally by the program, there is no need to
change the program each time the mechanism is changed. The program is written in FORTRAN-77,
8o if there is 2 problem that cannot be dealt with by th. existing code any good hack (or even a
bad hack) should be able to patch in the required code. To facilitate this, we tried to keep to the
ideal of structured programming (quite a task in F ORTRAN) while developing the program.

Before using this package, the user will be required to create several data files. The first
contains the data for phetolyzing light intensity as a function of time. The other files contain
experimental concentration versus time data.

We have not put any units on the output of the program to allow you freedom to choose
whatever system of units suits you best; however, this also puts the burden of checking the upits

on your shoulders, b the p does not care what units you use, it is Jjust as happy to

crunch the numbers the wrong way as ihe right way. Due to the limitations of the atorage of
floating point numbers in the FORTRAN la".guage, it is best to choose units so that rate constants
have values near one (e.g., in a range of about 0.1E — 04 to 0.1E + 05) to avoid round off errors
during integration of the differential equations.

This system was specifically designed for use on a DEC-Rainbow using the ReGIS (Remote
Graphics Instruction Set) VT125 emulation package, but any VT125 emulation should work. The
packages RGL (ReGIS Graphics Library) and IMSL are also used on the mainframe to do the
integration and generate the graphics screens produced by the program.

We would like to thank Union College for providing the funds and resources for developing this
package through the Undergraduate Summer Research Program.

24

Chapter 3 KinSim Documentation
Running KinSim

The first thing that needs to be done is that your experimental data fiies and your light
intensity data file must be put onto the system. Both types of files have the same format. and are
put into standard FORTRAN text files.

The first line of each file is the number of points in the file. It st be between 1 and 1000
(this can be changed by changing the parameter mazdata in the prop 1 code)

The file must then contain the values of time on the next line a.. . either concentration for an
experimental data file, or the dj d value of intensity for the light i ity file. The
light intensity should be 1.0000 and the rest of the values should be expressed as a fraction of
the maximum. The constant Scale Factor takes into account the amount of light that is actuaily

absorbed by a particular molecule in the reaction. Then the time and data values alternate from
line to line until all the data is put into the file like so:

number of points
time one
data one
time two

data two

time n

data n

The time and data points are double precision and the number of points must be an integer.
You are allowed to have up to three experi, | data files included in the calculation at one time.
Wher KinSim is interpreting the data for the light intensity, it will use the value of the first

data point when the current time in the simulation is less thar the time value of the first data

point, and when the time value is greater than the last data point, it will use the last data point as

the light intensity; ctherwise it uses a linear interpolation between points as the value.

Now al! that peeds to be done is run the program. Type RUN KinSim or whatever is
appropriate on your system and we are on our way! The first thing that you will get is a menu
with ten options (it will help if you are actually running the program now so you can see what is

going on better) that will look something like this:

25

. oS o A umq-«w»«mﬂ'm~mm

!

P

Chapter 3 KinSim Documentation

Load Nechanism File
Load Flash profile file
Load experimental data files

Integrate and graph L
Integrate and make a table v
Change constants
Change Nechanisa
Change initial concentrations

Save mechanism and constants

Exit program
Your Choice?

You can now type in any command you wish to use; however, there are some commands that
require information from other commands before they can do what they are supposed to do. If you
try to use one command before you use another that gives it the required information, the program
will just go back to this menu without executing the command you asked it to do, until you have 3

the information that the command needs, at which point you will be allowed to g0 on.

You will need to use d 7, or chang hanl! first to enter the mechanism into
the program and then d 6, or ch tants, to eoter the scale factor and the infinity
time value, and finally d 8, or change initial ations to set the number of initial

concentrations, and what the initial concentrations are. You should then use command 9, or save

hani

and to save what you have done so that you can use command 1, or
load mechanism file, to do this all quickly, rather than go through the process of entering the
mechanism every time.

Now you may finally get to what you wanted to do in the first place, simulations. You should
now use commands 2 and 3 to load the experimental data and the light intensity from the files and
then you may use either commands 4 or 5; these will do an integration and then plot out a graph,
or put up a table showing experimental data contrasted with the calculated data. You will also be
asked if you want a hardcopy of the data. The graph option will plot up to three sets of simulations
and experimental data on the same set of axes for you. You may change the k's for the reactions
and do the integrations again until the simulation plots are congruent with the experimental ones.

When you finish you should use command 9 again to save the current mechanism and constants

on the disk, so that the next time you may pick up where you left off.

26

Chapter 3 KinSim Documentation

Detailed 1 i of d

1. Load mechanism file:

This simple command will load a previously saved mechanism, scale factor, and sets of initial
conditions.

To use the command type a 1 at the main menu and then the computer will say:
File with mechanism:

You should then type in the name of the file that you saved the mechanism under and then
the computer will load in the file. If there is an error, the computer will tell you and ask for the file

name again.

3. Load Flash Profile

This command will load in the light intensity versus time data from a file.
To use this command you should type a 2 at the main menu. The computer will then respond

with:

File with flash profile data is:*"NONE »
Name of file with flash profile data?

You should then tell the computer the name of the file with the flash profile data. If there is
an error the computer will g0 back and ask for the name of the file again.

If you use this command a second time, the response will change slightly. The computer will
tell you the name of the old fle and then ask you if you want to change it. If you type yes, it will

then ask for the new file name as before.

8. Load experimental data

This command js almost exactly like the Previous one, except that it will load in the
experimental concentration versus time data. Up to 3 sets of concentration versus time data may
be read in corresponding to different starting concentrations of reactants. This feature is provided
for use by those people doing multiple flash photolysis measurements on the same sample.

Chapter 3 KinSim Documentation

4. Integrate and Graph

This command will take all the information you have provided and then plot out the
experimental data and the calculated ata on a set of axes and also generate a hardcopy if you
desire. To use this command you should type a & at the main menu, and then the computer wili

respond with:
Species to monitor:

You should type in the species that you wish to graph the concentration of (usually the same
one that you collected data for). After that the computer will ask:

Do you want to graph concentration set 17

You should type in ¥ or N. The computer will ask this for each set of initial conditions you
have. The computer will now get the time window to integrate over by using the smallest and
largest times in the experimental data. After that the computer will search the experimental data
for the largest and the smallest concentration values, and when it gets-them it will add 10% of the
difference between them to either side to get the default range for the concentration on the graph,

and will say:

Window for concentration data
Nin: -0.1234BE-3 Max: 6.7890iE-2
Input new values (Negative to keep thesme)

Values:

You should now enter either two negati b d by (if you like the

range that is shown) or two new numbers (that are not negative) to set a new window. Now,
finally, you will see a graph being constructed on the screen, with time on the horizontal axis, and
concentration on the vertical axis. There will also be up to three sets of data, with boxes for
experimental data set 1, circles for experimental data set 2, and triangles for experimental data set
3. Little dots will also start to appear. These are the calculated values, and there will be one line
of dots for every set of experimental data that has been plotted. If the calculated values go out of
the range of the graph, they will not be plotted. When an integration is completed, the infinity
time value will be printed at the top of the screen. Finally, when it finishes, the computer will ask
if you want to print the screen. If you type Y the graph will be printed.
When this is done, the computer will type out:

There are 20 mechanism steps
Which step's constants do you want to look at?

(7 for all, or numbers and subranges separated by commas)

28

Chapter 3 KinSim Documentation

Now if you want to change any constants or branching ratios you may do so by typing in the
number of the steps you want to change, or return if you don’t want to change any. For instance,
if you wanted to change the first four constants, the seventh and the nineth you would type in
“1-4,7,9” and the computer would display each one of those to you in turn and ask if you wish to

change it like so:

Step # 1
A9 = 0.670000000D+00
Change?

If you did want to change it, type Y and then the computer would ask for the new value.
When the computer finished with your list, it will ask if you wish to change more constants, if you
type in Y it will go back to the point where it asks you to type in a list of constants to change,

otherwise it will ask:
Integrate again(I) or go back to memu(M)?

If you type I the computer will go back to the graph and remove the old calculated values, and

then plot up new ones, otherwise it will take you back to the main menu.

5. Integrate and make a table

This command will print out a table with concentration versus time for three of the species in
your reaction along with one set of experimental data. To use this command, type a B at the main
menvu, and then the computer will ask for the three species you wish to monitor. After that it will
ask for which set of initial conditions you wish to use, and finally it will ask if you want to print
the table.

After that, the computer will integrate the rate equations, and print out a table. The first

screen of the table will print out on the screen, and l{hen on the printer if you wanted a hardcopy,

and then the computer will say to hit return to go on. It will then wait until you press return and
then print the next screen of the table until the whole table has been printed.

After printing the table, the computer will go through the same procedure for changing the
constants that it did in the graphing routine, and then will ask if you wish to integrate again, and
if you do, it will go back to the point where it asked for which set of initial conditions you wanted
to graph.

Chapter 3 KinSim Documentation

6. Change constants

This command will allow you to change some of the constants that the program needs. To use

the command type in a 6 at the main menu, and then the computer will respond with:

In order to keep the current value:
Enter negative values for numbers

Enter spaces for character stringa

Scale Factor: 0.000086700

New Value:

This means that anytime the computer asks for a number in this section of the program, if

1

you type in a negative value, the old value of the will remain banged, and if you type

in a positive or zero value the value you type in will replace the old value. The same is true for
character strings if you type a space; the old value will be unchanged, but if you type anything else,
what you type will replace the old string.

The program then shows you the current value of Scale Factor, and prompts you to put in a
new value for it. The scale factor is multiplied by the interpolated value of the intensity of light
(which is a value between one and zero) to give the value of &I, where I, = Jo{1 — 10!}, This was
done because there is not always enough data to find these things through calculations, so we offer
a hit and miss method of finding the value; but the scale factor could be found through calculations
if there is enough data available.

After getting the scale factor, the program will print out the new value and then go on to
prompt for the time corresponding to the end of the integration.

After getting the infinite time value, the computer will type out:

There are 20 steps in the mechanism to lock at

Which step’s constant do you want to look at?

(? for all, or numbers and subranges separated by commas)

This operates the same way as it does in commands 4 and 5, you can look there for details,

but after you enter the numbers it is different. The computer will type back to you:

R+JI---->RI
k7 = 3.12

New Value:

30

Chapter 3 KinSim Documentation

This will be done for each step you want to look at, and you may enter a new value for the
constant, or enter a negative number to leave it the same.

