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ABSTRACT

TURNER, JASON Introduction to Computational Topology Using Simplicial

Persistent Homology, and its usage in Analyzing BuckyBall® Arrangements.

Department of Mathematics, June 2018.

ADVISORS: Johnson, Brenda and Gasparovic, Ellen

The human mind has a natural talent for finding patterns and shapes in nature where there

are none, such as constellations among the stars. Persistent homology serves as a mathematical

tool for accomplishing the same task in a more formal setting, taking in a cloud of individual

points and assembling them into a coherent continuous image. We present an introduction to

computational topology as well as persistent homology, and use them to analyze configurations

of BuckyBalls®, small magnetic balls commonly used as desk toys.
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Preface

For hundreds and thousands of years, humans have found patterns in everything around them:

gods and heavenly figures in the stars, faces in the sand dunes on Mars, shapes in the clouds,

and much more.

In more recent times, there have been attempts using machine learning and other algorithms

[10] to replicate this innate human ability. Persistent homology, based in algebraic topology, is

another such attempt. The tools in persistent homology have been used in image recognition

[3] as well as the analysis of a variety of other systems, such as the human gait [6].

Our motivation for this text is to build a repertoire of ideas and examples from topology

to introductory ideas in persistent homology. After establishing this background, we utilize

the analytic tools provided by persistent homology to analyze arrangements of BuckyBalls®,

which are small magnetic spheres commonly used as a desk toy. We use persistent homology

to not only obtain information about the geometry of arrangements of BuckyBalls®, but also

their energy profile.

In this thesis, we present the following:

(i) A brief introduction to topology (Sections 1.1 - 1.4),

(ii) Geometric and abstract simplicial complexes (Section 2.1),

(iii) C̆ech and Vietoris-Rips complexes (Section 2.2),

(iv) Homology groups of a simplicial complex (Section 3.1), including calculating the homol-

ogy groups of surfaces using labeled diagrams (Section 3.2),

(v) Exact sequences of homology groups (Section 4.1), including calculating the homology
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of surfaces using them (Section 4.2),

(vi) Persistent homology groups and persistence diagrams, including their stability (Sections

5.1 and 5.2), and

(vii) An analysis of the arrangement of simulated BuckyBall® systems using persistent homol-

ogy (Sections 6.2 and 6.3).

Ideally, the reader has already taken an undergraduate course in algebra and analysis, al-

though all necessary material from these areas is provided in Section 1.1.

Throughout the text, we strive to provide meaningful examples of most, if not all, ideas and

concepts presented. We hope the reader is able to, with minimal external effort, understand and

appreciate the material covered.

Should the reader be interested in further studies, we recommend [1] as an introductory

text for topology, [9] as an in-depth reference for algebraic topology, and [4] as introductory

reading for computational topology and topological data analysis. Our discussions throughout

the first five chapters of this text are based on these three texts, and many proofs presented here

are similar to those found in them.
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Chapter 1: Topology

Topology (along with geometry) may be considered to be the “third Musketeer” of pure math-

ematics, alongside algebra and analysis. In recent years, it has gained popularity in applied

mathematics as well, finding use in data analysis among other fields.

Section 1.1 includes most, if not all, background information from set theory, algebra, and

analysis required to understand the rest of this text. It also introduces the reader to our notation,

which generally agrees with the standard rigorous notation.

Sections 1.2 - 1.4 serve as an introduction to topology, including ideas such as open and

closed sets, the Heine-Borel Theorem, the subspace, product, and quotient topologies, as well

as continuous functions and homeomorphisms.

Section 1.1: Preliminaries
In this section, we review a selection of ideas from set theory, algebra, and analysis that will

be of great use in our discussions throughout the text. For the sake of brevity, many proofs are

left to the reader.

Ideas from Set Theory

Lemma 1.1. Let A, B, and C be sets. The following relations hold:

(i) A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C),

(ii) A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C),

(iii) A × (B ∪ C) = (A × B) ∪ (A × C),
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(iv) A × (B ∪ C) = (A × B) ∪ (A × C),

(v) A × (B ∩ C) = (A × B) ∩ (A × C),

(vi) A × (B − C) = (A × B) − (A × C),

(vii) A − (B ∪ C) = (A − B) ∪ (A − C), and

(viii) A − (B ∩ C) = (A − B) ∪ (A − C).

Lemma 1.2. Let f ∶ X → Y be a function between sets X and Y . Let A, B ⊆ X and

V , W ⊆ Y . The following relations hold:

(i) f (A ∪ B) = f (A) ∪ f (B),

(ii) f (A ∩ B) ⊂ f (A) ∩ f (B),

(iii) f (A) − f (B) ⊂ f (A − B),

(iv) f−1(V ∪W ) = f−1(V ) ∪ f−1(W ),

(v) f−1(V ∩W ) = f−1(V ) ∩ f−1(W ), and

(vi) f−1(V −W ) = f−1(V ) − f−1(W ).

The Union Lemma gives the criterion for the union of a collection  of subsets Ai of a set

X to equal X itself, i.e.,
⋃

Ai∈
Ai = X. It will prove itself to be extremely useful throughout our

introduction to topology (Sections 1.2 - 1.4), where we rely on it for a number of proofs.

Lemma 1.3. THE UNION LEMMA. Let X be a set and  be a collection of subsets of X. For

each element x of X, let Ax be a set in  which contains x. Then
⋃

x∈X
Ax is X itself.

Proof. We prove the Union Lemma via double containment.

The union
⋃

x∈X
Ax is clearly a subset of X, as each Ax is a subset of X.

Let y be an arbitrary element ofX. By hypothesis, there exists an Ay ∈  such that y ∈ Ay.

As Ay is contained in
⋃

x∈X
Ax, X is a subset of

⋃

x∈X
Ax. ■

2
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Example 1.1. Consider the collection of sets given by  = {{n − 1, n, n + 1} ∣ n ∈ ℤ}. By

the Union Lemma, ℤ is the union of all such three-element sets.

Ideas from Algebra

Of particular relevance to our studies are abelian groups, which we shall write additively, i.e.,

we write the group operation of any abelian group to be +.

As such, 0 denotes the identity element, −g denotes the additive inverse of g, and, for a

positive integer n, ng denotes the n-fold sum g + g +⋯ + g.

Definition 1.4. An abelian groupG is free if there exists a subset of elements
{

g�
}

ofG, called

a basis, such that each element g of G may be expressed uniquely as a finite sum

g =
∑

n� g�

where n� is an integer. The number of elements in such a basis is called the rank of G.

If each element g in G may be written as such a finite sum, but not necessarily uniquely,

then we say that
{

g�
}

generates G.

Example 1.2. Consider the group (ℤ, +). All of ℤ is generated by 1, and thus ℤ is a free

abelian group of rank 1.

It is also possible to construct a free abelian group using a set S in the following manner:

The free abelian group G generated by S is the set of all functions �∶ S → ℤ such that

�(x) ≠ 0 for only finitely many values of x, and we add two such functions by adding their

values. Given x ∈ S, there exists a characteristic function �x for x defined by setting

�x(y) =

⎧

⎪

⎨

⎪

⎩

0, if y ≠ x,

1, if y = x.

The functions
{

�x ∣ x ∈ S
}

form a basis for G, for each function � ∈ G may be written

3
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uniquely as the finite sum

� =
∑

nx �x,

where nx = �(x) and the summation extends over all x for which �(x) ≠ 0. This differs from

previously defined free abelian group in that it erases all “extra” properties of the elements in

S.

Example 1.3. Consider the free abelian group
{

a + b
√

2 ∣ a, b ∈ ℤ
}

. We may also consider

this group as a ring by imposing the natural multiplicative structure.

However, the free abelian group generated by the elements 1 and
√

2 is the group {(a, b) ∣ a, b ∈ ℤ}

with addition as its operation. The aforementioned possible multiplicative structure has been

eliminated.

In the same vein that linear functions defined on the basis of a vector space may be extended

to all elements in that vector space, homomorphisms defined on the basis of a free abelian group

may be extended uniquely to homomorphisms of the entire group.

Suppose G is an abelian group and that
{

G�
}

is a collection of subgroups of G. If each

g ∈ G may be written uniquely as a finite sum g =
∑

g� where g� ∈ G� for each �, then G is

said to be the internal direct sum of the groups G�, and we write

G = ⊕�G�.

This should appear similar to free abelian groups, for if G is free abelian with
{

g�
}

as its basis,

then G is the direct product of the cyclic subgroups generated by each G�.

The external direct sum of a family of abelian groups
{

G�
}

is a group G consisting of all

tuples (g�) such that g� = 0G� for all but finitely many values of �.

We use the following lemma in our argument that internal and external direct sums are

actually one in the same. However, the lemma may be ignored and the statement may be

simply accepted by the reader without any loss of understanding.

Lemma 1.5. Let G be an abelian group. If G is the internal direct sum of the subgroups {G�},
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then there are homomophisms

j� ∶ G� → G and �� ∶ G → G�

such that ��◦j� is the zero homomorphism if � ≠ � and the identity homomorphism if � = �.

Conversely, suppose {G�} is a family of abelian groups, ad there are homomorphisms j�

and �� as above. Then j� is a monomorphism. Furthermore, if the groups j�(G�) generate G,

then G is their internal direct sum.

Proof. Suppose G = ⊕G�. We define j� to be the inclusion homomorphism. To define �� ,

write g =
∑

g�, where g� ∈ G� for each �; and let ��(g) = g� . Uniqueness of the representa-

tion of g shows �� is a well-defined homomorphism.

Consider the converse. As ��◦j� is the identity, j� is injective (and �� is surjective). If

the groups j�(G�) generate G, every element of G can be written as a finite sum
∑

j�(g�), by

hypothesis. To show this representation is unique, suppose

∑

j�(g�) =
∑

j�(g′�).

Applying �� , we see that g� = g′� . ■

We now argue that internal and external direct sums are identical; suppose G is the external

direct sum of the groups
{

G�
}

. Then for each �, we define �� ∶ G → G� to be the projection

onto the � tℎ factor. And we define j� ∶ G� → G by letting it carry the element g ∈ G� to the

tuple (g�), where g� = 0G� for all � different from �, and g� = g. Then ��◦j� = 0 for � ≠ �,

and ��◦j� is the identity. It follows thatG is the internal direct sum of the groupsG′
� = j�(G�),

where G′
� is isomorphic to G�.

We typically denote the internal and external direct sums using

G = G1 ⊕⋯⊕Gn and G = ⊕G�

5
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relying on the context to clarify what is meant (if it is important). For example, we may express

that G is of rank four by writing G ≅ ℤ⊕ ℤ⊕ ℤ⊕Z.

A subgroup G1 of G is a direct summand in G if there exists a subgroup G2 of G such that

G = G1 ⊕G2. If H1 is a subgroup of G1 and H2 is a subgroup of G2, then

G
H1 ⊕H2

≅
G1
H1

⊕
G2
H2

and G
G1

≅ G2.

It is well known1 and extremely useful that all finitely generated abelian groups G may be

expressed as the direct sum

G ≅ (ℤ⊕⋯⊕ ℤ)⊕
(

ℤa1 ⊕⋯⊕ ℤas

)

where each ai is a power of a prime, and ℤai denotes ℤ modulo ai.

Ideas from Analysis

In this text, we are primarily concerned with Euclidean N-space, denoted ℝN , and subsets

thereof. The standard means for measuring distance in this space is via the Euclidean distance

formula which is defined as follows: For points p = (p1, … , pN ) and q = (q1, … , qN ), the

distance between p and q is

d(p, q) =
√

(

p1 − q1
)2 +⋯ +

(

pN − qN
)2

.

We commonly denote the distance between the point p and the origin  by ‖p‖, regardless of

the dimension of the Euclidean space it is in. Note that the Euclidean distance satisfies the

following conditions:

(i) For all p, q in ℝN , d(p, q) ≥ 0, and d(p, q) = 0 if and only if p = q.

(ii) For all p, q in ℝN , d(p, q) = d(q, p).
1See the fundamental theorem of finitely generated abelian groups.
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(iii) For all p, q, r in ℝN , d(p, r) ≤ d(p, q) + d(q, r) (known as the Triangle Inequality).

A set A ⊂ ℝN is bounded if there exists a real number B such that ‖x‖ ≤ B for all x in A.

Example 1.4. The unit disc centered at the point (3, −7) in ℝ2 is bounded. For this, B ≥ 8.

A setA ⊂ ℝN is convex if for every pair of points p, q inA, the line segment PQ adjoining

them lies entirely in A.

Example 1.5. Every regular polygon in ℝ2 is convex. The five-point star, on the other hand, is

not convex.

Definition 1.6. The N-sphere, denoted SN (p, r), is the set of all points a distance r away

from the point p = (p1, … , pN+1) in ℝN+1, i.e.,

SN (p, r) =
{

x ∈ ℝN+1 ∣ d(p, x) = r
}

.

Definition 1.7. The closed N-ball, denoted BN (p, r) is the set of all points of distance r or

less away from p = (p1, … , pN ) in ℝN , i.e.,

BN (p, r) =
{

x ∈ ℝN ∣ d(x, p) ≤ r
}

.

Definition 1.8. Similarly, the open N-ball, denoted BN (p, r), is the set of all points of dis-

tance less than r away from p = (p1, … , pN ) in ℝN , i.e.,

BN (p, r) =
{

x ∈ ℝN ∣ d(x, p) < r
}

.

7
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Example 1.6. The 0-sphere of radius r centered about the point p in ℝ0, denoted S0 (p, r),

is made up of the points p − r and p + r. The closed 1-ball B1 (p, r) is the closed interval

[p − r, p + r], while the open 1-ball B1 (p, r) is the open interval (p − r, p + r). Notice that

S0 (p, r) is a sort of “boundary” of B1 (p, r) and B1 (p, r).

The 2-sphere S2 (p, r) is the sphere centered about the point p of radius r in ℝ3. The

closed 3-ball B3 (p, r) is the ball centered at the point p of radius r in ℝ3, while the open 3-ball

B3 (p, r) is all of the points in B3 (p, r) excluding those in S2 (p, r).

Definition 1.9. A sequence in a non-empty setX is a mapping s∶ ℤ+ → X, usually expressed

as a list

⟨s(1), s(2), … ⟩ = ⟨s1, s2, … ⟩ or ⟨sn⟩.

A sequence ⟨sn⟩ in ℝN is said to converge to a point s ∈ ℝN if, for all � > 0, there exists

a natural number M ∈ ℕ such that for all m ≥M ,

d(sm, s) < �.

Example 1.7. Let � > 0 and consider the sequence
⟨

1
√

m

⟩

in ℝ. This sequence converges to 0.

Let M > 1
�2

and m ≥M . Then

‖

‖

‖

‖

‖

‖

1
√

m
− 0

‖

‖

‖

‖

‖

‖

= 1
√

m

≤ 1
√

M

< �

as desired.

The infimum of a set A ⊂ ℝ is the greatest lower bound of A, while the supremum of A

is its least upper bound.

8
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Example 1.8. Let A = (0, 5) ∪ (�, 7] The infimum of A is 0, while the supremum of A is 7.

The diameter of a set A of points in Euclidean space is the supremum over the distances

between its points, denoted diam (A).

Example 1.9. Consider the set A = {(5, 2) , (1, −3) , (0, 1)} in ℝ2. The maximum distance

between any two points in this set is
√

26 (between the first and third points), so diam (A) =
√

26.

Section 1.2: Introduction to Topological Spaces
The field of topology is entirely centered around objects known as topological spaces and con-

tinuous functions between them. In this section, we will rigorously define topological spaces,

as well as give concise ways to discuss their structure. In later sections, we will define the

continuity of function between them and discuss their interactions with various topological

properties.

We will also introduce a selection of ideas from topology that will be called upon to further

our discussion about simplicial complexes throughout Chapter 2.

Definition of a Topology and Open Sets

Definition 1.10. LetX be a set. A topology  onX is a collection of subsets ofX, each called

an open set, such that:

(i) The empty set and X are open sets,

(ii) The intersection of finitely many open sets is an open set, and

(iii) The union of any collection of open sets is an open set.

The set X together with a topology  on X is called a topological space.

Although a topological space is made up of two things, a setX and a collection  of subsets

ofX which form a topology onX, we tend to refer to the setX as a topological space and leave

9



Jason Turner Union College

it implicitly understood that there is a topology on X. In the case we discuss two topologies on

X, we will denote the collections of subsets of X which form the topology differently.

Example 1.10. Consider the set X = {a, b, c, d} and the following collections of subsets of

X:

1 = {∅, {a} , X}

2 = {∅, {b} , {b, c} , X}

We show that 1 and 2 form topologies on X as follows:

(i) Each collection contains ∅ and X, i.e., ∅ and X are open sets.

(ii) In 1:

∅ ∩ {a} = ∅, ∅ ∩X = ∅, {a} ∩X = {a} .

In 2:

∅ ∩ {b} = ∅, ∅ ∩ {b, c} = ∅, ∅ ∩X = ∅,

{b} ∩X = {b} , {b, c} ∩X = {b} , {b} ∩ {b, c} = {b} .

Thus, the intersection of a finite number of sets in 1 are in 1 , and similarly for 2, i.e.,

the intersection of finitely many open sets is an open set.

(iii) The third condition is left as an exercise to the reader.

It is also apparent from the previous example that one may define different topologies on

the same set X. Let 1 and 2 be topologies on X. If 1 ⊆ 2, then 2 is said to be finer than

1 and 1 is said to be coarser than 2. Furthermore, if 2 is finer than 1 but is not equal to 1,

then 2 is strictly finer than 1. Strictly coarser is defined similarly.

The trivial topology on a set X consists of the open sets ∅ and X itself, and is the coarsest

10
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topology on X. The discrete topology on X, on the other hand, defines all subsets of X as

open and is thus the finest topology on X.

The following proposition allows us to determine whether or not a set is open in a topolog-

ical space, which proves useful when comparing topologies which are defined differently. To

simplify future discussion we utilize the following definition:

Let X be a topological space and x ∈ X. An open set U containing x is said to be a

neighborhood of x.

Proposition 1.11. Let X be a topological space and let A ⊆ X. A is open in X if and only if

for each x ∈ A, there is a neighborhood U of x such that x ∈ U ⊆ A.

Proof. First, suppose A is open in X and x ∈ A. If we let U = A, then U is a neighborhood of

x for which x ∈ U ⊆ A.

Now suppose that for every x ∈ A there exists a neighborhood Ux of x such that x ∈ Ux ⊆

A. By the Union Lemma (Lemma 1.3), A is exactly equal to the union of all such Ux. As A is

the union of open sets, it is therefore open. ■

Basis for a Topology

To describe a finite-dimensional vector space, one typically defines a vector basis (which is

much shorter and more efficient than trying to describe every vector in the space!) In the same

vein, it is possible to generate a topology utilizing a smaller collection of open sets, called a

basis, and their unions.

Definition 1.12. Let X be a set and  be a collection of subsets of X. We say  is a basis (for

a topology on X) if the following statements hold:

(i) For each x ∈ X, there is a B in  such that x ∈ B, and

(ii) If B1, B2 ∈  and x ∈ B1 ∩ B2, then there exists B3 ∈  such that x ∈ B3 ⊂ B1 ∩ B2.

The sets in  are referred to as basis elements.

11
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Example 1.11. Consider the real numbers, and the collection of open intervals  = {(a, b) ⊂ ℝ ∣ a < b}

in ℝ. We will show this is a basis for a topology on ℝ:

(i) Every point in ℝ is contained in an open interval, and thus in a set in .

(ii) If two open intervals intersect, they do so in an open interval. Hence, any point in the

intersection of two sets in  is contained in another set in  within the intersection.

Example 1.12. Let X be a set and  = {{x} ∣ x ∈ X}. We will show this is a basis for a

topology on X:

(i) Every x ∈ X lies in the set {x} in .

(ii) Every pair of distinct sets in  is disjoint, so the second condition is vacuously satisfied.

A basis  generates a topology  on X in the following way: The open sets in  are the

empty set and every set that is equal to a union of basis elements in . To prove this, we utilize

the following Lemma:

Lemma 1.13. Let  be a basis. Assume that B1, B2, … , Bn ∈  and that x ∈
n
⋂

i=1
Bi. Then

there exists B′ ∈  such that x ∈ B′ ⊂
n
⋂

i=1
Bi.

Proof. We show this via induction on n. The n = 2 condition holds by the second condition in

the definition of a basis (Definition 1.12).

Assume the result is true for n − 1. Let B1, … , Bn be sets in  and x ∈
n
⋂

i=1
Bi. Clearly

x ∈
n−1
⋂

i=1
Bi, and the induction hypothesis implies that there exists B∗ ∈  such that x ∈ B∗ ⊂

n−1
⋂

i=1
Bi.

Thus x ∈ B∗ ∩Bn. By the second condition in the definition of a basis, there exists B′ ∈ 

such that x ∈ B′ ⊂ B∗ ∩ Bn. Since B∗ ⊂
n−1
⋂

i=1
Bi as well, it follows that x ∈ B′ ⊂

n
⋂

i=1
Bi. Thus,

if the result holds for n − 1, it holds for n, and the result follows by induction. ■

12
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Proposition 1.14. The topology  generated by a basis  is a topology.

Proof. We will show that the topology  generated by a basis  satisfies the three conditions

for a topology (Definition 1.10):

(i) The empty set is in  by definition, and since every point in X is contained in some basis

element, X is the union of all basis elements and is therefore in  as well.

(ii) Let V =
n
⋂

i=1
Ui, where each Ui is in  . If any Ui is empty, then so is V and V is open.

Thus, assume each Ui is a union of basis elements. We will show that V is a union of

basis elements as well. Let x ∈ V . Then x ∈ Ui for each Ui.

Since each Ui is a union of basis elements, there exists a basis element Bi such that

x ∈ Bi ⊂ Ui for each i. Then x ∈
n
⋂

i=1
Bi and, by Lemma 1.13, there exists a basis element

Bx such that x ∈ Bx ⊂
n
⋂

i=1
Bi ⊂ V . It follows from the Union Lemma (Lemma 1.3) that

V =
⋃

x∈V
Bx, and therefore V is a union of basis elements. Thus, a finite intersection of

open sets is open in  .

(iii) Let V =
⋃

U� where each U� is either an empty set or a union of basis elements. If each

U� is empty, then so is V ; on the other hand if some U� is non-empty, then V is the union

of basis elements since it is the union of basis elements making up each U�. Thus, an

arbitrary union of open sets is open in  . ■

Note that each basis element is itself an open set in the topology generated by the basis.

