
Union College
Union | Digital Works

Honors Theses Student Work

6-2011

Design and Implementation of an RF Data
Communication System
Aung K. Soe
Union College - Schenectady, NY

Follow this and additional works at: https://digitalworks.union.edu/theses

Part of the Electrical and Computer Engineering Commons, and the Hydrology Commons

This Open Access is brought to you for free and open access by the Student Work at Union | Digital Works. It has been accepted for inclusion in Honors
Theses by an authorized administrator of Union | Digital Works. For more information, please contact digitalworks@union.edu.

Recommended Citation
Soe, Aung K., "Design and Implementation of an RF Data Communication System" (2011). Honors Theses. 1071.
https://digitalworks.union.edu/theses/1071

https://digitalworks.union.edu?utm_source=digitalworks.union.edu%2Ftheses%2F1071&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalworks.union.edu/theses?utm_source=digitalworks.union.edu%2Ftheses%2F1071&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalworks.union.edu/studentwork?utm_source=digitalworks.union.edu%2Ftheses%2F1071&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalworks.union.edu/theses?utm_source=digitalworks.union.edu%2Ftheses%2F1071&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalworks.union.edu%2Ftheses%2F1071&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1054?utm_source=digitalworks.union.edu%2Ftheses%2F1071&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalworks.union.edu/theses/1071?utm_source=digitalworks.union.edu%2Ftheses%2F1071&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalworks@union.edu

Design and Implementation of

an RF Data Communication System

Aung K. Soe

ECE 499: Senior Project

Advisor: Professor James Hedrick

03/18/2010

Aung Soe Design and Implementation of an RF Data Communication System 2

Report Summary

 Located just 8 miles northeast of Union College is Ballston Lake, a unique lake,

which offers excellent research opportunities for faculty and students. The south basin of

the lake is permanently stratified, and there has been no intermixing between water

layers for thousands of years. The lower water layers contain no oxygen (anoxic). The

Union College Geology Department is interested in a ten year study of Ballston Lake.

Currently, there is no commercially available automatic system for collecting and

transmitting data from a sensor package at the bottom of the lake to the lake shore and

finally to Union College for long-term research purposes. For this project, I have

designed and implemented a prototype for an RF data communication system between

Ballston Lake and Union College.

 This system will be used as a part of the long-term water monitoring system for

Ballston Lake. The system will allow users to collect and transmit the water property

data automatically without having most of the tedious human involvement. In addition,

the system will not only offer a large amount of data storage space but also provide a

convenient technique to manage and analyze data to help answer numerous questions

concerning this fascinating lake.

 The system design contain both hardware and software components. They both

worked together to provide all essential characteristics to perform data transmission

reliably between Ballston Lake and Union College. Several possibilities for each

hardware component are explored carefully to meet system requirements. In order to

communicate reliably between two sites, the Master/Slave protocol is designed and

implement. The protocol has been verified working properly with error detection,

receiver feedback and retransmission. Several different scenarios of data transmission

protocol were tested in order to check the robustness of the protocol.

Aung Soe Design and Implementation of an RF Data Communication System 3

Table of Contents

1. Introduction…………………………………………………………………………6

1.1. Problem Statement …………………………………………………………….6

1.2. Motivation ……………………………………………………………………...8

2. Background…………………………………...9

2.1. Data Communications ……………………………………….…….…...……...9

2.2. Related Research Work …………...…10

3. Design Process ……………………………………………………….....................11

4. Design Requirements ………………………………………………......................13

4.1. Overall Design Requirements ……………………….....................................13

4.2. Goals ………………………………………………….....................................16

5. Design Parameters …………………………………………..................................17

5.1. Operating Frequency ……………………………...17

5.1.1. FCC Licensing Process ………………………………….....................29

5.2. Transmit Power …………………………………………………....................20

6. System Modules ………………………………………………………...................22

6.1. Radio System ……………………………………..23

6.2. Transceiver Control Module …………………………...................................23

6.3. Control Computer ……………………………………………………............23

7. Design Alternatives …………………………………………………….................24

7.1. Hardware Alternatives ……………………………..24

7.1.1. Antenna Alternatives ………………………….....................................24

7.1.2. Transceiver Alternatives.........................……………………………...25

7.1.3. Control Interface Alternatives ……………………………….............26

7.1.4. Control Computer Alternatives ………………………………...........29

7.2. Software Alternatives ……………………........…………………...…....……30

8. Final Design and Implementation …………………………………………..........32

8.1. Hardware …………………………………………………..............................32

8.1.1. Lake Site Equipment ………………………………….........................33

8.1.2. Union Site Equipment ………………………………...........................34

Aung Soe Design and Implementation of an RF Data Communication System 4

8.2. Software ……………………………………………..36

8.2.1. Protocol Design ………………………………………..........................36

8.2.2. Packet Format ……………………………………................................37

8.2.3. Fundamental Behaviors of a Protocol ………….................................40

8.2.4. Sender Program …………………………...43

8.2.5. Receiver Program…………………………………...............................55

8.2.6. Transceiver Control Program ………………………..........................58

9. System Performance …………………………………..61

9.1. RF Link Analysis ……………………………..61

9.2. Overall System Performance ……………………...63

10. Cost Analysis ………………………………………..64

11. Recommendation and Conclusion ………..65

12. References …………………………..66

13. Appendices ………………………………………...67

13.1. Appendix A: Complete code listing of a sender program67

13.2. Appendix B: Complete code listing of a receiver program........................81

13.3. Appendix C: Complete code listing of a transceiver control program90

Aung Soe Design and Implementation of an RF Data Communication System 5

List of Figures and Tables

Figure 1: A block diagram of a remote water monitoring system

Figure 2: The direct-distance between Union College and Ballston Lake on Google Map

Figure 3: Sample water property data measurements

Figure 4: Free space loss

Figure 5: Typical maximum point-to-point transmission range of respective frequency range

Figure 6: A block diagram of system modules and interfacing between each module

Figure 7: An eight element Quagi antenna design

Figure 8: A pin diagram of Silicon Lab’s C8051F020 microcontroller development board

Figure 9: A pin diagram of Parallax’s BASIC Stamp II microcontroller development board

Figure 10: Comparison of Peak MCU Execution Speed

Figure 11: HAC-UM96 ultra low power data transceiver module

Figure 12: Hardware component setup for an RF data communication system

Figure 13: (a) Control packet format and (b) Data packet format

Figure 14: A time sequence diagram of a protocol design

Figure 15: A flowchart diagram for a sender program and a receiver program

Figure 16: The main() function of the sender program

Figure 17: The create_2D_char_array() function to dynamically allocate a 2D array

Figure 18: Dynamic memory allocation of a 2D array

Figure 19: The cleanUp_2D_array() function to free a dynamically allocated 2D array

Figure 20: The read_data() function to read data from a specific file name

Figure 21: The make_packet() function to generate data packets in sequence

Figure 22: The make_ctrl_packet function to create control packets

Figure 23: A state diagram for initializing and closing connection in the sender program

Figure 24: A state diagram for sending data in the sender program

Figure 25: The main() function of the receiver program

Figure 26: A state diagram for receiving data in the receive program

Figure 27: A flowchart diagram a transceiver control program

Figure 28: Ground Elevation Map between Union College and Ballston Lake

Figure 29: A 446 MHz Quagi antenna and a transceiver

Table 1: Descriptions of transceivers from Ritron and Satel

Table 1: Cost of system components in the prototype implementation

Aung Soe Design and Implementation of an RF Data Communication System 6

1. Introduction

 Located just 8 miles northeast of Union College is Ballston Lake, a unique lake,

which offers excellent research opportunities for faculty and students. The lake is

approximately 3.5 miles in length and 750 feet in width. The south basin of the lake is

known to be meromictic. This part of the lake is permanently stratified, and there has

been no intermixing between water layers for thousands of years. The water depth at this

part of the lake is about 120 feet. The deep water in the lake has some unique

characteristics. It contains no oxygen at the lower columns but has high levels of carbon

dioxide and other gases. The Geology Department at Union College has been very

interested in studying the water columns at Ballston Lake for a period of ten years. The

department has purchased a multi-parameter water quality sensor package together with

a data logging system to collect water property data such as temperature, pH,

conductivity, salinity, redox, dissolved oxygen at various depths.

1.1. Problem Statement

 Currently, there is no automatic method for collecting and transmitting the data

from the sensors package for a long-term research purpose. At present, a person on-site

takes periodic measurements by hand from the sensors package through the data-logging

unit. It is found that the current manual water quality monitoring entails tedious process

and is time consuming. For that reason, it is desirable to have a monitoring system with

characteristics of autonomous, reliable and flexible. Figure 1 illustrates an overall design

of a remote water monitoring system.

 This system mainly consists of three different parts: a submersible sensor

package control system, a data link between the bottom of the lake and a lake shore

where a control computer is located, and a data link between Ballston Lake and Union

College.

 The sensor package control unit at the bottom of the lake takes periodic

measurements at defined depth during a day using the sensor packet, and all the

information is transmitted from the unit to the lake site control computer through the

data communication link. The data communication link is extended up to about 200 feet

Aung Soe Design and Implementation of an RF Data Communication System 7

and is primarily a wired data link using a RS-485 cable or a fiber optic cable. Finally, the

collected data is transmitted from the lake site computer to a Union site computer using

a radio frequency (RF) data communication link over a distance of approximately 8

miles.

Figure 1: A block diagram of a remote water monitoring system

 This system will be used for long-term water monitoring of Ballston Lake. The

system will allow users to collect and transmit the water property data automatically

without having most of the tedious human involvement. In addition, the system will not

only offer a large amount of data storage space but also provide a convenient technique

to manage and analyze data to help answer numerous questions concerning this

fascinating lake.

 In addition, the RF technology also supports more efficient way of operating

system, as wireless systems can instantly transmit information from the remote water

monitoring location. This allows more frequent and precise remote deep water

monitoring at the lake, and results in smaller labor force requirements to operate

equipments. Fewer human errors in collecting data, which might affect greatly on long

term data analysis, will be expected when the system is in use.

Aung Soe Design and Implementation of an RF Data Communication System 8

1.2. Motivation

 The purpose of my project is to design and implement a reliable RF data

communication system between Ballston Lake and Union College for the long term deep

water monitoring research project. Besides the needs of the system for the research

purpose, my own personal interest also motivates myself to engage closely in the

project. I always want to learn more about RF data communication system and continue

my career path in this fascinating field of wireless communication. This project allows

me to investigate in much more detail in the design of data communication. I understand

that there are alternative designs to approach this problem: transmitting data through

telephone network or over the internet. But I choose RF communication because I have a

strong interest specifically in RF data communication system.

 This paper presents the details of the design and implementation of a data

communication system using ultra high frequency (specifically 433 MHz UHF) for

remote water monitoring. This design report will begin with some background

information on a RF data communication system. Design requirements will be discussed

to address essential basic system functionalities for a reliable data communication

channel. Possible design alternatives for major components of the design will be

examined. Next the final design and implementation and results will be explained and

discussed and will include pictures of the system. The design performance will be

discussed in the context of conclusions and recommendations for future projects. A cost

analysis of the prototype implementation will also be given. Finally, in order to support

future use of the system, a user’s manual has been created and included in the report.

Aung Soe Design and Implementation of an RF Data Communication System 9

2. Background

2.1. Data communications

 Data Communications deal with the transmission of data or information in a

form of electric signals between a source and a receiver in a reliable and efficient

manner. The source transmits the data and the receiver receives it. The actual generation

of the information is not part of Data communications nor is the resulting action of the

information at the receiver. Data communication is only interested in the transfer of data,

the method of transfer and the preservation of the data during the transfer process.

 The requirement for data communication is closely linked to the invention of the

telegraph in the early 19
th

 century. The first commercial electrical telegraph in the

United States was invented by Samuel Morse in 1837 [1]. During the same year,

William Cooke and Sir Charles Wheatstone built the telegraph independently in the

United Kingdom [1]. These early establishments of data communication systems relied

on wired connections to communicate between two stations. As wired data

communication expanded, a separate form of data exchange that required no wires

experienced a concurrent development. In 1873, James Maxwell mathematically

predicted the existence of electromagnetic waves. In 1886, Heinrich Hertz demonstrated

that rapid variations of electric current could be projected into space in the form of radio

waves similar to those of light and heat and thus practically proved the existence of the

electromagnetic waves. In 1894, Oliver Lodge, a British physicist and writer,

demonstrated wireless communication over a distance of 150 yards [1]. In shortly

thereafter, Guglielmo Marconi, an Italian inventor, established the first long distance

wireless transmission by sending telegraph signals over two kilometer from ship to shore

in 1896.[1] The fundamental work of scientists of the nineteenth century paved the way

with invaluable theoretical and experimental discoveries related to both wired and

wireless data communication systems.

 The advancement in the digital computer during the late 1950s even induced

more technological development in data communications. Data communications has

become an extremely important aspect of the modern world. It has been a subject of

great interest for many applications for many decades.

Aung Soe Design and Implementation of an RF Data Communication System 10

 Two key aspects of data communication systems are the transmission media and

the data communication protocols. The transmission medium is the physical path over

which data travels from the source to the receiver. The transmission medium can be a

twisted-pair of copper wires, coaxial cable, optical fiber or wireless media such as radio

waves. On the other hand, the communication protocol is a set of rules and conventions

essential for the source and the receiver to communicate reliably and efficiently. Two

devices wishing to communicate with each other cannot just begin data transmission

arbitrarily. The sender and the receiver must agree on a common set of rules, protocols

before they can communicate with each other.

2.2. Related Research Work

 Water systems need to grow as population increases, and wireless networks can

make upgrading and expanding those systems easier and cost effective. Rather than

excavating trenches or physically adding cables to existing installations, additional

components and facilities can be added and monitored through signals sent via airwaves

to control centers.

 There are many different types of data transmission systems available in the

market to meet most remote water monitoring application needs. Global Water offers

several types including cellular data transmission systems, satellite data transmission

systems, radio data transmission systems and telephone modem data transmission sets

for the remote water monitoring system. In addition, Stevens remote telemetry systems

offers effective wireless communication technologies data include cellular, radio and

satellite telemetry. Although data telemetry systems from both of these two companies

might provide viable solutions for this project, they are pre-configured with limited

capabilities and difficult to expend for future integration of the system for this specific

kind of research purpose. Moreover, these commercially available systems still have

relatively high price.

Aung Soe Design and Implementation of an RF Data Communication System 11

3. Design Process

 This section describes the step-by-step design process used to develop the RF

communication system. The design process proceeds in the top-down manner not only to

reduce the complexity of the system but also to enhance modularity of the design. Based

on the problem statement that defined the need of the system, the first step of the design

process is to define system requirements which are presented in detail in Section 4.

These requirements essential elements in the design process as they provide all the

information necessary to successfully produce a solution to the design problem. These

requirements also serve as criteria that a design solution must meet or attributes that the

system must possess to be considered successful.

 The next step involves selecting accurate design parameters required for

designing the RF communication system. The detailed description of design parameter is

presented in Section 5. In this system design, design parameters such as the operating

frequency and transmit power are required to set prior to choosing other system

components. Specifically, these parameters are used to determine the specific type of

radio equipment. Additionally, this section provides essential information of the

licensing process in the United States, where licensing is governed by the Federal

Communications Commission (FCC).

 After choosing the design parameters, system modules are defined in accordance

with system requirements. In order to analyze the complex system design in a simple

way, it is broken down into a smaller unit call modules. There are three main system

modules contained in this design. In Section 6, a high-level description of the system

and functionalities of each system module are described together with a diagram. The

advantages of breaking the design into parts are to clarify what needs to be done in order

to accomplish the system design as well as to create less complicated design for easy

modification and integration.