After the list of steps you have d is finished, the p will ask if you want to change

any more constants. If you type Y the computer will take you back to the section where it asks for

a list of steps to look at, otherwise it will take you to the main menu.

7. Change Mechanism

1 4

enter the

This command is the one that allows you to initi into the program

in symbolic form. The p will respond to your d by splitting the screen so that
the top part of the screen contains a submenu, and the bottom part will contain the mechanism,
the rate constants, the branching ratios and the names of the species in the reaction. There are §
commands in the submenu to allow you to add to or change a step in the mechanism, delete a step
from the mechanism, move 2 step to a different place in the mechanism listing, switch the position
of two steps in the mechanism listing, print out the mechanism listing, scroll the screen if there are
more mechanism steps than fit on one screen, and to return to the main menu.

submenu commands 1 and 9: Add or change mechanism step

When you use this command, the computer will first prompt you with the four types of
mechanism steps that there are, like so:

1) A -hv-> (products) 3) A + B ----> (products)
2) A ~-=---> (products) 4) A+ B + C ----> (products)

Your choice?

If you are changing a step the p will also tell you what the step is now. You may now

enter the number of the reaction type you want. If you change the type of the reaction, then you
may get some messages telling you that some species have been removed from the reaction, this is
normal, because when you change the type of a reaction it will delete the current step and then
allow you to reenter 2 new step.

The next thing that will happen is that the computer will ask for reactant A. You should now
type in the name of reactant A. If that name is not in the mechanism right now the computer will
say so and ask if yon have made an error; if you say Y then the computer will ask for reactant A
again. Then if there is more than one reactant the computer will do the same thing for the rest of
the reactants.

Now the computer will ask for product A, and you may then type it in as above. Then the

computer will ask if there is another product, and if there is it will ask for that one too. you may

31

Chapter 3 KinSim Documentation
have up to four products in one mechanism step. You may change this by changing the paramater
mazr in the program source code.

When there are no more products, the computer will ask for the k, or the branching ratio if it
is a photochemical step.
Submenyu command 2, Delete a mechanism step

This command will ask you for the step you want deleted and then remove it from the
mechanism.

Sub d §, Move hansam step

This command will ask you which step you want to move, and where you waat to move it to,

and then move that step to that place, and move others up or down one so that it fits in.
Submenu command 5, Switch two mechanism steps
This command will ask for two mechanism steps to switch, and then switch them

Sub d 6, Print h

This command will print the mechanism on your printer in the same format that it is on the
screen.

Submeny command 7, Scroll sereen

If the mechanism is too large to fit on one screen, then you may use this command to show
different parts of it. It will ask you which step you want to be the first one on the screen, and then
it will reprint the mechanism with that step being the first one. However, if the step you want to
be at the top is less than 18 steps from the end of the mechanism, then the last 18 steps of the
mechanism will be printed.

Submenu command 8, Unused

Submenue command 9, Return to masn meny

This command will return you to the main menu screen

8. Change Initial Conditions

This command will allow you to set the number of sets of initial concentrations, the initial
concentrations of each species in the reaction for each set, and also to change the names of the
species in the reaction. To use this command type an 8 at the main menu and then the computer
will respond by asking for a new number of sets of initia! conditions, and then after getting that
will type:

32

Chapter 3 KinSim Documentation

There are 10 spacies to look at:

1) 12 2)1 3) R 4) RO2
6) RO21 6) 02 7) Is 8) R
9) RI 10) Hydrocarb

Which species do you want to look at?

(? for all, or numbers and subranges separated by commas)

Now you may enter the numbers of the species you wish to change the initial concentrations or

the names of, just like in command four (integrate and graph). The first thing the computer will
respond with is:

Species number 4: *RO2 *

New name:

Now you may enter a new name, or type spaces to keep the old name. The computer will then
type back the name, to confirm that the name is right, then it will ask for initial concentrations for
each set of initial concentrations that you are set up for. The computer will go through this for
each species in the list and then it will ask if you want to change any more, and if you do, it will go
back to the point where it types out what each species is, otherwise it will take you back to the
main menu

9. Save mechanism

This very simple command will ask for the name of & file and then will save the mechaanism,
the initial concentrations, the number of sets of initial concentrations, and the scale factor in the
file so that they can be loaded at a later time by d one (load hanism file). If there is

an error the program will ask for the file name again.

0. Exit program

This command will end the program execution, and put you back in the operating system.

Appendix A KinSim Listing

Appendix A: Program Listing for KinSim block data stats

implicit double precision (a-h,o-z)

parameter (maxn = 50)
c Constant. meximum number of rate laws

integer wksize
parameter (wksize = 4*maxn + maxn*i3 + maxn*(maxn+1))
4 Constant values for common block of IMSL variables

parameter (maxinit = 3)

double precision x/0.0/. h/0.1d-3/, y(maxn, maxinit),
* xend/0.0/, t0l/0.1d-7/, wk(wksize)
integer n/0/, meth/2/, miter/2/, ier/0/, iwk(maxn), index/1/
common/imsldata/ n,x,h,y.xend,tol,meth,miter,index,iwk, wk,ier
Variables for calling INSL
n = number of diff equs
Xx = place to start integration
b = stepsize
¥y = Initial values for function (concentrations)
value to stop integration at
tolerance value for function
method of integration (2 is stiff gear method)
method of iteration (2 is chord method with
jacobian matrix internally calculated)
integer work vector
real work vector
error flag variable
command variable (1 means thie is the first call to routine)

cooo0oacoc0aoao0000
o
)
-
LI I I

[
.
H

LI I B

paraneter (maxm = 50)
parameter (maxr = 4)

integer N/0/, ninit/0/, rtype(maxm), nlhs(maxm), nrhs(maxm),
* rhs(maxr, maxm), lhs(maxr, maxm)
double precision k(maxm)/maxm¢0/, sf/0/, tint/0/
character+14 spcs(maxn)
character*20 mechnam/’NONE 4
common/mechanism/ mechnam, spcs, M, ninit. K, sf, tinf,
* rtype, nlhs, nrhs, lhe, rhs

[Variables for defining the mechanism

c mechnam = name of file with mechaniem in it

34

Appendix A KinSim Listing

spcs = labels with the names of species in the rxn
m = puzber if steps in the mechanism
K = K's or scale factors for each step in the mechanism

parameter (maxdata = 1000)

character*20 flashnam/’NOKE '/
intager nfpoints/0/
doudble precision ftime(maxdata),fdata(maxdata)
common/flash/ flashnam, nfpoints, ftime, fdata
Variables for data on flash profile
flashnam = name of file with flash profile in it
nfpoints = number of data points
ftime = time of data point
fdata = data points

character*20 exprnam(maxinit)/maxinit+’NONE '/
integer nepoints(maxinit)/maxinit+0/
double precision etime(maxdata,maxinit),edata(maxdata,maxinit)
common/experemental/ exprnam, nepoints, etime, edata
Variables for experemental data
exprnam = name of file with experimental data
nepoints = number of expsrimental data points
etine = time for data point
edata = data point

logical graphrun(maxinit)/maxinits.false./

double precision gdata(maxinit,800,2)

integer out(3),gpnts(maxinit)/maxinit+0/, monitor
common /graphing/ graphrun,out,gdata,gpnts,monitor

CHsexsxssens ond block data subprogranm *
end

integer function instr(start,str,substr)
This function finds a substring in a string.
implicit none
integer start,pl,ls,lss,tmp
character*(*) str,substr

ls=len(str)
las=len(substr)
got length of strings
tmp=0
pl=start
do 10 while {(pl .le. 1s-1ss+1) .and. (tmp .eq. 0))
if (substr .eq. str(pl:pl+lss-1)) tmp=pl
Pl=pl+1
10 continue

Appendix A KinSim Listing

c Search string until found, or until we run out of data
c to search in the main string

instr=tmp

return

end

file that contains the Get.Mech and Get _Exp Data subroutines
include ’getdata.for/list’

This subroutine loads data for the flash profile, and for the

expersmental data.

The first line of teh file must contain the number of points,

and then lines must alternate, time/data until the end of the file

subroutine load.data(nam, pts, t. d, eflag)
implicit none

character+20 nam

integer pts,eflag,tmp

double precision t(+),d(s)

open(unit=2, file=nam, err=130, status=’0LD’, iostat=tmp,
* form='formatted')
Open file
100 format(I16)
read(2,100) pts
read number of points
110 format(£30.14/130.14)
do 120 tmp=1,pts
read(2,110) t(tmp),d(tmp)
continue
read out all time and data.
close(unit=2, err=132, iostat=tmp)
oflag=0
return
close file and return signaling everything is 0K

write(6,%)* Error in opening *//mam
write(6.+) 'Oiostat equals °, tmp
pts=0

oflag=1

return

write(6,%) OError in reading '//nam
pts=0

eflag=1

return

write(8,+)* Error in closing *//nam
write(6,+) 'Olostat equals *,tmp
pts=0

sflag=1

return

e A RPN

Appendix A

[

Errcr bandling routines signal that something is wrong and then return
end

This subroutine loads the mechanism from a data file where it
was saved in an earlier session

subroutine file input

implicit none

include ’commondef.for/list’

integer maxm,maxn,maxdata.wksize,maxinit,maxr

parazeter (maxm = 50)

parameter (maxr = 4)

parameter (maxn = EO)

parameter (maxdata = 1000)

parameter (wksize = 4smaxn + maxn+13 + maxn*(maxu+i))

parameter (maxinit = 3)

double precision x, h, y(maxn, maxinit),

* xend, tol, wk(wksize)

integer n, meth, miter, ier, iwk(maxn), index

common/imsldata/n.x,h,y,xend, tol,meth.miter,index,iwk, wk,ier

integer N, ninit, rtype(maxm), nlhs(maxm), nrhs(maxm),
* lhs(maxr, maxm). rhs(maxr, maxm)

double precision k(maxm), sf, tinf

character*14 spcs(maxn)

character*20 mechnam

/ hanisn/ h.