Example 1.13. Below are several topologies on ℝ, which would be difficult to describe without

using a basis:

(i) The standard topology on ℝ is generated by the aforementioned basis  = {(a, b) ⊂ ℝ ∣ a < b}.

(ii) The lower limit topology is that which is generated by the basis  = {[a, b) ⊂ ℝ ∣ a < b}.

Note that the intervals [a, b) and (a, b) are both open in the lower limit topology, as (a, b)

is the union of basis elements Bi = [a −
1
i
, b) where i = 1, 2, …

13
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(iii) The upper limit topology is that which is generated by the basis  = {(a, b] ⊂ ℝ ∣ a < b}.

Note that (a, b) is open in the upper limit topology for a similar reason.

The following proposition is reminiscent of Proposition 1.11, and is also useful in deter-

mining whether or not a set is open by investigating its elements. In Proposition 1.11, a set was

open if and only if each point in that set was in an open neighborhood contained within the set.

In the following proposition, we show that a set is open if and only if each point in that set is

in a basis element contained entirely in that set.

Proposition 1.15. Let X be a set and  be a basis for a topology on X. Then U is open in the

topology generated by  if and only if for each x ∈ U , there exists a basis element Bx ∈ 

such that x ∈ Bx ⊂ U .

Proof. Suppose U is an open set in the topology generated by  and that x ∈ U . Since U

is a union of basis elements, there is at least one basis element B′ making up that union that

contains x. Clearly then, x ∈ B′ ⊂ U .

Now suppose that U ⊂ X is such that for each x ∈ U there exists a Bx ∈  such that

x ∈ Bx ⊂ U . By the Union Lemma (Lemma 1.3), U =
⋃

x∈U
Bx, and therefore U is a union of

basis elements. Thus, U is an open set in the topology generated by . ■

It is possible that two bases will generate the same topology. We will consider two unique

bases for topologies on ℝ2, and show that they generate the same topology. Recall that the

open 2-ball of radius r centered at x is defined as B2 (x, r) =
{

y ∈ ℝ2 ∣ d(x, y) < r
}

. We first

consider the collection of all such open balls. Before we prove that this collection is a basis

and generates a topology, we prove the following supporting lemma.

Lemma 1.16. Let y ∈ ℝ2 and r > 0. Then for every x ∈ B2 (y, r) there exists an � > 0 such

that B2 (x, �) ⊂ B2 (y, r).

Proof. Suppose x ∈ B2 (y, r), i.e., d(x, y) < r. Choose � such that 0 < � < r − d(x, y). We

14
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claim that B2 (x, �) ⊂ B2 (y, r). Suppose z ∈ B2 (x, �). Then we have

d(y, z) < d(y, x) + d(x, z)

< d(y, x) + �

< d(y, x) + r − d(x, y)

< r.

■

Proposition 1.17. The collection

 = {B2 (x, �) ∣ x ∈ ℝ2, � > 0}

is a basis for a topology on ℝ2.

Proof. Since each x ∈ ℝ2 is contained in the basis element B2 (x, 1), the first condition for a

basis is satisfied.

Suppose x ∈ B2
(

p, r1
)

∩ B2
(

q, r2
)

. By Lemma 1.16, there exist �1, �2 > 0 such that

B2
(

x, �1
)

⊂ B2
(

p, r1
)

and B2
(

x, �2
)

⊂ B2
(

q, r2
)

. Let � = min {�1, �2}. Then

B2 (x, �) ⊂ B2
(

x, �1
)

∩ B2
(

x, �2
)

B2
(

p, r1
)

∩ B2
(

q, r2
)

,

and it follows that  satisfies the conditions for a basis. ■

Note, the collection of open N-balls generates the standard topology on ℝN . In ℝ2, open

rectangles and open half-planes are also open in the standard topology.

Before we assert that the collection of open rectangles in ℝ2 is a basis that generates the

standard topology, we prove the following useful proposition. This proposition is reminiscent

of Proposition 1.11 and it will likewise continue to be useful when introducing new construc-

tions for topologies in later sections.
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Proposition 1.18. Let X be a set with topology  , and let  be a collection of open sets in

X. If, for each open set U in X and for each x ∈ U , there is an open set V in  such that

x ∈ V ⊂ U , then  is a basis that generates the topology  .

Proof. First, we check that  is a basis. Let x ∈ X. Since X itself is an open set, there is an

open set V ∈  such that x ∈ V ⊂ X. Therefore every point in X is contained in some open

set V in the collection .

Suppose now that x ∈ V1∩V2 for two open sets V1, V2 ∈ . As V1 and V2 are open, V1∩V2

is open and, by our hypothesis, there must be an open set V3 ∈  such that x ∈ V3 ⊂ V1 ∩ V2.

Hence,  is a basis.

We now must check that the topology  ′ generated by  coincides with  . Suppose U is

open in  . Then, by the hypothesis, for every x ∈ U there is an open set V ∈  such that

x ∈ V ⊂ U . By Proposition 1.15, U is open in  ′, i.e.,  ⊂  ′. Now suppose W is open in

 ′. Then W is the union of open sets in , all of which are open in  , i.e., W is open in 

and  ′ ⊂  . Thus, the result holds. ■

It is straightforward to utilize this to show that the collection of open rectangles in ℝ2 is a

basis that generates the standard topology.

Proposition 1.19. On the plane ℝ2, let

 = {(a, b) × (c, d) ⊂ ℝ2 ∣ a < b, c < d}.

Then  is a basis, and the topology  ′ generated by  is the standard topology on ℝ2.

The proof of this is left to the reader.

Closed Sets

It is now time to introduce closed sets, the complementary concept to open sets.

Definition 1.20. A subset A of a topological space X is closed if the set X − A is open.

16
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Example 1.14. Consider ℝ equipped with the standard topology. Since (0, 1) is open, (−∞, 0]∪

[1, ∞) is closed.

It is not difficult to show that all closed intervals [a, b] and single-point sets {c} are closed

in the standard topology on ℝ.

To shorten the statement of the following proposition, we define the following: Let [a, b]

and [c, d] be bounded closed intervals in ℝ. Then [a, b] × [c, d] ⊂ ℝ2 is called a closed

rectangle.

Proposition 1.21. Closed balls and closed rectangles are closed sets in the standard topology

on ℝ2.

Proof. The proof for closed balls is left to the reader.

Let A = [a, b] × [c, d] be a closed rectangle in ℝ2. ℝ2 − A may be expressed as the

union of four open half-planes: {(x, y) ∣ x < a}, {(x, y) ∣ x > b}, {(x, y) ∣ y < c}, and

{(x, y) ∣ y > d}. Since each of these half-planes is an open set (which can be shown by

utilizing Proposition 1.11), ℝ2 − A is an open set and thus A is closed. ■

By definition, a set C is closed if its complement is open. On the other hand, a set U is

open if its complement is closed, which may be shown in a brief argument: Consider a set U

in a topology X whose complement, X −U is closed. As X −U is closed, X − (X −U ) = U

is open.

Unlike a door or a window in your favorite internet browser, a set may be both open and

closed, typically referred to as being clopen. We illustrate this fact in the following examples.

Example 1.15. Consider a topological space X. By definition, both ∅ and X are open in X.

Notice that X −∅ = X and X −X = ∅ are both open in X, meaning that ∅ and X are closed

in X as well.

Example 1.16. Consider a set X equipped with the discrete topology. Every subset A of X is

an open set. The compliment of A, being another subset of X, is also open in X. Therefore,

17
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every subset A of X is also closed in X, i.e., every subset of X is clopen in the discrete

topology.

Although we typically will refrain from doing so here, it is possible to define a topological

space X by denoting which subsets of X are closed in the topology. The following theorem

illustrates this.

Theorem 1.22. Let X be a topological space. The following statements about the collection

of closed sets in X hold:

(i) ∅ and X are closed,

(ii) The intersection of any collection of closed sets is a closed set, and

(iii) The union of finitely many closed sets is a closed set.

Proof. (i) X is closed as ∅ = X −X is open. Similarly, ∅ is closed as X = X −∅ is open.

The proofs of (ii) and (iii) are left to the reader. ■

In the beginning of this section, we very briefly mentioned topological properties, in ref-

erence to their interactions with continuous functions. Topological properties lend us an un-

derstanding of the space as a whole, without necessarily needing to define its open sets or a

basis which generates it. A noteworthy topological property is being Hausdorff, and it will be

mentioned again several times throughout this text.

Definition 1.23. A topological space X is Hausdorff if for every pair of distinct points x and

y in X, there exist disjoint neighborhoods U and V of x and y, respectively.

Example 1.17. The standard topology on ℝ is, in fact, Hausdorff. For any two distinct real

numbers a and b (with a < b), we may construct disjoint open intervals which contain them:

U =
(

a − 1, a + b
2

)

and V =
(a + b

2
, b + 1

)

.

18
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Example 1.18. Every set X with the discrete topology is Hausdorff: given distinct points x

and y in X, the sets {x} and {y} are disjoint neighborhoods of x and y, respectively.

The following proposition is an example of the useful properties of Hausdorff spaces:

Proposition 1.24. If X is a Hausdorff space, then every single-point subset of X is closed.

Proof. Let x be an arbitrary element of X. We will show X − {x} is open.

Let y ∈ X − {x} be arbitrary. As X is Hausdorff, there are disjoint neighborhoods U and

V containing x and y, respectively. It follows that x ∉ V , and therefore V ⊂ X − {x}. Since

every y ∈ X−{x} is in a neighborhood contained inX−{x}, it follows from Proposition 1.11

that X − {x} is open. ■

Relating Subsets to Open and Closed Sets

The ideas of the interior, closure, limit points, and boundary of an arbitrary subset of a topo-

logical space allow us to construct related open and closed sets. These concepts will prove

fruitful in our later discussion on simplicial complexes in the next chapter.

Definition 1.25. Let A be an arbitrary subset of a topological space X. The interior of A,

denoted Int (A) is the union of all open sets contained in A. The closure of A, denoted A, is the

intersection of all closed sets containing A. Clearly, the interior of A is open while its closure

is closed, and we have that Int (A) ⊆ A ⊆ A.

We obtain the following properties of the interior and closure directly from their definitions:

(i) If U is an open set in X and U ⊆ A, then U ⊂ Int (A).

(ii) If C is closed in X and A ⊆ C , then A ⊆ C .

(iii) If A ⊆ B, then Int (A) ⊆ Int (B) and A ⊆ B.

(iv) A is open if and only if A = Int (A).

(v) A is closed if and only if A = A.
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Example 1.19. Consider A = [0, 1) as a subset of ℝ with the standard topology. Then

Int (A) = (0, 1) and A = [0, 1].

Now consider A as a subset of ℝ with the discrete topology. Then Int (A) = A = [0, 1).

The following propositions provide easy ways of determining whether a point is in the

interior or closure of a given set A. For brevity, their proofs are left to the reader.

Proposition 1.26. Let X be a topological space, A a subset of X, and y ∈ X. Then y is in the

interior of A if and only if there exists an open set U such that y ∈ U ⊆ A.

Proposition 1.27. Let X be a topological space, A a subset of X, and y ∈ X. Then y is in the

closure of A if and only if every open set U containing y interests A.

Limit points ease the discussion on the interior and closure of A, as well as provide a useful

way of determining if a set is closed or not. Before we discuss limit points however, we must

define the convergence of a sequence in a topological space. It should be reminiscent of the

definition of convergence of a sequence from analysis.

Definition 1.28. A sequence ⟨xn⟩ in a topological space X converges to x ∈ X if, for every

neighborhood U of x, there exists a natural number M ∈ ℕ such that for all n ≥ M , xn ∈ U .

x is the limit of ⟨xn⟩, and we write ⟨xn⟩ → x.

Definition 1.29. Let A be a subset of a topological space X. A point x in X is a limit point

of A if every neighborhood of x intersects A in a point other than x. Alternatively, x is a limit

point of A if there exists a sequence ⟨an⟩ entirely in A which converges to x.

Example 1.20. Consider the set A = [0, 1] in ℝ with the standard topology. Every point in A

is also a limit point of A. For an arbitrary x in A, every neighborhood of x may be expressed

as the union of open intervals, one of which is (x − �, x + �) for some � > 0. This set has a

non-empty intersection with A that includes at least one point other than x.

Now consider A = (0, 1] in ℝ with the discrete topology. 0 is a limit point of A as the

sequence
⟨

1
n

⟩

is entirely in A and converges to 0.

This example shows that a limit point of A may or may not actually be contained in A.

20



Jason Turner Union College

The following proposition relates limit points and the closure of a set.

Proposition 1.30. Let A be a subset of a topological space X, and let A′ denote the set of limit

points of A. Then A = A ∪ A′.

Proof. We proceed by double containment.

First note that A ⊆ A, so it suffices to show that A′ ⊆ A. Let x ∈ A′. Then every

neighborhood of x intersects A. By Proposition 1.27, x is in the closure of A.

Now suppose that x is in the closure of A. Either x ∈ A or x ∈ A − A. In the former case,

the result follows immediately. In the latter case, Proposition 1.27 implies that every open set

containing x intersects A. Since x ∉ A, such an intersection must contain points other than x,

and the result follows. ■

Along with the basic properties of closure, Proposition 1.30 implies the following corollary.

Corollary 1.31. A subset A of a topological space is closed if and only if it contains all of its

limit points.

The notions of closure and interior lend themselves naturally to defining the boundary of a

set.

Definition 1.32. The boundary of a subset A of a topological space X, denoted Bd (A), is the

set A − Int (A).

Example 1.21. Consider the set A = [0, 1] in ℝ with the standard topology. The boundary of

A consists of the points 0 and 1.

Now consider A = (0, 1] in ℝ with the discrete topology. Its boundary is empty.

The following are notable properties of the boundary of A whose proofs rely primarily on

the definition of boundary and ideas from set theory:

(i) The boundary ofA consists exactly of the points of x ofX whose neighborhoods intersect

both A and X − A.
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(ii) Bd (A) is closed.

(iii) Bd (A) ⊆ A if and only if A is closed.

(iv) Bd (A) ∩ A = ∅ if and only if A is open.

(v) Bd (A) = ∅ if and only if A is both closed and open.

Compact Sets and the Heine-Borel Theorem

To aid in our later discussion of simplicial complexes, which are topological spaces that “live

in” ℝN , we introduce the idea of compact sets as well as one of the most fundamental theorems

regarding compact sets in ℝN , the Heine-Borel Theorem. The hurried reader may simply take

the results that follow and press onward, although the idea of compactness is important enough

to our work to warrant study.

Consider a subset K of a topological space X. An open cover of K is a collection  of

open subsets of X whose union contains K , and is said to “cover” K . A subcollection  of 

which covers K is said to be a subcover of K .  is sometimes referred to as a “subcover of ”

at the risk of misguiding the reader.

Definition 1.33. A subsetK of a topological spaceX is said to be compact if every open cover

of K has a finite subcover.

Example 1.22. The open interval A = (0, 1) in ℝ equipped with the usual topology is not

compact. Consider the open cover  =
{(

1
n
, 1

)

∣ n ∈ ℕ
}

of A. Any finite subcollection

would have some maximal N , and thus would no longer cover A.

Consider the closed interval [0, 1] in ℝ with the standard topology. The collection

 =
{(1

n
, 2

)

∣ n ∈ ℕ
}

∪
(

−1, 1
10

)

has a finite subcover, namely
{(

−1, 1
10

)

,
(

1
11
, 2

)}

. However, this is not sufficient to claim

that [0, 1] is compact in ℝ.
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As evident by the above example, it can be difficult to prove that a particular set is compact

in a topological space. The Heine-Borel theorem make it much easier to show that a given set

is compact in ℝN .

Lemma 1.34. Let ℝ be equipped with the standard topology. If A ⊂ ℝ is closed and bounded,

then A contains its supremum and infimum.

Proof. We prove here that the infinum of A is in A, the proof that the supremum of A is in A

is similar.

Let a be the infimum of A. If a ∈ A, we are done. By Proposition 1.30, it suffices to show

that a is a limit point of A.

Let r > 0 and consider the open interval (a − r, a + r). As a is the infimum of A, this

interval must intersect A, or else a + r
s

would be a greater lower bound of A. Thus, a is a limit

point of A. ■

Theorem 1.35. THE HEINE-BOREL THEOREM. Consider a non-empty subsetK of ℝ equipped

with the standard topology. K is compact if and only if K is bounded and closed.

Proof. Let K be compact in ℝ equipped with the standard topology.

Fix some x0 ∈ ℝ, and let Un denote the open ball of radius n centered on x0. Con-

sider the open cover
{

Un ∣ n ∈ ℕ
}

of K . As K is compact, there is some finite subcollection
{

U1, … , Un
}

which still covers K . But
⋃n

i=1Ui = Un = B
1
(

x0, n
)

, and thus K is bounded.

Let U = ℝ − K and consider x ∈ U . By Proposition 1.11, it suffices to produce an � > 0

such that B1 (x, �) ⊂ ℝ −K .

For each point p in K , let Up =
{

q ∈ ℝ ∣ |q − x| > |p−x|
2

}

. As ℝ − Up is a closed ball, Up

is open. Also note that each p in K is in Up as well, and thus
{

Up ∣ p ∈ K
}

is an open cover of

K .

AsK is compact, there exists a finite subcover
{

Up1 , … , Upn
}

. Let � = min
{

|
p1−x|
2
, … , |pn−x|

2

}

>

0. We will show B(x, �) ∩K = ∅ via contradiction. Therefore, ℝ−K is closed, meaning that

K is open.
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Suppose q ∈ B1 (x, �) ∩ K . As a ∈ B(x, �), |x − q| < �. Since q ∈ K , q is in some Upi
for i = 1, … , n, which implies that |q, x| > |

c−pi|
2

≥ �, a contradiction.

Conversely, let K ⊆ ℝ be closed and bounded. Let a be the infimum of K and b be the

supremum of K . By Lemma 1.34, a, b ∈ K .

Define, for all x in ℝ,

Kx = K ∩ (−∞, x],

and let  be an arbitrary open cover for K . We will show  has a finite subcover.

Let G =
{

x ∈ ℝ ∣ Kx is covered by a finite subcover of 
}

. Note, a is in G as Ka = {a}

must be covered by one element of . Also observe that x ∈ G implies that y ∈ G for all

y < x, as Ky ⊂ kx and Kx is covered.

We will show that G is not bounded above, as that implies b must be in G, i.e., Kb = K has

a finite subcover.

Assume by way of contradiction that G is bounded above, and let m be its supremum. We

have two cases:

Case 1. Let m ∈ K . Then there exists a U0 ∈  that contains m. By 1.11, there exists an

� > 0 such that (m − �, m + �) ⊆ U0.

As m is the supremum of G, m− � ∈ G and thus Km−� has a finite subcover
{

U1, … , Un
}

.

Hence, U0 ∪
⋃n

i=1Ui is a finite subcover of Km+ �
2
, which implies m + �

2
∈ G. This contradicts

the fact that m is an upper bound of G.

Case 2. Let m ∉ K . Then m ∈ ℝ−K , which is open. Thus, there exists an � > 0 such that

(m − �, m + �) is contained in ℝ −K . Then:

Km+ �
2
= K ∩

(

−∞, m + �
2

]

=
(

K ∩
(

−∞, m − �
2

])

∪
(

K ∩
(

m − �
2
, m + �

2

))

= Km− �
2
∪ ∅

But m − �
2
∈ G, so a finite subcover of  covers Km− �

2
= Km+ �

2
, so m + �

2
∈ G, contradicting

24



Jason Turner Union College

the assumption that m bounds G from above.

Therefore, G is not bounded above. Thus, b ∈ G, so K ⊂ Kb has a finite subcover. ■

The Heine-Borel Theorem also generalizes to ℝN , the proof of which we will not cover

here.

Section 1.3: The Subspace, Product, and Quotient

Topologies
Given particular topological spaces, it is possible to create a multitude of new ones. The

subspace topology evolves from a subset of a topological space, the product topology is derived

from the product of two topological spaces, and the quotient topology is analogous to gluing

spaces together or collapsing them.

In this section, we rigorously define such topologies and discuss their properties and inter-

pretations. However, we are primarily concerned with only the subspace and product topolo-

gies, and our discussion on the quotient topology may be skimmed without any risk of not

understanding our later discussions.

The Subspace Topology

Definition 1.36. Let X be a topological space and let Y ⊂ X. The subspace topology on Y is

defined as Y = {U ∩ Y ∣ U is open in X} and, with this topology, Y is called a subspace of

X. We say that V ⊂ Y is open in Y if V is an open set in the subspace topology on Y .

In essence, the open sets of the subspace topology on Y are the intersections of Y with all

open sets of X. We show that the subspace topology on Y is in fact a topology.

(i) ∅ and Y are both open in Y , since ∅ = ∅ ∩ Y and Y = X ∩ Y .

(ii) Let V1, … , Vn be open in Y . Then for each i there exists a set Ui, which is open in X,
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such that Vi = Ui ∩ Y . Hence,

V1 ∩⋯ ∩ Vn = (U1 ∩ Y ) ∩⋯ ∩ (Un ∩ Y )

= (U1 ∩⋯ ∩ Un) ∩ Y .

Since U1 ∩⋯ ∩ Un is open in X, it follows that V1 ∩⋯ ∩ Vn is open in Y (and thus finite

intersections of sets are open in Y .)

(iii) Suppose {V�} is a collection of open sets in Y . Then for each �, there exists an open set

U� in X such that V� = U� ∩ Y . Therefore,

⋃

V� =
⋃

(U� ∩ Y ) =
(

⋃

U�
)

∩ Y .

As
⋃

U�, it follows that
⋃

V� is open in Y (and thus arbitrary unions of sets are open in

Y ).

Example 1.23. Consider ℝ with the standard topology and I = [0, 1] as a subset of ℝ. With

the subspace topology, the open sets in I are all open intervals in ℝ intersected with [0, 1]. The

open sets in this subspace fall into three categories (as well as finite intersections and arbitrary

unions of these sets):

(i) The empty set and the closed interval [0, 1].

(ii) Open intervals of the form (a, b) where 0 < a < b < 1.

(iii) Half-open intervals of the form [0, a) or (a, 1], where 0 < a < 1.

Note that a set may be open in the subspace topology on I , even though it may be not open in

ℝ.

