
Union College
Union | Digital Works

Honors Theses Student Work

6-2018

Optimizing Tensegrity Gaits Using Bayesian
Optimization
James Boggs

Follow this and additional works at: https://digitalworks.union.edu/theses

Part of the Artificial Intelligence and Robotics Commons

This Open Access is brought to you for free and open access by the Student Work at Union | Digital Works. It has been accepted for inclusion in Honors
Theses by an authorized administrator of Union | Digital Works. For more information, please contact digitalworks@union.edu.

Recommended Citation
Boggs, James, "Optimizing Tensegrity Gaits Using Bayesian Optimization" (2018). Honors Theses. 1590.
https://digitalworks.union.edu/theses/1590

https://digitalworks.union.edu?utm_source=digitalworks.union.edu%2Ftheses%2F1590&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalworks.union.edu/theses?utm_source=digitalworks.union.edu%2Ftheses%2F1590&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalworks.union.edu/studentwork?utm_source=digitalworks.union.edu%2Ftheses%2F1590&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalworks.union.edu/theses?utm_source=digitalworks.union.edu%2Ftheses%2F1590&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=digitalworks.union.edu%2Ftheses%2F1590&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalworks.union.edu/theses/1590?utm_source=digitalworks.union.edu%2Ftheses%2F1590&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalworks@union.edu


Optimizing Tensegrity Gaits Using Bayesian Optimization

By

James M. Boggs

* * * * * * * * *

Submitted in partial fulfillment

of the requirements for

Honors in the Department of Computer Science

UNION COLLEGE

June, 2018



Abstract

BOGGS, JAMES M. Optimizing Tensegrity Gaits Using Bayesian Optimization. Department of Com-

puter Science, June, 2018.

ADVISOR: Prof. John Rieffel

We design and implement a new, modular, more complex tensegrity robot featuring data collection

and wireless communication and operation as well as necessary accompanying research infrastructure.

We then utilize this new tensegrity to assess previous research on using Bayesian optimization to generate

effective forward gaits for tensegrity robots. Ultimately, we affirm the conclusions of previous researchers,

demonstrating that Bayesian optimization is statistically significantly (p < 0.05) more effective at discover-

ing useful gaits than random search. We also identify several flaws in our new system and identify means

of addressing them, paving the way for more effective future research.
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1 Introduction

The bulk of robots in use today are variations of so-called ‘hard robots’, robots which are made from inflex-

ible materials like plastic or metal and are essentially rigid in nature. Although rigidity in robots can have

many advantages, it also introduces certain weaknesses. When placed under compression, the bodies of

hard robots maintain their form until they break catastrophically, and if they encounter a space which their

bodies don’t fit into they are unable to navigate it. Soft robots address these problems by being morpho-

logically flexible through various means. Tensegrity robots are an example of this, composed of rigid struts

connected to each other by tensile links (usually springs), such that the opposing tensile forces of the links

result in the structure taking on and maintaining a certain form (see Figure 1).

When unperturbed the tensegrity maintains this resting form, but the tensile nature of the links between

the struts means that when a force is applied to the robot, it deforms and vibrates before eventually return-

ing to its resting form. The ability of tensegrity robots to deform and reform gives them several advantages

over traditional, rigid robots, including 1) greater resilience against mechanical shocks like drops or sudden

impacts, 2) the ability to navigate through spaces which are inaccessible to its resting morphology, and 3)

greater portability on account of significantly less mass and the ability to be compressed in transit.

These advantages make tensegrities particularly attractive options for planetary exploration [1]. Tradi-

tional rovers are costly to launch on account of their bulk, taking up a great deal of space in a launch vehicle

and requiring more fuel to launch. Tensegrities are able to offer substantial savings on these costs: their vol-

ume is mostly air so they weigh very little, and they’re able to be flat-packed by de-stressing the springs.

Additionally, their resilience to hard impacts means that less needs to be done to soften their landing on the

planet, whereas the landing of a rover must be exceedingly gentle.

Although potentially quite useful, tensegrities face a challenge in terms of control systems. First, tradi-

tional robots are engineered to have very stable and predictable dynamics, both in terms of structure and

their effectors. Rigid bodies and predictable effectors mean that human engineers can hand-design control

systems using forward and inverse kinematics. Tensegrities, on the other hand, are highly dynamically

complex and vibrationally active, making it essentially impossible to even simulate them accurately, let

alone design reliable control structures. Second, robots often require many complex sensors and effectors

to be useful in the real world, and in traditional robots the coordination between the many sensors and

effectors is done by a central controller. However, the morphology of tensegrities tends to be poorly suited

for a centralized on-board controller and the energy consumption due to such a controller would require

large batteries which would counteract some of the advantages given by tensegrities.

1



1.1 Background

A significant amount of work has been done in the past decade or so to address these problems with the

control of tensegrity structures. First, it is worth noting that researchers have developed two different

methods for actuating the tensegrity, independent of gait generation. These two methods are adjusting the

resting lengths of the tensile elements between struts or inducing vibration in the tensegrity. The former

approach is by far the most widespread, and was the method used in [1, 2, 4, 3, 6, 11, 12, 16, 17, 20, 22, 21,

24]. Vibration-based locomotion is much more rare, seen only in research overseen Rieffel: [23, 14, 13].

1.1.1 Tensegrity Actuation

Paul et al. [20] were the first to propose the concept of tensegrity-based robots and utilized cable length

actuation to produce movement in their robot. They developed two simple tensegrity robots, one with

three bars and one with four, in simulation using the Open Dynamics Engine, simulating the struts as rigid

cylinders and the springs as collinear forces at the end of each strut the spring connected. The movement of

the tensegrity was accomplished by repeatedly adjusting the resting lengths of the springs in a loop. This

proved successful, and their simulated robots moved effectively within the virtual world. This translated

successfully to the physical world, where an they got an embodied tensegrity robot to move effectively

with the same technique, thereby showing that tensegrity robots are plausible. Iscen et al. [12] is another

notable example of the success of cable length actuation as a locomotive method. In their paper, Iscen et

al. demonstrate a particular kind of gait they call “flop-and-roll” which works by lengthening cables in a

large six-bar tensegrity so that the robot flops forward due to gravity, then tightening cables so the robot

rolls itself forward into a new position.