. spcs, M, ninit, X, of, tinf,
* rtype, nlhs, nrhe, lhs, rhs

character*20 flashnam

integer nfpoints

double precision ftime(maxdata),fdata(maxdata)
common/f1lash/ flashnam, nfpoints, ftime, fdata

character*20 exprnam(maxinit)

integer nepoints(maxinit)

double precision stime(maxdata, maxinit).edata(maxdata, maxipit)
common/experemental/ exprnam, nepoints, etime, edata

logical graphrun(maxinit)

integer out(3).gpnts(naxinit),monitor

double precision gdata(muxinit,800,2)

common /graphing/ graphrun. out, gdata, gpnts, monitor

37

KinSim Listing

rem e N e e T Sl g e

Appendix A KinSim Listing

c

access block data area
integer tmp. instr, tmpl
external instr

14 format('$New name of file with mechanism:)
5 write(6.14)
10 format(1a20)
read(6,10) mechnam
it (ioetr(i. mechnam, '.') .eq. 0)
* pechnam=nechnam(1:instr(1,mechnan,’ *)-1)//* .mech’
open(unit=2, filewmechnam, err=100, status='old’. iostat=tmp,
+ form='formatted’)
got file name and open it

20 tormat(1I6)
read(2,20) n
pumber of diff. eqns. also number of species in reaction
read(2,20) ninit
number of initial conditions
30 format(1aid)
32 format(1d30.22)
do 40 tmp=i.n
read(2,30,err=110) spcs(tmp)
do 39 tmpl=1,ninit
read(2.32, err=110) y(tmp,tmpi)
39 continue

o

40 continue
read in the name of species in the mechanisn, and its
its ipitial concentrations
read(2, 50) sf
acals factor. used to adjust the light intensity
read(2,560) tinf
infinity time value
read(2,20) m
nupber of mechanism steps
50 format(d30.22)

do 60 tmpel.zm
read(2,20) rtyps(tmp)
type of reaction
read(2,20) nlhs{tmp)
punber of reactants(left band side)
do 51 tmpiw=i.nlhe(tmp)
read(2,20) lha(tnpl,tap)
61 continue
read in each reactant
read(2.20) nrhs(tnp)

38

Appendix A

[

c

number of products(right hand side)

do 52 tmpi=1,arhs

read(3,20) rhs(tmpl,tmp)

62 contirue
read in each pr

read(2,50,err=110) k(tmp)
K. or branching ratio for reaction

60 continue

(tmp)

oduct

KinSim Listing

read in the number of steps in the mechanism and read in

the K's or scale factors on each one

close(unit=2, err=120, iostat=tmp)

raturn

close the file and return

error bandling for file i/o

100 write(6,+)’ Error opening ’//mechnam

write(6,+) Oiostat equals °, tmp

goto B

110 write(6,+) 'OError reading '//mechpam
close(unit=2, err=120, iostat=tmp)

goto 6

120 write(6,*)’ Error closing '//mechnam

write(6,+) ‘0Olostat equals ’.tmp

goto 6
ond

gots data for light flash

subroutine getflash
implicit none

include ’commondef.for/nolist’
got access to the block data area

integer lerr, instr
external instr
character*i tmpansr

10 format(1a1)
write(6,+)

write(6,s) 'File with flash profile data is:

tmpansr="Y’
set default answe
if (afpoints .ne.

. tmp

T
0) then

39

//flashnam//*

Appendix A KinSim Listing

c

If there is no flash date, automatically change it
283 format{’$Change the flash profile? ')
write(6,283)
read(5,10) tmpansr
call caps(tmpansr, tmpansr)
endif
if (tmpansr .eq. 'Y') thenm
lerr = §
do 30 while (lerr .eq. 1)
while error condition keep trying
284 format (*$Name of file with flash profile? ')
write(8,284)
20 format (A20)
read(5,20) flashnam
if (instr(1,flashnam,’.’) .eq. 0)
. flashnam=flashnam(1:instr(t,flashnam,’ ')-1)//'.flash’
Read in name, and add on extention
call load. data(flashnam, nfpoints, ftime, fdata, lerr)
load data in, and set error flag
30 continue
endif
return
end

This subroutine loads in experexmsntal data
subroutine getexpr
implicit none
include ’commondef.for/nolist’
get access to the block data area
integer lerr, instr, tmp
external instr
character*l tmpansr

1

o

format(1a1)
write(6,+)
do 783 tmp=1,ninit
Loop for each set of initial conditions

82 format (’ File with experemental data set ’,i2,
* * is: "',1a20,°"’)

tnpansr='Y’

write(6,82) tmp,exprnam(tmp)

it (nepointa(tmp) .ne. 0) then

40

Appendix A KinSim Listing

c Only ask tc change data if there is already data
285 format (*$Change the experemental data file? °*)

write(6,286)
read(5,10) tmpansr
call caps(tmpansr.tzpansr)

endif

it (tmpansr .eq. 'Y') then
lerr = 1
do 50 while (lerr .eq. 1)

Keep looping while there is an error condition
format(’$Name of file with experemental data? *)
write(6,286)
format(1220)
read(6,20) exprnam(tmp)
if (instr(4,exproan(tmp),’.’) .eq. 0) exproan(tmp)=

exproan(tmp) (1:instr(1,exproam(tmp),’ *)-1)//° .expr’
Get name and tack an extention on it
call load.data(exprnan(tmp). nepoints(tmp),
etine(1.tmp), edata(l,tmp), lerr)
Load in data
80 continue
endif
783 continue
gets experemental data

return
end

file that contains the display() and update{) subroutine
include ’play.for/list’

This function gives the maximur value of a array of doubles
double precision function arrmax(c,a)
implicit none
integer c,1
double precision a(c),t

t=-9.94-38
do 10 1=1,¢c
if (a(1) .gt.) t=all)
continue
arrmax=t
return
end

Appendix A KinSim Listing

c this function gives the minimum value of an array of doubles
double precision function arrmin(c,a)
implicit none
integer ¢.1
double precision alc).t

t=0.9437
do 10 1=1,¢
it (a(l) .1t. t) t=a(l)
continue
arrmin=t
return
end

This subroutine sets up the screen and also some values for
outputting a table or a graph

subroutine setup(graphit)

implicit none

logical graphit

include ’commondef.for/nolist’

character+1 tmp

double precision dmnx.dmin.tnax.tmin.ltmp.ftmpl

character+2 taxis, daxis

character»14 monsp

integer 1p,1pi,findspcs

doudble precision arrmax, arrmin

external arrmax,arrmin,findspcs

format(1a1)
format (i6)
if (graphit) then
If graph then....
monitor =~ -1
do 687 while (monitor .eq. -1)
710 format(’$Species to momitor: *)
write(8,710)
48 format(1a14)
read(5,48) monsp
monitor=findspca(monsp)
it ((momitor .1t. 1) .or. (monitor .gt. 1)) monitor=-g
continue

Appendix A

<

18

737

923

13

713

16

KinSim Listing

got the species to monitor on the graph
write(6,+)
dnax=-9.99e37
driin=9.00e37
do 734 1p=1,ninit
tap=" *
do 737 while((tmp .ne. °'Y’) .and. (tmp .ne. °'K'))
format(*$Do you want to graph initial concentration set’,
i2," ?7)
write(6,18) 1p
read(5,3) tmp
call caps(tap,tmp)
continue
find out if this iditial concentration set is to be graphed
graphrun(ip)= tmp .aq. 'Y’
if (graphrun(lp)) dmax=max(dmax, y(momitor,lp))
if (graphrun(lp}} dmin=min(dmin, y(monitor,lp))
if so then find out current limits on graph from initial
concentrations.
continue
write(6,)
taxiess’XB’
daxis="YL'
set up for drawing graph paper
tmin=0.0d0
thax=-9.90e37
do 923 1lp=1.ninit
it (graphrun(lp))
tanax-max(arrmax(nepoints(lp), etime(1,1p)), tmax)
i? (graphrun(lp))
dnar=max(arrmax(nepoints(lp). edata(l,1p)), dmax)
i? (graphrun(lp))
dmin=min(armmin(nepoints(lp), edata(1,1p)). dmin)
continue
got maximum and minimum values for data and time
2tump=(dmax-dmin)*0.10
dmax=dmax+ftmp
dmin=dmin-ftmp
expand window for data by 10% on each side
write(6,+)' Window for concentration data is: °
format(’ Min: *,d18.10,' Max: *,d18.10)
write(8,13) dmin, dmax
write(6.+) 'Input new values (negative to keep these)’
format(’$Values: ')
write(8,713)
format(d30.22,d30.22)
read(6,16) ftmp, ftmp1
it (ftmp .ge. 0.0) dmin=ftmp
if (ftmpl .ge. 0.0) dmax=ftmpt

43

Appendix A

c

1926
992

allow user to change window for concentration data.
call clear_text
call set.viewport(0.0, 0.0, 767.0, 469.0)
call text.scroll(i,4)
call draw_graphpeper('LIN®, 10, 5. 'LIN’, 6, B, ‘WHITE')
call label numaxis(taxis, 'Time’, tmin, tmax, .trus.)
call label numaxis(daxis, ‘Concentration’, dmin, dmax, .true.)
call eet_color(‘'CYAN’,1)
call set_color(’ *,3)
set up screen and drawv graphpaper
do 992 lpi=i,ninit
if (graphrun(lp1)) call place(0.0, y(monitor.lp1). 1pt,lpl)
do 1926 1p=1.nepoints{(lp1l)
i? (graphrun(lp1))
call place(etime(ip.1p1), ecata(lp,lpi), 1p1.1p1)
continue
continue
put up experemental data on the screen

do 802 lpi=t.ninit

gpnts(lp1)=0

802 continue

don’t save the places of the axperemental data
call set.writemode(’C0’)
set COmplement write mode, so that data can be erased later

eolse

(1)
66

100
78

and if we want a table.....

write(68,#)’ Put in the thres numbers for species to monitor’
format('$Species '.13,°: ')
format(1a14)
do 78 1p=1,3
out (1p)=0
do 100 while (out(lp) .eq. 0)
write(6,66) lp
read(5,86) monsp
out (1p)=findspes(monsp)
continue
cortinue

44

KinSim Listing

Appendix A

[+

c

get the three species to monitor
call clear_text
call set.viewport(0.0, 0.0, 767.0, 399.0)
call set_window(0.0, 0.0, 767.0, 399.0)
call text _scroll(1,4)
call set_textsize(1,)
call set_writemode(’RE’)
call box(0.0, 370.0, 767.0, 399.0)
call move(0.0,0.0)
call 1ine(0.0, 399.0)
do 110 1p=t.§
call move(float(lp)+163.6-1.0, 0.0)
call line(float{lp)+153 6-1.0, 399.0)
110 continue
call move(6.0, 395.0)
call text(’ Time *)
call move(168.68, 395.0)
call text(’ Experimental *)
do 120 1p=1,3
call move((158.6+1p*166.8), 395.0)
call text(spes(out(lp)))
120 continue
sot up screen and draw the table
endit
return
end