 Once system modules are clearly specified, possible design alternatives of each

module are investigated individually and then analyzed against each other in order to

meet all system requirements. After analyzing alternative solutions, the decision for all

system components is made to construct a final prototype design implementation. In

Aung Soe Design and Implementation of an RF Data Communication System 12

Section 7, general design alternatives for each system module are discussed, as well as

the detailed analysis of design alternatives along with a specific recommendation for all

functional components, both hardware and software is presented.

 Section 8 contains the detailed documentation of the final design and prototype

implementation of the RF communication system along with the description of all

system components both hardware and software, and their corresponding functionalities.

Finally, the performance of the final implemented system is discussed in Section 9 based

on the preliminary design criteria. First, each system module is tested individually.

Second, all the modules are integrated into the complete prototype system and tested

again at the system level.

Aung Soe Design and Implementation of an RF Data Communication System 13

4. Design Requirements

 In order for the RF data communication system to provide a useful service for

the Geology Department, it must meet or exceed certain design requirements. This

section provides detailed requirements which act as a guideline in determining whether a

given system design is considered practical. The requirements that apply to this

particular system design are based on the preliminary field server at Ballston Lake and

the research conducted after a need for the system has been establish. These

requirements also serve as the basis of the further design process.

4.1. Overall Design Requirements

 The primary function of the RF data communication system is to transmit the

water property data successfully and reliably from Ballston Lake to Union College and

to store the data securely for future analysis. The system consists of both hardware

equipment and software components; they cooperate with each other to provide an

excellent data transmission service. The followings are design requirements:

 Operate continuously for 10 years

 The system must operate continuously at least 10 years of period for a long-term

research purpose. According to Prof. Shaw from the Geology Department, the long-term

research is necessary to observe possible unusual occurrences as well as unique water

characteristics within the lake by analyzing the water property data. The durability and

reliability of hardware equipments (especially antennas that will be exposed in the air for

long periods) and the functionality of software components will greatly affect the overall

performance of the system.

 Operate over distance of 8 miles

 The distance between two communicating station is another important criteria

the system. Any RF transmission must account for how far apart are two antennas. The

estimated direct-distance between Union College and Ballston Lake is about 8 miles. It

Aung Soe Design and Implementation of an RF Data Communication System 14

is measured using Google Map as shown in Figure 2. Thus, the system must provide

uninterrupted connection over the distance of 8 miles.

Figure 2: The direct-distance between Union College and Ballston Lake on Google Map

 Operate properly in all weather conditions

 Weather condition is an additional factor that affects the propagation of radio

waves. As the wavelength becomes shorter with increases in frequency, precipitation has

an increasingly important attenuation effect on radio waves. Therefore, the system needs

to overcome attenuation of the radio signal caused by various forms of precipitation such

as rain, snow, fog and hail. This important factor imposes a limitation on selecting the

operating frequency for the system.

 Provide large amount of data storage at Union College

 Data storage and management are also critical aspect of the system. Although the

amount of the data from single measurement of water properties from the sensor

package (as shown in Figure 3) is relatively small, the cumulative data over 10 years of

Aung Soe Design and Implementation of an RF Data Communication System 15

research will need a large amount of memory storage space on a computer at Union

College site. Most computers nowadays usually provide a large amount of memory for

data storage as well as an easy upgrade for an additional storage space.

Figure 3: Sample water property data measurements

 Provide data storage at the lake when the link is down

 The system at Ballston Lake site must provide a temporary local storage space so

that the data will not be lost during an emergency situation such as the loss of the data

transmission channel for extended period of time due to natural disasters or human

errors. After restoring the connection, all the data at the temporary storage space will be

retransmitted to the intended destination. The system also needs to provide tight security

for the stored data to avoid both intentional and unintentional deletion of data.

 Minimum of 9600 bits/sec for the transmission rate

 According to Professor George Shaw from Union Geology Department, 3

measurements will be taken at every foot starting from the bottom of the lake. Since the

lake is 120 feet deep, there will be total of 120 sets of measurements or (120 × 3 = 360)

measurements for every complete process of data collection. This process will be

repeated every day for 10 years of period. Each measurement contains variable length of

character which depends on the number of water property to be measured. Given the

amount of data that will be collected in the lake through the sensor package, the system

needs to have minimum of 9600 bps (bits per second) for the transmission rate in order

to establish effective communication between two sites in timely manner.

Aung Soe Design and Implementation of an RF Data Communication System 16

 Need error checking, reporting and retransmission

 The system requires additional capabilities such as error checking, error

reporting and retransmission in order to achieve reliable data transmission over an

unreliable radio communication channel. The error checking mechanism is needed to

allow the receiver to detect when bit errors have occurred. Error reporting serves as the

receiver’s explicit feedback to notify the sender whether or not a packet is received

correctly. If the receiver receives a packet with errors, the sender will retransmit by the

same packet.

 Design must be subdivided into functional modules

 The system design must be flexible. It is possible that developers implementing

the system would like to add additional hardware or software components or even

remove some of the included components. For instance, the transceiver hardware

module breaks down during the 10 year operation, and it cannot be fixed or replaced

with the same module for some reasons. In this situation, a new transceiver is needed to

integrate easily into the system without varying other components. Therefore, all system

components should be designed in a modular fashion, and detailed documentation

should be provided.

4.2. Goals

 The primary goal of this project is to design and implement a system that will

meet all abovementioned design requirements. More specifically, the data

communication system will operate reliably with least amount of human intervention

over the course of research period. The system will provide a proper and secure data

storage mechanism to help users manage large amount of data for future analysis. If the

system can fulfill these system-level design requirements, it will provide a useful and

educational service to both faculty and students in the Geology Department.

Aung Soe Design and Implementation of an RF Data Communication System 17

5. Design Parameters

 In this system design, one of the most crucial steps is to specify design

parameters such as operating frequency and transmit power that define the RF data

communication system. This section discusses the characteristics of VHF and UHF

frequency bands as they have great impact on the determination of the right frequency

band. In addition, this section contains the detailed information about the licensing

process for getting a dedicated frequency channel for the data communication. Finally, it

discusses the transmit power limitation at certain frequency band.

5.1. Operating Frequency

 Choosing the right type of radio frequency spectrum is extremely important

when designing RF Links. Because the selecting operating frequency band will also

drive many other design requirements for antenna and transceiver, it is a good place to

begin the design process. Radio spectrum which is part of the electromagnetic spectrum

has the range of frequencies from approximately 30 kHz up to more than 300 GHz for

different radio communications. Each range of frequencies has unique characteristics

and performs different functions. What is significant about frequency band for two-way

radios system is that it affects transmission range under certain conditions. At higher

frequencies, radio signals are more susceptible to attenuation, absorption, refraction,

scattering and reflection due to atmosphere conditions, metallic objects, ground terrain,

and large buildings or structures between two sites. All these undesirable conditions will

cause signal fading in which radio energy is lost. The estimated path loss for line-of-

sight range with the ideal isotropic antenna can be determined using the free space loss

(FSL) equation as follow [2]:

 () ()

where

 f = operating frequency (MHz) and

 d = propagation distance between antennas (m).

Aung Soe Design and Implementation of an RF Data Communication System 18

Figure 4: Free space loss [2]

 Free Space Loss refers to the reduction of the signal strength as the signal

radiates away from the source. Figure 4 illustrates the above free space loss equation

using visual graph. In that figure, we can see that the loss can result at any frequency

range, but in general is more severe at higher frequencies. In many circumstances, total

losses can become so great that radio signals become too week for communication.

 In order to avoid sever signal fading over the communication channel yet still

able to achieve the data transmission rate of 9600 bps, I have considered two licensed

radio frequency bands: very high frequency (VHF) and ultra high frequency (UHF).

VHF operates in the range from 30 MHz to 300 MHz and UHF operates in the range

Aung Soe Design and Implementation of an RF Data Communication System 19

from 300 MHz to 3 GHz. [2] Even though unlicensed frequency bands are available at

higher frequency, I remain to choose a licensed frequency within VHF and UHF ranges

as a viable solution. Besides a complicated FCC licensing process, the licensed

frequency for RF data communication offers a dedicated link with far more security and

system stability especially for this 10 year research project than unlicensed solutions. In

addition, the licensed frequency is also less susceptible to radio signal interference.

Figure 5: Typical maximum point-to-point transmission range of respective frequency range

 VHF and UHF ranges also allow the longer distance communication under more

obstructed circumstances. Based on the information presented in Figure 5 [3], the

optimal range of communication offered by VHF and UHF is approximately 30 miles

which is more than the distance between two sites in my projcet.

5.1.1. FCC Licensing Process

 Based on the given information about the relationship between FSL and

transmission range, the choice of frequency band within VHF and UHF range is

practical for the RF data transmission system. Before purchasing two way radio

transceivers and antennas to operate data transmission between Ballston Lake and Union

College using a dedicated frequency band, the Federal Communications Commission

(FCC) requires getting a license to operate that frequency band. Like all other

government requirements, great amount of paperwork is involved in this licensing

process, and it is confusing and time consuming.

Aung Soe Design and Implementation of an RF Data Communication System 20

 Instead of going it alone through this complicated application process, I decide to

use a licensing coordinator that handles all of the paperwork and processing. During this

process, the coordinator acquires several questions about the sites, the radio transceivers

and antennas that will be used in the system, and how those devices will be used. Then

they fill out all the essential forms and get them submitted to the FCC for approval. In

order to be able to provide precise answers to the coordinator, I have performed

thorough RF link analysis which is presented with detailed information in the later

section. The very first thing to do even before contacting the coordinator for the actual

licensing, it is required getting an FCC Registration Number (FRN). This identifies who

(or what entity) is applying for licenses. An FRN can be obtained online at

http://wireless.fcc.gov/uls/ on the FCC’s site.

 Currently, I am working with WTC, a spectrum coordinator, for the FCC

licensing process. Also, WTC will assign a frequency on which to operate, at a specified

maximum power, within a specified geographic area. They will choose these frequencies

carefully to avoid interference between your usage and other existing users. Although,

the application process becomes easy because WTC helps with paper work, the FCC

approval takes several months. Since this process takes longer than what I expected, it

affects the final design and implementation of the system. In addition, the choice of the

radio system hardware components for the final design is tentative.

 Once the license is approved by the FCC, the actual radio equipment will replace

the tentative ones in accordance with the license. Soon after the replacement of radio

equipment, it is required to notify the FCC that the operation of the data transmission

has begun. If not, the FCC will revoke the license. This is to prevent frequencies from

being tied up by a licensee who is not actively using them.

5.2. Transmit Power

 The determination of transmit power is usually driven by the FCC regulatory and

power-consumption considerations. The FCC sets the specific limitation on transmit

power not only at a certain frequency band but also for different transmission purposes.

For example, FCC allows up to 1 W of transmit power in the United States in the 2.4

Aung Soe Design and Implementation of an RF Data Communication System 21

GHz band. [4] In this system design, this parameter is specified according to the

operating frequency assigned by the spectrum coordinator.

 With both operating frequency and transmit power for this particular RF data

communication system determined, other hardware components such as transceiver and

antennas that comprise of the radio system can be specified.

Aung Soe Design and Implementation of an RF Data Communication System 22

6. System Modules

 This system design is developed using the top down approach aiming at

determining the basic system modules. To reduce the complexity as well as to have the

better understanding of the overall system design, the system is broken down into

smaller modules. The advantages of the modular design are easy modification and

integration of each distinct unit during the design process and easy testing and

debugging not only at the low-level design but also at the system level implementation.

In this section, each of the system modules is defined individually, and essential

functional behavior of each module is presented.

Figure 6: A block diagram of system modules and interfacing between each module

Aung Soe Design and Implementation of an RF Data Communication System 23

 As I mentioned before, this design project only deals with the RF data

transmission between Ballston Lake and Union College. Figure 6 depicts the overall

design of the RF data communication system between the lake site and the Union site

together with the block representation of essential system modules. In this system

design, there are three major functional modules: radio system, control interface and

control computer. Each set of functional modules is incorporated into an entire RF data

communication system between Ballston Lake and Union College.

6.1. Radio System

 Antenna, transceiver and modem function together as a radio system to establish

the two-way radio communication system. Sometimes the transceiver comes together

with modems in one piece. This system module is responsible for transmitting data from

the control computer through the control interface or vice versa, and then generating RF

signals for data transmission and receiving between the lake site and the Union site by

converting RS232 signal through the RF modulation.

6.2. Transceiver Control Module

 A control interface requires a hardware component as well as a software program

that operate together not only to the control transceiver hardware unit but also to handle

the data transmission between the control computer and the transceiver. In addition, this

interface enhances the flexibility in replacement or integration of the radio system with

another different radio system in the future without affecting any hardware or software

components on control computers.

6.3. Control Computer

 A control computer performs all the necessary control functionalities for the data

transmission process with a specific set of rules and requirements called a protocol

between the lake site and the Union site. It also serves as a data storage unit on both

sites.

Aung Soe Design and Implementation of an RF Data Communication System 24

7. Design Alternatives

 In following section, the detailed design process is further presented with design

alternatives considered for each of the functional component, both hardware and

software, in the overall system.

7.1. Hardware Alternatives

7.1.1. Antenna Alternatives

 The selection of a suitable antenna design depends on the communication

distance requirement, the operating frequency and the radio signal propagation mode.

The physical distance, as I mentioned in the design requirements section, is

approximately 8 miles. The RF data communication link between two sites is considered

to be a bidirectional point-to-point link, and the data communication operates in line-of-

sight propagation mode. The same antenna can be used with the same characteristics as

transmit and receive antenna. Moreover, the antenna is characterized by its center

frequency, polarization and gain. The center frequency is referenced to the operation

frequency which I mentioned in the previous subsection. For best results in line-of-sight

communication, antennas at both end system should also have the same polarization.

Polarization is determined by the position of the radiating element or wire of the antenna

with respect to the earth. [5] Since the RF link consists of two fixed stations

communicating only with each other, the use of directional or gain antennas can offer an

advantage. For the purpose of obtaining gain and directivity it is suitable to use a Yagi, a

Quad or a Quagi (a hybrid Quad and Yagi) antenna. For this design project, I have

chosen a Quagi Antenna design as shown in Figure 7. The Quagi antenna design consists

of Yagi-style directors and Quad-style quadloops for reflectors. According to the article

[6], Yagi-style directors deliver better gain than quad loops when the antenna is

extended beyond four or five elements, and also a quad-style driven element and

reflector provide good gain, good immunity to noise resulting from static buildup, and

extreme ease of construction and impedance matching. A proper matching of the

Aung Soe Design and Implementation of an RF Data Communication System 25

antenna to the feed point implies that maximum transmit power will be transmitted from

one site to the other.

Figure 7: An eight element Quagi antenna design

7.1.2. Transceiver Alternatives

 Transceivers are integral parts of this system design. Four major factors that lead

to the proper choice of transceivers are the operating frequency, the transmit power, the

receiver sensitivity, the data transmission rate requirement and the price. Based on the

decision of the operating frequency range, VHF/UHF radio transceivers are considered

using in the project. The determination of transmit power usually depends on the FCC

regulatory and power-consumption considerations. Moreover, receive sensitivity

indicates how faint an RF signal can be successfully received by the receiver. The lower

the power level that the receiver can successfully process, the better the receive

sensitivity. However it is also important to make sure that other transceiver

specifications such as operating frequency range and transmit power from different

manufacturers are equivalent when comparing the sensitivity. In most VHF/UHF

transceivers, 6.25 kHz, 12.5 kHz and 25 kHz channel bandwidths are available in each

frequency band which is usually pre-configured by manufacturers. RF modems, which

are sometimes integrated into transceivers, also supports a variety of modulation

schemes such as FSK, GMSK, four-level FSK and AM as well as different output power

levels. Based on all abovementioned considerations, I have narrowed my choice of the

transceiver to Ritron – DTXM and Satelline – M3TTL1. Satelline utilizes the 4FSK

Aung Soe Design and Implementation of an RF Data Communication System 26

modulation to transmit about 9600 bps of raw data in a 12.5 kHz channel. On the other

hand, Ritron offers higher power output than Satelline – M3TTL1. Both transceivers

support sleep mode as power-saving technique to turn off the devices when there is no

data to transmit. Table 1 provides more detailed descriptions of two transceiver models.