The use of vibration to actuate a tensegrity has so far been limited, used only by Khazanov et al. [14,

13], Rieffel and Mouret [23], and Böhm and Zimmermann [5]. However, their papers demonstrate that

vibration is a plausible method of locomotion for tensegrity robots in both simulation and the physical

world. In Khazanov et al. [14, 13] and Rieffel and Mouret [23], a small, embodied, six-bar tensegrity was

driven by three small DC motors with off-centered weights. These motors induced regular oscillation in

the struts to which they are attached which in turn vibrated the tensegrity and caused it to move. They

show that different combinations of motor speeds induced oscillations with different characteristics, and

that this in turn changed the nature of the tensegrity’s motion. Thus, the actuation of the tensegrity can

be adjusted by adjusting motor speeds. Overall, their experiments demonstrated that the use of vibration

produces much faster locomotion than cable length actuation is capable of inducing, and that gaits based

on vibration can still be generated effectively. Böhm and Zimmermann [5] took a significantly different
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approach and worked with a tensegrity with angled struts rather than classic straight ones. The two angled

struts were connected such that a pair of electromagnets at their inflection points could attract or repulse

each other, and by varying this vibrations in the tensegrity could be produced.

1.1.2 Gait Generation

However, the primary focus of tensegrity research has not been on actuation but gait generation. The

importance of studying gait generation in tensegrities stems from the near-impossibility of hand-designing

effective gaits for them given their highly dynamic nature. Given this difficulty, researchers have needed to

develop methods for generating effective gaits quickly and accurately, and have landed upon two primary

methods. One method, explored by Bliss [2], Bliss et al. [4, 3], Caluwaerts et al. [6], Mirletz et al. [16, 17],

Rieffel et al. [21], and Tietz et al. [24], is to train neural networks to control the actuation of a tensegrity.

Agogino et al. [1], Iscen et al. [11, 12], Khazanov et al. [13], and Paul et al. [20] investigate the other option:

using evolutionary algorithms to produce effective gaits. A new approach to gait-generation which also

uses an optimization algorithm is demonstrated by Rieffel and Mouret [23], who use Bayesian optimization

to identify effective gaits. This method offers a potentially faster way to discover effective gaits that either

evolutionary algorithms or neural networks, and the focus of this paper will be investigating the efficacy of

Bayesian optimization for this purpose.

Neural networks have, in the last decade and a half, become one of the most popular machine learning

techniques, and it is unsurprising that they have been explored as potential means of generating gaits for

tensegrity robots. In particular, small neural networks have been used in biologically-inspired setups to

produce central pattern generators – cyclical neural networks which output a regular pattern. The first

work combining neural networks and tensegrity robots was done by Rieffel et al. [21]. Their idea was to

have each strut be an independent spiking neural network, a kind of artificial neural network which is

time-sensitive. Nodes in a spiking neural network do not use sigmoid functions to determine their output.

Instead, they sum weighted inputs with a persistent counter, and if the value of the counter is over a given

threshold the neuron “spikes.” If the counter is not over the threshold, the counter is decremented by a

fixed decay value. The summing and decaying over time means SNNs are able to adjust their firing rate

based on input, which makes them ideal for motor actuation. Each strut had its own small SNN which had

two inputs nodes sensing the tension of a spring at each end, two hidden nodes, and two output nodes.

The firing of the output nodes dictated when a cable was contracted, with each node controlling the cable

length of a different attached cable. Rieffel et al. demonstrated that such networks could be trained to work

together across the tensegrity and produce effective forward gaits, at least in simulation. Although Rieffel
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et al. never mention it by name, the core concept was similar to the central pattern generators explicitly

embraced in future works.

Starting with Bliss [2], the use of neural networks was explicitly coupled with the use of central pattern

generators in research on tensegrities. The concept of the central pattern generator comes from biology,

where CPGs are often found. In nature CPGs are systems of neurons which produce regular, rhythmic

pulses and are often associated with movement or motor actions. Bliss notes that “neural circuit respon-

sible for the production of rhythmic signals controlling an animal’s wings, legs, arms, or tail in the act of

locomotion,” and that “ CPGs are responsible for more than simply locomotion, including control of chew-

ing, scratching, breathing, and heart beating.” [2, p. 11]. In relation to tensegrity control systems, CPGs

are often implemented as small neural networks, sometimes as small as two neurons, which oscillate firing.

The pattern generated by the CPG is used to drive the locomotion of the tensegrity, either by adjusting cable

lengths directly as in [2, 4, 3, 6] or by altering the parameters of an impedance controller as in [16, 17, 24].

Thomas Bliss and his team [2, 4, 3] use a simple, two-neuron CPG called a reciprocal inhibition oscillator

(RIO) to actuate cable lengths in a tensegrity. The tensegrity in question is both simple and significantly

different than standard tensegrities, being designed to be flexible only on two axes rather than three. The

tensegrity used is embodied and supports a fin which is placed in a body of water, and the tensegrity is

actuated with the goal of swimming forward by moving the fin. Two cables attached the the base of the

tensegrity allow a controller to pull on one side or the other of the tensegrity, causing it to flex back and

forth in a sort of flapping motion. The CPG determines when and to what extent each of the two cables is

contracted, thus dictating the swimming motion of the tensegrity and fin. Bliss et al. use several different

techniques to entrain a specific pattern in the CPG which was hand-designed prior to testing. In doing so,

they demonstrate that CPGs can successfully be used to control the actuation of tensegrity cables, but don’t

directly address discovering effective CPGs.

The approach taken by Mirletz et al. [16, 17] and Tietz et al. [24] for their Tetraspine tensegrity was

slightly different because the CPG controlled parameters of a local impedance controller on each strut,

rather than directly actuating the robot. Their Tetraspine tensegrity was a non-standard class III tensegrity

meant to abstractly model a real spine, and was composed of a handful of tetrahedral vertebrae connected to

each other by tensile elements. It used cable length adjustment to move, with each cable’s length controlled

by a local impedance controller. This controller adjusted the length of its cable based on a length offset,

a tension factor, and a velocity factor, and each impedance controller was wholly independent from the

others. A series of interconnected CPGs were used to dictate the desired resting length of each cable, which

in turn affected the operation of the impedance controller by altering the tension factor. Using this method,

Mireletz et al. and Tietz et al. gave a simulated Tetraspine the ability to not only move forward but to
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successfully overcome uneven terrain and obstacles in its path.