This much used little subroutine will take a string and then
replace all the lower cass letters with upper case letters, while
not touching the rest of the characters

subroutine caps(tmp,tmp1)

implicit none

character*(+) tmp,tmpl

integer 1

tapl=tnp
do 10 i=1,len(tmp)
if ((ichar(tmp(i:i)) .ge. ichar(‘a‘))

. -and. (ichar(tmp(i:i)) .le. ichar(’z’)))

* cmpl(i:1)=char(ichar(tmp(i:i))-ichar('l')*ichnr(’A'))
10 continue

return

end

This usefull little function will remove a positive integer
from a string and update pointers so that it can be called

45

KinSim Listing

Appendix A KinSim Listing

[again to get the next integer in the string
integer function pullnum(s.p)
implicit none
character*(+*) s
integer p.tmp

tmp = O
do 10 while ((len(s) .ge. p) .and. ((s(p:p) .1%. '0°)
. or. (s(p:p) .gt. '9°)))
Pep*1
10 continuse
£ind next number
do 20 while ((len(s) .ge. p) .and.
. ((s(p:p) .go. '0') .amd. (s(p:p) .le. '9°)))
tmp=10stmp + ichar(s(p:p)) - ichar(’0’)
p=p*1
20 continue
get its value
do 30 while ((len(s) .ge. p) .and. (s(p:p) .eq. ')]
Pp*1
30 continue
Nove pointer to next non-space character
pullnun=tmp
return
end

This procedure updates the K’s after graphing or printing a table
without disturbing the screen.
subroutine update(snlp)
implicit none
logical smlp, change
include ’commondef.for/molist’
integer pos.posi.lp,spos
character*l tmp
character+80 longtmp
integer inatr, pullnum
external instr, pullnum
double precision dbltmp
character#16 kstr

tmpe'Y’
do 32767 while (tmp .eq. °'Y")
format (1260)
tormat (al)
format(’ Thers are +, I<int(alog10(floatj(m))+1.0)>,
* mechanism steps')
write(6.5) »
write(6,s) * Which step's constants do you want to look as?’
write(6,+) ' (7 for all,or numbers and subranges seperated’,
* by commas)’
read(5,3) longtmp

Appendix A KinSim Listing

4 get K's to be updated
pos=0
spos=1
do 100 while (len(longtmp) .ge. spos)
12 (instr(1,longtmp,’?’) .ne. 0) then
pose1
posism
spos=len{longtmp)+1
olse
pos=pullnum(longtmp.spos)
posi=pos
i? (longtmp(spos:spos) .eq. '-') posi=pullnum(longtmp,spos)
endif
find range of k's to be updated
it (pos .gt. posi) then
1p=pos
pos=posi
posi=lp
endif
switch range if top is smaller than bottom
do 164 lp=max(pos,0),min(max(pos1,0),m+1)
it ((1p .gt. 0) .and. (1p .ls. m)) then
check to make sure k exists
format(’ Step number °,i<int(log10(float(ip)))+1>,*:*)
write(6,9) 1p
format(’ ', 1a186)
call makek(lp, kstr)
write(6,11) ketr
format (’$Change? *)
write(8,701)
read(6.4) tap
call caps(tmp,tmp)
print current value and ask for change
format('$New value: ')
if (tmp .eq. ’'Y’) write(6,704)
format(d30.14)
if (tmp .eq. ’Y’) read(5,13) k(lp)
if change wanted, then get new value
endif
continue
continue
fornat(*$Change more constants 7 ')
write(6,707)
read(5,4) tmp
call caps(tmp,tnp)
Ask if more changes are desired

47

32767

714

4
4445

(2]

10

20

30

*

Appendix A

continue
do 4445 while ((tmp .ne. 'I') .and. (tmp .me. ‘N°))

format (*$Integrate again(I) or go back to Meau(N) ? ')

write(6,714)

read(5,4) tmp

call caps(tmp,tmp)

find out if whe user wants to integrate the squations again

continue
h=0.1d-3
tol=0.1d-7
icdex=1
meth=2
miter=2
set up constants for integration
smlp » tmp .eq. 'I'

set flag to loop back again and re-integrate
return
end

This subroutine saves the mechanism and other values so that

we can come back later after we get sick of playing with

this silly computer.

subroutine savemech

implicit none

include ‘cummonde?.for/molist’

charzctar+20 tmpnam

integer instr, tmp, tmpi

external instr

format('OCurrent name of mechanism file: *', 1a20,'"’)

write(6,10) mechnanm

tormat (’$New name(Space to keep the same name): ')

write(6,20)

format(1a20)

read(5,30) tmpnam

it (tmpnam.ne.’

it (instr(l,mechnam.’.') .eq. 0)
mechnam=mechnam(1:instr(1,mechnam,’ *))//’ .mech’
get name and tack an extention on the end

open(unit=2, file=mechnam. err=100, status=’new’, iostat=tmp,
form='formatted’)

48

KinSim Listing

’) mechnam=tmpnam

Appendix A KinSim Listing

[open file
40 format(1i6)
write(2.40) n
write(2,40) ninit
50 format(1a14)
60 format(1d430.22)
do 200 tmp=i.n
write(2,60) spcs(tmp)
do 210 tmpi=i,ninit
write(2,60) y(tmp, tmpl)
210 continue
200 continue
c save chemical names and initial concentrations
write(2,60) st
write(2,60) tint B
c save scale factor and infinity time value
write(2,40) m
do 220 tmp=1.,m
write(2,40) rtype(tmp)
write(2,40) nlha(tmp)
do 201 tmpi=1,nlhs(tmp)
write(2,40) lhs{tmpi,tmp)
201 continue
write(2,40) arhs(tmp)
do 202 tmpi=1,nrhs(tmp)
write(2,40) rhs(tmpi.tmp)
202 continue
write(2,60) k(tmp)
220 continue

o

c save mechanism
close(unit=2, err=120, iostat=tmp)
c close file and return
write(6,) 'Saved’
Teturn
c error handling
100 write(8,¢)' Error opening ’//mechnam
return
110 write(6.*)’ Error reading '//mechnam
return
120 write(6,+)’ Error closing ’//mechnam
return
ond
[This subroutine lets you change the number of initial
C conditions and the names of species in the reaction

49

Appendix A KinSim Listing

c and also initilal concentrations
subroutine playspcs
implicit none
include °commondef.for/nolist’
integer tmp,1p1.1p2, Pos. posi, spos, pullnum, instr
external pullnum, instr
double precision dtmp
character#14 ntmp
characters! ctmp
character*60 longtmp

tormat (1i5)
format('$New value: *)
write(6.+)' In order to keep the current value:’
write(6,+)"* Enter negative values for numbers,’
write(6,+)”’ and spaces for character strings.’
write(6,s) *
format(’ Number of sets of initial concentrations: ’,1i6)
tmp=0
do 810 while ((ninit .eq. 0) .or. (tmp .eq. 0))
write(6,330) ninit
write(6,320)
read(5,10) tmp
it (tmp .gt. 0) ninit=tmp
continue
change number of initila conditions
write(6,330) ninit
write(6,s)
ctmp='Y"*
do 32767 while (ctmp .eq. ’Y’)
format (1a60)
format(al)
format(’ There are ’,i3,’ species to look at.')
write(6,720) n
write(6,*)
format(x,4(i3,’. *,1a14,x))
do 811 lpi=1i,n,4
write(6,725) (1p2,spcs(1p2), 1p2=1p1,min(1p1+3,n))
continue
vrite out the species in the reaction
write(6,+)
write(6,+)
write(6,+) ' Which spscies do you want to look at?*
write(8,%) * (? for all,or numbers and subranges seperated’.
' by commas)’
read(6,3) longtmp
pos=0
spos=1
Prompt user for the changes to be made
do 786 while (len(longtmp) -g8. spos)

50

Appendix A

c

20
340

680

30
360

1010

164
786
723

KinSim Listing

loop through the input string
if (imstr(1,longtmp,’'?’) .ne.
poa=1
posi=n
spos=len(longtap)+1
else
pos=pullnun{longtzp, spos)
posi=pos
it (longtmp(spos:spos)
endif
get the range to e changed
if (pos .gt. posl) then
1pi=pos
pos=posi
posi=lpl
endif
If top of range is smaller than beginuing. switch them
do 164 lpi=max(pos,0) .min(max(posi,0),n+1)
it ((lp1 .gt. 0) .amd. (1lpl .le. n)) then
Loop and make sure that the species exists
format (1a14)
format{’ Species number’,1i3,':
write(8,340) 1lp1i, spca(lpi)
format ('$New name: °)
write(6,580)
read(6,20) ntmp
if (ntzmp .me.
get new name
write(6.+)
write(8,+)
write(6,340) 1pi, spcs(lpl)
tormat(£30.20)
format(' Initial concentration’,1i2,’:
do 1010 1p2=1,ninit
write(6,350) 1p2,y(1p3.1p2)
write(68.320)
read(6,.30) dtmp
if (dtmp .gt. 0.040) y(lp1.lp2)=dtmp
write(6,350) 1p2,y(ipt.lp2)
write(8,s)
continue
get initial concentrations
write(6,s)
endif
continue
continue
format(’$ Change more constants ?)
write(6,723)
read(6.4) ctmp
call caps(ctap,ctmp)

0) then

.eq. ’=’) posi=pullpum(longtmp,spos)

"',1a14.'"")