Manufacturer

(Product)
Frequency Range Transmit Power

Receiver

Sensitivity

Estimated

Price

Ritron

(DTXM)

136 – 162 MHz VHF

148 – 174 MHz VHF

217 – 245 MHz

400 – 420 MHz UHF

450 – 470 MHz UHF

1 – 6 watts VHF

1 – 3/6/9 watts UHF
< 0.28 uV ~ $300

Satel

(Satelline –

M3TTL1)

135 – 174 MHz VHF

218 – 238 MHz

360 – 470 MHz UHF

869 MHz UHF

100 – 500 mW VHF

10 mW – 1 W UHF
< 0.71 uV N/A

Table 2: Descriptions of transceivers from Ritron and Satel

7.1.3. Transceiver Control Interface Alternatives

 The main function of the transceiver control interface is to isolate the

characteristic of transceivers and control computers. This component is needed to

achieve one of the important design requirements, modularity of system components.

Some transceivers require pauses in between each byte of data; some utilize a carrier

detect signal to indicate that data transmission or receiving is ready; and some even need

to turn on and off to limit the power consumption. In order to provide these control

functionalities, I consider using a microcontroller unit (MCU) as a control interface.

Moreover, this control interface allows easy integration or replacement of the transceiver

in the future. There is a wide variety of MCU development boards available from

different manufacturers. Instead of exploring different development boards to determine

the suitability for my project, two MCU development boards, which I most familiar

with, from Silicon Lab and Parallax are chosen. I investigate Silicon Lab’s C8051F020-

TB microcontroller development board and Parallax’s BASIC Stamp II microcontroller

development board.

Aung Soe Design and Implementation of an RF Data Communication System 27

 Silicon Lab’s C8051F020-TB microcontroller development board utilizes CIP-51

core chip. Figure 8 shows a pin diagram of the Silicon Lab’s C8051F020

microcontroller development board. There are two separate memory spaces in the on-

board chip: program memory and data memory. The chip consists of 64K bytes of in-

system programmable FLASH memory, 4352 bytes of data memory on-chip RAM and

64K bytes external data memory interface with address space. The chip also provides the

following standard features: on-chip watchdog timer, 22 interrupt sources with 2 priority

levels, 5 general purpose 16-bit timers run as system and a programmable counter array

(PCA) with five capture/compare modules. It also contains additional serial

communication interfaces such as UARTs implemented in hardware. This MCU can be

programmed using assembly, C programming language and the combination of two.

With the CIP-51's maximum system clock at 25 MHz, it has a peak throughput of 25

million of instructions per second (MIPS). [7] Most importantly, both Silicon Labs and

Keil have web sites with extensive application notes about the 8051MCU.

Figure 8: A pin diagram of Silicon Lab’s C8051F020 microcontroller development board [8]

 Parallax’s BASIC Stamp II microcontroller development board uses a PIC16F57

core chip from Microchip Technology Inc. Like the C8051F020 module, the PIC16F57

Aung Soe Design and Implementation of an RF Data Communication System 28

chip’s memory is organized into program memory and data memory. It has internal 2048

x 12 bytes of program memory and 32 bytes of RAM for data memory. Figure 9 shows a

pin diagram of the Parallax’s BASIC Stamp II microcontroller development board. The

chip also supports 16 I/O ports and two special serial ports (1 input, 1 output). However,

the chip not support interrupts routine. The features supported on this development

board are far less compared to the Silicon Lab’s board. The BASIC Stamp II module

uses a hybrid form of the BASIC programming language called PBASIC, but it does not

except assembly language routines. Based on the given operating speed of PIC16F57,

the chip can achieve a peak throughput of 5 MIPS. The Basic Stamp II development

board is a well designed experiment platform with excellent documentation and a

plethora of support from Parallax website.

Figure 9: A pin diagram of Parallax’s BASIC Stamp II microcontroller development board [9]

 Although the Basic Stamp II is a great platform for learning and small simple

projects, its processor is slower with less memory than the C8051F020-TB. Figure 10

shows a comparison of peak throughputs of two 8-bit microcontroller cores with their

maximum system clocks. In addition, BASIC compilers are usually in the form of

interpreters and the code produced is usually slow. Unlike C compilers, most BASIC

compilers are not structured and this makes the programs maintenance a difficult task.

On the other hand, the MUC with C programming language compatibility is more

Aung Soe Design and Implementation of an RF Data Communication System 29

desirable in this project as the system design requires flexibility and modularity. If C

programming language is used for both control interface and control computer, all the

programs developed on each individual component will be easily interchangeable.

Therefore, Silicon Lab’s C8051F020-TB microcontroller development board is more

suitable for this project. Also, I have taken ECE 352 Embedded Microcontroller Systems

with focus on the exact development board. I am already familiar with the board, and

development tools as well as support from faculty are readily available.

Figure 10: Comparison of Peak MCU Execution Speed

7.1.4. Control Computer Alternatives

 The data transmission process in this design project operates on two separate

computers, one at the lake site and another one at the Union site. Choosing an

appropriate computer requires to meet system security as well as reliability

requirements. There are numerous reasons why I have chosen Fedora as an operating

system (Linux OS) over Window and Mac. The most obvious advantage of using Linux

is the fact that all applications are free of charge, while Microsoft and Apple products

0

5

10

15

20

25

Silicon Labs CIP-51
(25MHz clk)

Microchip PIC16C57c
(20MHz clk)

M
ill

io
n

s
o

f
In

st
ru

ct
io

n
s

P
er

 S
ec

o
n

d
 (

M
IP

S)

Aung Soe Design and Implementation of an RF Data Communication System 30

are available for an expensive and sometimes recurring fee. Unlike Window and Mac,

Linux even allows programmers to run all common UNIX software packages and create

software programs in an extensive free development environment. Moreover, Linux is a

highly secured operating system yet provides flexible file access permission systems to

prevent access by unwanted visitors or viruses. In addition, Linux is a more stable

operating system. It does not need to be rebooted periodically to maintain performance

level. It rarely freezes up or slows down over extended period of time due to memory

leaks and such. It also allows programmers to write programs that can easily access

hardware components such as RS 232 port. Finally, Linux is also greatly suitable for this

type of design project from the perspective of software programming.

7.2. Software Alternatives

 There are a lot of programming languages available right now - everything from

the extremely high level to the low level power of assembly, and a good variety of

specialized options in between such as Python. In order to meet design requirements of

system components modularity and system reliability, it is required to choose

 There are several good reasons to use C programming language for both

transceiver control interface and data transmission process in this project. First, there is a

plenty of source codes and documentations available on the Internet. The website that I

find particularly useful is http://www.java2s.com/Tutorial/C/CatalogC.htm. The website

provides excellent C examples to be able to understand the basic structure of the

language.

 Moreover, C is a high level programming language that is portable across many

hardware architectures which I have already described in Section 4.3.3. This means that

with a few insertions of libraries and include files, architecture specific features such as

register definitions, initialization and start up code, which must be made available to a

program, can be specified.

 Finally, C provides easy implementation as well as a better picture of advanced

topics like exactly how serial data communication works. This higher level language

makes the design process a little bit simpler, and still offers easy understanding of what

is exactly going on at the low level, and so when things stop working, it is much easier

Aung Soe Design and Implementation of an RF Data Communication System 31

to know what is going on and how to fix problems. Furthermore, a useful data

communication management tool called Kermit is programmed in C. This program

enables me to test my own program at various stages of design process.

Aung Soe Design and Implementation of an RF Data Communication System 32

8. Final Design and Prototype Implementation

 This section contains the detailed documentation about the final design and the

prototype implementation of the data communication system along with the description

of each component and its corresponding function. First, the layout of hardware design

section is presented with a depiction of overall system design at functional level.

Second, software design section consists of the full description of data transmission

protocol with complete diagrams and control interface program for transceivers on both

Lake site and Union site.

8.1. Hardware Design

 The system components of the hardware design consist of three parts: radio

system, transceiver control modules and control computers running on Linux. Both the

lake site and the Union site system contain the same set of hardware components.

However, each computer on both sites operates separately with minor different

capability for data transmission process while the rest of components have identical

functionalities. Moreover, it is important to note that there will be a slight difference

between the current prototype implementation and the final implementation. Since I

could not manage to obtain FCC licensing approval in time, I could not get a dedicated

frequency link to operate data transmission legally. Consequently, I could not get

transceivers which require to be pre-configured at a specific approved frequency during

the order. The current implemented radio system does not meet design requirements and

is needed to be replaced with a better system in accordance with FCC regulatory and

design requirements. The following hardware design phase focuses on interfacing

between each component as shown in Figure 6. In the following section, system

components are separately presented because the lake site system and the Union site

system have slightly different function.

Aung Soe Design and Implementation of an RF Data Communication System 33

8.1.1. Lake Site Equipment

 Radio System

 The radio system consists of an antenna, a transceiver and a modem. The latter

two components sometimes come together in one piece. An ultra low power data

transceiver module with an omnidirectional antenna (HAC-UM96) from Sparkfun,

which is shown in Figure 11, is chosen in this prototype design.

Figure 11: HAC-UM96 ultra low power data transceiver module

 This module is suitable for a two-way communication; in other words it allows

both data transmission and reception in half-duplex mode for point-to-point or point-to-

multipoint. The carrier frequency operates at 433 MHz which is within the UHF range.

It provides 8 frequency channels with easy pin configuration. Also, it offers the

transmission distance of approximately 300 m and 500 m at the height of 2 m and 5 m

respectively within the range of visibility. The data transmission rate is preconfigured by

the manufacturer at 9600 bps. This module also comes with 3 interface modes including

TTL level, standard RS-232 and RS485 for a flexible design. All modulation,

demodulation, buffering and error detection is handled internally. There is no program

implemented specifically for this module. Moreover, it supports the sleep function that

can further reduce its, power consumption. This module can closely represent the

component in the final design with reasonably low price and minor differences at the

hardware level. However, it is important to note that the current transceiver module is

Aung Soe Design and Implementation of an RF Data Communication System 34

used for a temporary testing device; it has to be replaced with a much higher power

transceiver for long distance data communication.

 Transceiver Control Module

 The transceiver control module is implemented using an 8051 microcontroller

development board which is a single chip microprocessor system. This board contains a

C8051F020 system-on-a-Chip manufactured by Silicon Laboratories. This module

handles data transmission between the transceiver module and the computer. The

program that controls the data transmission is implemented on the board using C

programming language. The detailed description of the program will be provided in the

later section. Another important function of this module is to allow easy modification or

replacing of the transceiver in the future without changing any hardware or software

components in the system.

 Control Computer

 The control computer runs on Fedora, a Linux-based operating system. The lake

site computer performs two functions: collect data directly from the sensor packet and

store the data in the memory location; and transmit the collected data from the lake site

computer to the Union site computer for analysis. In order to provide these two

functions, two separate independent programs are implemented using C programming

language.

8.1.2. Union Site Equipment

 Radio System and Transceiver Control Module

 As you can see in Figure 12, components used in the radio system and the

transceiver control module for the Union site is identical to those for the Lake site.

Similarly the same functionalities are also provided by these units.

Aung Soe Design and Implementation of an RF Data Communication System 35

 Control Computer

 There is a difference in the function performed by the Union site control

computer. It waits for incoming data from the lake site control computer and stores it in

memory location for future analysis. To perform this task, a single program is developed

using C programming language.

(a) Ballston site equipment (b) Union site equipment

Figure 12: Hardware component setup for an RF data communication system

 Due to the multiple devices used in this system, interface is a vital part of overall

system capability. Poorly matched interface system will limit functionality and impede

performance. The interfacing between devices can be referred back to Figure 6. In order

to allow proper data transmission to and from between the radio system and the

transceiver control module, the TTL level serial interface is used by both functional

units. On the other hand, the data transmission between the control computer and the

transceiver control module is accomplished using an RS-232 serial cable. There are

slight differences between TTL level and RS-232 serial interfaces mainly at hardware

level. Serial communication at a TTL level will always remain between the limits of 0 V

and Vcc, which is often 5V or 3.3V. A logic high is represented by Vcc while a logic

low is 0 V. On the other hand, the RS-232 standard uses a negative voltage (from -3 to -

25V) to represent a logic high, while a positive voltage (from +3 to +25V) is used for a

logic low. Very short distance serial data exchange can use TTL level. Moreover, the

Aung Soe Design and Implementation of an RF Data Communication System 36

high voltages of an RS-232 signal help to make it less susceptible to noise, interference,

and degradation. This means that an RS-232 signal can generally travel longer physical

distances than their TTL counterparts, while still providing a reliable data transmission.

8.2. Software Design

 One of the most important parts of this project is the interaction between

software and hardware components, they work together to provide functionality for the

data communication system. Interfacing all essential hardware components correctly is

not sufficient to accomplish this project. Software programs on both transceiver control

interface and control computer is necessary for data transmission and control. In the

following section, a protocol design process is described step by step, and a transceiver

control program is explained in-depth.

8.2.1. Protocol Design

 In order to establish reliable data transmission between two computers separated

by the distance of 8 miles, there needs to have a proper way to exchange messages

which can be understandable to both computers and to perform specific actions when

these messages are sent and received. These are the key defining elements of a protocol.

“A protocol defines the format and the order of messages exchanged between two or

more communicating entities, as well as the actions taken on the transmission and/or

receipt of a message or other event.” [10] A data transmission protocol used in this

project is called the master and slave model. In this model, a communicating computer

(known as the master) initiates and controls the data transmission to and from another

computer (known as slaves) at the different end separated by the distance of 8 miles.

Once the master and slave relationship is established, the direction of control is always

from the master to the slave. This model is also referred to as the primary and secondary

model. The advantage of the master and slave model is simplicity in terms of

implementation. Since this model operated at a simple level, there is no need to

implement using protocol stacks or layers. In the following section, please note that I

will use the sender and the receiver notation for the master and the slave respectively.

Aung Soe Design and Implementation of an RF Data Communication System 37

8.2.2. Packet Format

 The initial step in developing data transfer protocol is to define packet types. In

this protocol design, I defined two types of packets: control packet and data packet. The

packet block structure is shown in Figure 13. The length of control packet is fixed, but

the length of data packet is varied depending on the amount of data value.

SOP Opcode
Control

Message

CRC

Hi Byte

CRC

Low

Byte

EOP

(a)

SOP Opcode … Data Value …
CRC

Hi Byte

CRC

Low

Byte

EOP

(b)

Figure 13: (a) Control packet format and (b) Data packet format

 All packets in this protocol design contain specific information. Each block

except the data value block holds 1 byte of information. The contents include:

 Start of Packet (SOP)

 This is used as a unique way to recognize the beginning of a packet as well as to

filter the incoming packet against other packets which contain useless data that might

cause undesirable effects on the communication system. It also allows a receive end to

reset if the packet is cut off during the transmission.

 Opcode

 This is used to identify the packet type. There are two types of packets: control

packet and data packet. Since it holds 1 byte (8 bits), the total number of different packet

types can be defined are 256. The available packet definition is more than adequate for

this protocol design.

Aung Soe Design and Implementation of an RF Data Communication System 38

 Control Message

 There are five different control messages defined in this protocol design. 3

control messages, CONNECT, READY and BYE are used for initializing the connection

between two communicating computers. 2 control messages, ACK and NAK are used to

indicate receive status of a data packet. The ACK message allows the receiver to let the

sender know what has been received correctly. The NAK message is used to indicate

what has been received in error and thus require retransmission.