Example 1.24. The subspace topology that ℤ inherits from the standard topology on ℝ is in

fact the discrete topology. Since open intervals in ℝ are open, and each integer is contained in
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an open interval which contains no other point, the single-point sets containing each integer are

open in the subspace topology on ℤ. Arbitrary unions of these sets are open as well, meaning

that every subset of ℤ is open in ℤ.

In general, for any subset Y of ℝN , the standard topology on Y is the topology that Y

inherits as a subspace of ℝN with the standard topology.

Naturally, for a subspace Y of a topological space X, a set C ⊂ Y is closed in Y if C

is closed in the subspace topology on Y . The following propositions allow us to “translate”

between X and Y , respectively.

Proposition 1.37. Let X be a topological space, and let Y ⊂ X have the subspace topology.

Then C ⊂ Y is closed in Y if and only if C = D ∩ Y for some closed set D in X.

Proof. Let C ⊂ Y be closed. As Y − C is open in the subspace topology on Y , there exists

some open set W ⊂ X such that Y −C = W ∩ Y . Thus, X −W is closed in X. We will show

that C = (X −W ) ∩ Y via double containment.

Let x ∈ C . So x ∈ Y and x ∉ Y −C . Hence, x ∉ W ∩Y , but x ∈ Y so x ∉ W . Therefore,

x ∈ X −W , which implies x ∈ (X −W ) ∩ Y .

Let x ∈ (X −W ) ∩ Y , i.e., x ∈ X −W and x ∈ Y . As x ∉ W , x ∉ W ∩ Y which implies

x ∉ Y − C . However, as x ∈ Y , x must be in C . Thus, the result holds.

Conversely, letC = D∩Y for some closedD ⊂ X. ThenX−D is open inX and (X−D)∩Y

is open in Y . We will show (X −D) ∩ Y = Y −C , or equivalently Y − ((X −D) ∩ Y ) = C via

double containment.

Let x ∈ Y − ((X − D) ∩ Y ). So x ∈ Y and x ∉ (X − D). The latter implies that

x ∈ D. Therefore, x ∈ D ∩ Y = C . Let x ∈ C . So x ∈ D ∩ Y . Thus, x ∉ (X − D) and

x ∈ Y − ((X −D) ∩ Y ). ■

Proposition 1.38. LetX be a topological space and  a basis for the topology onX. If Y ⊂ X,

then the collection

Y = {B ∩ Y ∣ B ∈ }
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is a basis for the topology on Y .

Proof. Note that Y is a collection of open sets in the subspace topology on Y . Let W be

an open set in the subspace topology on Y and let y ∈ W be arbitrary. Then W = U ∩ Y ,

where U is open in X. There exists a basis element B ∈  such that y ∈ B ⊂ U . Thus,

y ∈ B ∩ Y ⊂ U ∩ Y = W . Since B ∩ Y ∈ Y , it now follows from Theorem 1.18 that Y is a

basis for the subspace topology on Y . ■

Example 1.25. Consider the circle S1 ⊂ ℝ2 (its center and radius are irrelevant) with the

standard topology. As open balls form a basis for the standard topology on ℝ2, their intersection

with S1 form a basis for the standard topology on S1. These intersections are of the form of

open intervals on the circle, consisting of all points between two angles in the circle.

The Product Topology

Unfortunately, constructing the topology on the product of two topological spaces is not as

straightforward as constructing the subspace topology. For topological spaces X and Y , we

cannot define the collection  of open sets in X × Y to be the product of open sets in X and Y .

However, we can use  as a basis to generate such a topology.

Definition 1.39. Let X and Y be topological spaces and X × Y be their product. The product

topology on X × Y is the topology generated by the basis

 = {U × V ∣ U is open in X and V is open in Y }.

We verify that this is in fact a basis for a topology on X × Y .

Proposition 1.40. The collection  is a basis for a topology on X × Y .

Proof. Every point (x, y) is in X ×Y , and X ×Y ∈ , satisfying the first condition for a basis.

Now assume (x, y) ∈ (U1 × V1) ∩ (U2 × V2) where U1, U2 are open in X and V1 and V2 are

open sets in Y . Let U3 = U1 ∩U2 and V3 = V1 ∩ V2. Then U3 is open in X and V3 is open in Y ,
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and hence U3 × V3 ∈ . Also,

U3 × V3 = (U1 ∩ U2) × (V1 ∩ V2) = (U1 × V1) ∩ (U2 × V2),

and thus (x, y) ∈ U3 × V3 ⊂ (U1 × V1) ∩ (U2 × V2), satisfying the second condition for a

basis. ■

Example 1.26. Consider ℝ with the standard topology. Then the product topology on ℝ × ℝ

is generated by the collection of open rectangles (a, b) × (c, d) ⊂ ℝ × ℝ. As noted in the

previous section, this is the standard topology on ℝ2.

As with open sets, products of closed sets are closed sets in the product topology. However,

this does not describe all closed sets in the product space.

The basis described in the definition of product space X × Y (Definition 1.39) is very, very

large. It consists of all possible products of all open sets in X with all open sets in Y . The

following proposition provides a much smaller basis forX×Y by utilizing the bases forX and

Y individually.

Proposition 1.41. If  is a basis for X and  is a basis for Y , then

 = {C ×D ∣ C ∈  and D ∈ }

is a basis that generates the product topology on X × Y .

Proof. Each set C × D ∈  is an open set in the product topology; therefore by Proposition

1.18, it suffices to show that for every open set W in X × Y and every point (x, y) ∈ W , there

is a set C ×D in  such that (x, y) ∈ C ×D ⊂ W .

Since W is open in X × Y , we know that there are open sets U in X and V in Y such that

(x, y) ∈ U × V ⊂ W . So x ∈ U and y ∈ V . Since U is open in X, there is a basis element

C ∈  such that x ∈ C ⊂ U . Similarly, since V is open in Y , there is a basis element D ∈ 

such that such that y ∈ D ⊂ V . Thus, (x, y) ∈ C ×D ⊂ U × V ⊂ W .
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By Proposition 1.18, it follows that  = {C × D ∣ C ∈  and D ∈ } is a basis for the

product topology on X × Y . ■

When picturing the product space, we can imagine a copy of the second space at each point

in the first space, or vice versa. In other words, we can “drag” one space along another, and all

points obtained by this process are the points in the product space.

Example 1.27. Let S1 be the circle and I = [0, 1]. By the above analogy, we can imagine

the product space S1 × I as the space obtained by dragging I along the circle, obtaining an

annulus.

Example 1.28. The product space S1 × S1 is the torus. This is evident when utilizing the

aforementioned analogy: imagine dragging a circle in a circular path perpendicular to its face.

By Proposition 1.41, the basis of S1 × S1 consists of rectangular patches.

Now consider two topological spaces, X and Y , as well as two sets A ⊂ X and B ⊂ Y .

We now have two natural ways to topologize A × B: 1) as a subspace of X × Y , and 2) as the

product of subspaces A ⊂ X and B ⊂ Y . However, these two approaches result in the same

topology.

Before we prove that these two topologies are in fact equivalent, we prove the following

lemma.

Lemma 1.42. For A, C ⊂ X and B, D ⊂ Y , (C ×D) ∩ (A × B) = (C ∩ A) × (D ∩ B).

Proof. We proceed by double containment. Let (x, y) ∈ (C×D)∩(A×B). So (x, y) ∈ (C×D),

i.e., x ∈ C and y ∈ D. Similarly, x ∈ A and y ∈ B. Thus, as x ∈ C ∩ A and y ∈ D ∩ B,

(x, y) ∈ (C ∩ A) × (D ∩ B).

Let (x, y) ∈ (C ∩ A) × (D ∩ B). So x ∈ C and x ∈ A. Similarly, y ∈ D and y ∈ B. Thus,

(x, y) ∈ C ×D and (x, y) ∈ A × B and the result holds. ■

Theorem 1.43. Let X and Y be topological spaces, and assume A ⊂ X and B ⊂ Y . Then the

topology on A × B as a subspace of the product X × Y is the same as the product topology on
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A × B, where A has the subspace topology inherited from X and B has the subspace topology

inherited from Y .

Proof. Let 1 be the topology inherited by A × B as a subspace of the product space X × Y

and let 2 be the topology inherited by A × B as a product space of the subspaces A ⊂ X and

B ⊂ Y . We will show 1 = 2 via double containment.

Let U be open in 1. We will show that U can be written as the product of open sets

in A and B, each equipped with the subspace topology, i.e., U is open in 2. As U is open

in 1, it may be written as the intersection of an open set C × D ⊂ X × Y and A × B, i.e.

U = (C × D) ∩ (A × B). Note that C is open in X and D is open in Y . By Lemma 1.42,

U = (C ∩ A) × (D ∩ B). Under the subspace topology, C ∩ A is open in A and D ∩ B is open

in B. Thus, 1 ⊂ 2.

Let U be open in 2. We will show U can be written as the intersection of an open set in

X × Y and A × B, i.e. U is open in 1. As U is open in 2, it may be written at the product

of open sets in A and B, i.e. U = C × D where C is open in A with the subspace topology

and D is open in B with the subspace topology. As C is open in A with the subspace topology,

C = P ∩ A where P is open in X. Similarly, D = Q ∩ B where Q is open in Y . By Lemma

1.42, U = C ×D = (P ∩A) × (Q ∩B) = (P ×Q) ∩ (A ×B) As P is open in X and Q is open

in Y , P ×Q is open in X × Y . Thus, we have expressed U as the intersection of an open set in

X × Y (namely P ×Q) with A × B. ■

We may extend this definition to a product X1 × ⋯ × Xn of n topological spaces. The

collection

 =
{

U1 ×⋯ × Un ∣ Ui is open in Xi for each i = 1, … , n
}

is a basis for X1 ×⋯ ×Xn. Also note that this product space is “associative” in the following

sense: Given three topological spaces X, Y , and Z, the following product spaces are topolog-
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ically equivalent, i.e., they are indistinguishable as far as topology is concerned:

X × Y ×Z ≅ (X × Y ) ×Z ≅ X × (Y ×Z).

Example 1.29. As mentioned previously, the standard topology on ℝ2 is the same as the prod-

uct topology on ℝ×ℝ. This result generalizes to Euclidean spaces of arbitrary finite dimension,

i.e., the standard topology on ℝN is the same as the product topology that results from taking

the product of N copies of ℝ.

The Quotient Topology

The quotient topology allows us to construct a topological model that mimics the process of

gluing together or collapsing parts of one or more topological spaces. For example, we may

glue the opposite edges of a rectangle together to form a torus. We now define the quotient

topology.

Definition 1.44. Let X be a topological space and A a set (not necessarily a subset of X). Let

p ∶ X → A be a surjective map. Define a subset U of A to be open in A if and only if p−1(U ) is

open in X. The resulting collection of open sets in A is called the quotient topology induced

by p, and the function p is called the quotient map. The topological space A is called the

quotient space.

We verify that the quotient space is in fact a topological space.

Proposition 1.45. Let p∶ X → A be a quotient map. The quotient topology induced by p is a

topology.

Proof. (i) The set p−1 (∅) = ∅ is open in X. The set p−1 (A) = X is open in X as well.

Thus, ∅ and A are open in the quotient topology.

(ii) Suppose each of the sets Ui, i = 1, ..., n, is open in the quotient topology on A. Then

p−1
(
⋂

Ui
)

=
⋂

p−1
(

Ui
)

, which is a finite intersection of open sets in X, and therefore
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is open in X. Hence,
⋂

Ui is open in the quotient topology, and it follows that the finite

intersection of open sets in the quotient topology is an open set in the quotient topology.

(iii) Suppose each of the sets in the collection {U�}�∈B is open in the quotient topology on

A. Then p−1
(
⋃

(

U�
))

=
⋃

p−1
(

U�
)

, which is a union of open sets in X, and therefore

is open in X. Thus,
⋃

(

U�
)

is open in the quotient topology, implying that the arbitrary

union of open sets in the quotient topology is an open set in the quotient topology.

Hence, the quotient topology is a topology on A. ■

Example 1.30. Consider ℝ with the standard topology, and define the quotient map

p∶ ℝ → {a, b, c} by p(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

a, if x < 0,

b, if x = 0,

c, if x > 0.

The quotient topology on A has the following open sets:

{a, b, c} , {a, c} , {a} , {c} , ∅.

The definition of a quotient space does not particularly seem to relate to the idea of gluing

parts of spaces together or collapsing them. However, these notions arise when we consider

quotient spaces defined on partitions of X, which are of great interest.

LetX∗ be a collection of mutually disjoint subsets ofX whose union isX, and let p∶ X →

X∗ be the surjective map which takes each point in X to the corresponding element of X∗ that

contains it. Then p induces a quotient topology on X∗, which we think about in the following

way: Let S be a subset ofX inX∗. Then p identifies all points in S to the same element ofX∗,

thereby “collapsing” S to a single point in the quotient space. A set U of points in X∗ is open

in the quotient topology on X∗ exactly when the union of the subsets of X, corresponding to

the points in U , is an open subset of X.
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Example 1.31. Let X = [0, 1] and consider the partition X∗ that is made up of single point

sets {x} for all 0 < x < 1 and the two-point set D = {0, 1}. In the quotient topology on X∗,

we think of D as a single point, i.e., we glue the endpoints of X together and form S1.

A subset of X∗ which does not contain D, a collection of single-point sets, is open in X∗

exactly when the union of those single point sets is open in (0, 1). A subset ofX∗ that contains

D is open in X∗ when the union of all sets making up the subsets is an open set inside [0, 1].

This open subset must contain 0 and 1, and thus must contain the intervals [0, a) and (b, 1],

which are open in the subspace topology on [0, 1].

Section 1.4: Continuous Functions and Homeomor-

phisms
Now that we have discussed a wide variety of topological spaces, it is time to introduce the

idea of continuous functions, and homeomorphisms. A topology on a set defines a notion of

proximity and continuous functions preserve this proximity. A homeomorphism is a special

type of continuous mapping that allows us to define the notion of topological equivalence.

Continuous Functions

We begin by stating the definition of a continuous function from a typical calculus or real

analysis course, and then state the definition of a continuous function from a topological per-

spective.

Definition 1.46. A function f ∶ ℝ → ℝ is continuous if, for every x0 ∈ ℝ and every � > 0,

there exists a � > 0 such that if |
|

x − x0|| < �, then |

|

f (x) − f (x0)|| < �. This is the � − �

definition of continuity.

Let X and Y be topological spaces. A function f ∶ X → Y is continuous if f−1(V ) is

open in X for every open set V in Y . This is the open set definition of continuity.

We may translate the � − � definition of continuity into more topological concepts. Let X

34



Jason Turner Union College

and Y be topological spaces. A function f ∶ X → Y is continuous if, for every x ∈ X and

every open set U containing f (x), there exists a neighborhood V of x such that f (V ) ⊂ U . (U

is playing the role of the � interval, while V is playing the role of the � interval.) This translation

is actually equivalent to the open set definition, as shown in the following proposition.

Proposition 1.47. A function f ∶ X → Y is continuous in the open set definition of conti-

nuity if and only if, for every x ∈ X and every open set U containing f (x), there exists a

neighborhood V of x such that f (V ) ⊂ U .

Proof. First, suppose that the open set definition holds for functions f ∶ X → Y . Let x ∈ X

and an open set U ⊂ Y containing f (x) be given. Set V = f−1(U ). It follows that x ∈ V and

that V is open in X since f is continuous by the open set definition. Clearly f (V ) ⊂ U .

Now assume that for every x ∈ X and every open set U containing f (x), there exists a

neighborhood V of x such that f (V ) ⊂ U . We show that f−1(W ) is open in X for every

open set W in Y . Thus, let W be an arbitrary open set in Y . To show that f−1(W ) is open in

X, choose an arbitrary x ∈ f−1(W ). It follows that f (x) ∈ W , and therefore there exists a

neighborhood Vx of x in X such that f
(

Vx
)

⊂ W , or equivalently Vx ⊂ f−1(W ). Thus, for

an arbitrary x ∈ f−1(W ) there exists an open set Vx such that x ∈ Vx ⊂ f−1(W ). Proposition

1.11 implies that f−1(W ) is open in X. ■

Example 1.32. The following families of functions are continuous over the domains for which

they are defined:

(i) Rational functions;

(ii) Trigonometric functions and their inverses;

(iii) Exponential functions, and;

(iv) Logarithmic functions.

There are a variety of nice ways to check if a function is continuous, as illustrated in the

following proposition.
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Proposition 1.48. Let X and Y be topological spaces and let  be a basis for the topology on

Y . Then f ∶ X → Y is continuous if and only if f−1(B) is open in X for every B ∈ 

Proof. Suppose f ∶ X → Y is continuous. Then f−1(V ) is open in X for every V open in Y .

Since every basis element is open in Y , it follows that f−1(B) is open in X for all B ∈ .

Now suppose f−1(B) is open in X for every B ∈ . Let V be an open set in Y . Then V is

a union of basis elements, say V =
⋃

B�. Thus,

f−1(V ) = f−1
(

⋃

B�
)

=
⋃

f−1(B�).

By assumption, each set f−1
(

B�
)

is open in X, and thus so is their union. Hence, f is contin-

uous. ■

Proposition 1.49. Let X and Y be topological spaces. A function f ∶ X → Y is continuous if

and only if f−1(C) is closed in X for every closed set C ⊂ Y .

A proof of this is left to the reader.

Continuous functions also preserve several properties, such as the convergence of sequences.

Proposition 1.50. Assume that f ∶ X → Y is continuous. If a sequence ⟨xn⟩ in X converges

to a point x, then the sequence
⟨

f
(

xn
)⟩

in Y converges to f (x).

Proof. Let U be an arbitrary neighborhood of f (x) in Y . Since f is continuous, f−1(U ) is

open in X. Furthermore, f (x) ∈ U implies that x ∈ f−1(U ). The sequence ⟨xn⟩ converges to

x; thus, there exists a natural number M ∈ ℕ such that xn ∈ f−1(U ) for all n ≥ M . It follows

that f
(

xn
)

∈ U for all n ≥ N , and therefore the sequence
⟨

f
(

xn
)⟩

converges to f (x). ■

The following proposition and lemma provide convenient ways of creating continuous

functions from our few examples.

Proposition 1.51. Let f ∶ X → Y and g∶ Y → Z be continuous. Then the composition

function g◦f ∶ X → Z is continuous.
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Proof. Suppose that f ∶ X → Y and g∶ Y → Z are continuous, and let U be an open set in

Z. Then (g◦f )−1 (U ) = f−1
(

g−1(U )
)

. Since g is continuous, g−1(U ) is open in Y , and since f

is continuous, f−1
(

g−1(U )
)

is open in X. Hence, by Definition 1.46, f◦g is continuous. ■

Lemma 1.52. THE PASTING LEMMA. LetX be a topological space and let A and B be closed

subsets of X such that A ∪ B = X. Assume that f ∶ A → Y and g∶ B → Y are continuous

and f (x) = g(x) for all x in A ∩ B. Then ℎ∶ X → Y defined by

ℎ(x) =

⎧

⎪

⎨

⎪

⎩

f (x), if x ∈ A

g(x), if x ∈ B

is a continuous function.

Proof. By Proposition 1.49, it suffices to show that if C is closed in Y , then ℎ−1(C) is closed

in X. Thus, suppose C is closed in Y . Note that ℎ−1(C) = f−1(C) ∪ g−1(C). Since f is

continuous, it follows by Proposition 1.49 that f−1(C) is closed in A. Proposition 1.37 then

implies that f−1(C) = D ∩ A where D is closed in X. Now, D and A are both closed in X,

and f−1(C) = D ∩A; therefore f−1(C) is closed in X. Similarly, g−1(C) is closed in X. Thus,

ℎ−1(C) is the union of two closed sets in X, and is therefore closed in X as well. Hence, ℎ is

continuous. ■

The Pasting Lemma proves especially useful, as it allows us to construct continuous piece-

wise functions.

Homeomorphisms

Homeomorphisms provide the most fundamental sense of topological equivalence: they pre-

serve all the properties of a topology, and therefore give a bijective correspondence between

points and between open sets in two topological spaces.

Definition 1.53. Let X and Y be topological spaces, and let f ∶ X → Y be a bijection with

inverse f−1 ∶ Y → X. If both f and f−1 are continuous functions, then f is said to be a
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homeomorphism. If there exists a homeomorphism between X and Y , we say that X and Y

are homeomorphic or topologically equivalent, and we denote this by X ≅ Y .

We take a brief detour and note that the following three facts imply that topological equiv-

alence is indeed an equivalence relation:

(i) The function id ∶ X → X, defined by id(x) = x, is a homeomorphism.

(ii) If f ∶ X → Y is a homeomorphism, then so is f−1 ∶ X → Y .

(iii) If f ∶ X → Y and g∶ Y → Z are homemorphisms, then so is g◦f ∶ X → Z.

Also, note that saying that the inverse f−1 of a bijective function f is continuous is equivalent

to saying that the image of every open set under f is open. Similarly, saying that a bijection f

is continuous is equivalent to saying that the image of every open set under f−1 is open.

Example 1.33. The function f ∶ ℝ → ℝ by f (x) = x3 is a bijection with inverse given by

f−1(x) = 3
√

x. Since f and f−1 are both rational functions on ℝ, they are both continuous, and

thus f is a homeomorphism.

Example 1.34. The following subsets of ℝ are homeomorphic to ℝ itself (with arbitrary real

scalars a < b):

(i) Open intervals: (a, b), (−∞, a), (a, ∞), ℝ.

(ii) Closed, bounded intervals: [a, b].

(iii) Half-open intervals and closed, unbounded intervals: [a, b), (a, b], (−∞, a], [a, ∞).

We provide some examples of homeomorphisms which imply these equivalences below:

(i) For open, bounded intervals (a, b), the function

f (x) =
(a + b

�

)

arctan (x) +
(b + a

2

)
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with inverse

f−1(x) = tan
(( �
b − a

) (

x − b + a
2

))

suffices. For open, unbounded intervals (a, ∞), the function g(x) = log (x − a) with

inverse g−1(x) = ex + a suffices.

(ii) For closed, bounded intervals, the function

ℎ(x) =
(a + b

2

)

sin (x) + a + b
2

with inverse

ℎ−1(x) = arcsin
( 2
a + b

x − 1
)

suffices.

Any property of a topological space preserved by homeomorphism is considered a topolog-

ical property. Below, we prove our previous statement that being Hausdorff is a topological

property.

Proposition 1.54. If f ∶ X → Y is a homeomorphism andX is Hausdorff, then Y is Hausdorff.