) *) spes(1p1)=ntmp

*.d30.22)

51

Appendix A KinSim Listing
c keep looping until done
32767 continue
retura
end
c this subroutine changes the constants, scale factor. the
C infinity time value, and the reaction k's

320

& ow

30
10

360

410

subroutine playk

implicit nove

include ’commondef.for/nolist’

integer tmp.1p1,1p2, pos, pesl. spos, pullnum, instr
external pulloum, instr

double precision dtmp

charactersiq ntmp

charactersi ctmp

character*80 longtmp, equstr

character+16 ketr

format (*$New value: ')
format (1a60)
format(al)
format(£30.20)
format(1i5)
write(6,)’ In order to kesp the curreat value:’
wIite(6,+)’ Enter negative values for numbers, *
write(6,+)’ and spaces for character strings.’
write(6,s) * >
write (6, »)
format(’ Scale factor: *,130.20)
write(6,360)sf
write(8,320)
Tead(6,30) dtmp
it (dtmp .ge. 0.0d0) sf=dtmp
write(68,360)st
Bt new scale factor
write (8, +)
format(’' Time for infinity: *,£30.20)
write(6,410)ting
write(8,320)
read(6.30) dtmp
if (dtmp .ge. 0.0d0) tinf=dtmp

52

o A v——

Appendix A KinSim Listing

[get new infinity time
write(6,410)tiny
write(6,+)
ctmp=’Y’
do 2767 while (ctmp eq. 'Y’)
729 format(’ There are ’,.id,’ mechanism steps to look at.')
write(6,729) n
write(6,*) ' Which step's constant do you want to look at?’
write(8,*) ' (? for all,or numbers and subranges seperated’,
* ' by commas)’
read(6,3) longtmp
[+ get k's to be changed from the user
pos=0
spos=1
do 111 while (len(longtmp) .ge. spos)
it (instr(1,longtmp,’'?’) .ne. O) then
pos=1
posi=m
spos=len{longtmp) +1
else
pos=pullnum(longtmp.spos)
posi=pos
if (longtmp(spos:spos) .eq. ‘'-') posi=pullnum(longtmp,spos)
endif
c get range of k’'s to be changed
it (pos .gt. posi) then
1pi=pos
pos=posi
posi=lpt
endif
4 switch the range if the first is larger than the second
do 1566 lpi=max(pos,0) ,min(max(post.0),m+1)
if ((lpt .gt. 0) .and. (1p1 .le. m)) then
4 make sure that the K exists
430 format{’ K(’,i3,’) = ',£30.20)
call makeeqn(lpi,60,eqnstr)
call makek{1lpl kstr)
write(6.%) equatr
write(6,*) * *//kstr
write(6,320)
read(6,30) dtmp
it (dtmp .ge. 0) k(1p1)=dtmp
write(6,430) 1p1.k(1p1)
c get a new value
write(6,*)
endif
1866 continue
111 continue
723 format('$ Change more constants 7 ')
write(6.723)
read(6,4) ctmp

|
!
]
5
¢
|

53

Appendix A KinSim Listing

[ask if we are done
call capa(ctmp,.ctmp)
2767 continue
return
end

this useful) little function will find the actual length of the
string. by searching from hte end tword the front until a
non-space character is found. It is unfortunate that FORTRAN
does not supply this function and I bad to make it nyselt

integer function backlen(str)

implicit none

integer i

character«(») otr

aacaaaon

i=len(str) l
do 10 while ((str(i:i) .eq. * *) .and. (i gt. 1))

imi-g b
continue %
backlen=i
xeturn
end

1

o

c This subroutine assembles the mechansim step in a printable format
subroutine makeeqn(eqn, maxlen, str)
implicit none
include’commondef.for/nolist’
ioteger eqn,maxlen, rlen(8). s, place, tmp, backlen, instr, r
external backlen, instr
characters(s) str
character arrows7
character*14 react(s)

do 5 s=1,len(str)
str(s:s)=* *

continue

c Temove everyting from the print string
arrows' ----> '

c sst the value of the arrow
if (rtype(eqn) .eq. 1) arrows' -hv-> ’

4 reset it if it is a photochemical reaction
place=7

c set length of string
place=place+3*(nlhas(eqn)-1)
place=place+3+(nrhe(eqn)-1)

o

54

Appendix A KinSim Listing

<

10

20

40

30

45

50

add in length of ' + * for each one that will be required
do 10 s=1,nlhs(eqn)
react(s)=spca(1hs(s,eqn))
rlen(s)=backlen(spcs(1lhs(s,eqn)))
place=place+rlen(s)
continye
get lbs off equation ready to be added into the string
do 20 s=1,nrhs(eqn)
react(nlha(eqn)+s)=spcs(rha(s,equn))
rlen(alhs(eqn)+s)=backlen(spca(rhs(s.eqn)))
place=place+rlen(nlhs(eqn)+s) i
continue “
got rhs of equatin ready to be added into the string
do 30 while(place .gt. maxlen)
loop while the string is too long
r=] i
do 40 s=2,nlhs(eqn)+nrhs(eqn)
if (rlen(r) .1t. rlen(s)) r=s
continue
find longest string
rlen(r)=rlen(r)~t
place=place-1
chop a character off of it
continue
start comstructing string
place~rlen(1)
str(1:place)=react(1)(1:rlen(1))
add first reactant
it (nlhe(eqn) .gt. 1) then
do 45 r=2,nlhs(eqn)
str(place+1l:place+3)s’ + *
Place=place+3
str(place+1:place+rlen(r))=react(r)(1:rlen(r))
place=place+rlen(r)
continue
endif
add an operator and each other ractact
str(place+1:place+7)=arrow
place=place+7
add arrow
r=nlhs{eqn)+1
str(place+1:placesrlen(r))=react(r)(1:rlen(r))
place=place+rlen(r)
add first reactant
if (arba(eqn) .gt. 1) then
do 50 renlhs(eqn)+2,nlhs(eqn)+nrhs(eqn)
str(place+! place+3)="' + *
place=place+3
str(place+1:place+rlen(r))=react(r)(1:rlen(r))
place=place+rlen(r)
continue

55

[

(2]

Appendix A

add an operator and sach other reactant
endif
do 60 while ((place .1t. maxlen) .and.
* (instr(1,str,arrow) .1t. maxlen/2-4))

while the string is lessthan the maximum length and teh arrow
is less than halfway accross, add a space to the begining.
this makes the output pretty
str=’ '//str
place=place+1
60 continue
return
end

this subroutine puts the k in a printable format, and also
makes ajustments for it being a branching ratio

subroutine makek(eqn,str)

implicit none

include’commondef.for/nolist’

integer tmp.i,eqn

characters(*) str

do b i=1,len(str)
str(i:i)=' *
continue
clean out string
if (rtype(eqn) .eq. 1) then
i? branching ratioc needed then....
tmp=0
do 10 i=1,eqn
if ((rtype(i) .eq. 1) .and. (1he(1.i) .eq. 1hs(1,eqn)))
* top=tmp+1i
10 continus
tigure out which branching ratio is being used
write(str(1:3),20) 1hs(1,eqn)
put value of reactant into ratio
str(1:1)=char(ichar(’'A’)+tmp-1)
put the actual ratio into the string
str(4:5)=" =’
put equaltiy operator into string
else
But if it ims a k...
20 format(i<int(aloglO(floatj(eqn))+2.0)>)
write(str(1:3),20) eqn
put equation number into k
str(1:1)='k’
str(4:5)=’ »*

o

KinSim Listing

Appendix A KinSim Listing

c

put k and equality operator into string
endit
format(e11.4)
write(str(6:16),30) k(eqn)

put value of constant into string
return
end

3

k=]

this function returns a label
character+4 function numlab(i)
implicit none
integer i
characters4 tmp

1

o

format(i3,*)")
write(tmp,10) 4
numlab=tmp
return

end

This function makes, and then printe out one line of the mechanism
at the location of the screen directed

subroutine putline(ln, st)

implicit none

include’commondef.for/nolist’

integer 1ln,st,tmp,lnt

character*80 str

double precision xmech/164.0/, xks/674.0/, vert

character*4 numlab

external numlab

1ntemax(min(ln,18),1)
vert=379.0-20.0*1n1
figure out where to putit
do 10 tmp=1,80
str{tnp:tmp)=’ *
10 continue
clean the string
it (st .le. n) then
str(1:4)=numlab(at)
str(5:18)=gpca(st)
endif
put in the species, if there is one
str(19:22)=numlab(st)
it (st .le. =) then
call makeeqn(st,d42.str(23:64))
call makek(st, str(65:80))
endif

57

Appendix A
c put in the mechanism and teb k if there is one
xmech=164.0
xks=574.0
call linetext(6+1nl, 2, str)
[+ print out the step

call move(>mech,vert)
call line(xmech,vert-19.0)
call move(xks,vert)
call line(xks,vert-19.0)
c replace the lines that were erased
retura
end

(2]

KinSim Listing

this function searches the equations for a particular species,

c or moves each species pumber above the one specified down onme

logical function clean(num. remove)
implicit none

logical remove, ltmp

integer num, lp, lpi, tmp

include ‘commondef.for/nolist’

1ltmp=.false.
c set flag
do 10 lp=1,m
do 20 lpi=1,nlhs(lp)

if (.not. remove) ltup=ltmp .or. (lhe(lpi,lp) .

c if search, check for equaltiy
if (remove .and. (lhe(lp1,lp) .gt. num))
. 1he(1p1,1p)=1he(lp1,1p)-1
c if remcve, decrement if above value

20 continue
do 30 1lpi=i,nrha(lp)

if (.not. remove) ltmp=ltmp .or. (rhs{lpl,lp) .eq.

if (remove .and. (rhs(lpi,1p) .gt. num))
. the (1p1.1p)=rhs(1p1,1p)-1
30 continue
c do the same for the rhs
10 continue
it (remove) then

write(8,s) * * spcs(oum),’ removed from mechanism’

n=n-1
do 60 lp=num,max{n.num)
spea(1p)=spes(1p+1)
do 60 lpi=i maxinit
y(1p1.1p)=y(1p1.1p+1)
60 continue
60 comtinue

58

aum)

num)

Appendix A KinSim Listing
c clean up and teel the user if one was removed
endif

clean= .not. 1ltmp

c set flag
end
c this function returns the place of a species, when passed its name
c it will return a zero if the species is not there.
c The function is case sensitive i

integer function findspca(str)
implicit none
include’commondef .for/molist’
characters(*) str

integer backlen,lp,tmp,11,12

axternal backlen

tap=0
11=backlen(str)
do 10 1p=i,n
12«backlen(spcs(ip))
if ((11 .eq. 12) .and. (str(1:11) .eq. spca(lp)(1:12))) tmp=lp

1

o

continue
findspcs=tmp
return

end

59

R Tt

Appendix A KinSim Listing

[+

This subroutine either changes or adds a new mechanism step
subroutine cstep(ch, eqn)
implicit none
logical ch, chtap
integer eqn. tmp. lp. 1pl. findspcs, clean
external findspcs, clean
include 'commondef.for/molist’
character anssl, sptmp*id, ketrei6
double precision ktmp

ans=’ °’
chtmp = ch
do 10 while ({ams 1t. '0’) .or. (ans .gt. *4'))
write(6,+)
write(6,+)
write(6.+) ' 1) A -bv-> (products) '/
'3) A + B ----> (products)’
write(6,%) * 2) A ----> (products) 1
'4) A+ B + C ----> (products)’
format(® Equation is currently type’.i2)
1 (chtmp) write(8.11) rtype(eqn)
format(’$Your choice? ')
write(5,12)
forzat(1a1)
read(5.13) ans
continue
get new reaction type
if (ans .eq. '0’) return
escape hatch
tmp=rtype(eqn)
xtyp.(oqn)-ichar(lnl)-ichar('0')
if (chtmp .and. (tmp .nme. rtype(eqn))) then
if reaction type is different, then...
chtmp=.false.
flag that we are no longer just changing chemicals
do 20 1p=1.nlhs(eqn)
tmp=lhs(1p.equ)
1hs(1p.eqn)=0
if (clean(tmp, clean(tmp. .false.))) continue
chack for each chemical on the left hand side, and
if it is no longer in the mechanism, ramove it
continue
do 30 lp=1,nrhe(eqn)
tmp=rhs(1p.eqn)
rhs(1p,eqn)=0
if (clean(tmp, clean(tmp, .false.))) continue
continue