Like Bliss et al., Caluwaerts et al. [6] used a CPG to control the actuation of individual springs. The CPG

used by Caluwaerts et al. was larger than that used by Bliss et al., and the generator itself was of a different

type, with Caluwaerts et al. using a Matsuoka oscillator rather than an RIO. A Matsuoka oscillator features

sparsely connected integrating neurons with time fatigue as the means of generating its pattern. Rather

than simulating numerous neurons, however, Caluwaerts et al. used a central function which generated a

two-dimensional matrix where each column was a list of the spring length of a spring for the past k time

steps. This matrix was then multiplied by a a weighting matrix to produce a final output matrix which

assigned a new spring length to each actuated spring. Gaits were generated by optimizing the weighting

matrix so that the constant feedback loop generated a particular pattern. Ultimately, Caluwaerts et al.

successfully used the CMA-ES function to optimize the weight matrix to produce a forward movement in a

six-bar tensegrity. Although this does demonstrate the efficacy of CPGs in actuating tensegrities, its larger

contribution is demonstrating that morphological computation is quite useful.

Although using neural networks to enact central pattern generators is a promising line of research,

it shares many of the traditional pitfalls neural networks face: slow training, large sample requirements,

and expensive computations. More worryingly, on-board neural networks on tensegrities have not left

the realm of simulation, and implementing such a neural network on an embodied tensegrity is a daunting

task. In contrast, evolutionary algorithms, although slow, have been demonstrated to be effective in the real

world. The evolutionary approach was the first taken in tensegrity research. As noted earlier, Paul et al. [20]

adjusted cable lengths in a continuous cycle, with each cable actuator contracting once and being released

once per cycle. The phase of this cycle, the duration the cable was contracted compared to released, the

amplitude of the contraction, and the period of the cycle were encoded in a genetic algorithm whose fitness

function was based on distance traveled by the robot from the origin. The evolution itself was performed

and evaluated only in simulation, however. Although they did demonstrate the viability of tensegrities in

an embodied robot, the gait used in that scenario was hand-coded.

Iscen et al. [11, 12] and Agogino et al. [1] used genetic algorithms to develop controllers for both simu-

lated and physical cable-actuated tensegrities. The primary method of locomotion outline in their work is

a rolling method they call ‘flop and roll,’ in which certain cables are actuated so that the tensegrity falls to a

side, then others are actuated to bring it up-right with the fallen side as its new base. Initially, they evolved

sine waves to control the length of the cables over time [11], but then seized on the flop and roll technique

and evolved a controller designed to effect it [12] through local impedance controllers. These techniques

proved successful, generating a rolling motion in any direction given. However, the method is slow and

relies on damping, rather than embracing, the high dynamism of tensegrities.
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Khazanov et al. [13] evolved gaits by adjusting the speeds of the weighted motors used to induce vibra-

tion in their tensegrity. They had three motors attached to three separate struts on their embodied tensegrity,

and used a set of three numbers indicating the motor speed for each motor as the genotype to evolve. Just

like [20, 11, 12, 1], Khazanov et al.’s experiments ultimately produced effective gaits. However, the speed

of the robot relative to its body size was greater compared to other evolved gaits, likely due to the use of

vibration rather than cable length adjustment as the means of actuation. Still, although successful, work

on using evolutionary algorithms to generate effective gaits demonstrated the weaknesses of evolutionary

algorithms in general: they require many trials, which can take a great deal of time.

A new development in the field of tensegrity gait generation has been the use of Bayesian optimization

by Rieffel and Mouret [23]. Their research utilized a small, embodied tensegrity robot tethered to a desktop

computer, which itself used an advanced motion-capture system to track the movements of the robot. Their

research demonstrated that within only 30 iterations, Bayesian optimization with prior knowledge results

in statistically-significantly better gaits than random search (p < 0.0001). In particular, their priors indicated

that full motor speeds (in any direction) would lead to greater movement. In their work, they measured

the distance traveled by the tensegrity over the course of three seconds, using only thirty iterations per

run. Ultimately, they demonstrated a gait developed through Bayesian optimization which was capable of

moving the tensegrity 1.15 body lengths per second.

1.2 Bayesian Optimization

Bayesian optimization is, as the name suggests, an optimization algorithm. That is, Bayesian optimiza-

tion attempts to find the optimal input for some function, which is often the input which maximizes or

minimizes the output value of the function. Bayesian optimization is specifically used for determining the

optimal input to an unknown function which can be tested but not directly known. In other words, given

some unknown function f(x) : X → y where X is the set of possible inputs and y is a measurable output,

Bayesian optimization can find an input x which produces a close-to-optimal output y. Bayesian optimiza-

tion does so by maintaining a probabilistic model of the function which gives, for any possible input, a

probability distribution of possible outputs. Although there are a number of ways to represent the function

model probabilistically, a commonly-used one and the one used in this research as well as the work of Rief-

fel and Mouret is representing the function as a Gaussian process. A Gaussian process models the function

f by assigning a Gaussian distribution of possible values of f(x) to every possible x. Since the distribution

of possible values of f(x) for any x is Gaussian, it is defined by a mean µ and a variance σ2, both likely

unique to x. This means the Gaussian process can be used to predict likely outcomes for any value x.
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Bayesian optimization utilizes this as a means of estimating the shape of the unknown function it is op-

timizing. Starting with some prior knowledge, either given to the algorithm a priori or discovered through

experimentation, Bayesian optimization generates a Gaussian process which fits the prior knowledge. Then

Bayesian optimization refines its model by choosing an input based on its probability distribution using an

acquisition function, which examines the Gaussian process and selects the most promising candidate based

on criteria which vary between acquisition functions. It then gives this input to the function, measures the

output, and fits its Gaussian process to this new datum. That is, it experiments based on probability-based

hypotheses and refines its model based on the new empirical evidence it generates. Note that it is assumed

that the unknown function is smooth, so that knowledge of the results of some inputs can be used to make

judgments about the probability distributions of other inputs. As the algorithm generates more data points

and refines its model, it has a better idea of which inputs are likely to be fruitful, and can thus hone in on

an optimal solution.