 Data Value

 This is a group of bytes, and the amount of the data depends on the number of

the parameters such as temperature, conductivity, salinity, redox, depth and dissolved

oxygen that are required to collect at the lake. Each data packet contains a single

measurement (or a single line of information shown in Figure 3 from section 4) from the

sensor package. All data values are represented as a string of ASCII bytes or as raw 8-bit

bytes of data.

 Cyclic Redundancy Check – CRC (high byte and low byte)

 This is used to detect if a packet goes wrong and some of the data is altered

during the transmission using only a small number of redundant bits. One of the most

common techniques for error detection is a technique known as the cyclic redundancy

check (CRC). It is also a very powerful technique to check data reliably. The 16-bit CRC

is used to compute over SOP, Opcode and Control Message or Data Value, not including

EOP. The 16-bit CRC seems adequate for both control and data packets in this project.

Although the CRC algorithm is relatively more complex than other error detection

techniques such as parity and checksum, it offers stronger error detection algorithm.

 The CRC calculation is performed using the source code available in electronic

form at http://www.netrino.com/code/crc.zip. This code supports several formats for the

implantation of CRC such as CRC-CCITT, CRC-16 and CRC-32. It also offers two

types of implementations: bit-by-bit CRC calculation and byte-by-byte CRC calculation.

The bit-by-bit CRC calculation is generally slow because it executes multiple C

Aung Soe Design and Implementation of an RF Data Communication System 39

statements on each bit in the data. On the other hand, the byte-by-bye CRC calculation

which is also known as the table driven CRC calculation uses a different technique than

the bit-by-bit CRC routine. The idea behind a table driven technique is that instead of

calculating the CRC bit by bit, pre-computed bytes of each of the possible byte-wide

input character is stored in the memory and then the input data byte by byte is matched

with the value in the table to determine the remainder. The advantage of the table driven

technique is that it is faster than the bit-by-bit method. The drawback is that it consumes

more program memory because of the size of the look-up table. In this protocol design,

since the speed of the CRC calculation is more important than the required memory

space, the table driven CRC calculation method is incorporated.

 End of Packet (EOP)

 This simply indicates the end of each packet. This block does not contain

essential information about the packet, if it is corrupted but the rest of the packet is still

received without error, it will be ignored.

Aung Soe Design and Implementation of an RF Data Communication System 40

Figure 14: A time sequence diagram of a protocol design

8.2.3. Fundamental Behaviors of a Protocol

 After defining packet types, a protocol’s behavior should be identified in a

proper manner. When designing a protocol, it is important to prepare the unexpected

situations; a system crashes, a message get lost or something that is expected to happen

quickly turns out to take a long time. A time sequence diagram shown in Figure 14 can

Aung Soe Design and Implementation of an RF Data Communication System 41

often help understand what might go wrong in such cases and thus help me be prepared

for every possibility of errors in the design.

Figure 15: A flowchart diagram for a sender program and a receiver program

 The algorithm used to implement the master and slave model is known as the

stop-and-wait algorithm. The idea of stop-and-wait is straightforward; after the sender

(the master) transmits one packet, it waits for a control packet from the receiver (the

Aung Soe Design and Implementation of an RF Data Communication System 42

slave) before transmitting the next packet. If the control packet does not arrive after a

certain period of time, the sender calls time out and retransmits the same packet. The

strategy of using the retransmission technique to implement reliable delivery is called

automatic repeat request (ARQ). The sending side is represented on the left, the

receiving side is depicted on the right and time flows from top to bottom. One of the

advantages of the stop-and-wait algorithm is that it can handle the data transmission

process properly in half-duplex mode meaning there is only a single communication

channel and the computer cannot send or receive data at the same time. Figure 14

illustrates three phases of the communication process: initializing connection, data

transmission and closing connection involved in this protocol design.

 When initializing connection, the sender sends out a CONNECT packet and

waits for a READY packet from the receiver. The first two arrows in Figure 14 depict

the initializing connection phase. If the READY packet is received before the timer

expires, the connection established and it is ready to begin transmitting data packets.

 In the data transmission phase, data packets are transmitted sequentially as the

data is stored in the sender’s computer. Figure 14 describes three different scenarios for

the data transmission that might result from the protocol implementation. After

establishing connection, the first packet is sent and the ACK packet is received before

the timeout occurs. In the next situation, the second packet is sent successfully, but the

ACK packet for the second packet is lost, and the retransmission of the same packet is

occurred. During the transmission of the third packet, the original data packet is lost, and

again the same packet is retransmitted.

 After all data packets are successfully transmitted, the sender closes the

connection by sending a BYE packet and simply ends the transmission process without

waiting any response back from the receiver. The ideal of the initializing and closing

connection in this protocol design is somewhat similar to the algorithm for a three-way

handshake used by TCP to establish and terminate a connection.

 There is one important detail in this protocol design. During the transmission of

the second packet, the sender sends the packet and the receiver sends back the ACK

packet, but the ACK packet is either lost or delayed in arriving. In this case, the sender

calls time out and retransmits the same data packet, but the receiver thinks that the

Aung Soe Design and Implementation of an RF Data Communication System 43

retransmitted packet is the next packet since it correctly received and acknowledged the

previous packet. This potentially introduces duplicate copies of a data packet.

 In order to see a complete picture of how this protocol design is incorporated

separately into a sender program and a receiver program on the Lake site computer and

the Union site computer respectively, I used a flowchart diagram as shown in Figure 15.

Complete code listings of the sender program and the receiver program are provided in

Appendix A and B respectively. The main() function of each corresponding program

directly parallels to the flowchart diagram. There is one important point to note in the

development of two programs; each block (a rectangular box) of a process step in the

flowchart diagram is actually represented using a function. This offers not only better

coherency in understanding those programs but also modularity in the program design.

As you can see even in the flowchart diagram, there are some similarities in the use of

function within sender program and receiver program. All functions are designed in such

a way that they are reusable in different parts of programs. Both sender program and

receiver program are described in much more detail in subsequent sections.

8.2.4. Sender Program

 main () function

 The main() function is called when the sender program is stated. This function is

composed of small functions, and each of the function operates independent of each

other. Figure 16 contains the complete contents of the function. This function performs

all essential operations of the sender program.

1 main () {

2

3 int i, j, nrows, ncolumns, port;

4 int connected = 0;

5 int disconnected = 0;

6 int total_packet, total_char;

7 char data[NUM_ROW * NUM_COLUMN];

8 char **packet2D;

9

10 struct termios old_flags; /* will be used to save old port

settings */

Aung Soe Design and Implementation of an RF Data Communication System 44

11 struct termios new_flags; /* will be used for new port settings

*/

12

13 /* open the RS-232 port */

14 port = open_RS232port();

15 if (port == -1) {

16 printf("\n Error opening RS232 port\n");

17 exit(-1);

18 }

19

20 // Set up raw/non-canonical mode

21 // VTIME is set to 10 and VMIN is set to 0

22

23 tcgetattr(port, &old_flags); /* save current port settings */

24 new_flags = old_flags;

25 new_flags.c_lflag &= ~(ECHO | ICANON | ISIG);

26 new_flags.c_iflag &= ~(BRKINT | ICRNL);

27 new_flags.c_oflag &= ~OPOST;

28 new_flags.c_cc[VTIME] = 10; /* inter-character timer (10 x

0.1)sec */

29 new_flags.c_cc[VMIN] = 0; /* non-blocking read*/

30 new_flags.c_cflag |= CS8; /* Set 8 bits per character. */

31

32 if (tcsetattr(port, TCSAFLUSH, &new_flags) < 0) {

33 printf("\n Error seting raw mode!! \n");

34 exit(-1);

35 }

36

37 /* set baud rate */

38 cfsetispeed(&new_flags, B9600);

39

40 /* Allocate memory location for packet2D an 2D array */

41 /* Size of packet2D: 360 x 100 (NUM_ROW x NUM_COLUMN)*/

42 packet2D = create_2D_char_array(NUM_ROW, NUM_COLUMN);

43

44 printf("\n Reading data from %s ... \n", FILE_NAME);

45 get_Data(data, FILE_NAME);

46

47 printf("\n Cteating packets ... \n");

48 total_packet = makePacket(packet2D, data, &total_char);

49

50 for(i = 0; i < total_packet; i++) {

51 printf("\n Packet #%d: %s \n", (i+1), packet2D[i]);

52 }

53

54 printf("\n Total packet being created: %d\n ", total_packet);

55

56 printf("\n Initializing connection... \n");

57 connected = init_Connection(port, 1);

Aung Soe Design and Implementation of an RF Data Communication System 45

58 printf("\n Connection Status: %d \n", connected);

59

60 if (connected) {

61 printf("\n Initializing send process... \n");

62 send_packet (packet2D, port, total_packet, total_char);

63

64 printf("\n Closing connection... \n");

65 disconnected = init_Connection(port, 0);

66 printf("\n Connection Status: %d \n", disconnected);

67 }

68

69 cleanUp_2D_array(packet2D, NUM_ROW);

70

71 /* restore the old port settings before quitting */

72 tcsetattr(port, TCSANOW, &old_flags);

73 close(port); /* close the serial port */

74 } // end of main() function

Figure 16: The main() function of the sender program

 The RS-232 serial port is opened by calling the open_RS232port() function in

Line 14 so that the serial communication can be executed. Since a serial port is a file, the

built-in open() function is used to access it within the open_RS232port() function. This

function returns the file descriptor on success or -1 on error. Next, Line 20-38 is

executed to setups the port in the raw or non-canonical mode and the baud rate at 9600

baud. In the raw or non-canonical mode, the input characters at the serial port are

unprocessed, and they are passed through exactly as they are received, when they are

received. Two parameters control the behavior of this mode: c_cc[VTIME] in Line 28

sets the character timer in tenths of seconds, and c_cc[VMIN] in Line 29 sets the

minimum number of characters to receive before satisfying the read. In this case, VMIN

is set to zero and therefore VTIME servers as a timeout value. The reading at the serial

port will be satisfied if a single character is read, or VTIME is exceeded. If TIME is

exceeded, no character will be returned.

1 char** create_2D_char_array(int num_rows, int num_cols) {

2 int i;

3 char **2D_array;

4

5 /*Allocate pointer memory for the first dimension of a

matrix[][];*/

6 2D_array = (char **) malloc(num_rows * sizeof(char *));

Aung Soe Design and Implementation of an RF Data Communication System 46

7 if(2D_array == NULL){

8 free(2D_array);

9 printf("Memory allocation failed.\n");

10 exit(-1);

11 }

12

13 /*Set all pointers to NULL*/

14 memset(2D_array, 0, num_rows * sizeof(char*));

15

16 /*Allocate integer memory for the second dimension of a

matrix[][];*/

17 for(i = 0; i < num_rows; i++) {

18 2D_array[i] = (char *) malloc(num_cols * sizeof(char));

19 if(NULL == 2D_array[i]){

20 free(2D_array[i]);

21 printf("Memory allocation failed.\n");

22 exit(-1);

23 }

24 }

25 /* Return an allocated memory address of 2D array */

26 return *&2D_array;

27 }

Figure 17: The create_2D_char_array() function to dynamically allocate a 2D array

2D_array 1
st
 level ptrs

 • • …

 •

 • …

 •

 • …

 …

 …

Figure 18: Dynamic memory allocation of a 2D array

 Allocation of memory for a two dimensional array

Aung Soe Design and Implementation of an RF Data Communication System 47

 The sender program allocates a block of memory by calling the

create_2D_char_array function to store several data packets in sequence before

transmitting to the receiver site. In this program, a two-dimensional array is considered

to store data packets, and each row of the array contains a single packet. For this reason,

the malloc() function from the standard C library is used to allocate a continuous portion

of memory. In Line 3, 2D_array is defined as a pointer-to-pointer-to-char. Memory

allocation for the two-dimensional array involves two stages as shown in Figure 18. At

first, 2D_array points to a block of the first-level pointers, one for each individual row.

Line 6 calls the malloc () function to allocate num_rows elements of memory space for

first level pointers. Next, after successfully allocating, each element is filled with a

pointer to num_columns number of chars, the storage for a single row of the array in

Line 18. Finally, this function returns memory addresses of the allocated 2D array.

1 void cleanUp_2D_array(char **array, int x) {

2 int i;

3 for(i = 0; i < x; i++) {

4 free(array[i]); // free the first-level pointer

5 }

6 free(array); // free the second-level pointer

7 }

Figure 19: The cleanUp_2D_array() function to free a dynamically allocated 2D array

 Freeing an allocated memory space

 Once all data packets are transmitted successfully, it is required to deallocate or

free the dynamically allocated “2D_array” using the cleanUp_2D_array() function

shown in Figure 19. This function first frees the first level pointers and then all the

elements in each row of the array. Freeing the allocated memory location is a good idea

because it gives the memory back on the computer for other uses.

1 void read_data (char *raw_data, char *fn) {

2 char temp_data;

3 int num_char;

4 FILE *datafile; /* need a pointer to FILE */

6 datafile = fopen(fn, "r"); /* Open "file_name" for reading */

7 if (datafile == NULL) {

8 printf("\n Cannot open file (%s)! \n", fn);

Aung Soe Design and Implementation of an RF Data Communication System 48

9 }

10

11 num_char = 0; /* Initialize character counter */

12

13 /* Read until end-of-file */

14 while ((temp_data = fgetc(datafile)) != EOF) {

15 raw_data[num_char++] = temp_data;

16 }

17 raw_data[num_char++] = temp_data; /* End data array with EOF

*/

18 fclose(datafile); /* close a file */

19 }

Figure 20: The read_data() function to read data from a specific file name

 Reading data from a text file

 Reading the data from a local file in C is simple. The read_data() function is

shown in Figure 20. The standard C library includes the fopen() function that allows to

open a file from a specific location in the indicated mode such as r for reading and w for

writing. Since, an EOF (end of file) character generally indicates the end of the text files,

it is used to specify where to stop reading. At the end of reading, the file is closed using

the fclose() function. This function returns all the data from the text file in a single array.

1 int make_packet (char **pkt, char *data, int *num_char) {

2 char temp_pkt[NUM_COLUMN]; /* temporary storage of actual data

*/

3 char temp_char;

4 int total_char; /* total number of actual data */

5 int num_pkt; /* total number being created */

6 int opCode; /* Opcode for data packet (Opcode =

1) */

7 int i, row, column;

8

9 crc crc_value; /* CRC value for each packet */

10 crcInit(); /* initialize the CRC look up table

*/

11

12 opCode = DATA_PKT; /* opcode for data packet */

13 i = 0;

14 row = 0;

15 column = 0;

16

Aung Soe Design and Implementation of an RF Data Communication System 49

17 while (data[i] != EOF) { /* read data until EOF (end-of-file)

*/

18 if (data[i] != LF) { /* read data until LF (line feed) */

19 if (column == 0) {

20 // begin each pkt with SOT

21 pkt[row][column] = SOT;

22 temp_pkt[column] = SOT;

23 column++;

24 }

25 else if (column == 1) {

26 // place an opCode for each packet

27 pkt[row][column] = opCode;

28 temp_pkt[column] = opCode;

29 column++;

30 }

31 else {

32 // read the actual data

33 temp_char = data[i++];

34 pkt[row][column] = temp_char;

35 temp_pkt[column] = temp_char;

36 column++;

37 }

38 }

39 else {

40 // keep a LF char at the end of the actual data

41 temp_char = data[i++];

42 pkt[row][column] = temp_char;

43 temp_pkt[column] = temp_char;

44

45 // number of char including SOT, Opcode and data in each pkt

46 total_char = column + 1;

47 // generate CRC for each pkt

48 crc_value = crcFast(temp_pkt, total_char);

49 // store crc high byte

50 pkt[row][++column] = crc_value >> 8;

51 // store crc low byte

52 pkt[row][++column] = crc_value & 0x00FF;

53 // end a packet with EOT

54 pkt[row][++column] = EOT;

55

56 *num_char = ++column; /* number of char in the complete

pkt */

57 row++; /* increment row index of pkt[][] */

58 column = 0; /* set column index of pkt[][] */

59 }

60 }

61 num_pkt = row;

62 return (num_pkt); /* Return number of pkt */

63 }

Aung Soe Design and Implementation of an RF Data Communication System 50

Figure 21: The make_packet() function to generate data packets in sequence

 Creating data packets

 The make_packet() function shown in Figure 21 is used to break the data from

the local text file into a several small packets. The format of the data packet follows the

one illustrated in Figure 13(b). Each packet begins with a SOT character and follows by

an Opcode. The data value section of each packet contains exactly one measurement of

water property data from the sensor packet. The data packet also includes the 16-bit

CRC value which is calculated over SOT, Opcode and the data value using the table

driven CRC calculation technique. Each complete data packet is stored in each row of

the allocated “2D_array”. The number of packets generated depends on the number of

measurements contain in the text file.