Proof. Suppose that X is Hausdorff and f ∶ X → Y is a homeomorphism. Let x, y ∈ Y be

distinct. Then f−1(x), f−1(y) ∈ X are distinct as well. Thus, there exist disjoint open sets U

and V containing f−1(x) and f−1(y), respectively. It follows that f (U ) and f (V ) are disjoint

sets containing x and y respectively. Therefore, Y is Hausdorff. ■

We have discussed showing that two spaces are topologically equivalent by producing a

homeomorphism between them. It is sometimes easier to prove that two topological spaces

are not equivalent by showing that they do not share some topological property, e.g., one is

Hausdorff while the other is not.
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Example 1.35. A topological space is said to be discrete if all of its subsets are open. Being

discrete is a topological property.

Clearly, ℝ equipped with the discrete topology is discrete and ℝ equipped with the trivial

topology is not discrete. Therefore, they cannot be homeomorphic.

Example 1.36. Another topological property is being connected. A topological space X is

connected if there does not exist a pair of disjoint non-empty open sets whose union is X.

ℝ equipped with the standard topology is connected (see [1]). The interval [0, 1) equipped

with the discrete topology is not connected.
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Chapter 2: Simplicial Complexes

In topological data analysis, simplicial complexes serve as the main data structure used to

represent topological spaces. They allow us to capture many important properties about a

space while remaining geometrically simple and allowing efficient computations.

Section 2.1 gives a rigorous introduction to simplices, geometric simplicial complexes and

their usual topology, simplicial maps between geometric simplicial complexes, as well as ab-

stract simplicial complexes and their geometric realizations.

Section 2.2 discusses C̆ech complexes and Vietoris-Rips complexes, which are simplicial

complexes constructed from point clouds in ℝN . These objects are foundational to several

areas of topological data analysis, and serve as the primary objects of interest in our discussion

of persistent homology in Chapter 5.

Section 2.1: Simplices and Simplicial Complexes
Before we state rigorous definitions of simplices and simplicial complexes, we shall provide

more intuitive descriptions to assist the reader in their understanding. We intend the reader

to consult these descriptions, along with the accompanying figures, in order to gain a deeper

appreciation for these objects.

In essence, an n-simplex is a generalization of the triangle found in geometry. A 2-simplex

is exactly a triangle, while a 0-simplex is a point, a 1-simplex is an edge, a 3-simplex is a

tetrahedron, and so forth.

The proper faces of an n-simplex are all of the lower-dimension simplices contained in it.
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For example, the proper faces of a 3-simplex are the 2-dimensional faces of the tetrahedron,

along with its edges and vertices.

A geometric simplicial complex is a collection of n-simplices whose intersections with one

another are faces of each. Figure 2.1 shows a geometric simplicial complex with 0-, 1-, and

2-simplices.

An abstract simplicial complex is a purely set theoretic description of geometric simplicial

complexes, and we will show using the Geometric Realization Theorem (Theorem 2.15) that

they are indeed analogous.

Figure 2.1: A geometric simplicial complex. The 0-simplices are the vertices of, the 1-simplices
are the edges, and the 2-simpliex is the triangle.

Simplices

To rigorously define a simplex, we must first introduce one main idea from analytic geometry

of Euclidean space: geometric independence.

We refer to points and vectors in ℝN somewhat interchangeably, using each term to bring

up associations with different ideas.

A given set of points
{

a0, … , an
}

of ℝN is said to be geometrically independent if, for

any real scalars ti, the equations

n
∑

i=0
ti = 0 and

n
∑

i=0
ti ai = ,
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where  is the origin in ℝN , imply that t0 = t1 =⋯ = tn = 0.

It is not difficult to show that the set
{

a0, … , an
}

is geometrically independent if and only

if the vectors

a1 − a0, … , an − a0

are linearly independent in the sense of ordinary linear algebra.

Hence, sets containing one point, two distinct points, three non-collinear points, four non-

coplanar points (and so on) form geometrically independent sets in ℝN .

Definition 2.1. Let
{

a0, … , an
}

be a geometrically independent set in ℝN . The n-simplex �

spanned by a0, … , an is the set of all points x ∈ ℝN such that

x =
n
∑

i=0
ti ai, where

n
∑

i=0
ti = 1

and ti ≥ 0 for all i.

The scalars ti are uniquely determined by x and are called the barycentric coordinates of

the point x of � with respect to a0, … , an. It is common to refer to the barycentric coordinates

of a given point x as ti(x).

Example 2.1. A 0-simplex is spanned by a single point a0, and thus consists of just a point.

A 1-simplex is spanned by two points a0 and a1, and thus is a line segment with these points

as endpoints. More specifically, it is all points x of the form

x = t a0 + (1 − t) a1

with 0 ≤ t ≤ 1, which should remind one of the parametric equation for a line segment.

A 2-simplex is spanned by three points a0, a1 and a2, and is thus a triangle with these points

as vertices. It is made up of the point a0 along with all points x of the form

x = t0 a0 +
(

1 − t0
)

[(

t1
1 − t0

)

a1 +
(

t2
1 − t0

)

a2

]
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where 0 ≤ t0 < 1, 0 ≤ t1, t2 ≤ 1, and t0 + t1 + t2 = 1. The expression in square brackets

represents the line segment between a1 and a2, as when t0 = 0, t2 = 1− t1 which is reminiscent

of the 1-simplex discussed earlier. Non-zero values of t0 result in all points of the 2-simplex

not on the line segment joining a1 and a2.

Figure 2.2: A 2-simplex with vertices a0, a1, a2. The points along the edge a1a2 are given by
the expression in square brackets in the equation for a 2-simplex. The points along the line
segments emanating from a0 are given by a fixed value of t0 and varying t1 and t2.

The vertices of a simplex � are the points a0, … , an which span it, and the number n is

called the dimension of �.

Any simplex spanned by a subset of
{

a0, … , an
}

is called a face of �. Specifically, the

face of � spanned by a1, … , an is called the face opposite the vertex a0.

The faces of � different from � itself are called the proper faces of �. Their union is called

the boundary of � and is denoted Bd (�) while the interior of � is defined by the equation

Int (�) = � − Bd (�). The interior of � is also sometimes called an open simplex.

Example 2.2. The boundary of the 2-simplex in Figure 2.2 is the union of the edges a0a1, a0a2,

and a1a2. Note that for each of these edges, at least one of t0, t1, and t2 are zero. Its interior

are all points not on these edges, i.e., when none of t0, t1, and t2 are 0. Its proper faces are the

vertices a0, a1, and a2 as well as the edges a0a1, a0a2, and a1a2.

The statements in Example 2.2 regarding the barycentric coordinates generalize to all sim-

plices: the boundary of a simplex � consists of all points x with at least one barycentric coordi-

nate ti(x) equal to zero, while its interior consists of all points x whose barycentric coordinates

ti(x) are all non-zero.
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It then follows that every point x ∈ � is in the interior of some face s of �.

The following are some properties of simplices, the proofs of which are left to the interested

reader:

(i) The barycentric coordinates ti(x) of x with respect to a0, … , an are continuous functions

of x.

(ii) Any n-simplex � is equal to the union of all line segments joining a0 to points of the

simplex s spanned by a1, … , an. Two such line segments intersect only in the point a0.

(iii) Any n-simplex � is a compact, convex set in ℝN , which equals the intersection of all

convex sets in ℝN containing a0, … , an.

(iv) Given a simplex �, there is one and only one geometrically independent set of points

spanning �.

(v) The interior of any simplex � is convex and is open in the plane P ; its closure is �.

Additionally, Int (�) equals the union of all open line segments joining a0 to points of

Int (s), where s is the face of � opposite a.

(vi) There is a homeomorphism of any n-simplex � with the unit ball Bn that carries Bd (�)

onto the unit sphere Sn−1.

Geometric Simplicial Complexes

We are now ready to introduce geometric simplicial complexes, their properties, and the stan-

dard topology defined on them.

Definition 2.2. A geometric simplicial complex K in ℝN is a collection of simplices in ℝN

such that:

(i) Every face of a simplex of K is in K , and

(ii) The intersection of any two simplices of K is a face of each of them.
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Figure 2.3: The figure on the left is indeed a geometric simplicial complex, as the intersection
of any two simplices is a face of each of them. For instance, the two 2-simplices intersect at
an edge of each. The figure on the right is not a geometric simplicial complex, as the two
2-simplices intersect at a line segment that is not an edge of one of them.

An alternative condition to (ii) is the following: Every pair of distinct simplices in K have

disjoint interiors. We verify this by the following arguments:

We first show that if � and � in a geometric simplicial complex K share an interior point,

then � = �; and that if every pair of distinct simplices in a collection K of simplices have

disjoint interiors, then their intersection is a face of each of them.

First, let x be a point in the interior of � and �, and let s = � ∩ �. If s were a proper face

of �, then x would be in its boundary, contradicting the fact that the interior and boundary are

disjoint sets. Thus, s = � and it may be similarly shown that s = �.

Alternatively, let � and � have disjoint interiors and � ∩ � be non-empty. We show that this

intersection is a face �′ of � that is spanned by the vertices b0, … , bm of � which are in � via

double containment.

Clearly, �′ ⊆ � ∩ � as � ∩ � is convex and contains b0, … , bm. Let x ∈ � ∩ �. Then

x ∈ Int (s) ∩ Int (t) for some face s of � and some face t of �.
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Figure 2.4: The 0-skeleton (red) of a simplicial complex.

As every pair of distinct simplices in K have disjoint interiors, s = t. Hence, the vertices

of s lie in �, so that by definition they are elements of the set
{

b0, … , bm
}

. Then s is a face of

�′, so x ∈ s ⊆ �′ as desired.

A subcollection L of K that contains all faces of its elements L is a geometric simplicial

complex in its own right, called a subcomplex of K .

One notable subcomplex of K is the collection of all simplices of K of dimension at most

p, called a p-skeleton of K and denoted K (p). The points of the collection K (0) are called the

vertices of K , as shown in Figure 2.4.

By viewing the simplices of a geometric simplicial complex K as subspaces of ℝN , we

may define a topology on K that is typically finer than the subspace topology and has many

useful properties. Before we do this, however, we must introducing the notion of embedding

one topological space into another.

Definition 2.3. Let X and Y be topological spaces. An embedding of X in Y is a function

f ∶ X → Y that maps X homeomorphically to the subspace f (X) in Y . We think of this as

placing a copy of X in Y .

Definition 2.4. Let |K| be the subset of ℝN that is the union of the simplices of K .

Let K be a simplicial complex in ℝN , and |K| be the union of its simplices. Consider

each simplex of K with its natural topology as a subspace of ℝN . We may equip |K| with a

topology by declaring a subset A of |K| to be closed in |K| if and only if A ∩ � is closed in �
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(considered as a subspace of ℝN , for each � in K). This indeed defines a topology on |K|, for

this collection of sets is closed under finite unions and arbitrary intersections.

The set |K| equipped with this topology is called the underlying space of K , the polytope

of K , or (typically for finite simplicial complexes) a polyhedron.

The polytope |K| is usually finer than the topology K would inherit as a subspace of ℝN

by the following logic, since if A is closed in K equipped with the subspace topology, then

A = B ∩K for some closed set B in ℝN (Proposition 1.37). Additionally, B ∩ � is closed in �

for each simplex � of K , meaning B ∩K = A is closed in |K| as well.

Example 2.3. Let K be the collection of all simplices in ℝ of the form [m, m + 1], where m is

a non-zero integer, along with all simplices of the form
[

1
n+1
, 1
n

]

for a positive integer n, along

with all faces of these simplices.

The following are some simplices within this geometric simplicial complex:

[−4, −3] , [−3, −2] , [−2, −1] , [−1, 0] , [1, 2] , [2, 3] , [3, 4] ,

[1
9
, 1
8

]

,
[1
8
, 1
7

]

,
[1
7
, 1
6

]

,
[1
6
, 1
5

]

,
[1
5
, 1
4

]

,
[1
4
, 1
3

]

,
[1
3
, 1
2

]

.

Note that K is equal to ℝ as a set, but |K| is not equivalent to ℝ as a topological space. For

instance, the set of points 1∕n is closed in |K| but not in ℝ (since it does not contain its limit

point, 0).

Example 2.4. LetK be a collection of 1-simplices �1, �2, … and their vertices, where �i is the

1-simplex in ℝ2 having vertices at the origin and (1, 1∕i). K is indeed a geometric simplicial

complex.
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Figure 2.5: The geometric simplicial complex consisting of simplices �i with a common end-
point at the origin and other endpoint (1, 1∕i).

The intersection of K with the open parabolic arc
{(

x, x2
)

∣ x > 0
}

is closed in |K|, be-

cause its intersection with each simplex �i is a single point.

The intersection is not closed in K equipped with the subspace topology, however, because

it has the origin as a limit point.

There are, however, situations in which |K| is the same as K equipped with the subspace

topology, such as when K contains finitely many simplices:

Let A be closed in |K|. Then A ∩ � is closed in � for each simplex � of K , and hence is

closed in ℝN as A is the union of finitely many sets A ∩ �.

The following lemma provides an open set definition for the polytope of K , while the

subsequent proposition provides a stronger condition for the equivalence of the topology of

|K| and K considered as a subspace.

Lemma 2.5. A set U is open in |K| if and only if U ∩ � is open in each simplex � of K .

Proof. Let U be open in |K|. Thus, |K|−U is closed in |K| and (|K|−U ) ∩ � = � − (U ∩ �)

is closed in each simplex � in K . Hence, U ∩ � is open for each � in K , as desired.

Conversely, let U ∩ � be open in each simplex � ∈ K . Then � − (� ∩ U ) is closed in each

�. But � − (� ∩U ) = (|K|−U ) ∩ �, so |K|−U is closed in |K|. Thus, |K|− (|K|−U ) = U

is open in |K|. ■
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Proposition 2.6. Let K be a complex in ℝN . The topology induced on K as a subspace of ℝN

is the same as the topology of the polytope of K if and only if each point x of |K| lies in an

open set of ℝN that intersects only finitely many simplices of K .

Proof. We will prove the forward implication via its contrapositive.

Let x ∈ K be such that for all open sets U ⊂ ℝN that contain x, U ∩ � is non-empty for

infinitely many simplices � in K . We will produce a set that is closed in |K|, but not closed in

the subspace topology on K .

Let U� denote the open ball of radius � centered at x. Consider the sequence U1 ⊃ U1∕2 ⊃

U1∕3 ⊃… in ℝN which all contain x.

For each Ui, choose an xi such that x ≠ xi and each xi is in a unique simplex �i of K . Let

⟨xi⟩ denote the sequence of all such xi.

The set made up of points in ⟨xi⟩ is closed in |K| as it intersects each simplex � of |K| at

a single point, meaning that it is closed in each simplex �.

However, the set made up of points in the sequence is not closed in K with the subspace

topology, as it does not contain its limit point x (Corollary 1.31).

Conversely, let each point x of K lie in an open set U of ℝN that intersects only finitely

many simplices of K , |K| be the polytope of K , and K be K equipped with the subspace

topology. We already know that K ⊆ |K|, and thus it suffices to show that |K| ⊆ K .

Let U be open in |K|. By Lemma 2.5, U ∩ � is open in each simplex � of K . As U

intersects only finitely many �, we consider an arbitrary simplex � of K that intersects U .

As U ∩ � is open in �, there exists an open ball B (x, �) for each x ∈ U ∩ � such that

B (x, �) ⊆ U ∩ �. The union of all such balls is open in K , and equals U (by the Union

Lemma). ■

Lemmas 2.7, 2.8, and 2.9 are on the topological properties of polyhedra, may be skimmed

and accepted without losing any appreciation for our later discussions.

Lemma 2.7. If L is a subcomplex of K , then |L| is a subspace of |K| that is closed in |K|
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when treated as a subset of |K|. In other words, |L| is a closed subspace of |K|.

Specifically, if � ∈ K , then � is a closed subspace of |K|.

Proof. Suppose A is closed in |L|. If � is a simplex of K , then � ∩ |L| is the union of those

faces si of � that belong to L. Since A is closed in |L|, the set A ∩ si is closed in si and hence

closed in �. Since A∩ � is the finite union of the sets A∩ si, it is closed in �. We conclude that

A is closed in |K|.

Conversely, if B is closed in |K|, then B∩� is closed in � for each � ∈ K , and in particular

for each � ∈ L. Hence, B ∩ |L| is closed in |L|. ■

Lemma 2.8. A map f ∶ |K| → X is continuous if and only if the restriction of f to �, denoted

f |
|�, is continuous for each � ∈ K .

Proof. If f is continuous, then so is f |
|� since � is a subspace of K .

Conversely, suppose each map f |
|� is continuous. If C is a closed set of X, then f−1(C) ∩

� =
(

f |
|�

)−1 (C), which is closed in � by continuity of f |
|�. Thus, f−1(C) is closed in |K| by

definition. ■

We may further generalize our previous notion of barycentric coordinates from just simpli-

cies to geometric simplicial complexes.

If x is a point of the geometric simplicial complex K , then x is interior to precisely one

simplex of K , whose vertices are a0, … , an. Then,

x =
n
∑

i=0
ti ai,

where ti > 0 for each i and
∑

ti = 1.

For an arbitrary vertex v ofK , we define the barycentric coordinate tv(x) of xwith respect

to v by setting tv(x) = 0 if v is not one of the vertices ai, and tv(x) = ti if v = ai.

For a fixed v, the function tv(x) is continuous (in the polytope |K|) when restricted to a fixed

simplex � of K , since it is either identically zero on � or equals the barycentric coordinate of
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x with respect to the vertex v of � in the sense formerly defined. By Lemma 2.8, tv(x) is

continuous on �.

Lemma 2.9. |K| is Hausdorff.

Proof. Given x0 ≠ x1, there is at least one vertex v such that tv(x0) ≠ tv(x1).

Choose r between these two numbers; then the sets
{

x ∣ tv(x) < r
}

and
{

x ∣ tv(x) > r
}

are

the required disjoint open sets. ■

Lemma 2.10. If K is finite, then |K| is compact. Conversely, if a subset A of |K| is compact,

then A ⊂ |

|

K0
|

|

for some finite subcomplex K0 of K .

Proof. Note that by the Heine-Borel Theorem, as each simplex � is a closed and bounded set,

they are compact. If K is finite, then |K| is a finite union of compact subspaces �, and hence

is compact.

Now suppose A is compact and A does not lie in the polytope of any finite subcomplex of

K . Choose a point xs ∈ A ∩ Int (s) whenever this set is non-empty. Then the set B = {xs} is

infinite. Furthermore, every subset of B is closed, since its intersection with any simplex of �

is finite. Being closed and discrete, B has no limit point, contrary to the fact that every infinite

subset of a compact space has a limit point. ■

The following three subspaces of the polytope on K are often useful when studying local

properties of |K|:

(1) Let v be a vertex of K . The star of v in K , denoted St (v) or St (v, K), is the union of the

interiors of those simplices of K that have v as a vertex.

St (v) is open in |K|, since it consists of all points x of |K| such that tv(x) > 0. Its

complement, the union of all simplices of K that do not have v as a vertex, is the polytope

of a subcomplex of K .

(2) The closure of St (v), denoted St (v), is the closed star of v in K . It is the union of all

simplices of K having v as a vertex, and is the polytope of a subcomplex of K .
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(3) The set St (v) − St (v) is called the link of v in K and is denoted Lk (v). It is also the

polytope of a subcomplex of K , the intersection of St (v) and the complement of St (v).

Figure 2.6: (Left) The open star of v (red). (Middle) The closed star of v (brown). (Right) The
link of v (green).

Note that the star and closed star of v in K are path connected, meaning that every two

points in St (v) and St (v) may be connected by a path contained entirely in them. The link of v

in K , however, may or may not be connected.

Simplicial Maps

We are now ready to introduce the idea of simplicial maps, which map one geometric simplicial

complex into another by mapping each simplex of the former to a simplex of the latter. We will

later use these to construct geometric simplicial complexes from abstract simplicial complexes.

Lemma 2.11. Let K and L be geometric simplicial complexes, and let f ∶ K (0) → L(0) be

a map. Suppose that whenever the vertices v0, … , vn of K span a simplex of K , the points

f
(

v0
)

, … , f
(

vn
)

are the vertices of a simplex of L. Then f can be extended to a continuous

map g∶ |K| → |L| such that

x =
n
∑

i=0
ti vi ⇒ g (x) =

n
∑

i=0
ti f

(

vi
)

.

We call g the (linear) simplicial map induced by the vertex map f .

Proof. Note that although the vertices f
(

v0
)

, … , f
(

vn
)

of L are not necessarily distinct,

still they span a simplex � of L, by hypothesis. When we “collect terms” in the expression

for g (x), it is still true that the coefficients are non-negative and their sum is 1; thus g (x) is a
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point of �. Hence, g maps the n-simplex � spanned by v0, … , vn continuously to the simplex

� whose vertex set is
{

f
(

v0
)

, … , f
(

vn
)}

.

The map g is continuous as a map of � into �, and hence as a map of � into |L|. Then by

Lemma 2.8, g is continuous as a map of |K| into |L|. ■

Many of the properties of the simplicial map are those that are retained from the original

function f when extended to the continuous map g. In fact, simplicial maps and geometric

simplicial complexes are somewhat analogous to continuous maps and topological spaces.

Suppose g∶ |K| → |L| and ℎ∶ |L| → |M| are simplicial maps. By definition, x =
∑

ti vi

(where vi are distinct vertices of � ∈ K), so g (x) =
∑

ti g
(

vi
)

.

In fact, this formula holds true even if not all vi are not distinct, so long as
{

v0, … , vn
}

is

the vertex set of a simplex of K . For example, suppose

x =
n
∑

i=0
ti vi,

where ti ≥ 0 for all i and
∑

ti = 1; and suppose that v0 = v1 and the vertices v1, … , vn are

distinct. We write

x =
(

t0 + t1
)

v0 + t2 v2 +⋯ + tn vn;

then by definition

g(x) =
(

t0 + t1
)

g
(

v0
)

+ t2 g
(

v2
)

+⋯ + tn g
(

vn
)

=
n
∑

i=0
ti g

(

vi
)

.

In the present case, even though the vertices g
(

v0
)

, … , g
(

vn
)

of L are not necessarily dis-

tinct, the following formula holds:

ℎ (g (x)) = ℎ
(

∑

ti g
(

vi
)

)

=
∑

ti ℎ
(

g
(

vi
))

.
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Therefore ℎ ◦ g is a simplicial map; in other words, the composition of simplicial maps is

simplicial.