Two acquisition functions are investigated in this research: ‘expected improvement’ and ‘upper con-

fidence bound (UCB).’ The expected improvement acquisition function chooses the point which has the

greatest chance of returning the highest payoff. Given τ , the best evaluation result yet seen and µ(x) and

σ(x), the mean and standard deviation of the Gaussian distribution at input x, the expected increase ∆ of

input x over the previous best input is given by the equations

z =
µ− τ
σ

(1)

∆ = (µ− τ) · cdf(z) + σ · pdf(z) (2)

where cdf and pdf are the cumulative distribution function and probability density function on the nor-

mal distribution, respectively. In essence, the expected improvement function determines the difference

between the expected mean and the best evaluation in terms of standard deviations from the mean, then

uses this to calculate the actual difference between the expected value of f(x) and τ likely to be seen.

Whereas the expected improvement function takes a very moderated approach focusing on the most

likely outcome, the upper confidence bound function is more optimistic, and its level of optimism is tun-

able. The UCB function assumes with a variable level of confidence that for any input x, the value of f(x)

will be above average. More formally, given µ(x) and σ(x) as well as a confidence parameter β, the upper

confidence bound ucbβ of f(x) is given by

ucbβ = µ+ σ · β (3)
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This function simply multiplies the standard deviation of the Gaussian distribution over f(x) by a con-

fidence level and adds it to the mean expected value. The idea is that the value β describes how many

standard deviations above the mean we expect each value to perform. The value of β can be tuned as a

hyperparameter, with lower values focusing on exploitation while higher values focus on exploration.

1.3 Research Question

Although the work of Rieffel and Mouret [23] is promising, it is important to be able to replicate the results

of their experiments. In addition to purely replicating their work, several aspects can be altered in order

to provide a more robust demonstration of the efficacy of Bayesian optimization. First, using different

hardware than their work will ensure that their results are not hardware dependent. This variation comes

in two ways: the tracking system and the robot itself. The tracking system used by Rieffel and Mouret,

an eight-camera OptiTrack Prime setup, is a highly-price and expensive motion capture system capable

of millimeter-level tracking. This grants the optimization algorithm a level of precision which it may be

unrealistic to expect in the real world, particularly if training must occur outside of a lab. Additionally,

the tensegrity robot used in their work was a small, primitive one which was controlled and powered via

tethers made of magnet wire which directly connected the robot to a computer, the only on-board electronics

were the motors used for actuation. In reality, tensegrities are likely to have various electronic components

used for sensory and control purposes. Additionally, any genuinely useful tensegrity would need to be

wireless, and thus require on-board power as well as control. The extra electronics could affect the weight

and dynamics of the tensegrity in unpredictable ways, and Bayesian optimization must be able to account

for that.

Second, Rieffel and Mouret had each optimization run perform only 30 trials, each lasting only three

seconds. Although the data they gathered was statistically significant, there may be more effective gaits

which the optimization functions did not discover due to the restricted number of trials, and the full behav-

ior of a gait might not have become apparent with only three-second experiments. As such, the question

this research seeks to address is to what extent, if any, are we able to replicate the results of Rieffel and

Mouret using a low-cost setup, an untethered tensegrity, and extended optimization runs?

2 System Design

In order to address the first concern given in Section 1.3, and to demonstrate the versatility, utility, and

potential of tensegrity robots in general, we designed and manufactured a modular, wireless, and instru-
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mented tensegrity robot over the course of approximately two years. Additionally, a new testing rig was

designed and built and a tracking algorithm was designed for tracking the tensegrity.

2.1 Physical Robot Design

The final design features 18.5cm long struts laser-cut from transparent black acrylic, which are wider at

the center in order to accommodate a micro-controller and other electronics mounted on a protoboard.

These struts are capped on each side by metal disks with 8 regularly spaced holes, into which springs are

fitted. Each of the springs in the tensegrity are identical steel springs with a resting length of 4cm, and the

connections between struts made by the springs forms the pre-stress stable ball-like configuration seen in

Figure 1, which is approximately 22.5cm across.

Each strut features two mounting holes which can be used to affix a strut controller. A strut controller

comprises a protoboard onto which several electronic components are mounted which together provide

means of controlling the motion of the strut. At the core of a strut controller is the RFD77201 Simblee

Bluetooth-enabled micro-controller. The RFD77201 micro-controller is based on an Arduino processor and

is capable of running programs written in the Arduino programming language. It features seven GPIO pins

which can be used to receive sensor input or send instructions to effectors. On the strut controllers used in

this research the RFD77201 is connected to a DFRobot SEN0142 six-axis accelerometer and gyroscope and

a Pololu DRV8838 Single Brushed DC Motor Driver Carrier, which in turn controls a Pololu brushed DC

motor with an off-center mass attached to the drive. Finally, an RFD22130 Micro-SD shield may optionally

be attached to the micro-controller to allow data storage. Powering the strut are two 3.7v 150 mAh lithium-

ion batteries attached to the underside of the strut by 3d-printed clips. The entire assemblage can be seen

in Figure 2.

The RFD77201 micro-controller runs Arduino control code which gives it several basic functionalities.

It’s primary feature is the ability to interface with a ‘supervisor’ computer via Bluetooth in order to run

trials. This process involves the micro-controller signaling to the supervisor that it is ready to run a trial,

the supervisor replying, when ready, with a motor frequency to try, the micro-controller spinning its motor

at the allotted speed for ten seconds, and then the micro-controller signaling to the supervisor that the trial

is complete. In addition to the ability to remotely run tests, the control code also allows for reading data

from an accelerometer via I2C and writing data to a micro-SD card via SPI, and is able to signal to the

supervisor on startup whether it can utilize either option.

The design of the strut is the result of collaborative work between a group of engineers and the author.

Riley Konsella ’17, a computer engineer, worked to design a laser-cutable strut shape which could be used
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as the base for a modular tensegrity strut while simultaneously designing the electronic component respon-

sible for enabling wireless control. His work was continued by Mitchell Clifford ’18, an electrical engineer,

and Kentaro Barhydt ’18, a mechanical engineer, who together designed the final version of the strut and

on-board electronics described above. The author worked concurrently with all three engineers to develop

the control code for the RFD77201 micro-controller described above over the course of the two years.