 Creating control packets

 The make_ctrl_packet() function is used to create a control packet with a

specified control message. The code listing of this function is provided in Figure 22. The

format of the control packet is illustrated in Figure 13(a). Similar to the data packet, each

control packet starts with a SOT character, follows by an Opcode and then the control

message. The control packet also includes the 16-bit CRC value which is calculated over

SOT, Opcode and the control message. This function returns a complete control packet.

1 int make_ctrl_packet (char *ctrl_pkt, char ctrl_char) {

2 crc crc_value; /* CRC value of control packet */

3 char temp_ctrl_char[3];

4 int total_char; /* total character in control packet

*/

5 char opCode = CTRL_PKT; /* Opcode for control packet (Opcode =

2) */

6 int i = 0;

7 crcInit(); /* initialize the CRC look up table */

8

9 temp_ctrl_char[0] = SOT;

10 temp_ctrl_char[1] = opCode;

11 temp_ctrl_char[2] = ctrl_char;

12

13 ctrl_pkt[i] = SOT; /* Begin a control pkt with SOT */

14 ctrl_pkt[++i] = opCode; /* Opcode for control packet */

15 ctrl_pkt[++i] = ctrl_char;

16

Aung Soe Design and Implementation of an RF Data Communication System 51

17 /* Generate CRC for ctrl packet */

18 crc_value = crcFast(temp_ctrl_char, 3);

19

20 ctrl_pkt[++i] = crc_value >> 8; /* Store crc high byte */

21 ctrl_pkt[++i] = crc_value & 0x00FF; /* Store crc low byte */

22 ctrl_pkt[++i] = EOT; /* End a control pkt with

EOT */

23

24 /* Return number of character in control pkt */

25 return (total_char = ++i);

26 }

Figure 22: The make_ctrl_packet function to create control packets

 The following two functions: connection_status() function and send_packet()

function within the main() function of the sender program perform the most important

functions in this protocol design in order to deliver packets in the order they are sent as

well as guarantee packet delivery. Although the two functions perform a very similar

task, they are separated into two in order to reduce the complexity of code development.

The behaviors of both connection_status() function and send_packet() function are

presented using state-transition diagrams in Figure 23 and 24 respectively. These state-

transition diagrams are fairly easy to understand. Each circle denotes a state, and the

transition from state to state is determined according to the direction of the arrow. The

actions executed in each state are described using pseudo-codes in a rectangular box.

Aung Soe Design and Implementation of an RF Data Communication System 52

Figure 23: A state diagram for initializing and closing connection in the sender program

 Connection establishment and termination

 Now let’s trace the typical transitions taken through the diagram in Figure 23.

When the connetion_status function is called, the initial state usually starts in the

SEND_CONNECT_PACKET state to send out a CONNECT packet into the UART

serial port. In this state, a trial counter is implemented to keep track of the number of

trial required to establish the connection. If the connection does not establish

successfully until the third time, the connection process is indicated as unsuccessful.

 Next, the transition is moved to the CHECK_CHAR state in order to wait for an

incoming control packet with the timeout. Currently, the timeout value is 5 seconds. If

the timeout exceeds and there is no packet from the other side, the transition returns to

the SEND_CONNECT_PACKET state. However, if there a packet before the timeout

occurs, the first character of the packet is checked. If the received character is not a SOT

Aung Soe Design and Implementation of an RF Data Communication System 53

character, the transition is made to the EMPTY_SERIAL_BUFF state to remove all

“garbage” characters at the UART serial buffer. Finally, if the received character is a

SOT character, the transition is made to the READ_PACKET state to continue reading

the remaining character in the packet.

 After reading the packet, the error checking mechanism is performed using the

16-bit CRC calculation on that packet. If the remainder of the CRC calculation is not

equal to zero, the transition is made to the SEND_CONNECT_PACKET state. But if the

remainder is zero, the next state is the CHECK_CTRL_MSG state to check the control

message inside the received packet.

 If the control message is READY, the process of establishing connection is

indicated as successful. If not the next state simply return to the

SEND_CONNECT_PACKET state until the maximum number of allowed connection

trial is reached.

 Turing our attention now to the process of terminating a connection, the

important thing to keep in mind is that the terminating process is quite different from the

establishing process. The sender program just sends out a BYE packet without waiting

any response back from the other end.

 Sending packets

 The state-transition diagram shown in Figure 24 describes the behavior of the

process of sending data packets. When the send_packet() function is called after the

connection is successfully established, the initial state usually starts in the

SEND_PACKET state to send out a packet one at a time into the UART serial port. In

this state, a trial counter is implemented to keep track of the number of trial required to

send each packet. There is no limit to the number of time required to send each data

packet. After sending the data packet, the next state becomes the CHECK_CHAR state.

Aung Soe Design and Implementation of an RF Data Communication System 54

Figure 24: A state diagram for sending data in the sender program

 In the CHECK_CHAR state, an incoming control packet is read with the

timeout. The actions executed in this state are exactly the same as those in the state from

the connection_status() function. If the received control packet starts with a SOT

character, the next state is the READ_PACKET state.

 Similar to the READ_PACKET state in the connection_status() function, the

reading process is followed by the error checking mechanism. If the CRC remainder is

not equal to zero, the transition is preceded back to the SEND_PACKET state to resend

the same data packet. But if the remainder is zero, the next state is the

CHECK_CTRL_MSG state to check the control message inside the received packet.

 If the control message is ACK, the current process of sending the data packet is

indicated as successful, and the next state is the SEND_PACKET state to send a new

data packet. If the control message is something else, the next state also simply returns

to the SEND_PACKET state but to resend the same data packet until it is successfully

sent.

Aung Soe Design and Implementation of an RF Data Communication System 55

 The process of data transmission is completed only after the entire available data

packets are sent successfully.

8.2.5. Receiver Program

 main() function

 This main() function is called when the receiver program is stated. Figure 25

contains the complete contents of the function. This function performs all essential

operations of the sender program. The main() function of the receiver program looks

similar to that of the sender program, but it does not contain make_packet() function,

connection_status() function and obviously the send_packet() function. Instead, it

contains two new functions: read_packet() function and write_ data() function. Several

functions from the sender program are reused in the receiver program.

1 main() {

2 int port, i;

3 int total_pkt, total_char;

4 int nrows, ncolumns;

5 char **packet2D;

6 struct termios old_flags; /* will be used to save old port

settings */

7 struct termios new_flags; /* will be used for new port settings

*/

8

9 /* open the RS-232 port */

10 port = open_RS232port();

11 if (port == -1) {

12 printf("\n Error opening RS232 port \n");

13 exit(-1);

14 }

15

16 // Set up raw/non-canonical mode

17 // VTIME is set to 10 and VMIN is set to 0

18 tcgetattr(port, &old_flags); /* save current port settings */

19 new_flags = old_flags;

20 new_flags.c_lflag &= ~(ECHO | ICANON | ISIG);

21 new_flags.c_iflag &= ~(BRKINT | ICRNL);

22 new_flags.c_oflag &= ~OPOST;

23 new_flags.c_cc[VTIME] = 10; /* inter-character timer (10 x

0.1)sec */

24 new_flags.c_cc[VMIN] = 0; /* non-blocking read*/

25 new_flags.c_cflag |= CS8; /* Set 8 bits per character. */

Aung Soe Design and Implementation of an RF Data Communication System 56

26 if (tcsetattr(port, TCSAFLUSH, &new_flags) < 0) {

27 printf("\n Error seting raw mode!! \n");

28 exit(-1);

29 }

30

31 /* set baud rate */

32 cfsetispeed(&new_flags, B9600);

33

34 /* Allocate memory location for packet2D an 2D array */

35 /* Size of packet2D: 360 x 100 (NUM_ROW x NUM_COLUMN)*/

36 packet2D = create_2D_char_array(NUM_ROW, NUM_COLUMN);

37

38 printf("\n Initializing receiving process... \n");

39 read_packet(packet2D, port, &total_pkt, &total_char);

40

41 printf("\n Writing data into %s ... \n", FILE_NAME);

42 write_data(packet2D, FILE_NAME, total_pkt, total_char);

43 printf("\n Writing complete! \n");

44

45 cleanUp_2D_array(packet2D, NUM_ROW);

46

47 tcsetattr(port, TCSANOW, &old_flags);

48 close(port);

49 }

Figure 25: The main() function of the receiver program

 Receiving packets

 Figure 26 shows the state-transition diagram which describes the behavior of the

read_data() function. Notice that unlike those state-transition diagram for the sender

program, there is an extra state called the CHECK_OPCODE state contained in the

following state-transition diagram. This state is used to easily distinguish between

control packet and data packet.

 When the read_packet() function is called, the initial state usually starts in the

CHECK_CHAR state to read a packet available at the UART serial port with the

timeout. The timeout value is 5 seconds. If the timeout occurs and there is still no

incoming packet, it remains in this state to continue waiting for the packet. However, if

there a packet before the timeout occurs, the first character of the packet is checked. If

the received character is not a SOT character, the next state is the

EMPTY_SERIAL_BUFF state to remove all “garbage” characters at the UART serial

buffer and finally returns to the CHECK_CHAR state. If the received character is a SOT

Aung Soe Design and Implementation of an RF Data Communication System 57

character, the transition is made to the READ_PACKET state to continue reading the

remaining character in the packet.

Figure 26: A state diagram for receiving data in the receive program

 After finish reading the packet, the error checking mechanism is performed using

the 16-bit CRC calculation on that packet. If the remainder of the CRC calculation is not

equal to zero, the transition is made to the CHECK_OPCODE state to check the opcode

inside the received packet. But if the remainder is zero, the next state is the

SEND_CTRL_PACKET state to indicate that there is an error in the received packet by

sending a NAK packet.

 The main action of the CHECK_OPCODE state is to determine the type of the

packet received from the other end. If the opcode is DATA_PKT, the next state is the

SEND CRTL_PKT state to indicate receiving data packet as successful by sending an

Aung Soe Design and Implementation of an RF Data Communication System 58

ACK packet. However, if the opcode is CTRL_PKT, the next state is the

CHECK_CTRL_MSG state to check what type of control message is inside the packet.

 The CHECK_CTRL_MSG state expects two types of control messages:

CONNECT and BYE. These messages are used by the sender to establish and terminate

the connection respectively. If the control message is CONNECT, the next state is the

SEND CRTL_PKT state to send back the READY packet to the other end. If the control

message is something else, the next state also simply returns to the CHECK_CHAR

state to wait for another packet. However, if the control message is BYE, the read_data()

function is ended, and the receiving process is indicated as successful.

8.2.6. Transmission Control Program

 The transmission control program is developed in C and implemented on the

Silicon Lab’s C8051F020-TB microcontroller development board. The behavior of the

program is described using a flowchart diagram shown in Figure 27. Notice that the

flowchart diagram is broken into three pieces in order to fit in one pages and explain it

clearly. The purpose of this program is to handle the data transmission between control

computers and transceivers. This program can be used to isolate the characteristic of the

control computers and that of transceivers. Replacing the transceivers for any reason will

not affect any hardware or software components of the computers.

 When the development board is powered up, this program is running

continuously within the loop. This program fully utilizes all UARTs’ interrupt flags

available on the board to receive data from the control computer and transmit it to the

transceiver or vice versa. Specifically, the data is received from the computer via the

RX0 port of UART0 and transmit to the transceiver via the TX1 port of UART1 and the

data from the transceiver is received via the RX1 port of UART1 and transmitted to the

computer via the TX0 port of UART0.

 RI0 and RI1 (Receive Interrupt) flags are used to detect the incoming data from

the computer and the transceiver respectively. The detection mechanism requires a

polling algorithm which is implemented using while loop. The top-left flowchart

diagram in Figure 27 illustrates the polling algorithm and the RI flag checking.

Aung Soe Design and Implementation of an RF Data Communication System 59

Figure 27: A flowchart diagram a transceiver control program

 When one of RIs is set, the inter-character timer begins, and the program keeps

checking the RI for the next incoming character. The timeout value between subsequent

characters is approximately 200 ms. If the timeout occurs and there is no more character

from the RX port, all the received characters are placed in an array and prepared to

transmit to the corresponding port. Notice that there is a delay of about 2 ms is between

Aung Soe Design and Implementation of an RF Data Communication System 60

each character transmitted via TX ports. This delay is one of the requirements for the

transceiver to be able to process the data transmission reliably. The top-right flowchart

diagram in Figure 27 describes the checking of the subsequent character at the RX port

along with the timeout. The bottom flowchart diagram in Figure 27 explains the data

transmission via the corresponding TX port to the final destination.

 The advantage of this program is that prior to receiving the data, it does not need

to know the number of incoming characters. The complete code listing of the transceiver

control program is provided in Appendix C.

9. System Performance

Aung Soe Design and Implementation of an RF Data Communication System 61

 In this section, the system performance of the final design and implementation is

discussed based on the preliminary design requirements. First, the initial experiment

results of the RF link analysis are presented. Second, the system level performance is

discussed in detail.

9.1. RF Link Analysis

 In order to determine the important design parameters such as operating

frequency and transmit power, the RF link analysis is done at both Ballston Lake and

Union College.

Figure 28: Ground Elevation Map between Union College and Ballston Lake [11]

 In this system design, the line-of-sight communication was desirable to achieve a

reliable data transmission over the distance of about 8 miles. Therefore, the

communication link needed a careful survey through map-based or direct observation to

avoid any metallic or wet objects which could cause severe attenuation and reflection in

the transmission path. For the map-based approach, a ground elevation map shown in

Figure 28 was used to verify to obstacles such as hills, tall buildings and other structures

in between Union College and Ballston Lake. Also the direct observation of the

communication path was done from the roof top of the Science and Engineering

building. Unfortunately, the line-of-sight requirement could not confirm based on these

two approaches.

Aung Soe Design and Implementation of an RF Data Communication System 62

Figure 29: A 446 MHz Quagi antenna and a transceiver

 Then, the radio field strength test is performed at Ballston Lake to further

investigate design parameters. In this test, a home-made 446 MHz Quagi and a ham

radio transceiver shown in Figure 29 are used. The transceiver was transmitting radio

signals at 442.55 MHz and receiving at 447.55 MHz. Both the antenna and the

transceiver were operating at the UHF range.

 To obtain the best estimate from the field strength test, not only was the

operating frequency important, the basic antenna characteristics such as gain and front-

to-back ratio were essential. The antenna gain was estimated using a spectrum analyzer,

and its gain was about 10dB and highly directional. The front-to-back ratio was

determined using a SWR (standing wave ratio) meter, and this ratio is 1:4 which is

significantly low. A low front-to-back ratio means that the amount of energy is radiated

in the desired direction is greatly reduced. This resulted from the frequency mismatch

between antenna and transceiver.