The analogy between simplicial maps and continuous functions continues to the idea of a

simplicial homeomorphism.

Lemma 2.12. Suppose f ∶ K (0) → L(0) is a bijective correspondence such that the vertices

v0, … , vn of K span a simplex of K if and only if f
(

v0
)

, … , f
(

vn
)

span a simplex of

L. Then the induced simplicial map g∶ |K| → |L| is a homeomorphism, called a simplicial

homeomorphism or an isomorphism of K with L.

Proof. Each simplex � of K is mapped by g onto a simplex � of L of the same dimension as

�. We need only show that the linear map ℎ∶ � → � induced by the vertex correspondence

f−1 is the inverse of the map g∶ � → �. And for that we note that if x =
∑

ti vi, then

g(x) =
∑

ti f
(

vi
)

by definition; whence

ℎ(g(x)) = ℎ
(

∑

ti f
(

vi
)

)

=
∑

ti f
−1 (f

(

vi
))

=
∑

ti vi = x.

■

Corollary 2.13. Let ΔN denote the complex consisting of an N-simplex and its faces. If K is

a finite complex, then K is isomorphic to a subcomplex of ΔN for some N .

Proof. Let v0, … , vn be the vertices of K . Choose a0, … , aN to be the geometrically inde-

pendent points in ℝN , and let ΔN consist of the N simplex they span, along with its faces. The

vertex map f
(

vi
)

= ai induces an isomorphism of K with a subcomplex of ΔN . ■

In essence, a sufficiently large N-simplex is chosen such that every vertex of K can be

mapped to a vertex of the N-simplex.
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Abstract Simplicial Complexes

Abstract simplicial complexes are set theoretic objects greatly resembling geometric simplicial

complexes. Many terms used to describe geometric simplicial complexes are also used when

discussing abstract simplicial complexes for reasons that will become apparent after discussing

the Geometric Realization Theorem.

Definition 2.14. An abstract simplicial complex is a collection  of finite non-empty sets,

such that if A is an element of  , then so is every non-empty subset of A.

Example 2.5. The collections

1 = {{a} , {b} , {c} , {a, b} , {a, c} , {b, c} , {a, b, c}} ,

2 = {{a} , {b} , {c} , {a, b} , {a, c}} ,

are both abstract simplicial complexes.

The element A of  is called a simplex of ; its dimension is one less than its order. Each

non-empty subset of A is called a face of A.

The dimension of  is the largest dimension of one of its simplices (or infinite if there is

no such largest dimension). The vertex set V of  is the union of the one-point elements of ;

and we make no distinction between the vertex v ∈ V and the 0-simplex {v} ∈  .

Example 2.6. Recall 1 and 2 from Example 2.4. These collections both have the same vertex

set, namely {a, b, c}.

A subcollection of  that is itself an abstract simplicial complex is called a subcomplex of

 . Two abstract complexes  and  are isomorphic if there is a bijective correspondence f

mapping the vertex set of  to the vertex set of  such that
{

a0, … , an
}

∈  if and only if
{

f (a0), … , f (an)
}

∈  .

For a geometric simplicial complex K and its vertex set V , let  be the collection of all

subsets {a0, … , an} of V such that the vertices a0, … , an span a simplex ofK . The collection
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 is called the vertex scheme of K . It is an important example of an abstract simplicial

complex, as it lends itself nicely to the proof of the Geometric Realization Theorem.

The Geometric Realization Theorem may be considered to be the “Rosetta Stone” of ab-

stract and geometric simplicial complexes, allowing us to translate between them.

Theorem 2.15. GEOMETRIC REALIZATION THEOREM.

(1) Every abstract simplicial complex  is isomorphic to the vertex scheme of some geometric

simplicial complex K .

(2) Two simplicial complexes are (linearly) isomorphic if and only if their vertex schemes are

isomorphic as abstract simplicial complexes.

Proof. (1) Let ΔN be the collection of all simplices in ℝN spanned by finite subsets of the

standard basis
{

e1, … , eN
}

for ℝN as a vector space, which is equivalent to the definition

used in the proof of Corollary 2.13.

Then ΔN is a simplicial complex; if � and � are two simplices of ΔN , then their combined

vertex set is geometrically independent and spans a simplex of ΔN .

Now let  be an abstract complex with vertex set V . Choose a sufficiently large N such

that there is an injective function f ∶ V →
{

e1, … , eN
}

. For instance, let N be the order

of V .

We specify a subcomplexK ofΔN by the condition that for each abstract simplex {a0, … , an} ∈

 , the geometric simplex spanned by f (a0), … , f (an) is to be in K .

It is immediate that K is a simplicial complex and  is isomorphic to the vertex scheme of

K; f is the required correspondence between their vertex sets.

(2) Follows from Lemma 2.12. ■

Using the Geometric Realization Theorem, we are able to define the geometric realization

of an abstract simplicial complex  as the vertex scheme of the geometric simplicial complex

K with which it is isomorphic. It is unique up to a linear isomorphism.
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There is an alternative method of constructing a geometric realization of an abstract sim-

plicial complex: a labeling of vertices.

Given a finite complexL, a labeling of the vertices ofL is a surjective function f mapping

the vertex set of L to the set of labels.

There is an abstract simplex  corresponding to this labeling whose vertices are the labels

and whose simplices consist of all sets of the form {f (v0), … , f (vm)}, where v0, … , vn span

a simplex of L.

Let K be a geometric realization of  . Then the vertex map of L(0) onto K (0) derived from

f extends to a surjective simplicial map g∶ |L| → |K|. Then K is the complex derived from

the labeled complex L and g is the associated pasting map.

Example 2.7. Suppose we wish to construct a geometric simplicial complexK whose polytope

is homeomorphic to a cylinder. One way to do so is to draw K as a collection of 6 simplices as

shown below:

Figure 2.7: A simplicial complex with the polytope of a cylinder. Note, the interiors of triangles
abc and def are not included.

We may instead draw the diagram shown below:
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Figure 2.8: A simplicial diagram with a labeling of vertices that, when pasted, give a simplicial
complex with a polytope of a cylinder.

This diagram consists of two things:

(i) A complex L whose underlying space is a rectangle.

(ii) A particular labeling of vertices of L.

We consider it as short-hand for an abstract simplicial complex  whose vertex set consists of

the letters a, b, c, d, e, and f and whose simplices are the sets

{a, f , d} , {a, b, d} , {b, c, d} , {c, d, e} , {a, c, e} , {a, e, f} ,

along with their non-empty subsets.

The abstract simplicial complex L is isomorphic to the vertex scheme of the geometric

simplicial complex K , so it specifies the same simplicial complex up to isomorphism, i.e., K

is a geometric realization of L.

Example 2.8. Recall the abstract simplicial complexes from Example 2.5:

1 = {{a} , {b} , {c} , {a, b} , {a, c} , {b, c} , {a, b, c}} ,

2 = {{a} , {b} , {c} , {a, b} , {a, c}} .

We may construct similar diagrams to the previous example to construct their geometric

realizations:
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Figure 2.9: The geometric realizations of 1 (left) and 2 (right).

These diagrams also serve as the geometric realizations of 1 and 2, as each of their

vertices has a unique label.

Due to the notion of a geometric realization of an abstract simplicial complex, any geo-

metric simplicial complex may be considered as an abstract simplicial complex and vice versa.

Henceforth, we distinguish between the two only when necessary, and simply refer to them as

simplicial complexes.

Section 2.2: C̆ech and Vietoris-Rips Complexes
C̆ech and Vietoris-Rips complexes are simplicial complexes constructed from point clouds in

Euclidean N-space commonly used in topological data analysis. We begin our discussion with

two important results, and then specifically discuss these two types of complexes.

Helly’s Theorem

Helly’s Theorem describes the intersection patterns of finite collections of convex sets in ℝN .

Our particular interest in this theorem will become more clear in our future discussion of

nerves. Consider the following examples.

Example 2.9. Consider three closed intervals in ℝ that have non-empty pairwise intersections.

For instance, let A = [1, 5], B = [3, 7], and C = [0, 3]. Note that A ∩ B = [3, 5],

A ∩ C = [1, 3], and B ∩ C = {3}. Also notice that A ∩ B ∩ C = {3}.

This non-empty common intersection will hold for any number greater than 2 of closed

intervals with non-empty pairwise intersection in ℝ. To see why this is true, consider the

endpoints bounding each closed interval and their presence in the various combinations of
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each intersection. A proof is included in [4].

Helly’s Theorem generalizes this result to higher dimensions.

Theorem 2.16. HELLY’S THEOREM. Let F be a finite collection of closed, convex sets in

ℝN . Every N +1 of the sets in F have a non-empty common intersection if and only if all sets

in F have a non-empty common intersection.

Proof. We prove only the forward implication and proceed by induction over the dimensionN

and the number of sets n in F .

As stated in Example 2.9 and shown in [4], given N = 1 and for all n closed, convex sets,

the statement holds. Specifically, the statement holds for n = N + 1.

Now suppose we have a minimal counterexample consisting of n > N + 1 closed, convex

sets in ℝN . Specifically, this counterexample is minimal in n for a given N . We denote these n

sets by X1, X2, … , Xn. As X1, X2, … , Xn is a minimal counterexample, the set Yn =
n−1
⋂

i=1
Xi

is non-empty and disjoint from Xn.

Specifically, by assumption all n of the sets do not have a non-empty common intersection

as X1, X2, … , Xn are a counterexample to the statement. However, as they are the minimal

counterexample, the sets X1, X2, … , Xn−1 do indeed have a non-empty common intersec-

tion, which we have denoted Yn. Thus, as all n of the sets do not have a non-empty common

intersection, Yn and Xn must be disjoint.

As Yn and Xn are also closed and convex, we may find an (N − 1)-dimensional plane ℎ

that separates and is disjoint from both sets. Let F ′ be the collection of sets Zi = Xi ∩ ℎ for

1 ≤ i ≤ n − 1. Each Zi is a non-empty, closed, convex set in ℝN−1 as any N of the first n − 1

sets Xi have a common intersection with each other and with Xn. This also implies that any N

of the sets in F ′ have a non-empty common intersection.

By minimality of the counterexample, the statement implies that
⋂

F ′ is non-empty, i.e.,

⋂

F ′ =
n−1
⋂

i=1

(

Xi ∩ ℎ
)

= Yn ∩ ℎ.
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Thus, Yn and ℎ are not disjoint, a contradiction. ■

Example 2.10. Consider the sets A, B, C, and D shown in Figure 2.10.

Figure 2.10: Every three of four sets A, B, C, and D in ℝ2 have non-empty common intersec-
tion. All four indeed have a non-empty common intersection, as implied by Helly’s Theorem.

Every three of four sets A, B, C, and D in Figure 2.10 have non-empty common intersec-

tion. All four indeed have a non-empty common intersection, as implied by Helly’s Theorem.

Homotopy Type

Homotopy type is a notion of equivalence between topological spaces that is weaker than topo-

logical equivalence. It is useful when we desire to “simplify” a topological space in a rigorous

way.

Definition 2.17. Let X, Y be topological spaces and f, g∶ X → Y be continuous maps

between them. A homotopy between f and g is a continuous map H ∶ X × [0, 1] → Y such

that H (x, 0) = f (x) and H (x, 1) = g(x) for all x ∈ X.

The homotopy H may be thought of as a time-series of functions ft∶ X → Y such that

ft(x) = H(x, t), with f0 = f and f1 = g.

Example 2.11. Consider the functions f, g∶ ℝ → ℝ by f (x) = x2 and g(x) = 3 x3, which

are both continuous functions.
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The function H ∶ ℝ × [0, 1] → ℝ by H(x, t) = (1 + 2 t) x2+t is a homotopy between f

and g as H(x, 0) = x2 = f (x) and H(x, 1) = 3 x3 = g(x).

Homotopies define an equivalence relation on functions, and we write f ≃ g if there is a

homotopy between them.

Definition 2.18. Two topological spaces X and Y are homotopy equivalent, or have the same

homotopy type, if there exist continuous maps f ∶ X → Y and g∶ Y → X such that g◦f ≃

idX and f◦g ≃ idY , and we write X ≃ Y , which is indeed an equivalence relation. The

functions f and g are referred to as homotopy equivalences or homotopy inverses of one

another.

The condition Y ⊆ X is a specific case of homotopy equivalence. In this case, Y is a

retract of X if there exists a continuous map r∶ X → Y such that r(y) = y for all y ∈ Y ; r is

called a retraction. If there is a homotopy between r and idX , then Y is a deformation retract

and r is a deformation retraction. If Y is a single point, then X has the homotopy type of a

point and is said to be contractible.

Example 2.12. Any closed path  in Euclidean space equipped with the subspace topology is

contractible by the following argument:

Note that  is homeomorphic to the closed interval I = [0, 1] in ℝ with the usual topology.

Consider the closed set P = {0} in ℝ and the zero function f ∶ I → P .

The function H ∶ I × [0, 1] → P by H(x, t) = t x is a homotopy between f and the

identity function idI , as it is a continuous function with the property H(x, 0) = 0 = f (x) and

H(x, 1) = x = idI (x). Thus, I is contractible.

As I is contactible and is homeomorphic to  ,  is contractible as well.

Example 2.13. Consider the unit disc B2 (, 1). Using a similar homotopy as in Example

2.12, we find that it, too, is contractible.
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Nerves and the Nerve Theorem

We are now ready to define nerves, which will lead us to the Nerve Theorem and complete the

groundwork for our discussion on C̆ech and Vietoris-Rips complexes.

Definition 2.19. Let F be a finite collection of sets in ℝN (which may or may not be convex).

The nerve of F consists of all non-empty subcollections X of F whose sets have a non-empty

common intersection, i.e.,

Nrv (F ) =
{

X ⊆ F |

|

|

⋂

X ≠ ∅
}

.

Example 2.14. Recall the sets A, B, C, and D shown in Figure 2.10. The nerve of F =

{A, B, C, D} is

Nrv (F ) = {{A} , {B} , {C} , {D} , {A, B} , {A, C} , {A, D} ,

{B, C} , {B, D} , {C, D} , {A, B, C} , {A, B, D} ,

{A, C, D} , {B, C, D} , {A, B, C, D}} .

Note that all non-empty subsets of the elements of Nrv (F ) are also in Nrv (F ), implying

that it is an abstract simplicial complex. This in fact holds for all nerves and, by the Geometric

Realization Theorem, we may thus represent the nerve as a geometric simplicial complex.

64



Jason Turner Union College

Figure 2.11: The geometric realization of Nrv (F ) is a tetrahedron, including its interior.

As the nerve of a collection of sets may be represented as a geometric simplicial complex,

it is sensible to discuss its topology and, more importantly for our purposes, its homotopy type.

The Nerve Theorem greatly simplifies our understanding of the homotopy type of a given

collection by equating it to that of the collection itself.

Theorem 2.20. NERVE THEOREM. Let F be a finite collection of closed, convex sets in

Euclidean space. Then the nerve of F and the union of the sets in F have the same homotopy

type.

A proof of the Nerve Theorem is explicitly omitted in [4], and although it may be found in

[8], it should be left to only the most interested of readers.

Note that Helly’s Theorem imposes a constraint on the structure of the nerve: if the sets

live in ℝN , then a subcollection of k ≥ N + 1 sets cannot have all
⎛

⎜

⎜

⎝

k

N + 1

⎞

⎟

⎟

⎠

N-simplices in the

nerve without having the entire k-simplex in the nerve.

Constructing C̆ech and Vietoris-Rips Complexes

We have now laid all necessary groundwork for our discussion of C̆ech and Vietoris-Rips com-

plexes. We describe their construction and prove the C̆ech and Vietoris-Rips Lemma, which
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describes the relationship between them.

Definition 2.21. Let r > 0 be fixed, and consider a finite set S of points in ℝN . Let BN (x, r)

denote the closed ball of radius r about the point x. The C̆ech complex of S and r is isomorphic

to the nerve of this collection of balls, i.e.,

C̆ech (r) =

{

� ⊆ S |

|

|

⋂

x∈�
BN (x, r) ≠ ∅

}

.

Example 2.15. Below are figures depicting the construction of the geometric realization of a

C̆ech complex for a fixed set of points S and an increasing radius.

Figure 2.12: (Left) A set of points contained in circles of a radius r. (Right) The geometric
realization of the C̆ech complex of the set.
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Figure 2.13: Using a slightly larger radius, we obtain a different C̆ech complex for the same
points. The 2-simplex indicates that the upper-most three points are closer to one another than
to the bottom-most point.

Figure 2.14: Using an even larger radius, we obtain a tetrahedron, including its interior. In
essence, we have erased the information about the relative positions of the points.

Notice that as we increase the radius of each ball, the geometric realization of the C̆ech

complex may change drastically. At the middle stage, depicted in Figure 2.13, we obtain a

2-simplex and a hole bounded by 1-simplices. By the last stage, depicted in Figure 2.14, we

have closed the hole and filled in the 3-simplex that the four vertices span. However note that

for every r0 ≤ r, C̆ech
(

r0
)

⊆ C̆ech (r).

From this, we may also see that for a given set of points in ℝN , the C̆ech complex may not

have a geometric realization in ℝN . Specifically, our set of points S is contained in ℝ2, but the

geometric realization of the final C̆ech complex is a tetrahedron, which lives in ℝ3.
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Consider a subset � of points in S. Let the miniball of �, which we denote mb (�), be

the smallest closed ball that contains �, which is unique. Note that the diameter of the set

containing the upper-most three points is less than twice the radius of the balls in both Figures

2.13 and 2.14. This indeed holds for all subsets of points in all C̆ech complexes, i.e., the radius

of mb (�) is less than or equal to r if and only if � ∈ C̆ech (r).

Definition 2.22. Similarly to the C̆ech complex, we utilize a set S of points in ℝN and a

fixed r > 0 to construct the Vietoris-Rips complex. The Vietoris-Rips complex consists of all

subsets of diameter at most 2 r, i.e.,

Vietoris-Rips (r) =
{

� ⊂ S |

|

|

diam (�) ≤ 2 r
}

.

This implies that whenever a boundary of a simplex is in the Vietoris-Rips complex, then its

interior is as well. For example, consider the case of a 2-simplex spanned by {a, b, c} whose

boundary is included in the complex for a given r. This means that the distance between any

two of a, b, c is less than 2 r, and thus the diameter of {a, b, c} is less than 2 r.

Example 2.16. Below is a figure depicting the construction of the geometric realization of a

Vietoris-Rips complex for the same set of points S as in Example 2.14.

Figure 2.15: Unlike the C̆ech complex featured in Figure 2.13, the Vietoris-Rips complex of this
radius contains two 2-simplices.

From this example, we see that the edges and vertices are identical in both the C̆ech and

Vietoris-Rips complexes of a given set and fixed radius, and further C̆ech (r) ⊆ Vietoris-Rips (r)

for any given set of points and any fixed radius r.
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The C̆ech and Vietoris-Rips Lemma relates C̆ech and Vietoris-Rips complexes, and pro-

vides credence to our preference for the latter for computational purposes.

Lemma 2.23. C̆ECH AND VIETORIS-RIPS LEMMA. Let S be a finite set of points in some

Euclidean space and r ≥ 0. Then Vietoris-Rips (r) ⊆ C̆ech
(
√

2 r
)

.

Proof. A simplex is regular if all its edges have the same length. A representation for dimen-

sion N is the standard N-simplex, denoted ∇N (not to be confused with the aforementioned

ΔN ), which is the simplex spanned by the endpoints of the unit vectors in ℝN+1. Note that each

edge of ∇N has length
√

2. We will utilize the fact that we may always express a simplicial

complex as a subcomplex of∇N for a sufficiently largeN (see [4]), along with the interplay be-

tween the length of the edges of∇N and the definition of the C̆ech and Vietoris-Rips complexes

to prove the result.

The barycenter of a simplex is the arithmetic mean position of its vertices. By sym-

metry, the barycenter of ∇N is the point z whose N + 1 coordinates are all 1
N+1

. Thus,

‖z‖ = 1∕
√

N + 1.

The barycenter is also the center of the smallest N-sphere that passes through the vertices

of ∇N . Let rN be the radius of that sphere, and note that rN =
√

1 − ‖z‖2 =
√

N
N+1

. As the

dimension goes to infinity, rN approaches 1 from below.

Note that the smallest diameter of such anN-sphere occurs whenN = 1, as 2 r1 = 2
√

1
2
=

√

2 and rN increases with N . Thus, any set of N + 1 or fewer vertices for which the same

N-ball of diameter 2 rN is the miniball has a pair of points at distance
√

2 or larger.

It follows that every simplex of diameter
√

2 or less belongs to C̆ech
(

rN
)

. Hence, Vietoris-Rips (r) ⊆

C̆ech
(
√

2 r rN
)

, and we also have C̆ech
(
√

2 r rN
)

⊆ C̆ech
(
√

2 r
)

as rN ≤ 1 for all N .

Since we may always express a simplicial complex as a subcomplex of∇N for a sufficiently

large N , the result holds. ■

By definition, the Vietoris-Rips complex of a set of vertices is easier to compute than a

C̆ech complex for the same set. The C̆ech and Vietoris-Rips Lemma shows that the Vietoris-
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Rips complex contains a portion of the information contained in the C̆ech complex, and that

amount of information is sufficient for our purposes.
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Chapter 3: Homology Groups of a

Simplicial Complex

The driving force behind the development of homology was the observation that two topologi-

cal spaces can be distinguished by examining their holes. For instance, the disk and the annulus

differ by a single hole in their center.

In Section 3.1, we introduce homology groups in non-negative dimensions. These groups

provide information about the space by counting the number of holes indirectly through what

surrounds them. We discuss a modification to homology groups, called reduced homology

groups, which are identical except in the 0th dimension.

In Section 3.2, we utilize the diagrams introduced in Example 2.7 to calculate the homology

groups of a torus and a Klein bottle.

Section 3.1: Homology Groups
The construction of homology groups necessitates the ability to determine the presence or lack

of a “hole”. To accomplish this, we introduce the idea of a boundary operator, which in turn

requires the notion of orientation in the context of simplices.

Homology in Dimensions Greater Than 0

Let � be a simplex. Define two orderings of its vertex set to be equivalent if they differ from

one another by an even permutation. If dim (�) > 0, the orderings of the vertices of � then fall
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into two equivalence classes. Each of these classes is called an orientation of �. An oriented

simplex is a simplex � together with an orientation of �.