The resulting tensegrity robot is a significant achievement in and of itself, and greatly improved upon

the previous tensegrity robot used in our lab and used by Rieffel and Mouret in their work. Most significant

was the move from tethered control to untethered, Bluetooth-based control. Previously, the tensegrity was

attached to a breadboard circuit via magnet wire strung from the tensegrity’s motors to motor controllers

on the breadboard, which were in turn controlled via USB from the supervisor machine. These tethers

frequently tangled as testing progressed, requiring a human operator to consistently untangle the delicate

wires. Additionally, because of the fragile nature of magnet wire, the process of untangling the tethers

or occasionally just a particularly energetic gait would cause a tether to snap, necessitating a lengthy and

arduous repair process. The tethers also exerted a slight force on the robot, particularly when tangled,

which impacted the behavior of gaits. Moving to a wireless tensegrity has eliminated huge amounts of

time spent performing maintenance on the robot, and has led to more reliable behavior data. It also, as

noted above, is a necessary step towards producing a truly useful tensegrity robot. The second major

improvement is the addition of instrumentation to the robot, which allows more complex control, including

the possibility of closed-loop control based on sensed acceleration. The ability to not just sense but collect

and store data also means that post-hoc analysis of the forces experienced by the robot is possible, which

enables examination of the dynamic, mechanical properties of the robot.

2.2 Testing Setup

One side effect of the upgrade is that the robot itself became approximately twice as large, with the in-

dividual struts growing from 9.4cm in the previous version to 18.5cm in the current on. As a result, the

previous 91x61cm testing table became too small for repeated testing without needing to center the robot

after every test. In order to facilitate testing, we built a simple testing platform consisting of a wooden

table with adjustable-length legs for leveling and an overhead camera used to track the movement of the

tensegrity. The table features a flat testing area approximately 46x46in with a base of particleboard which

fenced in by 1x6in boards to prevent falling. The platform is mounted on four approximately 1ft long 2x4in

legs with adjustable-length feet at the bottom. The feet adjusted via a screw to allow the table to be leveled

regardless of the unevenness of the floor. A 1080p HD Logitech webcam is hung above the platform on a
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custom mount which allows for multi-axis adjustments. The mount itself is attached to an aluminum extru-

sion beam which allows the camera to ba adjusted vertically and horizontally with ease. A 65-ft USB cable

connects the webcam to a nearby desktop computer which acts as the supervisor. Testing is performed

by placing the tensegrity in the center of the table and running a gait on the tensegrity for a brief period

of time. The overhead camera feeds images into a tracking algorithm written in Python which tracks the

motion of the tensegrity and report the total displacement at the end. The design and construction of the

table was a joint effort between the author and Barhydt.

In addition to helping build the testing rig, the author developed a tracking algorithm which uses the

OpenCV computer vision library to determine the location of the tensegrity in any given frame. The pre-

vious testing setup used colored cotton balls glued to the robot as tracking beacons, but this method was

discarded in the new testing setup because it lacked reliability. The larger arena necessitated that the cam-

era be higher above the board, and since the camera resolution was ultimately downsampled to 640x480

to improve computation time, the colored balls were harder for the camera to pick up and proved quite

unreliable. This was compounded by the new location of the testing rig next to a hallway window, which

resulted in varying lighting conditions on the testing arena.

Instead, a new algorithm was created which evolved from simple blob-tracking, which required a uni-

form, bright white background, to using image subtraction. Prior to tracking, the algorithm takes a picture

of the arena completely empty, which it converts to grayscale, blurs twice, and then stores as a base image.

Then, during tracking, it converts a given frame to black and white and then blurs the greyscale image

twice, once with Gaussian blur and then by calculating the median value of the pixels around each pixel.

The blurred image is subtracted from the base, tensegrity free image in order to identify pixels whose val-

ues have changed. The image difference is then thresholded twice. First, the value of each pixel is adjusted

according to the piecewise function

threshold-a(v) =


0 v > 200

v v ≤ 200

(4)

which sets the value of each pixel to 0 (i.e., black) if its original value was greater than 200. This removes

pixels whose difference was negative and thus resulted in extremely high difference values in the image.

Then the resulting image is again thresholded, this time according the the piecewise function

threshold-b(v) =


255 v > 25

0 v ≤ 25

(5)
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which sets each pixel with a value above 25 to 255 and sets the rest to 0. This creates a purely black-and-

white image which highlights all of the major differences still remaining after the first thresholding and

discards the small differences probably due to image noise. Finally, the algorithm leverages OpenCV’s

built-in blob detection and tracking in order to find the largest area of white and calculate its center. The

coordinates of the center are saved and made available for other code to use, and the original frame is

altered to show all the contours OpenCV found as well as the perceived center of the tensegrity. The

final image also displays a blue circle which indicates where the automated testing will pause to allow the

tensegrity to be re-centered. The result of each stage of the tracking algorithm can be seen in Figure 3.

Actually running the gaits on the tensegrity is accomplished via communication with a desktop com-

puter running the gait generation code. A Python API is used to interface with and send information to the

tensegrity within the gait generation algorithms. This API is based on the Linux gatttool program which

allows for command-line interaction with Bluetooth Low Energy devices such as the RFD77201. The API

allows users to instantiate new Strut objects which have instance methods capable of sending or receiv-

ing raw data or performing certain predefined functions such as running a motor at a given speed. These

methods work by constructing subprocess calls to gatttool based on user-specified parameters. The

API cannot communicate with each strut concurrently, so any command sent to all struts must be sent in

series to each individual strut. It is important to note that the effect of sending a particular datum to the

RFD77201 depends on the program the RFD77201 is running, since different programs can interpret the

same datum in different ways.

3 Experimental Design

In order to test how effective Bayesian optimization is for producing useful tensegrity gaits, we used four

different gait generation methods: random search, Bayesian optimization using expected improvement

as the acquisition function, and Bayesian optimization using upper confidence bound as the acquisition

function with two different beta values: 0.5 and 1.5. We performed 20 gait optimizations with random

search and expected improvement, and 10 each for the two different upper confidence bound functions.