 Despite the fact, we could still connect a 5-Watt repeater at Union College from

Ballston Lake using these two hardware components. The radio field strength

measurement confirmed that RF data communication was still possible using a 5-W

transmitter and a high gain (with 10dB) directional antenna both operating in UHF

frequency. Moreover, the fact that there was a power loss because of the mismatch

between the antenna and the transceiver, it was predicted that the transmit power

requirement would be less than 5 Watt.

Aung Soe Design and Implementation of an RF Data Communication System 63

9.2. Overall System Performance

 As I mentioned before, the final implementation of the RF data communication

system was hindered because of the FCC licensing process. Instead, the complete

prototype implementation was accomplished. The main difference between the

prototype implementation and the final implementation would be in the radio system.

The rest of the components could remain the same for the final implementation.

 In order to make sure that all the hardware components worked together as a unit

in the prototype implementation, they are tested together with the software programs.

 The operation of Master/Slave protocol has been verified working properly with

error detection, receiver feedback and retransmission. Several different scenarios of data

transmission protocol were tested in order to check the robustness of the protocol. The

protocol could handle all three situations illustrated in Figure 14, but it could not handle

duplicate packets. Programs on sender and receiver control computers were

implemented in modular fashion for design flexibility, easy debugging and

maintainability. Moreover, programs on control computers and microcontrollers operate

independently. By changing the program on the microcontroller I do not need to change

any part of the program on the control PC. Since all the programs functioned properly to

handle the RF data transmission,

10. Cost Analysis

Aung Soe Design and Implementation of an RF Data Communication System 64

 As with any design project, there is going to be some incurred costs for

hardware, software, and other equipment. These costs are often limited by the available

funding. For this project, the funding is limited to the $600 granted by the Internal

Education Fund (IEF) Committee. Since the IEF Grant was submitted, the design has

been changed to include 8051 microcontroller boards. In addition, due to the unexpected

long processing time for the FCC license application, the actual radio system could not

purchase and implement. Instead, the HAC-UM96 ultra low power transceivers were

used for the prototype design. The cost of each individual component in this prototype

implementation is provided in Table 2. The total cost of the prototype is only $287.90.

Components Quantity Unit Price Cost

8051 Microcontroller Board 2 $99 $198

HAC-UM96 Ultra Low Power Data

Transceiver
2 $44.95 $89.90

Total $287.90

Table 3: Cost of system components in the prototype implementation

 Note that there will be additional cost to include the FCC licensing fee, actual

final radio equipment and high gain directional antennas for the final system

implementation. Two similar brands of transceivers are recommended for this system

design. In the future, there might be other transceivers that would be more suitable for

this project.

11. Recommendation and Conclusion

Aung Soe Design and Implementation of an RF Data Communication System 65

 The overall purpose of this project was to develop a reliable RF data

communication system for the long-term deep water monitoring system. This project

illustrates the prototype design of the RF data transmission system which meets most of

the system requirements expect the long distance data transmission. The lack of long

distance transmission is solely because of hindrance of the FCC licensing process. The

current prototype implementation functions properly at the system level and it can be

easily transformed into a final implantation because of careful consideration of the

design modularity through the project development. The complex behavior of data

transmission protocol is also successfully implemented to transmit the water property

data reliably from one side of the computer to the other side.

 Although the RF data communication system worked properly, there are still

plenty of areas in which the system could be improved. To enhance the robustness of the

data transfer protocol, the checking mechanism for duplicate packets is necessary. This

can be done by implementing the sequence number in the data packet. An error log file

is also desirable in order to keep track of errors occurred during the operation.

Implementing the error log will enhance the system maintainability.

 Overall, the project experience was worthwhile because it not only offers great

deal of knowledge about the RF data communication system but also benefits students

and faculty at Union Geology Department.

12. References

Aung Soe Design and Implementation of an RF Data Communication System 66

[2] Stallings, W., Data and computer communication. Pearson Education, Inc., New

 Jersey, 2004.

[3] Stevens. “Telemetry and Wireless Data Communications - Stevens Water

Monitoring Systems” http://www.stevenswater.com/telemetry_com/index.aspx.

[4] Compliance Engineering. “Unlicensed Wireless Data Communications, Part II:

Specifying RF Parameters” http://www.ce-

mag.com/archive/02/Spring/cutler2.html.

[5] The ARRL Handbook for Radio Communications. 2011 88
th

 Edition. The American

Radio Relay League, Inc., 2010.

[6] The Quagi antenna. “The Quagi antenna”

 http://commfaculty.fullerton.edu/woverbeck/quagi.htm.

[7] Silicon Labs. “F8051F02x Data Sheet”

 http://www.silabs.com/Support%20Documents/TechnicalDocs/C8051F02x.pdf.

[8] Silicon Labs. “Support Document”

http://www.silabs.com/pages/DownloadDoc.aspx?FILEURL=Support%20Docu

ments/TechnicalDocs/C8051F02x-DK.pdf&src=SupportDocLibrary.

[9] RobotShop.

http://www.robotshop.com/content/PDF/board-of-education-rev-c-manual-

28150.pdf.

[10] Kurose, J. and Ross, K., Computer Networking: A Top-Down Approach. Fifth

Edition. Pearson Education, Inc., Boston, MA, 2010.

[11] Profiler.

“HeyWhatsThat Path Profiler” http://www.heywhatsthat.com/profiler.html.

13. Appendices

Aung Soe Design and Implementation of an RF Data Communication System 67

13.1. Appendix A: Complete code listing of a sender program

/**

 Program: SendFSM.c

 Author: Aung Soe

 Date: 02/18/2011

This program reads data from a local file, "DataFile.txt" and divides data into small

packets

together with CRC value. Pre-arranged data packets are stored in a 2D array. Next,

connection

is initialized. After establishing the connection, each packet is sent in sequence from

Ballston Lake to Union College. Then, the connection is closed and the data transmission

process is ended.

This program contains following functions:

connection_status() : Initialize or close the connection based on the chosen mode

read_data() : Read data from a local file and store it in an array

make_packet() : Break data into several packets. Each packet starts with SOT,

 follows by a piece of data and CRC value of that data and ends

with

 EOT.

make_ctrl_packet() : Create a control packet based on a chosen parameter. Parameters

 include CONNECT, READY, BYE, ACK and NAK.

send_packet() : Send all data packets in sequence through the serial port.

read_timeout() : Read a single character with timeout.

create_2D_char_array() : Allocate memory addresses for an 2D array to store data packets

cleanUp_2D_array() : Free memory space of the 2D array after the data transmission

 process is finished.

open_RS232port() : Open a RS-232 serial port.

****/

#include <stdio.h> /* Standard buffered input/output */

#include <termios.h> /* POSIX terminal control definitions */

#include <unistd.h> /* UNIX standard function definitions */

#include <stdlib.h> /* Standard library definitions */

#include <fcntl.h> /* File control definitions */

#include <string.h> /* String operations */

#include "crc.h"

/**

 Function prototypes

****/

char read_timeout(int, int);

int init_Connection (int, int);

void send_packet (char **, int, int, int);

void read_data(char *, char *);

int makePacket (char **, char *, int *);

int makeCtrlPacket (char *, char);

void cleanUp_2D_array(char **, int);

int open_RS232port(void);

char** create_2D_char_array(int, int);

/**

 Global CONSTANTS

****/

#define SOT 0x02 /* Start of Text */

#define EOT 0x03 /* End of Text */

#define ACK 0x06 /* Acknowledge */

#define NAK 0x15 /* Neg. Acknowledge */

Aung Soe Design and Implementation of an RF Data Communication System 68

#define CONNECT 0x43 /* C: Connect */

#define READY 0x52 /* R: Ready */

#define BYE 0x42 /* B: Disconnect */

#define CR 0x0D

#define LF 0x0A

#define CTRL_PKT_SIZE 10 /* Control packet size */

#define PKT_SIZE 100 /* Data packet size */

#define MAX_PKT 360 /* Maximum number of packet */

#define PORT_NAME "/dev/ttyS0"

#define FILE_NAME "DataFile.txt"

/* Size of 2 Dimension Array */

#define NUM_ROW 360 /* number of row */

#define NUM_COLUMN 100 /* number of column */

/* define states for state machine */

#define SEND_CONNECT_PACKET 0

#define SEND_PACKET 1

#define CHECK_CHAR 2

#define READ_PACKET 3

#define CHECK_CTRL_MSG 4

#define EMPTY_SERIAL_BUFF 5

#define SEND_CTRL_MSG 6

/* define Opcode */

#define DATA_PKT 1

#define CTRL_PKT 2

/**

 Main Routine

****/

main () {

 int i, j, nrows, ncolumns, port;

 int connected = 0;

 int disconnected = 0;

 int total_packet, total_char;

 char data[NUM_ROW * NUM_COLUMN];

 char **packet2D;

 struct termios old_flags;

 struct termios new_flags;

 /* open the RS-232 port */

 port = open_RS232port();

 if (port == -1) {

 printf("\n Error opening RS232 port\n");

 exit(-1);

 }

 /*

 Set up raw/non-canonical mode

 VTIME is set to 10 and VMIN is set to 0

 */

 tcgetattr(port, &old_flags);

 new_flags = old_flags;

 new_flags.c_lflag &= ~(ECHO | ICANON | ISIG);

 new_flags.c_iflag &= ~(BRKINT | ICRNL);

 new_flags.c_oflag &= ~OPOST;

 new_flags.c_cc[VTIME] = 10;

 new_flags.c_cc[VMIN] = 0;

 new_flags.c_cflag |= CS8;

 if (tcsetattr(port, TCSAFLUSH, &new_flags) < 0) {

 printf("\n Error setting raw mode!! \n");

 exit(-1);

 }

Aung Soe Design and Implementation of an RF Data Communication System 69

 /* set baud rate */

 cfsetispeed(&new_flags, B9600);

 /* Allocate memory location for packet2D an 2D array */

 /* Size of packet2D: 360 x 100 (NUM_ROW x NUM_COLUMN)*/

 packet2D = create_2D_char_array(NUM_ROW, NUM_COLUMN);

 printf("\n Reading data from %s ... \n", FILE_NAME);

 read_data(data, FILE_NAME);

 printf("\n Cteating packets ... \n");

 total_packet = makePacket(packet2D, data, &total_char);

 for(i = 0; i < total_packet; i++) {

 printf("\n Packet #%d: %s \n", (i+1), packet2D[i]);

 }

 printf("\n Total packet being created: %d\n ", total_packet);

 printf("\n Initializing connection... \n");

 connected = init_Connection(port, 1);

 printf("\n Connection Status: %d \n", connected);

 if (connected) {

 printf("\n Initializing send process... \n");

 send_packet (packet2D, port, total_packet, total_char);

 printf("\n Closing connection... \n");

 disconnected = init_Connection(port, 0);

 printf("\n Connection Status: %d \n", disconnected);

 }

 cleanUp_2D_array(packet2D, NUM_ROW);

 tcsetattr(port, TCSANOW, &old_flags);

 close(port);

} // end of main

/**

 Read character with timeout

 char read_timeout(int port_ID, int timeout_sec);

 int port_ID : (input) file descriptor for the RS232 serial port

 int timeout_sec : (input) timeout (in sec)

 return a single character found at Serial port; if no character is found, return

NULL.

****/

char read_timeout(int port_ID, int timeout_sec) {

 char found_char; /* Character found at Serial port */

 int counter, i; /* Time counter for each sec */

 int found; /* indicator for found character */

 int time_out; /* indicator for timeout */

 /* read a character with timeout */

 counter = 0;

 found = FALSE;

 time_out = FALSE;

 while ((! found) & (! time_out)) {

 /* read must be non-blocking */

 if ((i = read(port_ID, &found_char, 1)) > 0) {

 found = TRUE; /*character found*/

Aung Soe Design and Implementation of an RF Data Communication System 70

 }

 else {

 counter++;

 if (counter >= timeout_sec) {

 time_out = TRUE;

 }

 else {

 /* sleep for 1 ms - 1 character time at 9600 BAUD */

 usleep(1000);

 }

 }

 }

 if (found) {

 return (found_char); // return a single found character

 }

 if (time_out) {

 return (found_char); // return NULL char if timeout

 }

}

/**

 Create control packet with CRC

 int make_ctrl_packet (char *ctrl_pkt, char ctrl_char);

 char ctrl_char : (input) a chosen control message

 char *ctrl_pkt : (output) a control packet with the control message

 Return value from this function is the number of character in the control packet.

 Packet data format:

 [0] [1] [2] [3] [4] [5]

 |---------||----------||----------||----------||----------||---------|

 | SOT || opCode || CTRL MSG || CRC HI || CRC LOW || EOT |

 |---------||----------||----------||----------||----------||---------|

 | 1 Byte || 1 Byte || 1 Byte || 1 Byte || 1 Byte || 1 Byte |

 Byte 0 consists of the data header (SOT). Byte 1 is an opcode for control packet

 (opCode=2). Byte 2 is a control character. Byte 3 and Byte 4 consists of a 16-bit (2-

byte)

 Cyclic Redundancy Check (CRC) Checksum value calculated using the Byte 1. The

calculation

 is done by calling the function, crcFast() from "crc.h". Byte 5 is the end of packet.

****/

int make_ctrl_packet (char *ctrl_pkt, char ctrl_char) {

 crc crc_value; /* CRC value of control packet */

 char temp_ctrl_char[3];

 int total_char; /* total character in control packet */

 char opCode = CTRL_PKT; /* Opcode for control packet (Opcode = 2) */

 int i = 0;

 crcInit(); /* initialize the CRC look up table */

 temp_ctrl_char[0] = SOT;

 temp_ctrl_char[1] = opCode;

 temp_ctrl_char[2] = ctrl_char;

 ctrl_pkt[i] = SOT; /* Begin a control pkt with SOT */

 ctrl_pkt[++i] = opCode; /* Opcode for control packet */

 ctrl_pkt[++i] = ctrl_char;

 crc_value = crcFast(temp_ctrl_char, 3); /* Generate CRC for ctrl packet */

Aung Soe Design and Implementation of an RF Data Communication System 71

 ctrl_pkt[++i] = crc_value >> 8; /* Store crc high byte */

 ctrl_pkt[++i] = crc_value & 0x00FF; /* Store crc low byte */

 ctrl_pkt[++i] = EOT; /* End a control pkt with EOT */

 return (total_char = ++i); /* Return number of character in control pkt

*/

}

/**

 Initialize/Close connection

 int connection_status (int port_id, int mode);

 int port_id : (input) file descriptor for RS232 serial port

 int mode : (input) mode 0 is used in closing connection (disconnect)

 mode 1 is used in initializing connection (connect)

 return connection status (0/1); 0 indicate connection failed and 1 indicated

connection

 established.

 There is a significant difference in the establishing connection and the closing

 connection.

 The protocol for establishing connection is as follows (shown is a simplified form):

 1) If mode 1 is selected, a CONNECT packet is created and sent into a serial port.

Also,

 the number of trial to establish the connection is specified.

 2) Wait for a return packet with the timeout, if the timeout occurs before receiving

a

 control packet, the same CONNECT packet is resent.

 3) If there is a incoming control packet, a first element of the packet (SOT) is

checked.

 If the packet begins with SOT, the remaining packet is read. Otherwise, the

remaining

 packet is discarded, and then the same CONNECT packet is resent.

 4) After successfully reading the control packet, the CRC value is calculated on

that

 packet for an error checking purpose. If the remainder of CRC is zero, the packet

is

 further checked for a control message inside the packet. If the remainder is

something

 else, the same CONNECT packet is resent.