If v0, … , vp are geometrically independent, we shall use the symbol

v0… vp

to denote the simplex they span and
[

v0, … , vp
]

to denote the oriented simplex with the particular ordering
(

v0, … , vp
)

.

Figure 3.1: A 2-simplex with its two possible orientations, [a, b, c] (left) and [a, c, b] (right).

Definition 3.1. Let K be a simplicial complex. A p-chain on K is a function c from the set of

oriented p-simplices of K to the integers, such that:

(i) c (�) = −c (�′) if � and �′ represent opposite orientations of the same simplex, and

(ii) c (�) = 0 for all but finitely many oriented p-simplices �.
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Figure 3.2: A simplicial complex with the 1-chain [a, b]+[b, c]+[c, d]+[d, e]+[e, f ]+[e, g]
indicated by arrows.

For an oriented p-simplex �, we also use � to denote the p-chain that takes � to 1, �′ to −1,

and all other p-simplices to 0, as shown in Figure 3.2.

The p-chains together with p-chain addition form an abelian group called the group of

oriented p-chains of K , denoted Cp (K).

If p < 0 or p > dim (K), then Cp (K) is the trivial group, as there are no simplices of

dimension less than 0 or greater than the dimension of the simplicial complex which contains

them.

We say a chain c is carried by a subcomplex L of K if c has value 0 on every simplex of

K that is not in L.

Lemma 3.2. As might be expected, Cp (K) is free abelian. Orient each p-simplex �, and

consider each as a p-chain consisting only of �. These p-chains form a basis for Cp (K).

Proof. Once all p-simplices ofK are oriented arbitrarily, each p-chain may be written uniquely

as a finite linear combination

c =
∑

ni �i

of the corresponding elementary chains �i.

The chain c assigns the value ni to the oriented p-simplex �i, the value −ni to the opposite

orientation of �i, and the value 0 to all oriented p-simplices not appearing in the summation.

■
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Example 3.1. Consider the simplicial complex in Figure 3.2, which we now denoteK , and ori-

ent the edge between f and g as [f, g]. The 1-chains [a, b] , [b, c] , [c, d] , [d, e] , [e, f ] , [e, g] ,

and [f, g] form a basis for C1 (K).

The group C0 (K) has a natural basis as any 0-simplex has only one orientation. For p > 0,

Cp (K) has no natural basis, and the simplices must be oriented arbitrarily in order to obtain a

basis.

Corollary 3.3. Any function f from the oriented p-simplices of K to an abelian group G

extends uniquely to a homomorphism Cp (K) → G, provided that f (−�) = −f (�) for all

oriented p-simplices �.

A proof of this is included in [9].

Definition 3.4. We now define a homomorphism

)p ∶ Cp (K)→ Cp−1 (K)

called the boundary operator. For an oriented simplex � =
[

v0, … , vp
]

with p > 0, we

define

)p� = )p
[

v0, … , vp
]

=
p
∑

i=0
(−1)i

[

v0, … , v̂i, … , vp
]

,

where v̂i means that the vertex vi is to be deleted from the array. Since Cp (K) is trivial for

p < 0, the operator )p is the trivial homomorphism for p ≤ 0.

To ensure )p is well defined and that )p (−�) = −)p(�), it suffices to show the summation on

the right-hand side changes sign if we exchange two adjacent vertices in the array
[

v0, … , vp
]

.

We compare the expressions for

)p
[

v0, … , vj , vj+1, … , vp
]

and )p
[

v0, … , vj+1, vj , … , vp
]

.

For i ≠ j, j + 1, the itℎ terms in these two expressions differ precisely by a sign; the terms are

identical except that vj and vj+1 have been interchanged.
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For i = j, j + 1, the terms in )p
[

v0, … , vj , vj+1, … , vp
]

are

(−1)j
[

… , vj−1, v̂j , vj+1, vj+2, …
]

+ (−1)j+1
[

… , vj−1, vj , v̂j+1, vj+2, …
]

while the terms in )p
[

v0, … , vj+1, vj , … , vp
]

are

(−1)j
[

… , vj−1, vj , v̂j+1, vj+2, …
]

+ (−1)j+1
[

… , vj−1, v̂j , vj+1, vj+2, …
]

which only differ by a sign.

Example 3.2. Consider the oriented 2-simplex [a, b, c], as shown in Figure 3.1. Its boundary

is

)2 [a, b, c] = [b, c] − [a, c] + [a, b] = [a, b] + [b, c] + [c, a] ,

which is the orientation we would expect its boundary to inherit.

Figure 3.3: The boundaries of [a, b, c] (left) and [a, c, b] (right) inherit the orientation we
would expect from the orientation of the 2-simplices.

One of the most crucial facts about the boundary operator is the fact that )p−1◦)p = 0 for

all p, which is shown by the following computation:

)p−1 )p
[

v0, … , vp
]

=
p
∑

i=0
(−1)i )p−1

[

v0, … , v̂i, … , vp
]

=
∑

j<i
(−1)i (−1)j

[

… , v̂j , … , v̂i, …
]

+
∑

j>i
(−1)i (−1)j−1

[

… , v̂i, … , v̂j , …
]

.
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The terms of these two summations cancel in pairs.

Example 3.3. Recall from Example 3.1 that the boundary of [a, b, c] is [a, b] + [b, c] +

[c, a]. Applying the boundary operator once more (and excluding the square brackets for the

intermediate 0-simplices), we obtain

)1 ([a, b] + [b, c] + [c, a]) = b − a + c − b + a − c = 0.

Definition 3.5. The kernel of )p∶ Cp (K) → Cp−1 (K) is called the group of p-cycles and

denoted Zp (K).

Example 3.4. Consider the 1-chain [a, b]+[b, c]+[c, a], which is a connected path beginning

and ending at a. From Example 3.2, we know that its boundary is 0, meaning that it is in the

kernel of )1. Therefore, it is a 1-cycle.

Definition 3.6. The image of )p+1∶ Cp+1 (K) → Cp (K) is called the group of p-boundaries

and is denoted Bp (K).

Example 3.5. Recall that the boundary of [a, b, c] is

)2 [a, b, c] = [a, b] + [b, c] + [c, a] .

Therefore [a, b] + [b, c] + [c, a] is in the image of )2 and is thus a 1-boundary.

Note that each boundary of a p + 1 chain is automatically a p-cycle, i.e., Bp (K) ⊆ Zp (K).

Definition 3.7. We define the ptℎ homology group as

Hp (K) = Zp (K) ∕Bp (K) ,

which depends only on the polytope |K|.
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The elements of homology groups are equivalence classes with a representative p-cycle c.

All other elements of this equivalence class are of the form c + )d, where d is a p + 1-chain.

That is, all elements of an equivalence class differ by a boundary, and we say that any two

cycles that differ by a boundary are homologous.

Example 3.6. Recall the simplicial complex K from Examples 2.12 and 2.15, shown below:

Figure 3.4: A simplicial complex with three 1-cycles: [a, b] + [b, d] + [d, a], [b, c] + [c, d] +
[d, b], and [a, b] + [b, c] + [c, d] + [d, a]. The last two of these differ by the boundary of
[a, b, d], and are thus homologous.

The simplicial complex K contains three 1-cycles:

x = [a, b] + [b, d] + [d, a] ,

y = [b, c] + [c, d] + [d, b] , and

z = [a, b] + [b, c] + [c, d] + [d, a] .

Note that x+y = z, and thus every 1-cycle is of the formmx+n y. Therefore,Z1 (K) ≅ ℤ⊕ℤ.

The simplicial complexK also contains only one 1-boundary, namely x. Therefore,B1 (K) ≅

ℤ.

Thus, H1 (K) ≅ Z1 (K) ∕B1 (K) ≅ ℤ. Note that the rank of H1 (K) is the same as the

number of 1-dimensional “holes” in K , namely the hole bounded by y.

Example 3.5 illustrates the information we may collect from the homology groups of a

77



Jason Turner Union College

simplicial complex: the number of holes in each dimension. For clarity, we say that a hole is

dimension p when it is bounded by a p-chain. To ease our discussion about these holes, we

define the Betti numbers of a space below.

Definition 3.8. Let K be a simplicial complex with homology groups Hp (K). The pth Betti

number �p is the rank of the pth homology group, and is the total number of p-dimensional

holes.

Zero-Dimensional and Reduced Homology

Continuing our observation, the rank of the zeroth-dimensional homology group should be a

count of the number of 0-dimensional holes. Upon inspection, however, it counts the number

of connected components!

To amend this, we introduce the augmentation map, which is a homomorphism used in

place of )0 to define the reduced homology groups. The reduced homology groups are identical

to the aforementioned homology groups in all non-negative dimensions, with the exception of

the zeroth dimension where their rank is one less than the number of connected components.

We begin our discussion with a brief foray into the zeroth homology group.

Proposition 3.9. Let K be a complex. Then the group H0 (K) is free abelian. If
{

v�
}

is a

collection consisting of one vertex from each component of |K|, then the homology classes of

the chains v� form a basis for H0 (K).

The proof of this proposition is very detailed, contains many moving parts, and fails to

lend valuable insight for our future discussions. The reader may simply accept the results of

Proposition 3.9 and proceed.

Proof. This proof was obtained from in [9].

Step 1. If v and w are vertices of K , let us define v ∼ w if there is a sequence

a0, … , an
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of vertices of K such that v = a0 and w = an, and ai ai+1 is a 1-simplex of K for each i. This

relation is clearly an equivalence relation. Given v, define

Cv =
⋃

{St (w) ∣ w ∼ v}.

We show that the sets Cv are components of |K|.

Note first that Cv is open because it is the union of open sets. Furthermore, Cv = Cv′ if

v ∼ v′.

Second, we show that Cv is connected, in fact, path connected. Given v, let w ∼ v and let

x be a point of St (w). Choose a sequence a0, … , an of vertices of K , as before. Then the

broken line path with successive vertices a0, … , an, x lies in Cv. Since ai ∼ v by definition,

so that St
(

ai
)

⊂ Cv, and in particular the line segment ai ai+1 lies in Cv. Similarly, the line

segment an x lies in St
(

an
)

, which is contained in Cv. Hence, Cv is path connected.

Third, we show distinct sets Cv and Cv′ are disjoint. Suppose x is a point of their intersec-

tion. Then x ∈ St (w) for some w equivalent to v, and x ∈ St (w′) for some w′ equivalent to

v′. Since x has positive barycentric coordinates with respect to both w and w′, some simplex

of K has w and w′ as vertices. Then ww′ must be a 1-simplex of K , so w ∼ w′. It follows

that v ∼ v′, so that the two sets Cv and Cv′ are the same.

Being connected, open, and disjoint, the sets Cv are necessarily the components of |K|.

Note that each is the space of a subcomplex of K; each simplex of K , being connected, lies

entirely in one component of |K|.

Step 2. Now we prove the proposition. Let {v�} be a collection of vertices containing

one vertex v� from each component C� of |K|. Given a vertex w of K , it belongs to some

component of K , say C�. By hypothesis, w ∼ v�, so there is a sequence a0, … , an of vertices

of K , as before, leading from v� to w. The 1-chain

[

a0, a1
]

+
[

a1, a2
]

+⋯ +
[

an−1, an
]
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has as its boundary the 0-chain an − a0 = w − v�. Thus, the 0-chain w is homologous to the

0-chain v�. We conclude that every chain in K is homologous to a linear combination of the

elementary 0-chains v�.

We now show that no non-trivial chain of the form c =
∑

n� v� bounds. Suppose c = )d

for some 1-chain d. Since each 1-simplex ofK lies in a unique component of |K|, we can write

d =
∑

d�, where d� consists of those terms of d that are carried by C�. Since )d =
∑

)d�

and )d� is carried by C�, we conclude that )d� = n� v�. It follows that n� = 0 for each �. Let

�∶ C0 (K) → ℤ be the homomorphism defined by setting � (v) = 1 for each vertex v of K .

Then � () [v, w]) = � (w − v) = 1 − 1 = 0 for any elementary 1-chain [v, w]. As a result,

� ()d) = 0 for every 1-chain d. In particular, 0 = � ()d) = �
(

n� v�
)

= n�. ■

Step 1 creates a collection of subsets of K that are the components of K . Specifically,

v ∼ v′ if there is a path of 1-simplices entirely in K joining them and each unique Cv is an

open connected component of K and all Cv are disjoint from each other. A drawing makes this

especially apparent.

Step 2 establishes that any two vertices in a Cv are homologous, every chain in K can be

expressed as a linear combination of 0-chains determined by a set consisting of one vertex from

each C�, and that no non-trivial 0-chain bounds, which is analogous to showing that the linear

combinations are unique.

Recall that from our observations, the 0th Betti number would count the number of 0-

dimensional holes, which would be one less than the number of connected components. We

now introduce the augmentation map and define reduced holomology groups, which allow us

to count the number of holes in all dimensions p > 0 and count the number of connected

components in dimension p = 0.

Definition 3.10. Let � ∶ C0 (K) → ℤ be the surjective homomorphism defined by �(v) = 1

for each vertex v of K . Then if c is a 0-chain, �(c) equals the sum of the values of c on the

vertices of K . The map � is called the augmentation map for C0 (K). We have just noted that

�()d) = 0 if d is a 1-chain. We define the reduced homology group of K in dimension 0,

80



Jason Turner Union College

denoted H̃0 (K), by the equation

H̃0 (K) = ker (�) ∕Im
(

)1
)

.

If p > 0, we let H̃p (K) denote the usual group Hp (K).

We similarly define the reduced Betti numbers �̃p as the rank of the reduced homology

groups.

The following theorem confirms that the zeroth reduced homology group does indeed

count the number of connected components, which is one greater than the number of zero-

dimensional holes.

Theorem 3.11. The group H̃0 (K) is free abelian and

H̃0 (K)⊕ ℤ ≅ H0 (K) .

Thus, H̃0 (K) vanishes if |K| is connected. If |K| is not connected, let {v�} consist of one

vertex from each component of |K|; let �0 be a fixed index. Then the homology classes of the

chains v� − v�0 , for � ≠ �0, form a basis for H̃0 (K).

Proof. Given a 0-chain c, it is homologous to a 0-chain of the form c′ =
∑

n� v�, where the

chain c′ bounds if and only if n� = 0 for all �. Now if c ∈ ker (�), then �(c) = �(c′) =

�(
∑

n� v�) =
∑

n� = 0. If |K| has only one component, this implies that c′ = 0. If |K| has

more than one component, it implies that c′ is a linear combination of the 0-chains v�−v�0 . ■

Section 3.2: Calculating Homology Groups of Sur-

faces Using Labeled Simplicial Complexes
We now utilize labeled diagrams, akin to those introduced in Example 2.7, to compute the

homology groups of well-known surfaces.
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Preliminaries

For each of these surfaces, we will be using alternate labelings of the same diagram, namely

the simplicial complex L shown below:

Figure 3.5: The diagram L which we will be using throughout this section. Each of its 2-
simplices are oriented counterclockwise, while its 1-simplices are oriented arbitrarily.

Let each of the 2-simplices in L be oriented counterclockwise and the 1-simplices be ori-

ented arbitrarily. We denote the complex whose polytope is the boundary of the rectangle by

Bd (L).

Lemma 3.12. (1) Every 1-cycle of L is homologous to a 1-cycle carried by Bd (L).

(2) If d is a 2-chain of L and if )d is carried by Bd (L), then d is a multiple of the chain
∑

�i.

Proof. We give a partial proof of (1) along with the final result. The technique used is some-

times called “pushing a p-chain off of p-simplices”, and involves arguing that a given p-chain

is homologous to a p-chain carried by some subcomplex, and proceeding until the desired

subcomplex is reached.
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Figure 3.6

Consider an arbitrary 1-chain c of L, and let a be the value of c on e4, as shown in Figure

3.6. By direct computation, the chain

c1 = c + )
(

a �4
)

has value 0 on e4. By modifying c by a boundary, we have essentially “pushed it off” of e4.

Note also that if c is a cycle, then c1 is a cycle as well. This holds for all subsequent steps of

this process.

Let b be the value of c1 on e3. Then the chain

c2 = c1 + )
(

b �3
)

has value 0 on e3, and still has value 0 on e4 as e4 does not appear in )�3.

We may continue this process to show that any chain on L is homologous to a chain on the

complex L′ shown below:
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Figure 3.7

We may repeat this process using all remaining 2-simplices of L′ to show that all p-chains

of L are homologous to p-chains carried by the complex L′′ shown below:

Figure 3.8

In the case where the original 1-chain c is a cycle, it must be carried by Bd (L), for other-

wise c2 would have a non-zero coefficient on one or more of the vertices v1, … , v5.

To prove (2), first consider a 2-chain d of L. If �i and �j in d have an edge e in common,

then that edge cannot be on Bd (L) and )d must have a value 0 on e. It follows that d must

have the same value on �i as it does on �j . Continuing this process, we see that d has the same

value on every oriented 2-simplex �i, i.e., d is a multiple of the chain
∑

�i. ■

We are now ready to compute the homology of some common surfaces.
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Homology Groups of the Torus

We may represent the torus T as the polytope of the labeled rectangle L shown below. Orient

each 2-simplex counterclockwise and let 
 denote their sum. In addition, let

w1 = [a, b] + [b, c] + [c, a] ,

z1 = [a, d] + [d, e] + [e, a] .

Figure 3.9: The polytope of this labeled rectangle is the torus.

We will show that

H1 (T ) ≅ ℤ⊕ ℤ, H2 (T ) ≅ ℤ,

where w1 and z1 generate H1 (T ) and 
 generates H2 (T ). Figure 3.10 shows where w1 and z1

are located on the torus.
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Figure 3.10: The cycles w1 and z1 surround the central hole and the tube, respectively, on the
torus following the identification of vertices of L.

Let g∶ |L| → |T | be the pasting map; let A = g (|Bd (L)|). Then A is homeomorphic to a

space that is the union of two circles with a point in common. (Such a space is called a wedge

of two circles.) Orient the 1-simplices of T arbitrarily.

As g makes identifications only among simplices of Bd (L), the arguments we gave earlier

in proving Lemma 3.12 apply verbatim to prove the following:

(i) Every 1-cycle of T is homologous to a 1-cycle carried by A, and

(ii) If d is a 2-chain of T and if )d is carried by A, then d is a multiple of 
 .

In the complex T , two further results hold:

(iii) If c is a 1-cycle of T carried by A, then c is of the form nw1 + mz1, and

(iv) )
 = 0.

The proof of (iii) is given by Lemma 3.12 and the fact that A is just the 1-dimensional

complex formed by z1 and w1 and pictured in Figure 3.10.

With regards to (iv), it is clear that )
 has a value 0 on every 1-simplex of T not in A. We

may check directly that it also has value 0 on each 1-simplex in A. For example, the chain

[a, b] appears in the expression for )�1 with value −1 and in the expression for )�2 with value

+1, so that )
 has value 0 on [a, b].

Using results (i - iv), we can compute the homology of T .
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Every 1-cycle of T is homologous to a 1-cycle of the form c = nw1 +mz1, by (i) and (iii).

Such a cycle bounds only if it is trivial: For if c = )d for some d, then (ii) applies to show that

d = p
 for some p; since )
 = 0 by (iv), we have c = )d = 0. We conclude that

H1(T ) ≅ ℤ⊕ ℤ,

and the 1-cycles w1 and z1 generate H1 (T ).

To compute H2 (T ), note that by (ii) any 2-cycle d of T must be of the form p
 for some

p. Each such 2-chain is in fact a cycle, by (iv), and there are no 3-chains for it to bound. We

conclude that

H2(T ) ≅ ℤ,

and this group has as generator the 2-cycle 
 .

It is not difficult to see that H0 (T ) ≅ ℤ, as the torus consists of a single connected compo-

nent.

Homology Groups of a Klein Bottle

We may represent the Klein bottle  as the polytope of the labeled rectangle S shown below.

Orient each 2-simplex counterclockwise and let 
 denote their sum. In addition, let

w1 = [a, b] + [b, c] + [c, a]

z1 = [a, d] + [d, e] + [e, a] .

87



Jason Turner Union College

Figure 3.11: The polytope of this labeled rectangle is the Klein bottle.

We will show that

H1 () ≅ ℤ⊕ ℤ2, H2 () = 0,

where w1 and z1 generate H1 (), specifically w1 generates ℤ and z1 generates ℤ2. Figure

3.10 shows where w1 and z1 are located on the Klein bottle.

Figure 3.12: The cycle w1 goes through the Klein Bottle, while z1 does not.

Let g∶ |S| →  be the pasting map. Let A = g(|Bd (S)|); as before, it is the wedge of two

circles. Orient the 2-simplices of S as before; let 
 be their sum. Orient the 1-simplices of A

arbitrarily.

Note that (i) and (ii) from the calculations of the torus hold; neither involve particular

identifications on the boundary. Because A is the wedge of two circles, (iii) holds as well. Part

(iv) differs from the previous example, since we now have )
 = 2 z1.
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This equation follows by direct computation. For example, [a, b] appears in )�1 with

coefficient −1 and in )�2 with coefficient +1, while [a, d] appears in both )�3 and )�4 with

coefficient +1.

Putting these facts together, we compute the homology of : as follows.

Every 1-cycle of  is homologous to a cycle of the form c = nw1 + mz1, by (i) and (iii).

If c = )d for some d, then d = p
 by (ii); whence )d = 2p z1. Thus, nw1+mz1 bounds if and

only if m is even and n is zero. We conclude that

H1 () ≅ ℤ⊕ ℤ2.

The cycle z1 represents the generator of ℤ2, and w1 represents a generator ℤ.

To compute H2 (), note that any 2-cycle d of S must be of the form p 
 by (ii); since p 


is not a cycle, by (iv), we have

H2 () = 0.

As the Klein bottle has a single connected component, H0 () ≅ ℤ.
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Chapter 4: Exact Sequences of Homology

Groups

In Section 3.2, we utilized labeled diagrams and clever arguments to calculate the homology

groups of various surfaces. Long exact sequences of homology groups provide another way

to calculate the homology groups of surfaces, and primarily rely on ideas from algebra and

previously calculated homology groups.

In Section 4.1, we begin our exploration of long exact sequences by examining short exact

sequences of vector spaces as well as long exact sequences of collections of vector spaces,

called chain complexes.

In Section 4.2, we utilize long exact sequences to calculate the homology of the sphere Sd

for all dimensions d as well as the homology groups of the torus.