60

Appendix A KinSim Listing

<

21
22
23

do the same for the right hand side
endif
do 40 1p=1,max(rtype(eqn)-1,1)
format('$Reactant ', 121,':)
format(taid)
format(’ Current value of reactant ’.ial,’: °*,1at4)
if (chtmp) then
write(8,23) char(ichar(’A')+1p-1), spcs(lhs(lp,eqn))
write(6,+) 'Enter new value, or a '//
'space to keep the same value’
if changing print out current value
else
write(6,+) Entexr value for'
otherwise ask for valus
ondif
sptmp=" ’
do 60 whils (sptmp .eq. °
loop untill we get a good value
write(8,21) char(ichar(’A*)+lp-1)
read(6,22) sptmp
if (chtmp .and. (sptmp .eq. °* *}) then
tmp=lhs(1p,eqn)
sptmp=spcs(1ks(lp,eqn))
if a space was entered, and we are only changing, keep old value
eslse
tmp=findspcs (sptmp)
otherwise get new value
endif
if (chtmp) lpi=lhs(lp,eqn)
save current value, if changeing.
if (tmp .eq. 0) then
ang=' *
do 70 whils ({ans .ne. 'Y’) .and. (ans .ne. 'N'))
write(6,%) sptmp,’ is not in the mechanism now.’
format(’$Did you type it corrsctly? ')
write(6,26)
read(5,13) ans
call caps(ans,ans)
verify that a new name is not a typeo
continue
(ans.eq.'Y’) n=n+i
(ans.eq.’Y’) tmp=p
(ans.eq.’Y’) spcs(n)=sptmp
(ans.eq.’Y’) y(1,n)=0.040
(ans.eq.'Y’) y(2.n)=0.0d0
(ans.eq.'Y’') y(3,n)=0.0d0
if it is good, creats a nev species in the mechanism
(ans.eq.'N’) sptmp=’ '

61

Appendix A KinSim Listing
c if not, set flag to re-enter
endif
if (tmp .ne. 0) lhs(lp,eqn)~tmp
4 set nev value for valid name

if (chtmp .and. (lp1l .ne. tmp) .and. (tmp .nme. 0)) then
if (clean(lpi. clean(lpi. .false.))) 1pi=lpi
endif
Check that an old value removed is not deleted from mechanism
c and if so. remove it
60 continue
40 continue
nlhs(eqn)=nax(rtype{eqn)-1,1)
c set number of reactants
ans="Y"’
1p=0
do 300 while (ans .eq. 'Y’)
C loop while thare are products to be entered
1p=1p+1
entmps* 4
do 100 while(sptmp .eq. ’ ")
< loop untill we get valid data
write(8,¢)
write(6,»)
it (chtmp .and. (1p .le. nrhs(eqn))) then
write(6,+) ’Current product ',char(ichar(’A’)+1p-1),’ is °*,
* spce(rha(lp.eqn))
write(6,*) 'Enter a space to keep the old name’
c inform of old data
olse
write(8,+) ’Enter name for product °,char(ichar(’A’)+lp-1)
c or ask for new data
endif
101 format(’$Name? *)
102 format(1a14)
write(6.101)
read(5,102) sptmp
if (chtmp .and. (sptmp .eq. °’ ') .and.
« (1p .1s. nrhs(eqn))) then
tmp=rhe(lp,eqn)
sptap=spca(rhs(1p,eqn))

(¢}

c if changing, the kesp old data
slse
tnp=findspes (sptmp)
c otherwise search for value
endif

it (chtmp .and. (1p .le. nrhs(eqn))) lpi=rhs(ip, eqn)

62

- e R P R RO

Appendix A

C save old value for deletion
it (tmp .eq. 0) then
ang=’ *
do 270 vhile ((ans .ne. ’'Y’) .and. (ans .ne. ‘N'))
write(6,*) sptmp.’ is not in the mechanism now.’
format (’$Did you type it correctly? ')
write(6,226)
read(6,13) ans
call caps(ans,ans)
check for typso
continue
it (ans.eq.'Y’) n=n+i
if (ans.eq.'Y') tmp=n
if (ans.eq.’Y') spcs(n)=sptmp
if (ans.eq.’Y’) y(1,n)=0.0d0
if (ans.eq.’¥’) y(2,n)=0.0d0
it (ans.eq.°Y') y(3,2)=0.0d0
if not a typeo, creats a new species in mechanism
if (ans.eq.’N') sptmp=’ ’
otherwise set flag for re-entry
endif
it (tmp .ne. 0) rhe(lp,eqn)=tmp
sot new valus in mecehanisn
it (chtmp .and. (1pl .ne. tmp) .and. (tmp .ne. ©O)
.and. (1p .le. nrhs(egn))) then

if (clean(lpt, clsan(lpi, .false.))) 1pt = 1p1
clean out any old values
endif
100 continue

ans=" '
do 90 while((ans .ne. °’Y’) .and. (ans .ne.
format(’$Is there another product? ')
write(6,72)
read(5,13) ans
call caps(ans,ans)
90 continue
c ask if thers are any more products
300 continue
nrhs(eqn)=lp
set number of products
write(6,+)
if (chtmp) then
call makek(eqn kstr)
write(6,+)'Current value of '//ketr
write(6,+) Enter a negative value to keep the old one’
endif
76 format('$New value for k? °)
write(6,76)

KinSim Listing

Appendix A KinSim Listing

c prompt for new k
78 format(ds30.15)
read(6.78) ktmp
if (ktzp .1t. 0.0d0) then
if (.not. chtmp) k{eqn)=0.0d0
slse
k(eqn)=ktmp
endif
get new k
end

This subroutine will change the mechanism
subroutine playmech
implicit none
include’commondes .for/nolist’
integer topm,tmp,tmp1,lp,lpi.mrtype,mnlhs,mnrhs,
* mlhs(maxr),mrhs(maxr),pullnum,adddir
double precision xmech/165.0/, xks/§75.0/
character ans*i, lans+E, dt+9, tm+8
logical clean
external clean, pullnum
double precision mk

call clear.text

call text scroll(l.4)

call set_writemode('0V’)

call set.viewport(0.0, 0.0, 767.0, 399.0)
call set.window(0.0, 0.0, 767.0, 399.0)
call move(0.0, 399.0)

call 1line(767.0, 399.0)

call 1ine(767.0, 360.0)

call 1ine(0.0, 360.0)

call 1ine(0.0, 399.0)

call move(1.0, 389.0)

call text(’ Diff Eqne: *)

call move(xmech, 389.0)

call text(’ Mechanism: ')

call move(xks, 380.0)

call text(’ k's *)

call move(xmech-1.0. 399.0)

call line(xmech-1.0, 0.0}

call move(xks-1.0, 399.0)

call line(xks-1.0, 0.0)

call set_viewport(0.0, 0.0, 767 1, 359.0)
call set_window(0.0, 0.0, 767.0, 369.0)

64

Appendix A KinSim Listing

4

10

11

12

30

100

set up table
it (m .ne. 0) then
topm=1
do 10 lp=topm,min{topm+17.m)
call putline(lp,1p)

continue
endif

print out table
ans=’ '
do 900 while (ans .ne. '9°)

ans=' ’

do 30 while ((ans .1t. '1') .or. (ams .gt. ‘9’))

write(8.+)’ 1) Add mechanism step 4) Move mechanism °,
'step 7) Scroll screen’ Lo

write(6.+)’ 2) Delete mechanism step &) Switch two °*,
‘mechanism steps 8) °
write(6,¢)’ 3) Change mechanism step 6) Prinmt out mechanism’,
* 9) Return to menu’
format('$Your choice? °)
print out menu and prompt for command
write(6,11)
format(tal)
read(5,12) ans
call caps(ans,ans)
got legitimate command
continue
goto (100.200.300.400,500,600,700.800.900).
(ichar(ans)-ichar(’0’))
goto 900
and yot another poor imitation of a CASE statement

Add step to mechanism command
nwm+1
if (m .eq. 1) topm=1
increment number of mechanism steps, and if it is the firast one
set the first step on the screen to it
call cstep(.false., m)
get step
it ((m .1e. topn+17) and. (m .ge. topn)) then
call putline(m-topm+1, m)
it the step added can be displayed without scrolling the
screen, then do so
else

o l

Appendix A

[

otherwiss reprint the screen
topmemax(m-17,1)
do 40 lp=topm,m
call putline(lp-topm+i, 1p)
continue
endif
goto 900

delete mechanism step command
tmp=-1

do 70 while (((tmp .1t. 0) .or. (tmp .gt. m)) .and.

write(6,13)
read(5,14) lans
1p=1
tmp=pullnun(lans,lp)
continue
get step to be deleted
if (tmp .ne. 0) then
do 80 1p=1,nlhs(tmp)
1pi=lhs(1p,tmp)
1lhs(lp,tmp)=0
if (clean(lpi, clean(lpi, .false.))) continue
continue

remove left hand side from mechanism
do 90 1p=1,nrhs(tmp)

lpl=rhs(1lp,tmp)
The(lp, tmp)=0
if (clean(lpi, clean(lpi, .false.))) continue
continue
remove right hand side from mechanism
mem-1
decrement pumber of steps
do 110 lp=tmp.m
k(1p)=k(1p+1)
Ttype(1p)=rtype(lp+1)
nlhs(1p)=nlhs(1lp+1)
nrhs(1p)=nrha(1p+1)
do 120 1pi=1, maxr
1hs(1p1,1p)=1hs(lpt,1p+1)
rhe(1p1,1p)=rhs(1lp1,1p+1)
continue
k(1p)=k(1p+1)
continue
move everything down
if (topm+17 .gt. m) topm=nax(topm-1, 1)
do 130 lp=topm,min{topm+17.m)
call putline(ip-topm+1, 1lp)
continue