Each method and each optimization was composed of 60 ten second trials. Although this comes out to

a minimum of ten minutes per optimization, optimizations often ran for closer to fifteen minutes due to

delays caused by repositioning the tensegrity. Each trial was performed using the hardware and software

described in the previous section to evaluate it, and without using input from the accelerometer or storing

any data.

In order to perform the optimizations, we wrote a Python program which integrated the tracking code,
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the tensegrity API, and an out-of-the-box Bayesian optimization Python library called PyGPGO. The pro-

gram first initializes the tracking code, then queries the optimizer for an initial set of motor speeds to try.

It records the starting position of the tensegrity using the tracking code, then uses the tensegrity API to try

the given set of frequencies. After ten seconds, the program confirms with each strut that the motors have

stopped spinning and records the final resting position of the tensegrity. It calculates the distances between

the starting and ending points in terms of pixels and returns this to the optimizer. If Bayesian optimization

is being used, the optimizer incorporates the new datum into its internal probabilistic representation of

the function between motor speeds and displacement, then generates a new set of frequencies to test. If

random search is being used, the distance is saved but has no bearing to the next set of frequencies. Once a

new set of frequencies is generated, the program repeats the process.

We initialized all of our Bayesian optimizers with a prior similar to that used by Rieffel and Mouret, re-

warding having two or all three motors at full speed and penalizing having no motors moving. Specifically,

out priors were

x1 = [0, 0, 0] P (x1) = 0.0

x2 = [255, 255, 255] P (x2) = 50.0

x3 = [255, 255, 100] P (x3) = 75.0

x4 = [255, 100, 255] P (x4) = 75.0

x5 = [100, 255, 255] P (x5) = 75.0

This guided the algorithm to gaits with higher frequencies, and particularly to gaits where two frequencies

were high and the third was only moderate, which hand-testing found to be particularly effective. The

lowest possible value for the motors is 0, which stops the motor completely, and the highest is 255, which

spins the motor as fast as it can clockwise. We were unable to use negative values because they cannot

easily be send via the Bluetooth interface the RFDuino uses, and we chose to have a full range of speeds in

one direction rather than having fewer speds but both directions. In the priors x3, x4, x5, the lowest value

is set to 100 because previous experience had shown that when two motors are spinning fast, the last motor

ought to also be spinning, and spinning fast enough to induce vibrations. However, when all three are

spinning at high speeds, the movement gets extremely chaotic and linear motion is rare.

User intervention is only required if the tensegrity gets too close to the edge. Between trials during the

optimization process, the program checks whether the center of the tensegrity is farther than 115 pixels
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from the center of the frame. If it is, the program pauses and informs the user that the tensegrity its getting

close to the edge and should be centered. It only resumes again once it detects that the tensegrity has

been moved back inside the circle. On average, this occurs approximately every ten trials, but is highly

dependent on the efficacy of the gaits tried: more effective gaits mean greater distances traveled and thus

more time spent outside of the circle. The purpose of the safety zone is to ensure the tensegrity does not

bump into a wall while trying a gait, since that would artificially lower the distance traveled by the gait.

At the beginning of each optimization, a new CSV file is created to collect the data produced by the

optimization. After each trial, the program writes a new line of data to the file which includes information

about the individual trial and the optimization as a whole. In regard to the trial itself, the frequencies tested

in the trial, the distance traveled, the starting and ending locations, the trial number, and the best distance

seen so far are saved. The program also records the optimizer and acquisition function being used, the

minimum and maximum motor speeds, and the versions of the hardware and software being used.

4 Results

Prior to analyzing the data, the distances recorded were converted to number of tensegrity body lengths.

Empirical testing was used to determine that the diameter of the tensegrity as perceived by the camera was,

on average, 80 pixels. As such, distance values, which had been measured in pixels, were divided by 80

to determine the number of body lengths moved. In addition to providing a more grounded metric than

pixel distance, which is entirely based on the type and placement of the camera, it also allowed for closer

comparison with the work of Rieffel and Mouret, who used the same metric. As can be seen in Figure 4,

Bayesian optimization using expected improvement as its acquisition function performs significantly better

than either random search or Bayesian optimization using upper confidence bounds with beta values of 0.5

or 1.5. Whereas by trial 60 the median best distance discovered by random search is 0.71 body-lengths,

Bayesian optimization using expected improvement yields a median best distance of 1.11 body-lengths.

Bayesian optimization utilizing an upper confidence bound acquisition function is as ineffective as random

search: using a beta value of 0.5, the median best distance was 0.69 body-lengths, less than random search.

A beta value of 1.5 makes the situation is only slightly better, leading to a median best distance at trial 60 of

merely 0.74 body lengths, barely higher random search.

The median and quartiles, as well as the inter-quartile range for each of the four approaches can be seen

in Table 1 and are represented graphically in Figure 5. Bayesian optimization using expected improvement

also surpasses random search and upper confidence bound based Bayesian optimization in terms of both

the lower and upper quartiles. Additionally, using the Mann-Whitney U test, we determined that the
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differences in median best distance discovered by trial 60 between Bayesian optimization using expected

improvement and each of its competitors were all statistically significant to at least the p < 0.05 level.

Figure 5: The statistical spread of the best distance
traveled by the final trial for each of the four gait gen-
eration methods. The black line represents the me-
dian, the inter-quartile range is shown by the filled
box, and the most significant non-outlying best dis-
tances are given by the whiskers. * = statistically sig-
nificant with p < 0.05, ** = p < 0.01.

However, the spread of the expected improve-

ment based Bayesian optimization is far greater

than any of its competitors, with an inter-quartile

range of 0.52 body-lengths compared to the 0.36

body-length spread of the next widest distribu-

tion, random search. In comparison, Bayesian op-

timization using the upper confidence bound with

a beta of 0.5 had the narrowest spread, with only

a 0.2 body-length difference between its quartile

values. The wide spread of the expected improve-

ment strategy becomes even clearer when consider-

ing Figure 5, which shows that the lowest final re-

sult of an expected improvement optimization was

lower than any of its competitor’s lower quartiles,

while its most successful final result was more than

50% greater than that of its nearest competitor.