 5) If the control message is READY, the connection process is indicated as success

by

 returning true; But if the control message is something else, the same CONNECT

packet

 is resent.

 The protocol for closing connection is as follows (shown is a simplified form):

 1) If mode 0 is selected, a BYE packet is created and sent into a serial port. After

that,

 the process is simply ended, and return false. There is no additional process.

****/

int connection_status (int port_id, int mode) {

 char ctrlPkt[CTRL_PKT_SIZE]; /* control packet */

 char rcv_pkt[CTRL_PKT_SIZE]; /* receive packet */

 char opCode;

 char ctrl_msg;

 char check_char, temp_char;

 int pkt_len; /* control packet length */

 int rcv_pkt_len; /* receive packet length */

 int char_cnt; /* character counter for receive packet */

 int trial_cnt; /* connter/disconnect trial counter */

 int done; /* indicator for connection process */

 int connected; /* indicator for connect/disconnect status */

Aung Soe Design and Implementation of an RF Data Communication System 72

 int state; /* state indicator for the state machine */

 int max_trial; /* maximum allow trial for connect/disconnect */

 int i;

 crc crc_remainder; /* remainder for CRC calculation of receive packet */

 crcInit(); /* initialize the CRC look up table */

 trial_cnt = 0;

 done = FALSE; /* initialize connection process */

 connected = FALSE; /* initialize connection status */

 state = SEND_CONNECT_PACKET; /* initialize state with SEND_CONNECT_PACKET */

 while ((! done) && (! connected)) {

 if (mode == 1) {

 pkt_len = make_ctrl_packet (ctrlPkt, CONNECT);

 max_trial = 3; /* number of trial to establish connection */

 }

 else if (mode == 0) {

 pkt_len = make_ctrl_packet (ctrlPkt, BYE);

 }

 else {

 printf("\n Incorrect input parameter in make_ctrl_packet() function! \n");

 done = TRUE;

 }

 switch (state) {

 case SEND_CONNECT_PACKET:

 write(port_id, ctrlPkt, pkt_len);

 trial_cnt++;

 if (mode == 1) {

 printf("\n CONNECT PKT has been sent. \n");

 state = CHECK_CHAR;

 }

 else if (mode == 0) {

 printf("\n BYE PKT has been sent. \n");

 done = TRUE;

 }

 break; // end of case SEND_CONNECT_PACKET

 case CHECK_CHAR:

 printf("\n Connecting (Trial #%d) ... \n", trial_cnt);

 /* read a single char with 5 sec timeout */

 check_char = read_timeout(port_id, 5);

 if (check_char == SOT) {

 state = READ_PACKET;

 }

 else if (check_char == 0x00) {

 if (trial_cnt < max_trial) {

 state = SEND_CONNECT_PACKET;

 printf("\n Connection Failed! \n");

 }

 else {

 done = TRUE;

 }

 }

 else {

 state = EMPTY_SERIAL_BUFF;

 }

 break; // end of case CHECK_CHAR

Aung Soe Design and Implementation of an RF Data Communication System 73

 case EMPTY_SERIAL_BUFF:

 i = 0;

 // check a character at the buffer and read it to clear the receiving

buffer

 while ((i = read(port_id, &temp_char, 1)) > 0);

 printf("\n Connection Failed! \n");

 if (trial_cnt < max_trial) {

 state = SEND_CONNECT_PACKET;

 }

 else {

 done = TRUE;

 }

 break; // end of case EMPTY_SERIAL_BUFF

 case READ_PACKET:

 char_cnt = 0;

 i = 0;

 rcv_pkt[char_cnt++] = SOT;

 //printf("\n rcv_pkt[%d]: %02X \n", char_cnt, rcv_pkt[char_cnt]);

 //char_cnt++;

 // check a character at the buffer

 while ((i = read(port_id, &temp_char, 1)) > 0) {

 if (temp_char != EOT) { // check whether the packet ends with EOT or

not

 rcv_pkt[char_cnt++] = temp_char;

 //printf("\n rcv_pkt[%d]: %02X \n", char_cnt, rcv_pkt[char_cnt]);

 //char_cnt++;

 }

 }

 rcv_pkt_len = char_cnt;

 //printf("\n Receive PKT Lenght: %d \n", rcv_pkt_len);

 crc_remainder = crcFast(rcv_pkt, rcv_pkt_len);

 //printf("\n Remainder: %02X\n", crc_remainder);

 if (crc_remainder == 0) {

 opCode = rcv_pkt[1];

 if (opCode == CTRL_PKT) {

 state = CHECK_CTRL_MSG;

 }

 else {

 state = SEND_CONNECT_PACKET;

 }

 }

 else {

 printf("\n Connection Failed!\n");

 if (trial_cnt < max_trial) {

 state = SEND_CONNECT_PACKET;

 }

 else {

 done = TRUE;

 }

 }

 break; // end of case READ_PACKET

 case CHECK_CTRL_MSG:

Aung Soe Design and Implementation of an RF Data Communication System 74

 ctrl_msg = rcv_pkt[2];

 if (ctrl_msg == READY) {

 printf("\nConnection established.\n");

 done = TRUE;

 connected = TRUE;

 }

 else {

 printf(" Connection Failed!\n");

 if (trial_cnt < max_trial) {

 state = SEND_CONNECT_PACKET;

 }

 else {

 done = TRUE;

 }

 }

 break; // end of case CHECK_CTRL_MSG

 } // end of switch

 } // end of while

 if (connected) {

 return(TRUE); /* Return 1 when connection is established */

 }

 else {

 return(FALSE); /* Return 0 when connection is not established */

 }

} // end of function

/**

 Send packets

 void send_packet (char **pkt2D, int port_id, int num_pkt, int num_char);

 char **pkt2D : (input) packets are organized into 2D array

 <size of pkt2D: num_pkt x num_char>

 int port_id : (input) file descriptor for the RS232 serial port

 int num_pkt : (input) total number of packet available to transmit

 int num_char : (input) number of character in each packet

 The protocol for transmitting each data packet is as follows (shown is a simplified

form):

 1) Send a data packet into a serial port.

 2) Wait for a return packet with the timeout, if the timeout occurs before receiving

a

 control packet, the same data packet is resent.

 3) If there is a incoming control packet, a first element of the packet (SOT) is

checked.

 If the packet begins with SOT, the remaining packet is read. Otherwise, the

remaining

 packet is discarded, and then the same data packet is resent.

 4) After successfully reading the control packet, the CRC value is calculated on

that

 packet for an error checking purpose. If the remainder of CRC is zero, the packet

is

 further checked for a control message inside the packet. If the remainder is

something

 else, the same data packet is resent.

 5) If the control message is ACK, the process repeat from step 1 to send a new data

 packet. But if the control message is NAK or something else, the same data packet

is

 resent.

Aung Soe Design and Implementation of an RF Data Communication System 75

****/

void send_packet (char **pkt2D, int port_id, int num_pkt, int num_char) {

 char send_pkt[MAX_PKT]; /* point for each individual packet */

 char rcv_pkt[CTRL_PKT_SIZE]; /* receive packet */

 char temp_char;

 char check_char;

 char ctrl_msg;

 char opCode;

 int packet_num; /* need to keep track of packet of number */

 int rcv_pkt_len; /* receive packet length */

 int char_cnt;

 int state; /* state indicator for the state machine */

 int done; /* indicator for sending process */

 int trial_cnt; /* number of trial to send each pkt */

 int i;

 crc crc_remainder; /* remainder for CRC calculation of receive packet */

 crcInit(); /* initialize the CRC look up table */

 packet_num = 0; /* intitialize the packet number */

 trial_cnt = 0;

 done = FALSE; /* initialize sending process */

 state = SEND_PACKET; /* initialize state with SEND_PACKET */

 while (! done) {

 switch (state) {

 case SEND_PACKET:

 for(i=0; i<num_char; i++) {

 send_pkt[i] = pkt2D[packet_num][i];

 //printf("\n send_pkt[%d]: %02X \n", i, send_pkt[i]);

 }

 write(port_id, send_pkt, num_char);

 trial_cnt++;

 printf("\n Sending PKT[#%d] on <#%d> Trial... \n", (packet_num + 1),

trial_cnt);

 state = CHECK_CHAR;

 break; // end of case SEND_PACKET

 case CHECK_CHAR:

 /* read a single char with 5 sec timeout */

 check_char = read_timeout(port_id, 5);

 if (check_char == SOT) {

 state = READ_PACKET;

 }

 else if (check_char == 0x00) {

 printf("\n Sending PKT[#%d] Failed! \n", (packet_num + 1));

 state = SEND_PACKET;

 }

 else {

 state = EMPTY_SERIAL_BUFF;

 }

 break; // end of case CHECK_CHAR

 case EMPTY_SERIAL_BUFF:

 i = 0;

Aung Soe Design and Implementation of an RF Data Communication System 76

 // check a character at the buffer and read it to clear the receiving

buffer

 while ((i = read(port_id, &temp_char, 1)) > 0);

 printf("\n Sending PKT[#%d] Failed! \n", (packet_num + 1));

 state = SEND_PACKET;

 break; // end of case EMPTY_SERIAL_BUFF

 case READ_PACKET:

 char_cnt = 0;

 i = 0;

 rcv_pkt[char_cnt++] = SOT;

 //printf("\n rcv_pkt[%d]: %02X \n", char_cnt, rcv_pkt[char_cnt]);

 //char_cnt++;

 // check a character at the buffer

 while ((i = read(port_id, &temp_char, 1)) > 0) {

 if (temp_char != EOT) { // check whether the packet ends with EOT or

not

 rcv_pkt[char_cnt++] = temp_char;

 //printf("\n rcv_pkt[%d]: %02X \n", char_cnt, rcv_pkt[char_cnt]);

 //char_cnt++;

 }

 }

 rcv_pkt_len = char_cnt;

 //printf("\n Receove PKT Lenght: %d \n", rcv_pkt_len);

 crc_remainder = crcFast(rcv_pkt, rcv_pkt_len);

 //printf("\n Remainder: %02X \n", crc_remainder);

 if (crc_remainder == 0) {

 opCode = rcv_pkt[1];

 if (opCode == CTRL_PKT) {

 state = CHECK_CTRL_MSG;

 }

 else {

 state = SEND_PACKET;

 }

 }

 else {

 printf("\n Sending PKT[#%d] Failed! \n", (packet_num + 1));

 state = SEND_PACKET;

 }

 break; // end of case READ_PACKET

 case CHECK_CTRL_MSG:

 ctrl_msg = rcv_pkt[2];

 if (ctrl_msg == ACK) {

 printf("\n Transmission of PKT[#%d] is successful! \n", (packet_num +

1));

 packet_num++; /* increment packet number */

 /* if packet numner is less than total packet avaliable */

 if (packet_num < num_pkt) {

 state = SEND_PACKET;

Aung Soe Design and Implementation of an RF Data Communication System 77

 trial_cnt = 0; /* reset trial counter */

 }

 else {

 done = TRUE; /* indicate sending all packets is

complete */

 }

 }

 else {

 printf("\n Sending PKT[#%d] Failed! \n", (packet_num + 1));

 state = SEND_PACKET;

 }

 break; // end of case CHECK_CTRL_MSG

 } // end of switch

 } // end of while

} // end of function

/**

 Read characters from a file into an array

 void read_data (char *raw_data, char *fn);

 char *fn : (input) file name of the actual data file in the memory

 char *raw_data : (output) return the actual data in an array

****/

void read_data (char *raw_data, char *fn) {

 char temp_data;

 int num_char;

 /* open a file */

 FILE *datafile; /* need a pointer to FILE */

 datafile = fopen(fn, "r"); /* Open "file_name" for reading */

 if (datafile == NULL) {

 printf("\n Cannot open file (%s)! \n", fn);

 }

 num_char = 0; /* Initialize character counter */

 while ((temp_data = fgetc(datafile)) != EOF) { /* Read until end-of-file */

 raw_data[num_char++] = temp_data;

 }

 raw_data[num_char++] = temp_data; /* End data array with EOF */

 /* close a file */

 fclose(datafile);

}

/**

 Create an 2D array with each row contains a singal data packet including CRC value

 int make_packet (char **pkt, char *data, int *num_char);

 char **pkt : (output) an 2D array of data packets

 char *data : (input) raw data read from a local file

 int *num_char : (output) total number of character in each packet including SOT,

actual

Aung Soe Design and Implementation of an RF Data Communication System 78

 data, CRC value (Hi byte and Low byte) and EOT

 Break data into several packets. Each packet starts with SOT, follows by a piece of

data,

 CRC value of that data, and ends with EOT. Return total number of packets, number of

 char in each packet and a 2D array of data packets.

 Packet data format:

 [0] [1] [2] [n +1] [n + 2] [n + 3] [n + 4]

 |---------||----------||----------| |----------||----------||----------||---------

|

 | SOT || opCode || Data | ~ | Data || CRC HI || CRC LOW || EOT

|

 |---------||----------||----------| |----------||----------||----------||---------

|

 | 1 Byte || 1 Byte || 1 Byte 1 Byte || 1 Byte 1 Byte || 1 Byte

|

 Byte 0 consists of the data header (SOT). Byte 1 is an opcode for data packet

(opCode=1)

 Byte 2 through n+1 are n number of byte of the actual data value. Byte n+2 and Byte

n+3

 consists of a 16-bit (2-byte) Cyclic Redundancy Check (CRC) Checksum value calculated

 using the Byte 1 through n together. The calculation is done by calling the

function,

 crcFast() from "crc.h" file. Byte n+4 is the end of packet.

****/

int make_packet (char **pkt, char *data, int *num_char) {

 char temp_pkt[NUM_COLUMN]; /* temporary storage of actral data */

 char temp_char;

 int total_char; /* total number of actual data */

 int num_pkt; /* total number being created */

 int opCode; /* Opcode for data packet (Opcode = 1) */

 int i;

 int row, column;

 crc crc_value;

 crcInit(); /* initialize the CRC look up table */

 opCode = DATA_PKT; /* Opcode for data packet (Opcode = 1) */

 i = 0;

 row = 0;

 column = 0;

 /*

 */

 while (data[i] != EOF) { /* Read data until EOF (end-of-file) */

 if (data[i] != LF) {

 if (column == 0) {

 pkt[row][column] = SOT; /* Begin a pkt with SOT */

 temp_pkt[column] = SOT;

 column++;

 }

 else if (column == 1) {

 pkt[row][column] = opCode; /* place an opCode for each data packet */

 temp_pkt[column] = opCode;

 column++;

 }

 else {

 temp_char = data[i++];

 pkt[row][column] = temp_char;

 temp_pkt[column] = temp_char;

 column++;

 }

 }

 else {

 temp_char = data[i++];

Aung Soe Design and Implementation of an RF Data Communication System 79

 pkt[row][column] = temp_char;

 temp_pkt[column] = temp_char;

 total_char = column + 1; /* Number of char in each pkt */

 crc_value = crcFast(temp_pkt, total_char); /* Generate CRC for each pkt */

 pkt[row][++column] = crc_value >> 8; /* Store crc high byte */

 pkt[row][++column] = crc_value & 0x00FF; /* Store crc low byte */

 pkt[row][++column] = EOT; /* End a packet with EOT */

 num_char = ++column; / Number of char in the complete pkt */

 row++; /* Increment row index of pkt[][] */

 column = 0; /* Set column index of pkt[][] */

 }

 }

 num_pkt = row;

 return (num_pkt); /* Return number of pkt */

}

/**

 Clean up the allocated 2-D array

****/

void cleanUp_2D_array(char **array, int x) {

 int i;

 for(i = 0; i < x; i++)

 free(array[i]);

 free(array);

}

/**

 Open RS232 Serial port 1

****/

int open_RS232port(void) {

 int port_id;

 port_id = open(PORT_NAME, O_RDWR);

 return(port_id);

}

/**

 Allocate memory address for an 2D array

 char** create_2D_char_array(int num_rows, int num_cols);

 int num_rows : (input) number of rows in the 2D array

 int num_cols : (input) number of column in the 2D array

 This function return memory addresses allocated for a 2D array.