66

KinSim Listing

(m.gt.0))

Appendix A KinSim Listing

c

reprint screen
endif
goto 900

change mechanisms stop

300 tmp =0
do 50 while (((tmp .1t. 1) .or. (tmp .gt. m)) .and. (m.gt.0))
write(6,13)
13 format (*$which mechanism step? ')

14 format{1a6)
read(5,14) lans
1p=1
tmpepullnum(lans,1p)

B0 continue
get step to be changed
if (m .ne. O) call cstep(.true., tmp)

change step
if ((tmp.ne.0) .and. (tmp .ge. topm)
* .and. (tmp .le. topm+17))then

topm = max(1,min(tmp-9.m-17))
do 60 lp=topm,min(m,topm+17)
call putline(lp-topm+i. 1p)
60 continue

endif

adjust screen pointer, and reprint screen
if (tmp .ne. 0) call putline(tmp-topm+l, tmp)
goto 900

nove/switch mechanisn steps
400 continue
600 if (m .1t. 2) goto 900
If there aren’t snough steps, then skip this
tap=0
do 140 while ((tmp .1t. 1) .or. (tmp .gt. m))
21 format(*$Nechanism step number:)
write(6,21)
22 format (1a6)
read(6,22) lans
lp=t

tmp=pullnum(lans, 1p)
140 continue

67

Appendix A KinSim Listing

c

get step to move
1p1=0
do 180 while((lp1 .1t. 1) .or. (lpt .gt. m))
if (ans .eq. '5') then
write(6,23)
olse
write(6,24)
endif
23 format(*$Switch with? ')
24 format('$Move to?)
read(6.22) lans
1p~=1
lpi=pullnum(lans, 1p)
160 continue
get place to move it to. or swicth with
mk=k(tnp)
nrtype=rtype (tmp)
mnlks=nlhs(tmp)
mnrhe=nrhs (tmp)
do 160 1p=1,maxr
mlhs(1p)=1lhe(lp, tmp)
mrhs(1p)=rhe(1p, tmp)
160 continue
save in temporary variables
if (ans .eq. ’4’) them
2dddir=-1
if (tmp .1t. 1p1) adddirst
do 170 lp=tmp,lpi,adddir
rtype(1p)ertype(1p+adddir)
nlhs(1p)=nlhs(lp+adddir)
orhs (1p)=nrbs(1p+adddir)
do 180 tmpl=i,maxr
lhs(tmpl,lp)=1lhs(tapi,lp+adddir)
the(tmpi,1lp)=rhs(tmp1,lp+adddir®
180 continue
k(1p)=k(1p+adddir)
170 continue
if move, then move everything inbetween to a new spot
eolse
rtype(tmp)=rtype(1p1)
nlhs(tmp)=nlhs{1p1)
nrhs(tmp)=nrhs(1p1)
do 190 tmpi=1i maxr
1hs ‘tmpl, tmp)=lhs (tmp1,1p1)
rhe{tmpi.tmp)=rhe(tmp1,1p1)
190 continue
k(tmp)=k(1p1)

68

Appendix A

[+

if switch, move the other valus to its new spot
endif
rtyps(1p1)=nrtype
nlhs{1p1i)=mnlhs
nrhe(lpl)=mnrhs
k(1p1)=mk
do 210 tmpi=i,maxr
1bs(tmp1,1p1)=nlhs(tmp1)
rha(tmp1,1pi)=mrhs (tmp1)
continue
put it back, from temporary variables
if (1p1 .gt. tmp) then
1p=1p1
1pi=tmp
tmp=1lp
endit
if (ans .eq. '4’) then
do 220
lp-n:x(topu.nin(topmtlT.lpl)),mux(topn.:in(topm‘l7.tup))
call putline(lp-topm+i, lp)
continue

print out range that was shifted
else
if ((1pt .ge. topm) .and. (1p1 .lae. topm+17))
call putline(lpi-topm+1, 1p1)

if ((tmp .ge. topm) .and. (tmp .le. topm+17))
call putline(tmp-topm+1, tmp)
print out the ones that were switched
endif
goto 900

get printout
if (m .eq. 0) goto 900
call date(dt)
call time(tm)
write(6,«)
write(6,s)
write(6,+)
write(68,) dt//’ '//tm
put date and time on
if (topm .ne. 1) then
topm=1
do 230 lp=topm.min(topm+17, m)
call putline(lp-topm+1, 1p)
continue
endif
make sure the first ones are on the screen
call copy.screen

69

KinSim Listing

Appendix A KinSim Listing

c print them out
do 240 while (topm .1t. = i7)
lpi=topm
tope=min(topm+18, m-17)
do 260 lp=topm.topm+17
call putline(lp-topm+i, 1p)
continue
put next set on the screen
call copy.area(0.0, 0.0, 767.0, float(topm-1p1)*20.0-1.0)
print out the new ones
continue
keep going until all are printed
goto 900

scroll screen
if (m .1t. 19) goto 900
do only if there are more thtn one screenfull
format('$Which step do you want to be the first’,
' one on the screen? ')
format(1a6)
tmp=0
do 270 while ((tmp .1t. 1) .or. (tmp .gt. m))
write(6,32)
read(5,33) lans
1p=1
tmp=pullnum(lans,lp)
continue
get thestep that is desired to be on the screen
lpi=topm
topm=min(tmp, max(m-17,1))
adjust the first thing on the screen
if (topm .ne. 1p1) then
do 260 lp=topm, topm+17
call putline(lp-topm+t, 1p)
continue
endif
if the screen is not exactly the same, then reprint it
goto 900

no command
800 continue

exit and/or loop back to command memu
900 continue
return
end

Appendix A KinSim Listing

[+

C
<

c

142

23

file that contains the Graph subroutine

include ‘graph.for/list’
this subroutine puts data up on the graph. It also stores
the points that it uses, for erasure later onm.

subroutine place(t,c,marker,iset)

implicit none

include ‘commondef.for/nolist’

double precision t.c

integer marker,iset

gpnts (iset)=gpnte(iset)+1

gdata(iset gpnts(iset),1)=t

gdata(iset,gpnta(iset) ,2)=c
save data point

call plot_point{gdata(iset,gpnts(iset).1),

gdata(iset,gpnte(iset),2,, , marker)

plot point

return

end

This subroutine plots out data on a graph and prints it
subroutine graph
implicit none
include ’commondef.for/molist’
double precision step.i,lastt,arrmax
external evmech, evjacob,i,arrmax
integer pl,pli
double precision conc(maxn), cinf(maxinit)
character*l tmp
character dt*9,tms8

do 23 plis1,3
if (gpnts(pli) .ne. 0) then
do 142 pl=1,gpnts(pll)
call plot.point{gdata(pll, pl, 1),gdata(pli, pl, 2),.0)
continue
gpots(pli)=0
endif
continue
Erase any existing plots on the graph
do 891 pli=i,ninit
Loop for each set of initial conditions
if (graphrun(pl1)) then
If it is supposed to be graphed, graph it
lastt= arrmax(nepoints(pli). etime(1,pl1))
find the last time value in the experemental data
step= lastt/128.0d40

7

e

Appendix A

c

32

166

726

891

478

476

got step size for 128 points
x = 0.0d0
index=1
tol=0.14d-7
h=0.1d-4
methe2
miter=2
set up values for integrating routine
do 32 pl=i,n
conc(pl)=y(pl,pll)
continue
set initial concentratioms
call place(x,y(monitor.pl1),0,pl1)
put first value on graph
do 166 while (x .1t. lastt)
Integration loop
xend = x + atep
next time value to stop at
call dgear(n, evmech, evjacob, x, h, conc, xend,
tol, meth, miter, index. iwk, wk, ier)
Integrate

KinSim Listing

if? (ier .gt. 128) write(8,+)’ Integration error -- ',ier

if(index .ne. 0) write(8,*)' Index=',index
index=0
Error conditions
call place(x,conc(monitor),0,pll)
Put point on graph
continue

call dgear(n, evmech, evjacob, x, h, comc, tinf, tol, meth,

miter, index. iwk, wk, ier)
Integrate to infinity time value

it (ier .gt. 128) write(6,+)’ Integration error -- ’,ier

format(’ Data set ’,i2,' at time *,£10.2,’ : *,£13.9)

write(6,725) plt,tint,conc(monitor)
cint (pl1)=conc (monitor)
Write out and save infinity time value
endift
continue
tap=’ *

do 476 while ({tmp .ne. °'Y’) .and. (tmp .me. 'N'))

format(*$Print Screen? ’)
write(6,888)
format(1a1)
read(6.476) tmp
call caps(tmp.tmp)
continus
Ses if a hardcopy is desired
if (tmp .eq. 'Y') then
If so, then set up top of screen with date and

72

Appendix A

[

Gaan

infinity time values.

write(6,*)
write(6,*)
write(6,+)
write(6,+)
call date(dt)
call time(tm)

write(8,») at//’
do 499 plis],ninit
if (graphrun(pl1)) write(8.726) pli, tinf. cinf(pl1)

499 continue

call copy.screen
print out gcreen

endif
return
end

*//tm

KinSim Listing

w

17

10

file that contains the Table subroutine
include 'table.for/list’

This subroutine prints a table with the concentrations

of three reactants vs. time with the experemental data also

and gives a hard copy if desired

subroutine table
implicit none

include ’commondef.for/nolist’

integer linesprinted, place,lp.pli
character*1 tmp,prt
double precision conc(maxdata), ftmp. ftmp1(3)

external evmech, evjacob

character tm+8,dt»9

top='N"
pre=' *
format(at)

do 83 while((ichar(tmp)-ichar(’0’) .ls. 0) .or.

(ichar(tmp)-ichar(’0’) .gt.
write(6.+)' Which set of initial conditions?’

read(5,3) tamp
continue

ninit))

get initial condition set from user
plisichar(tmp)-ichar(*0’)

do 10 while ({(prt .ne.

'Y') .and.