4.1 Discussion

The success of expected improvement based

Bayesian optimization, particularly over random

search, reinforces the conclusions of Rieffel and Mouret that Bayesian optimization is a promising tens-

gerity gait generation technique. However, our success was significantly more limited than that of Rieffel

and Mouret, both in terms of the statistical significance of our results and the actual locomotion produced.

In their work, Rieffel and Mouret show that Bayesian optimization using an upper confidence bound based

Optimization Method Lower Quartile (25%) Median Upper Quartile (75%) IQR n
Bayesian (EI) 0.82 1.11 1.34 0.52 20

Bayesian (UCB β = 0.5) 0.65 0.69 0.85 0.2 10
Bayesian (UCB β = 1.5) 0.5 0.74 0.82 0.32 10

Random Search 0.64 0.71 1.0 0.36 20

Table 1: The distribution of best best distances in body-lengths traveled by trial 60 for each of the four gait
generation methods explored. IQR is the inter-quartile range, giving some sense of the reliability of the
algorithm.
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acquisition function with beta at 0.2 is statistically significantly better than random search at the p < 0.0001

level, a powerful demonstration of the efficacy of Bayesian optimization. We were unable to replicate

this level of confidence; rather, we found that Bayesian optimization using UCB as its acquisition function

performs equivalently to or worse than random search. Only expected improvement based Bayesian opti-

mization was shown to be significantly more effective than random search, and that only at the p < 0.05

level.

Additionally, the effectiveness of the gaits discovered via Bayesian optimization in Rieffel and Mouret

[23] was far greater than the effectiveness of gaits found in our research. The median speed of gaits de-

veloped through the prior-based Bayesian optimization in Rieffel and Mouret’s work is 11.5cm/s, which

comes out to a relative speed of approximately 0.88 body-lengths per second. In contrast, the most effective

gait developed during our testing traveled a total of 151.74 pixels during a ten second test, for a relative

speed of 0.19 body-lengths per second, less than a quarter as fast as the gaits produced regularly by Rief-

fel and Mouret. This is additionally significant given that we ran twice as many trials per optimization,

and ran each trial for more then three times as long. However, the tensegrity robot used by Rieffel and

Mouret in their research was significantly different than the one used in ours. In particular, their robot was

smaller and lighter due to the matiral it was made of and the lack of on-board electrnics. As such, it is not

particularly concerning that our robot moved slower.

Nevertheless, our research does demonstrate that Bayesian optimization, at least when using expected

improvement as its acquisition function, is particularly effective at generating tensegrity gaits. Although

the gaits generated were significantly slower than those generated by Rieffel and Mouret, Bayesian opti-

mization performed significantly better relative to the performances of the other methods in our research.

5 Troubles and Future Work

There are a number of potential causes which may have all contributed to the discrepancies between the

data presented in Rieffel and Mouret [23] and the data presented here, all of which are related to the tenseg-

rity system used in this research and all of which ought to be addressed in the future. The problems all

relate to the robustness of the system and can be broken up into two groups: failures in hardware and

failures in software.
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5.1 Hardware Failures

The primary hardware failures afflict the tensegrity robot itself and arise from the intense and frequent

vibration experience by the robot. Designing and building dynamic systems to cope with intense and con-

sistent vibrations is notoriously difficult, and is a large part of the reason why other tensegrity actuation

research focuses on spring length adjustment rather than vibrational actuation. In our system, the dele-

terious effect of the vibrations manifest through battery failures, circuit board fastener failures, and, most

significantly, issues with the battery to board connections. Additionally, the testing table itself proved to be

a consistent problem.

The least significant of the hardware issues were the failures of the nut and bolt holding the circuit board

to the acrylic strut. Several times throughout testing the nut would be shaken loose from the bolt, allowing

the battery clip and the bolt itself to separate from the tensegrity. This was, ultimately, a minor issue for the

most part since each circuit board is attached with two fasteners, but it did exacerbate another issue, the

battery problem, since the now-loose battery would be thrashed across the arena as the tensegrity moved.

The battery failures occurred due to the design of the active struts pressing the lithium-ion battery on an

active strut against the motor mount such that the wires extending from the batteries are forced to bend

at sharp angles. This issue is compounded by the fact that the vibration causes the wires to rub against

the sharp edge of the motor mount, degrading the quality of the wire and ultimately causing the wires to

detach from the battery. We lost a total of five batteries during the testing process as a result of this issue.

An additional hardware issue arose due to the difficulty in ensuring the testing arena was perfectly level,

which caused some of the data initially gathered to be corrupt.

The most significant issue was somehow related to the connection between the batteries and the elec-

tronic components, although the exact nature of the problem has yet to be determined. The problem was

that whenever a motor spun up to the high end of its speed range, there was a high likelihood the connec-

tion between the batteries and the circuit board would break, causing the RFDuino to power off. Most of the

time the connection was reestablished nearly instantaneously, but occasionally it resulted in the connection

needing to be fixed by hand before testing could continue. These failures had two effects of significance.

First, they caused the strut experiencing the failure to stop spinning prematurely. effect occurred every

time this sort of failure did because, on reboot, the RFDuino micro-controller had no way of returning to

its previous rotational frequency. Instead, it would sit inert, waiting until the next trial for the supervisor

computer to give it a frequency to test. Since these failures often occurred within the first couple seconds

of a trial, this meant that the strut spent most of the trial inactive and thus the trial was not actually testing

the set of three frequencies which the optimizer thought it was. Consider, for example, the trial frequencies
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(m1 = 230,m2 = 180,m3 = 90). If the strut corresponding to m1 failed quickly, the trial would really

be testing the frequencies (m1 = 0,m2 = 180,m3 = 90), but the optimizer would still take the results as

genuine. Since gaits with even one non-rotating motor rarely produce any motion, the optimizer would

quickly learn to avoid frequencies high enough to cause the failures, thus impacting its performance. Ad-

ditionally, the connection would sometimes not be reestablished, necessitating hands-on troubleshooting.

Since the tracking code detects objects via image subtract, it does not have a way to distinguish between a

human hand or head and the tensegrity. Thus, hands-on troubleshooting always ran the risk of misleading

the tracking software and causing an erroneous travel distance, corrupting the data.