Section 4.1: Exact Sequences
Exact sequences are used in a wide variety of areas of mathematics. We only require exact se-

quences of homology groups for our purposes, although we introduce them as exact sequences

of free abelian groups. Many terms we use in this more general context are the same as those

used for exact sequences of homology groups, easing the transition between the two.
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Maps Between Free Abelian Groups

Let f ∶ U → V be a homomorphism between free abelian groups U and V . We define the

kernel and image of f as usual:

(i) ker (f ) =
{

u ∈ U ∣ f (u) = 0V
}

, and

(ii) Im (f ) = {v ∈ V ∣ f (u) = v for some u ∈ U}.

Definition 4.1. If we have three free abelian groups and two homomorphisms, f ∶ U → V and

g∶ V → W , then the sequence U
f
←←←←←←→ V

g
←←←←←→ W is exact at V if Im (f ) = ker (g), which implies

g◦f = 0.

More generally, if 0
a
←←←←←→ U

b
←←←←→ V is a sequence, then exactness atU is equivalent to injectivity

of U
b
←←←←→ V , as Im (a) = 0 = ker (b). Similarly, if V

c
←←←←→ W

d
←←←←←→ 0, then exactness at W is

equivalent to surjectivity of V
c
←←←←→ W , as ker (d) = W = Im (c).

A short exact sequence is a sequence of length 5,

0→ U
f
←←←←←←→ V

g
←←←←←→ W → 0,

that starts and ends with the trivial vector space and is exact at U, V , and W . Hence, by

the above statement, f is injective and g is surjective. In this situation, it is always true that

V ≅ U ⊕W .

Edelsbrunner introduces exact sequences in [4] using exact sequences of vector spaces with

linear transformations between them. The statement that V ≅ U ⊕W when 0 → U
f
←←←←←←→ V

g
←←←←←→

W → 0 holds when U, V , W are vector spaces or free abelian groups, but may fail to hold

when U, V , W are arbitrary abelian groups.

Definition 4.2. We now begin to move toward using long exact sequences for homology groups

by considering a sequence of free abelian groups with homomorphisms between them,  =
(

Up, up
)

with up∶ Up → Up−1.
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If up◦up+1 = 0 for every p, then  is a chain complex and the up its boundary maps.

These boundary maps should remind the reader of the boundary operator )p for p-chains.

In the same way that we defined cycle, boundary, and homology groups for simplicial

complexes, we now define them for chain complexes:

(i) Cycle groups: Zp ( ) = ker
(

up
)

;

(ii) Boundary groups: Bp ( ) = Im
(

up+1
)

, and;

(iii) Homology groups: Hp ( ) = Zp ( ) ∕Bp ( ).

Definition 4.3. Let  =
(

Vp, vp
)

be another chain complex. A chain map is a sequence of

homomorphisms �p∶ Up → Vp, one for each dimension p, that commute with the boundary

maps (specifically, vp◦�p = �p−1◦ up for every p).

Commutativity between chain maps and boundary maps guarantees that cycles go to cycles

and boundaries go to boundaries, i.e., �p
(

Zp ( )
)

⊆ Zp () and �p
(

Bp ( )
)

⊆ Bp ().

Thus, the chain map induces a map on homology
(

�p
)

∗ ∶ Hp ( ) → Hp () for every

dimension p.

Let  =
(

Wp, wp
)

be a third chain complex and the sequence of  p∶ Vp → Wp a second

chain map. The sequence  →  →  is exact at  if ker
(

 p
)

= Im
(

�p
)

for every p.

A short exact sequence of chain complexes is a sequence of length 5,

0→ 
�
←←←←←←→ 

 
←←←←←←→  → 0,

that begins and ends with the trivial chain complex and is exact at  ,  , and  .

Equivalently, there is a short exact sequence of vector spaces 0→ Up → Vp → Wp → 0 for

each dimension p. This implies that each �p is injective, each p is surjective, and Vp ≅ Up⊕Wp

for all p.
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Long Exact Sequences of Homology Groups

We may adapt our established framework of exact sequences of free abelian groups to exact

sequences of homology groups, and some results may be carried over without any additional

work. We may now begin our discussion on the method for constructing long exact sequences

of homology groups from short exact sequences of chain complexes.

Lemma 4.4. SNAKE LEMMA. Let 0 → 
�
←←←←←←→ 

 
←←←←←←→  → 0 be a short exact sequence of chain

complexes. There is a well-defined map D∶ Hp () → Hp−1 ( ), called the connecting

homomorphism such that

⋯ → Hp ( )→ Hp ()→ Hp ()
D
←←←←←←←→ Hp−1 ( )→…

is a long exact sequence, i.e., an infinite sequence which is exact at each entry.

Proof. Other than the connecting homomorphism D, the maps in the long exact sequence are

induced by the chain maps. We construct D and the proof that the sequence is exact is omitted

here but may be found in [5].

Vp+1
 p+1
←←←←←←←←←←←←←←←→ Wp+1 → 0

⏐⏐
↓ □3

⏐⏐
↓

0 → Up
�p
←←←←←←←←←→ Vp

 p
←←←←←←←←←→ Wp → 0

⏐⏐
↓ □2

⏐⏐
↓ □0

⏐⏐
↓

0 → Up−1
�p−1
←←←←←←←←←←←←←←←→ Vp−1

 p−1
←←←←←←←←←←←←←←←→ Wp−1 → 0

⏐⏐
↓ □1

⏐⏐
↓

0 → Up−2
�p−2
←←←←←←←←←←←←←←←→ Vp−2

For brevity, we omit the subscripts on the boundary maps u, v, w from the text of the proof.

The squares in each diagram are commutative squares, e.g., □0 implies that w p =  p−1 v as
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a map from Vp to Wp−1 in the diagram above.

Step 1: Define 
 .

�
 p
←←←←←←←←←→ �

⏐⏐
↓ □0

⏐⏐
↓



�p−1
←←←←←←←←←←←←←←←→ v (�)

 p−1
←←←←←←←←←←←←←←←→ 0

⏐⏐
↓ □1

⏐⏐
↓

0
�p−2
←←←←←←←←←←←←←←←→ 0

Let � ∈ Wp be a cycle representing a class in Hp (). Exactness at Wp implies  p is

surjective, which means there exists a chain � ∈ Vp with  p (�) = �.

Since � is a cycle and thus has zero boundary, the boundary of � lies in the kernel of the

chain map  p by commutativity of □0, i.e., v (�) ∈ ker
(

 p−1
)

.

Exactness at Vp−1 means that Im
(

�p−1
)

= ker
(

 p−1
)

, which implies that there exists a

chain 
 ∈ Up−1 whose image under the first chain map is the boundary of �, i.e., �p−1 (
) =

v (�).

Step 2: 
 is a cycle. We continue to utilize the diagram included in Step 1.

By commutativity of □1 and the composition of boundary maps being zero, specifically

v v = 0, we have �p−2 u (
) = 0.

However, by exactness at Up−2, �p−2 is injective and thus u (
) = 0.

Therefore, 
 is a cycle and thus represents a class in Hp−1 ( ). Additionally, this class is

the image of the class represented by � under the connecting homomorphism D.

D goes left, from � to �, then down to v (�), and then left again to 
 . We may draw this as

a snake cutting through the diagram, hence the name of the Snake Lemma.

It suffices to show that our answer does not depend on our choices of � and �.

Step 3: Choice of �.
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�
�p
←←←←←←←←←→ �, �0

 p
←←←←←←←←←→ �

⏐⏐
↓ □2

⏐⏐
↓ □0

⏐⏐
↓


, 
0
�p−1
←←←←←←←←←←←←←←←→ v (�) , v

(

�0
)  p−1

←←←←←←←←←←←←←←←→ 0

Let �0 be another choice for �, i.e., �0 is a chain in Vp with  p (�) = �. By our efforts in

Step 1, we know there is an element 
0 of Up−1 such that �p−1
(


0
)

= v
(

�0
)

.

The fact that  p(�) =  p(�0) = � along with exactness at Vp implies � − �0 ∈ ker
(

 p
)

=

Im
(

�p
)

. Thus, there exists a chain � ∈ Up with �p (�) = � − �0.

By commutativity of □2,

v (�) − v
(

�0
)

= v�p (�) = �p−1 u (�) = �p−1 (
) − �p−1
(


0
)

.

By exactness at Vp−1, �p−1 is injective, and thus u (�) = 
 − 
0. Therefore, 
 and 
0 differ

by the boundary u (�) and thus represent the same homology class.

Step 4: Choice of �.

%
 p+1
←←←←←←←←←←←←←←←→ �

⏐⏐
↓ □3

⏐⏐
↓

�′
�p
←←←←←←←←←→ v (%) , �, �0

 p
←←←←←←←←←→ �, �0

⏐⏐
↓ □2

⏐⏐
↓ □0

⏐⏐
↓


, 
0
�p−1
←←←←←←←←←←←←←←←→ 0, v (�) , v

(

�0
)  p−1

←←←←←←←←←←←←←←←→ 0

Let �0 be a different choice for �, i.e., �0 is a cycle in Wp representing the same homology

class in Hp () as �. We define �0 and 
0 in the same manner we defined � and 
 using �, i.e.,

 p
(

�0
)

= �0 and �p−1
(


0
)

= v
(

�0
)

.

Since � and �0 are in the same homology class in Hp (), there exists a chain � ∈ Wp+1

such that w (�) = � − �0.
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By exactness at Wp+1,  p+1 is surjective and thus there exists a chain % ∈ Vp+1 with

 p+1 (%) = �.

By commutativity of □3, v (%) and � − �0 both map to � − �0. This implies that their

difference lies in ker ( ) = Im (�) and there is a chain �′ ∈ Up with �p (�′) = v (%) + �0 − �.

Using the commutativity of □2 and the fact that v v = 0, we see that �p−1 u (�′) =

v
(

�0 − �
)

.

The injectivity of �p−1 from the exactness at Up−1 implies that the preimage of v
(

� − �0
)

is 
 − 
0 and hence u (�′) = 
 − 
0.

Hence, 
 and 
0 differ by a boundary and represent the same homology class, as required.

■

The Mayer-Vietoris Sequence

Given two topological spaces, the Mayer-Vietoris sequence relates their homology to the ho-

mology of their union and intersection. In other words, we can use it to compute the homology

of an unknown space using the homology of two subspaces whose union is the desired space.

Theorem 4.5. MAYER-VIETORIS SEQUENCE THEOREM. Let K be a simplicial complex and

K ′, K ′′ subcomplexes such that K = K ′ ∪ K ′′. Let A = K ′ ∩ K ′′. There there exists a long

exact sequence

…Hp(A)→ Hp(K ′)⊕Hp(K ′′)→ Hp(K)→ Hp−1(A)→…

and similarly for the reduced homology groups.

Proof. Note that Cp (A) is a subgroup of both Cp (K ′) and Cp (K ′′) on the level of chains.

By forming the direct sums Cp (K ′) ⊕ Cp (K ′′) for all dimensions p, we obtain a chain

complex  (K ′) ⊕  (K ′′) whose boundary maps are those )p for the chain groups, define

component-wise.

Within this direct sum, there are two copies of Cp (A), which we address in the following
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manner:

Let i′∶ A→ K ′ and i′′∶ A→ K ′′ be inclusion mappings ofA intoK ′ andK ′′ as simplicial

complexes, and let j′∶ K ′ → K and j′′∶ K ′′ → K be the inclusion mappings of K ′ and K ′′

into K .

Set i (a) = (i′ (a) , i′′ (a)) and j (x, y) = j′ (x) − j′′ (y), which are indeed chain maps as

each simplex is mapped to a simplex of equal or less dimension. These create a short exact

sequence of chain complexes

0→  (A)
i
←←←→ 

(

K ′)⊕ 
(

K ′′) j
←←←←→  (K)→ 0.

The long exact sequence of homology groups implied by the Snake Lemma is the Mayer-

Vietoris sequence, and may be adapted to the reduced homology sequence as well. ■

Consider the maps induced on homology groups by i and j, namely i∗∶ Hp−1 (A) →

Hp−1 (K ′) ⊕ Hp−1 (K ′′) and j∗∶ Hp (K ′) ⊕ Hp (K ′′) → Hp (K). Exactness of the Mayer-

Vietoris sequence at Hp (K) implies that Hp (K) ≅ ker (i∗) ⊕ Im (j∗) in the case where the

homology groups are free abelian.

Thus, there are two types of homology classes in K; those in ker (i∗) and Im (j∗):

• A homology class in ker (i∗) corresponds to a (p − 1)-dimensional cycle 
 ∈ A that

bounds both in K ′ and K ′′.

Let �′ and �′′ be the p-chains in K ′ and K ′′, respectively, that 
 bounds. If we write


 = )�′ = )�′′, then � = �′ − �′′ is a cycle in K that represents a homology class in

ker (i∗).

• A homology class in Im (j∗) is one that lives in K ′, K ′′, or both.

To be thorough, we work through the construction of the connecting homomorphism D in

this context, which is of the form of the construction in the proof of the Snake Lemma.

Consider a homology class in Hp (K) and define one in Hp−1 (A) as follows:
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Let this class be represented by a p-cycle � of K . As before, there exists �, a p-chain in

Cp (K ′)⊕Cp (K ′′) such that j (�) = �.

There are several such �, which we obtain by writing � = �′ + �′′, with �′ ∈ K ′, �′′ ∈ K ′′

, and setting � = (�′, �′′).

Any two such decompositions of � give different �, but any two of these � differ by some-

thing in A.

Now consider the boundary of �, )� = ()�′, )�′′). As � is a cycle, )�′ = −)�′′ and lies in

A. Thus, the cycle 
 in the construction of D is )�′.

In Section 3.2, we utilized labeled diagrams to calculated specific homology groups of

surfaces. The Mayer-Vietoris sequence allows us to, given knowledge of the homology groups

of some spaces, quickly calculate the homology groups of other spaces.

We note that if two spaces are homeomorphic or of the same homotopy type, then their

homology groups will be isomorphic. The interested reader may consult Chapter 2 of [9].

Homology Groups of the Sphere Sd

We use the Mayer-Vietoris sequence to compute the Betti numbers, and thus the homology

groups, of Sd , specifically

�̃p
(

Sd) =

⎧

⎪

⎨

⎪

⎩

1 if p = d,

0 if p ≠ d.

We begin by writing Sd as the union between its upper and lower hemispheres, Sd = U ∪ L.

Each U and L are homeomorphic to balls of dimension d − 1 and intersect in a sphere of

dimension d − 1.

Using the Mayer-Vietoris sequence, we may compute the homology of Sd inductively:

⋯→ H̃p
(

Sd−1) → H̃p (U )⊕ H̃p (L)→ H̃p
(

Sd) → H̃p−1
(

Sd−1) →…

We base our induction with the observation that S0 consists of two points, so H̃0
(

S0
)

≅ ℤ

and H̃p
(

S0
)

= 0 for all p > 0.
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For any d, the sequence decomposes into parts of the form

0⊕ 0
a
←←←←←→ H̃p

(

Sd) b
←←←←→ H̃p−1

(

Sd−1) c
←←←←→ 0⊕ 0,

where 0 ⊕ 0 is the zero element in the direct sum of the homology groups of the two

hemispheres.

By exactness of the sequence, Im (a) = ker (b), and thus b must be injective. Furthermore,

as Im (b) = ker (c), b must be surjective as well. Therefore, H̃p
(

Sd
)

≅ H̃p−1
(

Sd−1
)

, and thus

the result holds.

Notice that the generator of H̃p
(

Sd
)

consists of two chains, one from each hemisphere,

whose boundary is the generating cycle of H̃p−1
(

Sd−1
)

.

Homology Groups of the Torus

Recall from Section 3.2 that the Betti numbers of the torus T are

�p (T ) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1 if p = 0;

2 if p = 1;

1 if p = 2;

0 if p > 2.

Consider the torus as the union of two cylinders C1 and C2, whose intersection is made up

of two disjoint copies of S1, which we denote SS. Note also that each of these cylinders is

homotopic to S1, and thus have the same homology groups (see [4]). Thus, the Mayer-Vietoris

sequence is of the form

⋯→ Hp (SS)→ Hp
(

S1
)

⊕Hp
(

S1
)

→ Hp (T )→ Hp−1 (SS)→…

Using known sequences, we observe that the result holds for p > 2. We write the portion

of the sequence relevant for p = 0, 1, 2 below, where we have utilized our consideration of T
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as the union of two cylinders ,

H2
(

S1
)

⊕H2
(

S1
)

→ H2 (T )
a
←←←←←→ H1 (SS)

b
←←←←→ H1

(

S1
)

⊕H1
(

S1
) c
←←←←→ H1 (T )

d
←←←←←→

H0 (SS)→ H0
(

S1
)

⊕H0
(

S1
)

→ H0 (T )→ H−1 (SS) .

Using known homology groups, we obtain

0⊕ 0 → H2 (T )
a
←←←←←→ ℤ⊕ ℤ

b
←←←←→ ℤ⊕ ℤ

c
←←←←→ H1 (T )

d
←←←←←→ ℤ⊕ ℤ → ℤ⊕ ℤ → H0 (T )→ 0.

As T is connected, we find that H0 (T ) = ℤ, and thus the result for p = 0 holds.

Recall the map i∶ A→ K ′⊕K ′′ by i(a) = (i′ (a) , i′′ (a)) defined in the proof of the Mayer-

Vietoris Sequence Theorem, which induces the homomorphisms b in the above sequence.

Let the cycles �′ and �′′ generate the homology groups of SS. As they are in each of the

cylinders C1 and C2, we find that i (�′) ≃ i (�′′) ≃ (�′, �′′) ≃ (�′, �′). Therefore, the kernel of

b is isomorphic to ℤ.

By exactness of the sequence, ker (a) = H2 (T ) and Im (a) = ker (b) ≅ ℤ. Therefore, as a

is a homomorphism, H2 (T ) ≅ ℤ as desired.

Recall the map j ∶ K ′ ⊕ K ′′ → K defined in the proof of the Mayer-Vietoris Sequence

Theorem, which induces the homomorphism c in the above sequence, and note that i also

induces the homomorphism d. Also recall that the two types of homology classes in K are

those in ker (i∗) and Im (j∗).

These observations imply that the homology classes in H1 (T ) are the direct sum of ker (c)

and Im (d), and thus H2 (T ) ≅ ℤ⊕ ℤ as desired.

100



Chapter 5: Persistent Homology

Persistent homology utilizes the geometry of a topological space, represented by a finite sim-

plicial complex, to measure the significance of its topological features.

Section 5.1 includes the definition for filtrations, which serve as the foundation for persis-

tent homology groups.

Section 5.2 introduces persistence diagrams, which are plots that encode all of the infor-

mation contained in the persistent homology groups. It also includes a brief discussion on the

stability of persistence homology.

Section 5.1: Persistent Homology Groups
Before we are able to discuss persistent homology groups, we introduce filtrations, which in

turn require the notion of level sets and sublevel sets:

Definition 5.1. Let K be a simplicial complex and f ∶ K → ℝ. The function f is said to be

monotonically increasing along chains of faces if f (�) ≤ f (�) whenever � is a face of �.

Example 5.1. Consider the simplicial complexK shown below, whose simplices � are labeled

with the value f (�) that f ∶ K → ℝ maps them to.
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Figure 5.1

The function f is monotonically increasing along chains of faces, as f (�) ≤ f (�) when-

ever � is a face of �.

Definition 5.2. The preimage f−1 (a) of each real number a is called a level set, which consists

of all simplices that f maps to a.

The sublevel set, denoted K (a), consists of all simplices which f maps to at most a, i.e.,

f−1 (∞, a].

Example 5.2. Consider the following simplicial complex K , with each simplex labeled with

the value that a monotonically increasing function f assigns it.

Figure 5.2

The following figure shows the sublevel sets K(0), K(1), and K(2) of K .
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Figure 5.3: The sublevel sets K(0) (left), K(1) (middle), and K(2) (right).

Observe that the sublevel set K (a) = f−1(∞, a] is a subcomplex of K for every a ∈ ℝ,

and more specifically K (a) is a subcomplex of K (b) whenever a ≤ b.

This observation holds for all sublevel sets of all simplicial complexes, and is the result of

the monotonicity of f .

We are now ready to define filtrations, which serve as the foundation of our exploration

into persistent homology:

Definition 5.3. Let m be the number of simplices in K , and f ∶ K → ℝ be a monotonically

increasing along chains of faces. We obtain n + 1 ≤ m + 1 different subcomplexes, which we

arrange as an increasing sequence

∅ = K0 ⊆ K1 ⊆⋯ ⊆ Kn = K.

Specifically, if a1 < a2 < ⋯ < an are the function values of the simplices in K and

a0 = −∞, then Ki = K
(

ai
)

for each i.

This sequence of complexes is called a filtration of f , and we think of it as a construction

by adding collections of simplices until the final simplicial complex is achieved.

Example 5.3. We may consider of C̆ech and Vietoris-Rips complexes as filtrations of the com-

plex lim
r→∞

C̆ech (r) = lim
r→∞

Vietoris-Rips (r), which we denote K . By the Vietoris-Rips Lemma,

the definition of each filtration is similar, and rigorously define f ∶ K → ℝ for Vietoris-Rips

complexes for the sake of brevity.

Recall that we include a simplex � in Vietoris-Rips (r) if diam (�) ≤ 2 r. We use this to
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define f (�) = diam(�)
2

for each simplex � ofK . The function is indeed monotonically increasing

on chains of faces, as for any sets S and T of points, diam (S) ≤ diam (T ) whenever S ⊆ T .

Persistent homology is concerned with the topological evolution of these filtrations, as

expressed by the corresponding sequence of homology groups.

For every i ≤ j, we have an inclusion map from the underlying space ofKi to the underlying

space of Kj . Similarly to the functions i and j from our construction of the Mayer-Vietoris

sequence in the previous chapter, these inclusion mappings induce a chain map, and thus an

induced homomorphism fp
i, j ∶ Hp

(

Ki
)

→ Hp
(

Kj
)

for each dimension p.

The filtration thus corresponds to a sequence of homology groups connected by homomor-

phisms

0 = Hp
(

K0
)

→ Hp
(

K1
)

→⋯ → Hp
(

Kn
)

= Hp (K) ,

for each dimension p.

As we go fromKi−1 toKi, we gain new homology classes and lose some when they become

trivial or merge with each other. We collect the classes that are born at or before a given

threshold and die after another threshold in groups:

Definition 5.4. The pth-persistent homology groups are the images of the homomorphisms

induced by inclusion, Hp
i, j = Im

(

fp
i, j) for 0 ≤ i ≤ j ≤ n.