(prt .ne.

format(*$Do you want to print the table? °)

write(6,17)
read(6,3) prt

call caps{prt,prt)

continue

'N*))

Appendix A

c

20

18
19

2

30

o

*

Ask if a hard copy is desired

it (prt .eq. 'Y’) then

write(8,s)

write(6,*)

cakl date(dt)

call time(tm)

write(6.5)" Initial concentration set #'/jtmp

write(6,+) dt//’ *//tn

write(8,»)

call copy-area(0.0, 362.0, 767.0, 479.0)
endif

KinSim Listing

print time and date and table heading if a hard cpoy is requested

call text_scroll(7,24)

sot scroll area so that header is not scrolled off the screen

linesprinted=0
index=1
h=0.1d4-3
tol=0.1d-7
meth=2
niter=2
sot up for integration
do 20 place~i,n
conc(place)=y(place,pll)
continue
set initial concentration values
x=0.0d0
format(2x,£14.7,1x,£14.7,1x,14.7,1x,£14.7,1x,714.7)
format(2x,£14.7.1x,14x 1x,£14.7,1x,£14.7,1x,£14.7)
formats for printing table
do 26 1p=1,3
£tmp1 (1p)=conc (out (1p))
continue
write(6,10) x,ftmp1(1),£mp1(2) . £tmp1(3)
linesprinted=linesprinted+1
write out the first line with initial concentrations
do 123 place=1,nepoints(pli)

loop with one stop for each point in the experemental data

call dgear(n, evmech, evjacob, x, h, conc, etime(place,pll),

tol, meth, miter, index, iwk, wk, ier)
integrate

if (der .gt. 128) write(s,s) * Integration error -- *, ier

index=0
do 30 1p=1.3

2tmp1 (1p)=conc (out(1p))
continue

write(6,18) x, od-ca(placo.pli),ftnpl(!),ftnpl(2).ttmpi(S)

write out data
linesprinted=linesprinted+1
if (linesprinted .gt. 17) then

T4

Appendix A

c if screen is full then....
call move(0.0,0.0)
call 1ine(0.0. 309.0)
do 32 1p = 1,6
call move(float(lp)*153.6-1.0, 0
call line(float(lp)*163.6-1.0, 39!
continue
Patch up lines on table
it (prt .eq. 'Y’)
call copy-area(0.0, 0.0, 767.0, 369.0)
print it out
call text scroll(t,4)
write(8,+)’ Hit return to go on*
read(6,3) tmp
vait for user to respond
call text_scroll(7,24)
linesprinted=0
endif
123 continue
c when done integrate to infinite time value
if (etime(nepoints(pl1),pl1) .1t. tinf)then
call dgear(n. evmech, evjacob. x, h, coac, tinf,
* tol, meth, miter, index, iwk, wk, ier)
if (ier .gt. 128) write(6,s) * integration error -- ’,ier
do 143 1p=1,3
1tmp1(1p)=conc (out (1p))
continue
write(6,19) x,ftmp1(1).ftmp1(2),Ltmp1(3)
and write it out
linesprinted~linesprinted+1
endif
tmp=" *
call move(0.0, 0.0)
call 1ine(0.0, 399.0)
do 132 1p = 1,5
call move(float(lp)+163.6-1.0, O
call line(float(1p)*163.6-1.0, 39
continue
call move (0.0, 0.0)
call 1ine(767.0, 0.0)
patch up the table
it (prt .eq. 'Y’)
* call copy.area(0.0, 0.0, 767.0, float(linesprinted)*20.0)
and print it out if desired
call text.scroll(i,4)
write(6,+)’ Hit return to go on’
read(5,3) tmp
wait for the user to respond
return
ond

)
.0)

[)
9

-0)
9

.0)

KinSim Listing

Appendix A

[

caoaaqa

a

[+]

a

ao

file that contains the mechanism eubroutines
EVMECH(N,X,Y(N) ,YPRINE(N))
and EVJACOB() - which is pot used in this implementation

include ’mech.for/list’
This function generates the intensity of light as a function
of time using a linear interpolation of the data

double precision function i(t)

implicit none

include ’commondef.for/nolist’

double precision t,tmp

integer itmp

itmp=1
if (¢t .le. ftime(1)) then
tmp=sfxfdata(l)

If time is less than any of the data points, use the first value
alone for data
elseif (t .ge. ftime(nfpoints)) then
tmprsf«fdata(nfpoints)
It time is greater than any of the data points, use the
last data point alone for data
slse
do 10 while ((t .gt. ftime(itmp)) .and. (itmp .1t. nfpoints))
itmp=itmp+1

10 continue

search for the time value that is larger than the current time

tmp=g?* (fdata(itmp-1)+(t~ftime (itmp-1))

. *((tdata(itmp)-tdata(itmp-1))

. /(ftime (itmp)-ftime(itmp-1))))
Otherwise do a linear interpolation between the point before and
the point found

endif

i=tmp

return

end

subroutine used to generate a jacobian matrix.. Unused in this
implementation

subroutine evjacob(n,x,y,pd)

double precision x,y(n),pd(n,n)

integer n

return

end

This function evaluates the velocety of a reaction mechanism

76

KinSim Listing

Appendix A

¢

aaaaaon

1

2

3

4l

0

o

0

(=

KinSim Listing

step.
double precision function evalv(equ, j, t. c)
implicit none
integer eqm, j. 1p
double precision t, ¢{j), i
external i
include’commonde? . for/nolist’

Another crude implementation of a CASE statement

goto (10, 20, 30, 40). rtype(eqn)
write(6,*)’ Unrecoverable error in mechanism -~
write(8,#)’ No mechanism step type ’,rtype(eqn)
stop
evalv= k(eqn)*i(t)
return

Photo-chemical step
evalv= k(eqn)*c{(lhs(1,eqn))
return

Single reactant.
evalv= k(eqn)*+c(1has(1,eqn))*c(1hs(2,eqn))
rsturn

Two reactants
evalv= k(eqn)*c(1lhs(1,eqn))*c(1ha(2,0qn))*c(1hs(3,eqn))
return

Three reactants

You may add your own wierd and unusual steps here if so desired

end

Subroutine call by INSL routine DGEAR
Evaluates differential equations
subroutine evmech(j. t, ¢, dc)
implicit none
integer j.q.r
double precision t, c(j), dc(j). v, evalv
external evalv
include ’commondef.for/molist’

do 6 g=1,j
dc(q)=0.0d0
continue
Set initial values of 0.0 into the differential equations
do 10 gq=1,m
Loop for each mechanism step
v=evalv(q, j. t, c)

77

Appendix A KinSim Listing

o} get velocity of step
do 20 r=1,nlhs{q)
dc(1he(r,q))=~dc(lha(r.q)) -~ v
continue
subtract velocity of mechanism step from cach reactant’s diff. eqn.
do 30 r=1,nrhe(q)
dc(rhs(r.q))=de(rha(r.q)) + v
30 continue
add velocity of meckanism step to each product’s diff. eqn.
10 continue
return
end

CHrkkbkrddkrrrdhdrshnes Boginning of the real program!i! !} sxssksresrevrnsress
progran kinsim

implicit none

logical bigloop. smallloop
Boolean variables for terminating the loops in the program

logical didit(9)/9+.false./
Boolean variables to make sure there is enough data to do
each part of the program

charactersi command
Character for the command phase of things

call init_graphics
call set_color(’RED’,1)
call set_color(’ *,3)
initialize for the graphics and integration packages

bigloop = .true.
do 1734 while (bigloop)
call text.scroll(1,24)

call clear text
write(6,*) char(27)//'[1;1H’

Appendix A

c Clear screen ANSI code
write(6,s)’ 1. Load Mechanism file.'
write(6,*)
write(6,*)* 2. Load Flash profile file.’
write(6,%)
write(6,)"* 3. Load experimental data files.'’
write(8,+)
write(8,+)’ 4 Integrate and graph.’
write(6,+)
write(6, %}’ 5. Integrate and make a table’
write(6,)
write(6,%)" 6. Change constants®
write(6,+*)
write(6.+)’ 7. Change mechaniem*
write(6,s)
write(6,)’ 8. Change initial concentrations’
write(6.¥)
write(8,+)’ 9. Save mechanism and constants’
write(6,*)
write(8,%)’ 0. Exit program’
write(68,+)
write(6,+)
write(6.%)
format(*$Your choice? ')
format(1a1)
command=" *
do 3 while ((command .1t. °0’) .or. (command .gt. '9'))
write(6,1)
read(6,2) command
call caps(command,command)
3 «ontinue

N

C get a legal command
goto (1000,100,200,300,400,600,600,700,800,900)
. . (ichar(command) -ichar(’0°)+1)
write(6,+)’I11legal command -~ °,ichar{command)
goto 1734
c A very crude, but effective implementation of a case statement
C This will cause one section of code corresponding to the
c conmand number to bs executed

100 didit(1)=.true.
call file.input
goto 1734
c command 1: load mechanism file

200 didit(2)=.true.
call getflash
goto 1734

KinSim Listing

Appendix A KinSim Listing

C
c

c

4

command 2: load the flash profile (intensity of light
as & function of time)

300 if (didiv(1) .or. didit(8)) then
didit(3)=.true.
call getexpr

endif
goto 1734
command 3: load experemental data(Conc vs. time)
can oniy be dons after there is a mechanism loaded, or
the number of sets of initial conditions has been set
400 continue F
Graph data: done together with table.

500 smallloop = didit(2) .and. didit(3) .and.
+ (didit(1) .or. (didit(8) .and. didit(6)))
Table: can only be done when a mechanism file has been
loaded, or there is initial conc. data and a mechanism
didit(4)= command .eq. ‘4'
if (smallloop) call setun(didit(4))
do 1662 whil« (smallloop)
if (didit{4)) then
call graph
If we vant graphical output, then integrate and graph it
else
call table
Otherwise, put out a table from the integration
endif
call update(smallloop)
update info like K's etc. without erasing graph.
1662 continue
end of smallloop
goto 1734

600 if (didit(1) .or. didit(7)) then
didit(6)=. true.
call playk
endif
goto 1734
Change constants: can only be done when there is a mechanism

700 didit(7)=.trus.
call playmech
goto 1734

Appendix A KinSim Listing

[Load. or change a mechanism from the keyboard

800 if (didit(1) .or. didit(7)) then
didit(8)=.true.
call playspcs
endif
goto 1734
C Get initial conc. data: can only be done when there is a mechanism

000 if (didit(1) .or. (didit(8) .and. Aaidit(6))) call savemech
goto 1734
c Save mechanism: can only be done when there is a mechanism

1000 bigleop = .false
c Set flag to end program

1734 continue
c snd of bigloop
_screen
_scroll{1,24)

81

	Union College
	Union | Digital Works
	6-1987

	Making a rainbow workstation for a chemistry lab
	John D. Bak
	Recommended Citation

	tmp.1534450328.pdf.uUy9U