5.2 Software Failures

The major software failure was the lack of robustness in the tracking software. As alluded to in the previous

paragraph, the tracking software was unable to discern the difference between different kinds of objects and

was not specially tuned to the tensegrity. As such, any sufficiently large change in the camera’s view was

considered a possible tensegrity, and if the area of the change was larger than the tensegrity, then it would

be tracked, not the robot. This nearly always occurred in two different ways. The least common of the two

and the easiest to remedy was human interference. In the initial phases of testing, lab regulars and visitors

alike were curious about the robot and had a tendency to peer at the robot, bending their head over the

table and obstructing the camera’s view. Less frequently, someone would merely be standing to close to

the table, accidentally casting to dark of a shadow on the table. An effective solution to both issues was

carefully watching people near the testing table and regularly issuing warnings not to approach to closely.

The second and much more frustrating issue stemmed from the fact that, at a certain point in the

evening, the hallway lights become motion-activated and turn off after a certain period of inactivity in

the hallway. Due to the location of the testing table next to a large window and between, rather than under,

two lights in the lab, much of the lighting on the table was determined by the lighting in the hallway. Since

a base image was taken only once, at the beginning of the optimization, a significant change in hallway

lighting would often result in a significant change in the camera’s view that the tracking algorithm would

pick up and track instead of the tensegrity. Thus, it was necessary to constantly ensure the hallway lights

were on when testing in the evening or at night, and the only means of doing this was activating the motion

sensors controlling the light. Two other factors made the issue even worse: the inability to save and load

optimizations and the fact that classes and daily life meant much testing was done at night. The inability

to save, load, or restart an optimization was particularly troublesome because it meant that if the hallway

lights shut off at an inopportune moment, an erroneous travel distance would be recorded and the entire
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optimization would become corrupted and there was no way of recovering previous progress.

Several means of fixing this problem exist and ought to be examined and, if feasible, implemented in

the future. First, some sort of cloth or paper could be used to obscure the window in question when testing,

which would drastically reduce the influence the hallway lighting has. This would be considerably easier

than relocating the testing rig, whose size makes it both unwieldy to move and an inconvenient obstacle

most places in the lab. Another option is to mount a set of powerful light sources above the testing arena to

provide uniform lighting bright enough to reduce the influence of the hallway lighting. Finally, the tracking

algorithm could be modified to better handle changed in lighting, or scrapped altogether for a more robust

method. Another, minor problem with the tracking algorithm as implemented is that it crashes if it cannot

find any object to track in the frame. Although the solution to this is relatively trivial, it rarely occurred

since we were aware of the issue and careful not to let it happen.

5.3 Future Research

Aside from fixing the flaws exposed during our testing, this research presents several potential threads of

research to follow. Continued work with both Bayesian optimization could prove fruitful, particularly after

the issues highlighted previous are addressed, because the results of this research project, while promis-

ing, are hardly conclusive or robust. Bayesian optimization involves hyper-parameters such as the surro-

gate process used, the acquisition function used, and the number and length of trials, in addition to any

hyper-parameters the acquisition function introduces such as the beta value used by UCB, which ought to

be explored and tuned. Other optimization algorithms such as Covariance Matrix Adaptation Evolution

Strategy ought to also be explored as potentially effective and efficient gait generators, and other machine

learning techniques, particularly neural networks, could also proof useful.

Neural networks bring to the table another research direction discussed earlier in Section 1.1: the use of

central pattern generators to produce dynamic, rather than static, gaits. Spiking neural networks potentially

offer a responsive and dynamic closed-loop control system for tensegrities, and research in this area is

already on-going. Finally, it could be interesting to combine the use of CPGs with the idea of morphological

computation discussed by, among others, Rieffel et al. [21]. Utilizing the dynamic properties of a tensegrity

in order to off-load control calculations could present a particularly effective control strategy.
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6 Conclusion

Although not conclusive, the research described here has paved the way for increasingly interesting and

varied investigations into tensegrity robots. First, we have developed a new, modular tensegrity robot

equipped with data collection and wireless communications capabilities, a significant advance from our

previous tensegrity robot. Supporting this development, we’ve created an entirely new testing system, in-

cluding both a physical testing table and a suite of software enabling nearly any kind of testing needed. We

utilized these new capabilities to assess and affirm previous research on tensegrity gait generation under-

taken by Rieffel and Mouret [23] that Bayesian optimization is a promising means of generating effective

gaits on tensegrity robots. In particular, we have demonstrated with some confidence that Bayesian opti-

mization is significantly more capable of generating useful gaits than random search, and specifically that

expected improvement ought to be used as the acquisition function for the optimization. Equally impor-

tant, through this research we have discovered a number of flaws and failures in our new setup which must

be addressed, and in doing so paved the way for more effective research in the future.
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Figure 1: A picture of our current tensegrity robot: VVValtr (VVireles Vibrationally Active Limbless Tenseg-
rity Robot.

Figure 2: A picture of one of the struts which make up VVValtr.
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(a) (b) (c)

(d) (e) (f)

Figure 3: Visualizations of the tensegrity tracking algorithm. Figure 3a shows the base image taken prior
to tracking. In Figure 3b, the grayscale frame being analyzed is shown. Figure 3c illustrates the resulting
difference once the current frame is subtracted from Figure 3a. Figure 3d and Figure 3e each show the
result of the successive thresholds, with Figure 3d removing extraneous high-value artifacts and Figure 3e
isolating and highlighting the tensegrity. Finally, Figure 3f is the image shown to the user.
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Figure 4: This graph illustrates the improvement in gait generation over time for each of the four different
gait generation methods used. The dark lines follow the median value of all of the best distances achieved
by each run of each gait generation function at by each trial. Thus, for example, by trial 10, the expected
improvement method had a median best distance traveled of approximately 0.7 body-lengths. The graph
demonstrates that the expected improvement method performed better than the other three methods.
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Figure 6: The result of a circuit board fastener failing. The fastening nut and it washers are labelled, as is
the loose battery resulting from the failure. Although unlabeled, the circuit board can also be seen to be
somewhat loose.
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Figure 7: An example of how a change in lighting can mess up the tracking software. In this picture, the
hallway light had previously been off but turned on when someone was walking down the hall, causing a
bright patch which threw off the tracking code.
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