The corresponding pth-persistent Betti numbers are the ranks of these groups. Reduced

persistent homology groups and reduced persistent Betti numbers are defined similarly.

The persistent homology groups consist of the homology classes of Ki that are still alive at

Kj , i.e., Hp
i, j = Zp

(

Ki
)

∕
(

Bp
(

Kj
)

∩Zp
(

Ki
))

. There is such a group for each dimension p

and each index i ≤ j.

Example 5.4. Consider the filtration made up of the sublevel sets K(0), K(1), and K(2) from

Example 5.2, whose vertices we label in the figure below
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Figure 5.4

We calculate H0
i, j for i = 0, 1 and j = 1, 2.

[i = 0, j = 1, 2.] As K(0) has 5 vertices, Z0 (K(0)) ≅ ℤ⊕ℤ⊕ℤ⊕ℤ⊕ℤ. Although the

vertices {a, b, c, d, f} generate this group, it is more useful to note that the 0-chains

{a, a − b, a − c, a − d, a − f}

also generate Z0 (K(0)).

Four of these five 0-cycles, specifically a − b, a − c, a − d, and a − f , are boundaries of

1-chains in K(1). Thus, B0 (K(1)) ∩Z0 (K(0)) ≅ ℤ⊕ ℤ⊕ ℤ⊕ ℤ. Therefore, H0
0, 1 ≅ ℤ.

Similarly, B0 (K(2)) ∩Z0 (K(0)) ≅ ℤ⊕ ℤ⊕ ℤ⊕ ℤ, and thus H0
0, 2 ≅ ℤ.

[i = 1, j = 1, 2.] As K(1) has 6 vertices, Z0 (K(1)) ≅ ℤ⊕ℤ⊕ℤ⊕ℤ⊕ℤ⊕ℤ. As with

Z0 (K(0)), it is useful to note that

{a, a − b, a − c, a − d, a − e, a − f}

generate Z0 (K(1)).

Five of these six 0-chains are boundaries of 1-chains inK(1) as well, specifically a−b, a−

c, a − d, a − e, and a − f . Thus, B0 (K(1)) ∩Z0 (K(1)) ≅ ℤ⊕ ℤ⊕ ℤ⊕ ℤ⊕ ℤ, and in turn

H0
1, 1 ≅ ℤ.

Similarly, B0 (K(2)) ∩Z0 (K(1)) ≅ ℤ⊕ ℤ⊕ ℤ⊕ ℤ⊕ ℤ, and thus H0
1, 2 ≅ ℤ.

Consider a class 
 in Hp
(

Ki
)

. It is born at Ki if 
 ∉ Hp
i−1, i. It dies entering Kj if
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it merges with an existing class as we go from Kj−1 to Kj , i.e., fp
i, j−1 (
) ∉ Hp

i−1, j−1 and

fp
i, j (
) ∈ Hp

i−1, j .

Rule 5.5. PERSISTENT HOMOLOGY ELDER RULE. If 
 is born at Ki and dies entering Kj ,

then the difference in function value is the persistence of 
 , pers (
) = aj − ai. We sometimes

denote the persistence instead by the difference in index, which we appropriately call the index

persistence of the class.

If 
 is born at Ki and never dies, then we set its (index) persistence to infinity.

Section 5.2: Persistence Diagrams
Persistence diagrams are used to represent the persistent homology groups of a filtration by

plotting when each homology class is born and when each homology class dies on the plane

ℝ2. Barcodes encode this same information on a bar plot.

We represent a collection of persistent Betti numbers by drawing points in two dimensions.

Let �pi, j be the number of p-dimensional classes born at Ki and dying entering Kj . We have

�p
i, j =

(

�p
i, j−1 − �p

i, j) −
(

�p
i−1, j−1 − �p

i−1, j) ,

for all i < j and all p.

The first difference on the right-hand side counts the classes that are born at or before Ki

and die entering Kj . The second difference counts the classes that are born at or before Ki−1

and die entering Kj .

Example 5.5. Recall the persistent homology groups we calculated in Example 5.4. We may

use these groups to calculate �01, 2

�0
1, 2 =

(

�0
1, 1 − �0

1, 2) −
(

�0
0, 1 − �0

0, 2)

= (1 − 1) − (1 − 1)

= 0.
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This is in line with the interpretation of each difference, as all but a single 0-cycle die entering

K2, which never dies.

Definition 5.6. Recall that a1 < a2 < ⋯ < an are the function values of the simplices in

K , with a0 = −∞. Drawing each point
(

ai, aj
)

with multiplicity �pi, j , we obtain the ptℎ

persistence diagram of the filtration, denoted Dgmp (f ). The value ai represents the function

value at which a class 
 is born, while the value aj represents the function value which 
 dies

entering.

Note that the multiplicity with which we draw a point does not manifest in the physical

representation of the diagram, but is considered to be contained within the diagram.

The persistence of 
 is represented by the vertical distance of the point from the diagonal.

Since multiplicities are defined only for i < j, all points lie on or above the diagonal. For

computational convenience, we consider the diagonal to have uncountably infinite many points.

Example 5.6. Below is the persistence diagram in dimension 1 for the filtration presented in

Example 5.2. Note that the complex contains a 1-cycle which is born at 1 but never dies, so it

does not appear in the persistence diagram.
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Figure 5.5: The persistence diagram in dimension 1 of the filtration presented in Example 5.1.
Each point on the diagram represents the birth and death of a homology class in the filtration.
Note that the complex contains a 1-cycle which is born at 1 but never dies, so it does not appear
in the diagram.

Alternatively, we may represent a persistence diagram using a barcode, which utilizes line

segments instead of points to represent persistence.

Definition 5.7. Consider a p-cycle 
 with persistence pers (
) = aj − ai, which may be infinite.

In the pth barcode of the filtration, we represent the persistence of each cycle using a line

segment of length pers (
).

Example 5.7. Below is the barcode in dimension 1 for the filtration presented in Example 5.1.

Note that the complex contains a 1-cycle which is born and dies at 2, and thus is not represented

in the barcode.
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Figure 5.6: The barcode in dimension 1 of the filtration presented in Example 5.1. Each bar in
the barcode represents the birth and death of a homology class in the filtration. Note that the
complex contains a 1-cycle which is born and dies at 2, so it does not appear in the barcode.

The Fundamental Theorem of Persistent Homology states that the persistence diagram ac-

tually encodes all of the information about the persistent homology groups when using modulo

2 coefficients.

Theorem 5.8. FUNDAMENTAL THEOREM OF PERSISTENT HOMOLOGY. Let ∅ = K0 ⊆

K1 ⊆ ⋯ ⊆ Kn = K be a filtration. For every pair of indices 0 ≤ k ≤ l ≤ n, and every

dimension p, the pth persistent Betti number is �p
k, l =

∑

i≤k
∑

j>l �pi, j .

A proof of the Fundamental Theorem of Persistent Homology may be found in [11].

Bottleneck Stability of Persistence Diagrams

Persistent homology is often used, in conjunction with Vietoris-Rips complexes, to analyze

data encoded as a point cloud. As with any data analysis tool, we desire that persistence

diagrams (and thus barcodes) for similar point clouds are similar. To rigorously define this

stability, we introduce the bottleneck distance between two persistence diagrams and state the

Stability Theorem for Filtrations.

Recall that persistence diagrams consist of finitely many points on and above the diagonal

representing the birth and death of cycles, and uncountably many points along the diagonal.

Let X and Y be two arbitrary persistence diagrams, not necessarily corresponding to the

same filtration nor the same simplicial complex. For example, X and Y may be persistent

diagrams for different filtrations of the same simplicial complex K , or they may diagrams for
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filtrations of different simplicial complexesK1 andK2. We will consider bijections �∶ X → Y ,

and will record the supremum of the distances between corresponding points for each.

It is noteworthy that the mappings �∶ X → Y are easy to construct for any two persistence

diagrams X and Y , as X and Y contain finitely many points off of the diagonal but infinitely

many points on the diagonal. Any points off the diagonal of X may be mapped to points on

the diagonal of Y , and vice versa.

For example, consider a point aX =
(

x1, x2
)

in X representing the birth and death of a

cycle in the filtration for X, as well as the point aY =
(

y1, y2
)

in Y representing the cycle that

� maps aX to, i.e., �
(

aX
)

= aY . Specifically, each aX and aY represent the birth and death

of a cycle in the filtrations of X and Y respectively. The bijection � creates a correspondence

between the cycles whose birth and death are represented by aX and aY , and thus refer to aY

as the cycle that � maps aX to. We measure the distance between aX and aY as ‖
‖

aX − aY ‖‖∞ =

max
{

|

|

x1 − y1||, ||x2 − y2||
}

.

Definition 5.9. The bottleneck distance between the diagrams X and Y , denoted W∞ (X, Y )

is the infinum over all bijections �∶ X → Y of the supremum of all such distances, i.e.,

W∞ (X, Y ) = inf
�∶ X→Y

sup
ax∈X

‖

‖

‖

aX − �
(

aX
)

‖

‖

‖∞
.
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Example 5.8. Consider the superposition of persistence diagramsX (black) and Y (red) shown

below.

Figure 5.7

Each square has side length twice the bottleneck distance, and are centered at the points of

X. Note that they also contain all points of Y . This holds for any two persistence diagrams.

Note also that the bottleneck distance satisfies the same properties as the Euclidean dis-

tance, specifically:

(i) It is non-negative for any two persistence diagrams X, Y , and zero when X = Y ,

(ii) The bottleneck distance between X and Y is equal to the bottleneck distance between Y

and X, and

(iii) It obeys the triangle inequality.

We now lay the groundwork for the Stability Theorem for Filtrations: LetK be a simplicial

complex and consider two monotonic functions f, g∶ K → ℝ. The straight-line homotopy

ft = (1 − t) f + t g is in fact monotonic and yields a persistence diagram for each dimension p

and each t ∈ [0, 1].
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Fix a dimension p and consider the family of persistence diagrams in ℝ2 × [0, 1]. We may

obtain a three-dimensional representation of the evolution of the persistent homology from

f0 = f to f1 = g by drawing t as a third coordinate axis.

In this representation, each off-diagonal point is of the form x (t) =
(

ft (�) , ft (�) , t
)

,

where � and � are simplices in K . Note that adding � in the construction of K represents the

birth of a class in the p-dimensional homology group, while adding � represents its death.

There are finitely many values t0, t1, … , tn of t at which the pairing of simplices changes,

and within each interval
(

ti, ti+1
)

the pairing �, � is constant. This gives rise to a line segment

of points x (t) between the planes t = ti and t = ti+1. There are two notable behaviors of this

line segment:

(i) If the endpoint at ti+1 is off the diagonal, then there is another unique line segment that

begins at that point. If this second line segment corresponds to the same simplex pair,

then it continues on the same straight line. If it does not correspond to the same simplex

pair, then it makes a turn relative to the first line segment.

(ii) If the endpoint at ti+1 is on the diagonal, then the line segment ends there.

We call the collection of polygonal paths formed by these line segments vineyards, and

each polygonal path is called a vine.

The final ingredient necessary for the Stability Theorem for Filtrations is the L∞-distance,

which is a distance measure between two functions, and reminiscent of the definition of the

bottleneck distance.

Definition 5.10. The L∞-distance between two functions f, g∶ K → ℝ, denoted ‖f − g‖∞,

is defined as max {|f (�) − g (�)| ∣ � ∈ K}.

Now, let � be another simplex inK and consider the derivative of each line segment in each

vine in the vineyard

x (t) = (1 − t) (f (�) , f (�) , 0) + t (g (�) , g (�) , 1) ,
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which is
)x
)t
= (g (�) − f (�) , g (�) − f (�) , 1) =

()x
)t
[�] , )x

)t
[�] , 1

)

,

where we have used )x
)t
[�] as short-hand for g(�) − f (�) and similarly for �.

By projecting the endpoints of this line segment back into ℝ2, we obtain two points

xi =
(

1 − ti
)

(f (�) , f (�)) + ti (g (�) , g (�)) =
(

xi, 1, xi, 2
)

xi+1 =
(

1 − ti+1
)

(f (�) , f (�)) + ti+1 (g (�) , g (�)) =
(

xi+1, 1, xi+1, 2
)

such that ‖
‖

xi − xi+1‖‖∞ is ti+1− ti times greater than the larger of the differences between f and

g at � and �. Specifically,

‖

‖

xi − xi+1‖‖∞ = max
{

|

|

xi, 1 − xi+1, 1||, ||xi, 2 − xi+1, 2||
}

=
(

ti+1 − ti
)

max
{)x
)t
[�] , )x

)t
[�]

}

.

Let v be the simplex in K such that ‖f − g‖∞ = |f (v) − g (v)|. This serves as an upper

bound for the slope of any line segment in the vineyard when projected into ℝ2, and thus

bounds the distance ‖

‖

xi − xi+1‖‖∞ between the projected endpoints of any vine. We may now

write the Stability Theorem for Filtrations:

Theorem 5.11. STABILITY THEOREM FOR FILTRATIONS. Let K be a simplicial complex

and f, g∶ K → ℝ be two monotonic functions. For each dimension p, the bottleneck distance

between the diagrams X = Dgmp (f ) and Y = Dgmp (g) is bounded from above by the L∞-

distance between f and g, i.e.,

W∞ (X, Y ) ≤ ‖f − g‖∞.

Note that there exists an analogous theorem regarding the stability of barcodes.
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Chapter 6: Persistent Homology of 2-D

Configurations of BuckyBalls®

In this chapter, we will use persistent homology and barcodes to analyze configurations of

BuckyBalls®. This system serves as an excellent example of how one utilizes the ideas we

have introduced throughout this thesis in a real-world application.

We begin in Section 6.1 by introducing the basic physical principles which guide BuckyBall®

interactions.

In Section 6.2, we introduce two representations for configurations as point clouds: the ℝ2

representation and the potential representation.

We further explore these representations in Section 6.3 by analyzing symmetric arrange-

ments of BuckyBalls®.

Section 6.1: Introduction to BuckyBalls®

BuckyBalls® are small spherical neodymium magnets often used as desk toys. As discussed

by Mann and Monello (henceforth M & M) in [7], they arrange themselves into a wide variety

of minimum-energy configurations, as shown in Figure 6.1.
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Figure 6.1: Stable symmetric configurations of BuckyBalls®, whose magnetic poles have been
colored for added clarity. A square lattice (left), a ring (middle), and a hexagonal lattice
(right).

The most prominent question that M & M pose is on the two-dimensional arrangements that

these balls tend to form on their own. To answer this, they first studied the energetic favorability

of highly symmetric configurations. From there, they created computer simulations of random

arrangements of balls settling into stable arrangements, and used statistical analysis on the final

structures.

We instead shall use persistent homology to study these structures, and extract their homo-

logical features.

Magnetic Dipoles of BuckyBalls®

In [7], M & M assumed each ball to be uniformly magnetized, with dipole moment m. and

assigned to each four coordinates to describe their position and orientation in space: x and

y Cartesian coordinates, polar angle �, and azimuthal angle �. These angular coordinates

correspond to the direction of the ball’s dipole moment, as shown in Figure 6.2.
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Figure 6.2: A BuckyBall® with labeled coordinates and dipole moment.

Following non-dimensionalization, each ball is of radius 0.5 and the potential between two

BuckyBalls® is given by

Φ12 =
2
r123

(

m̂1 ⋅ m̂2 − 3
(

m̂1 ⋅ r̂12
) (

m̂2 ⋅ r̂12
))

, (6.1)

where r12 is the displacement vector between the two balls, and m1 and m2 are their respective

dipole moments. We may write the direction of these dipole moments as

m̂i = sin �i cos�i x̂ + sin �i sin�i ŷ + cos �i ẑ.

Section 6.2: Representing BuckyBall® Arrangements

as Point Clouds
By using persistent homology, we wish to gain insight into the arrangement of a system of

BuckyBalls®, whether they have reached some energy minimum, and the geometry of that

energy minimum. In order to use persistent homology, we represent the BuckyBalls® as a

point cloud, and construct a filtration using Vietoris-Rips complexes. However, we have come
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to an impasse: how do we represent arrangements of BuckyBalls® as a point cloud?

The ℝ2 Representation

A preliminary answer would be to represent each ball by its Cartesian coordinates in ℝ2 and

measure distance between them with the Euclidean distance, which we aptly refer to as the ℝ2

representation. Indeed, this does capture many of the geometric aspects of an arrangement

of balls: gaps and holes, as well as the balls’ relative proximity. Consider the arrangement in

Figure 6.3 and its associated barcode in Figure 6.4 using this representation, obtained using

JavaPlex [2].

Figure 6.3: An energy-minimized 200 ball arrangement.
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Figure 6.4: The barcode of an energy-minimized 200 ball arrangement shown in Figure 6.3
using the ℝ2 representation of the system. We have omitted higher-dimensional barcodes, as
dimensions 2 through 5 were found to be trivial.

This indeed captures an amount of the geometry of the arrangement, as expected. For

instance, all but one of the holes in dimension 0 die at 1, which implies that the center of each

ball is a distance 1 away from each other. Thus, as the radius of each ball is 0.5, each ball

must be touching at least one other ball. The interested reader can also find which bar in the 1

dimensional barcode represent which hole in the arrangement.

However, the ℝ2 representation fails to capture much of any information regarding the

potential of the arrangement. For instance, consider the following two arrangements of balls:

Figure 6.5

The arrangement of balls on the left in Figure 6.5 would have the least possible potential

energy in the system, while the arrangement on the right would have the most. The behavior of
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these arrangements would be radically different, but the ℝ2 representation fails to capture this.

The Potential Representation

Before we are able to discuss the potential representation, we must first discuss an alternative

way to list data to construct Vietoris-Rips complexes: a distance matrix.

Consider a finite set of points
{

x1, x2, … , xn
}

. A distance matrix for this set of points

is of the form
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

r11 r12 … r1n

r21 r22 … r2n

⋮ ⋮ ⋱ ⋮

rn1 rn2 … rnn

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

where rij is the distance between xi and xj .

In JavaPlex, such a distance matrix need not be symmetric, square, non-negative, nor satisfy

the triangle inequality. The first three of these cause computational errors in JavaPlex [2],

while failing to satisfy the triangle inequality does not lead to any issues when constructing a

Vietoris-Rips complex.

Recall Equation 6.1 which gives the potential energy between any two dipoles, and Figure

6.5 which illustrates the least and greatest potential interactions, with dimensional potential of

−4 and 4, respectively.

Therefore, by adding 4 to the potential of each interaction, we may define a “distance”

between any two balls with which we may build a Vietoris-Rips complex. This notion of

distance yields the potential representation of the arrangement, and we denote this notion of

distance as the potential distance.

Unlike the ℝ2 representation, the potential representation is far less intuitive. For this

reason, we investigate this representation using highly symmetric arrangements.
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Section 6.3: Homology of Symmetric Arrangements

N-Ball Chains

The standard N-ball chain consists of N BuckyBalls® arranged North-South in the same man-

ner as those on the left in Figure 6.5. In the ℝ2 representation, the N-ball chain has trivial

homology in all dimensions besides 0, where its barcode resembles that in Figure 6.4.

To analyze this arrangement in the potential representation, consider the potential distance

between any two adjacent balls Bi and Bi+1. The non-dimensionalized potential energy be-

tween these two is −4, so their potential distance is 0. As this holds for all pairs of adjacent

balls in the N-chain, the N-chain must be homologous to a point, i.e., has trivial homology

in all dimensions greater than 0 and a single persistent homology class in dimension 0 for all

potential distances.

We now consider the case when the magnetic dipoles are not aligned properly, e.g., � =

�∕2 for all balls in anN-chain on the x-axis. In the ℝ2 representation, such an arrangement has

the same persistent homology. In the potential representation, however, we obtain nontrivial

homology in dimensions greater than 0 and different persistent homology in dimension 0.

Consider the arrangement shown below, which we shall call the perpendicular chain.

Figure 6.6

The homology of this structure depends on the the number of balls, as evident in the bar-

codes shown below. Note, the dimensions for each arrangement in which homology is trivial

have been excluded.
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We note the following patterns in the barcodes as the number of balls increases:

(i) In dimension 0, all but one interval die at a potential distance of 4. Note that this value

corresponds to balls separated by some large distance, i.e., weaker interactions, as would

be expected by increasing the number of balls in the perpendicular chain. We note that as

we add balls to the system, the endpoint of each finite bar approaches 4 from above. This

corresponds to the most attractive interaction that each ball experiences.

(ii) In all dimensions greater than 0, the finite bars approach a length of 0 at potential distance
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4. In addition, with the exception of one or two finite bars in each dimension, all bars are

of similar length (specifically within 0.15).

From these observations, we conjecture the meaning of bars in each dimension:

(i) The length of each finite bar in dimension 0 corresponds to the minimal potential distance

interaction a ball experiences in the system, i.e., its most attractive interaction.

(ii) Finite bars in all dimensions n greater than zero correspond to minimal potential interac-

tions between combinations of 4n balls. For example, the finite bar in dimension 1 of the

5-ball perpendicular chain corresponds to the interaction between balls 1, 2, 4, and 5.

Furthermore, we believe that the number of bars is related to the number of symmetries in

the system. For example, there are only 3 distinguishable balls in the 5-ball perpendicular

chain, as 1 and 5 as well as 2 and 4 cannot be distinguished by their interactions with other

balls in the system.

N-Ball Rings

The standard N-ball ring consists of N BuckyBalls® arranged in a ring facing North-South, as

shown in the middle image of Figure 6.1. The position and dipole moment of ball i is given by

ri =
1

2 sin (�∕N)

[

cos
(2� i
N

)

x̂ + sin
(2� i
N

)

ŷ
]

,

m̂i = − sin
(2� i
N

)

x̂ + cos
(2� i
N

)

ŷ. (6.2)

In the ℝ2 representation, the homology of an N-ball ring is the same of that of S1 with

diameter 1∕ sin (�∕N). In the potential representation, we find similar homology. Note, the

dimensions for each arrangement in which homology is trivial have been excluded.
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In fact, as the number of balls increases, we find that the persistent homology approaches

that of a circle with diameter 4, which is the potential distance between antipodal balls in the

ring.
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Note that as the number of balls increases, the N-ball ring locally approaches the N-ball

chain. This is reflected in the 0-dimensional homology, which becomes trivial as the number

of balls increases.

In addition, recall that we conjecture that the number of bars in higher dimensions is related

to the number of symmetries in the system. In theN-ball ring, there is only one distinguishable

ball, implying that the system is highly symmetric.
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