****/

char** create_2D_char_array(int num_rows, int num_cols) {

 char **2D_array;

 /* Allocate pointer memory for the first dimension of a matrix[][]; */

 2D_array = (char **) malloc(num_rows * sizeof(char *));

 if(2D_array == NULL){

 free(2D_array);

Aung Soe Design and Implementation of an RF Data Communication System 80

 printf("Memory allocation failed while allocating for dim[].\n");

 exit(-1);

 }

 /* Set all pointers to NULL */

 /* This will make it possible to call free() if out of memory during data allocation

*/

 memset(2D_array, 0, num_rows * sizeof(char*));

 /* Allocate integer memory for the second dimension of a dim[][]; */

 register int i;

 for(i = 0; i < num_rows; i++) {

 2D_array[i] = (char *) malloc(num_cols * sizeof(char));

 if(NULL == 2D_array[i]){

 free(2D_array[i]);

 printf("Memory allocation failed while allocating for dim[x][].\n");

 exit(-1);

 }

 }

 return *&2D_array; /* Return an allocated 2D array */

}

13.2. Appendix B: Complete code listing of a receiver program

Aung Soe Design and Implementation of an RF Data Communication System 81

/**

 Program: GetFSM.c

 Author: Aung Soe

 Date: 02/18/2011

This program receives data from Ballston Lake and save it into a local file,

"DataFile.txt"

on Union PC.

This program contains following functions:

read_packet() : Receive data packets from a serial port and store them in an 2D

 array.

write_data() : Write the receive data packets into a local file for storage.

make_ctrl_packet() : Create a control packet based on a chosen parameter. Parameters

 include CONNECT, READY, BYE, ACK and NAK.

read_timeout() : Read a single character with timeout.

create_2D_char_array() : Allocate memory addresses for an 2D array to store data packets

cleanUp_2D_array() : Free memory space of the 2D array after the data transmission

 processs is finished.

open_RS232port() : Open a RS-232 serial port.

****/

#include <stdio.h> /* Standard buffered input/output */

#include <termios.h> /* POSIX terminal control definitions */

#include <unistd.h> /* UNIX standard function defintions */

#include <stdlib.h> /* Standard library definitions */

#include <fcntl.h> /* File control definitions */

#include <string.h> /* String operations */

#include "crc.h"

/**

 Function prototypes

****/

int makeCtrlPacket (char *, char);

void read_packet (char **, int, int *, int *);

void write_Data (char **, char *, int, int);

char read_timeout(int, int);

void cleanUp_2D_array(char **, int);

int open_RS232port(void);

char** create_2D_char_array(int, int);

/**

 Global CONSTANTS

****/

#define SOT 0x02 /* Start of Text */

#define EOT 0x03 /* End of Text */

#define ACK 0x06 /* Acknowledge */

#define NAK 0x15 /* Neg. Acknowledge */

#define CONNECT 0x43 /* C: Connect */

#define READY 0x52 /* R: Ready */

#define BYE 0x42 /* B: Disconnect */

#define CR 0x0D

#define LF 0x0A

#define CTRL_PKT_SIZE 10 /* Control packet size */

#define PKT_SIZE 100 /* Data packet size */

#define MAX_PKT 360 /* Maximun number of packet */

#define PORT_NAME "/dev/ttyS0"

#define FILE_NAME "DataFile.txt"

/* Size of 2 Dimension Array */

Aung Soe Design and Implementation of an RF Data Communication System 82

#define NUM_ROW 360 /* number of row */

#define NUM_COLUMN 100 /* number of column */

/* define states for state machine */

#define SEND_CONNECT_PACKET 0

#define SEND_PACKET 1

#define CHECK_CHAR 2

#define READ_PACKET 3

#define CHECK_OPCODE 4

#define CHECK_CTRL_MSG 5

#define EMPTY_SERIAL_BUFF 6

#define SEND_CTRL_PACKET 7

/* define Opcode */

#define DATA_PKT 1

#define CTRL_PKT 2

/**

 Main Routine

****/

main() {

 int port; // file descriptor for the serial port

 int i;

 int total_pkt, total_char;

 int nrows, ncolumns;

 char **packet2D;

 struct termios old_flags, new_flags;

 /* open the RS-232 port */

 port = open_RS232port();

 if (port == -1) {

 printf("\n Error opening RS232 port \n");

 exit(-1);

 }

 /*

 Set up raw/non-canonical mode

 VTIME is set to 10

 VMIN is set to 0

 */

 tcgetattr(port, &old_flags);

 new_flags = old_flags;

 new_flags.c_lflag &= ~(ECHO | ICANON | ISIG);

 new_flags.c_iflag &= ~(BRKINT | ICRNL);

 new_flags.c_oflag &= ~OPOST;

 new_flags.c_cc[VTIME] = 1;

 new_flags.c_cc[VMIN] = 0;

 new_flags.c_cflag |= CS8;

 if (tcsetattr(port, TCSAFLUSH, &new_flags) < 0) {

 printf("\n Error seting raw mode!! \n");

 exit(-1);

 }

 /* set baud rate */

 cfsetispeed(&new_flags, B9600);

 /* Allocate memory location for packet2D an 2D array */

 /* Size of packet2D: 360 x 100 (NUM_ROW x NUM_COLUMN)*/

 packet2D = create_2D_char_array(NUM_ROW, NUM_COLUMN);

 printf("\n Initializing receiving process... \n");

 read_packet(packet2D, port, &total_pkt, &total_char);

 printf("\n Writing data into %s ... \n", FILE_NAME);

Aung Soe Design and Implementation of an RF Data Communication System 83

 write_Data(packet2D, FILE_NAME, total_pkt, total_char);

 printf("\n Writing complete! \n");

 cleanUp_2D_array(packet2D, NUM_ROW);

 tcsetattr(port, TCSANOW, &old_flags);

 close(port);

}

/**

 Receive data packets from a serial port and store them in an 2D array.

 void read_packet (char **pkt2D, int port_id, int *num_pkt, int *num_char);

 char **pkt2D : (output) packets are organized into 2D array

 <size of pkt2D: num_pkt x num_char>

 int port_id : (input) file descriptor for RS232 serial port

 int *num_pkt : (output) total number of packet available to transmit

 int *num_char : (output) number of character in each packet

 The protocal for receiving each data packet is as follows (shown is a simplified

form):

 1) Wait for an incoming packet with the timeout, if the timeout occurs before

receiving

 any packet, keep checking for the packet.

 2) If there is the incoming packet, a first element of the packet (SOT) is checked.

If

 the packet begins with SOT, the remaining packet is read. Otherwise, the

remaining

 packet is discarded, and continue checking for the packet.

 3) After successfully reading the packet, the CRC value is calculated on that packet

for

 an error checking purpose. If the remainder of CRC is zero, the packet is further

 checked for an opcode inside the packet. If the remainder is something else, a

NAK

 packet is sent back to the sender to indicate that there is an error in the

packet,

 and then keep checking for another packet.

 4) If the opcode is CTRL_PKT, the packet is further checked for a control message

inside

 the packet. If the opcode is DATA_PKT, a ACK packet is sent back to the sender to

 indicate that there is on error in the packet, and then keep checking for another

 packet. But if the opcode is something else, a NAK packet is sent back to the

sender

 to indicate that there is an error in the packet, and then keep checking for

another

 packet.

 5) If the control message is CONNECT, a NAK packet is sent back to the sender to

indicate

 that it is ready to send data packets. If the control message is BYE, the

receiving

 process is ended. But if something else, keep checking for another packet.

****/

void read_packet (char **pkt2D, int port_id, int *num_pkt, int *num_char) {

 char rcv_pkt[PKT_SIZE]; /* point for each individual receive packet */

 char ctrl_pkt[CTRL_PKT_SIZE]; /* control packet */

 char ctrl_char; /* need to indicate which control char to send */

 char ctrl_msg;

 char temp_char;

 char check_char;

 char opCode; /* opcode */

 int ctrl_pkt_len; /* control packet length */

 int packet_num; /* need to keep track of packet of number */

 int rcv_pkt_len; /* receive packet length */

 int char_cnt;

 int state; /* state indicator for the state machine */

 int done; /* indicator for sending process */

Aung Soe Design and Implementation of an RF Data Communication System 84

 int i;

 crc crc_remainder; /* remainder for CRC calculation of receive packet */

 crcInit(); /* initialize the CRC look up table */

 packet_num = 0; /* intitialize the packet number */

 done = FALSE; /* initialize reading process */

 state = CHECK_CHAR; /* initialize state with CHECK_CHAR */

 while (! done) {

 switch (state) {

 case CHECK_CHAR:

 /* read a single character with 5 seconds timeout */

 check_char = read_timeout(port_id, 50);

 //printf("The first character is: %02X\n", check_char);

 if (check_char == SOT) {

 state = READ_PACKET;

 }

 else if (check_char == 0x00) {

 state = CHECK_CHAR;

 printf("\n Waiting... \n");

 }

 else {

 printf("\n Waiting... \n");

 state = EMPTY_SERIAL_BUFF;

 }

 break; // end of case CHECK_CHAR

 case EMPTY_SERIAL_BUFF:

 i = 0;

 // check a character at the buffer and read it to clear the buffer

 while ((i = read(port_id, &temp_char, 1)) > 0);

 state = CHECK_CHAR;

 break; // end of case EMPTY_SERIAL_BUFF

 case READ_PACKET:

 char_cnt = 0;

 i = 0;

 rcv_pkt[char_cnt++] = SOT;

 //printf("\n rcv_pkt[%d]: %02X \n", char_cnt, rcv_pkt[char_cnt]);

 //char_cnt++;

 // check a character at the buffer

 while ((i = read(port_id, &temp_char, 1)) > 0) {

 if (temp_char != EOT) { // check whether the packet ends with EOT or

not

 rcv_pkt[char_cnt++] = temp_char;

 //printf("\n rcv_pkt[%d]: %02X \n", char_cnt, rcv_pkt[char_cnt]);

 //char_cnt++;

 }

 }

 rcv_pkt_len = char_cnt;

 //printf("\nReceove PKT Lenght: %d\n", rcv_pkt_len);

 crc_remainder = crcFast(rcv_pkt, rcv_pkt_len);

 //printf("\n Remainder: %02X \n", crc_remainder);

Aung Soe Design and Implementation of an RF Data Communication System 85

 if (crc_remainder == 0) {

 state = CHECK_OPCODE;

 }

 else {

 ctrl_char = NAK;

 state = SEND_CTRL_PACKET;

 }

 break; // end of case READ_PACKET

 case CHECK_OPCODE:

 opCode = rcv_pkt[1];

 if (opCode == CTRL_PKT) {

 state = CHECK_CTRL_MSG;

 }

 else if (opCode == DATA_PKT) {

 ctrl_char = ACK;

 state = SEND_CTRL_PACKET;

 /* return number of char in a complete pkt

 not include SOT, opCode, CRC value and EOT */

 *num_char = rcv_pkt_len - 4;

 /*

 Save the packet without opCode and CRC value into a 2D array

(pkt2D)

 */

 for (i = 2; i < (rcv_pkt_len - 2); i++) {

 pkt2D[packet_num][i - 2] = rcv_pkt[i];

 }

 packet_num++; /* increment packet_number */

 }

 else {

 ctrl_char = NAK;

 state = SEND_CTRL_PACKET;

 }

 break;

 case CHECK_CTRL_MSG:

 ctrl_msg = rcv_pkt[2];

 if (ctrl_msg == CONNECT) {

 state = SEND_CTRL_PACKET;

 ctrl_char = READY;

 }

 else if (ctrl_msg == BYE) {

 printf("\n Close Connection!\n");

 done = TRUE; /* Receiving process is done */

 }

 else {

 state = CHECK_CHAR;

 }

 break; // end of case CHECK_CTRL_MSG

 case SEND_CTRL_PACKET:

 if (ctrl_char == ACK) {

 printf("\n Receiving PKT[#%d] is successful! \n", (packet_num));

 ctrl_pkt_len = make_ctrl_packet (ctrl_pkt, ctrl_char);

 write(port_id, ctrl_pkt, ctrl_pkt_len);

Aung Soe Design and Implementation of an RF Data Communication System 86

 printf("\n ACK PKT is sent back to the sender. \n");

 state = CHECK_CHAR;

 }

 else if (ctrl_char == NAK) {

 printf("\n ERROR receiving PKT[#%d] \n", (packet_num));

 ctrl_pkt_len = make_ctrl_packet (ctrl_pkt, ctrl_char);

 write(port_id, ctrl_pkt, ctrl_pkt_len);

 printf("\n NAK PKT is sent back to the sender. \n");

 state = CHECK_CHAR;

 }

 else if (ctrl_char == READY) {

 printf("\n Connection Ready... \n");

 ctrl_pkt_len = make_ctrl_packet (ctrl_pkt, ctrl_char);

 write(port_id, ctrl_pkt, ctrl_pkt_len);

 printf("\n READY PKT is sent back to the sender. \n");

 state = CHECK_CHAR;

 }

 break; // end of case SEND_CTRL_PACKET

 } /* end of switch */

 } /* end of while */

 num_pkt = packet_num; / return number of received packets */

} /* end of function */

/**

 Create control packet with CRC

 int make_ctrl_packet (char *ctrl_pkt, char ctrl_char);

 char ctrl_char : (input) a chosen control message

 char *ctrl_pkt : (output) a control packet with the control message

 Return value from this function is the number of character in the control packet.

 Packet data format:

 [0] [1] [2] [3] [4] [5]

 |---------||----------||----------||----------||----------||---------|

 | SOT || opCode || CTRL MSG || CRC HI || CRC LOW || EOT |

 |---------||----------||----------||----------||----------||---------|

 | 1 Byte || 1 Byte || 1 Byte || 1 Byte || 1 Byte || 1 Byte |

 Byte 0 consists of the data header (SOT). Byte 1 is an opcode for control packet

 (opCode=2). Byte 2 is a control character. Byte 3 and Byte 4 consists of a 16-bit (2-

byte)

 Cyclic Redundancy Check (CRC) Checksum value calculated using the Byte 1. The

calculation

 is done by calling the function, crcFast() from "crc.h". Byte 5 is the end of packek.

****/

int make_ctrl_packet (char *ctrl_pkt, char ctrl_char) {

 crc crc_value; /* CRC value of control packet */

 char temp_ctrl_char[3];

 int total_char; /* total character in control packet */

 char opCode = CTRL_PKT; /* Opcode for control packet (Opcode = 2) */

 int i = 0;

 crcInit(); /* initialize the CRC look up table */

Aung Soe Design and Implementation of an RF Data Communication System 87

 temp_ctrl_char[0] = SOT;

 temp_ctrl_char[1] = opCode;

 temp_ctrl_char[2] = ctrl_char;

 ctrl_pkt[i] = SOT; /* Begin a control pkt with SOT */

 ctrl_pkt[++i] = opCode; /* Opcode for control packet */

 ctrl_pkt[++i] = ctrl_char;

 crc_value = crcFast(temp_ctrl_char, 3); /* Generate CRC for ctrl packet */

 ctrl_pkt[++i] = crc_value >> 8; /* Store crc high byte */

 ctrl_pkt[++i] = crc_value & 0x00FF; /* Store crc low byte */

 ctrl_pkt[++i] = EOT; /* End a control pkt with EOT */

 return (total_char = ++i); /* Return number of character in control pkt

*/

}

/**

 Allocate memory address for an 2D array

 char** create_2D_char_array(int num_rows, int num_cols);

 int num_rows : (input) number of rows in the 2D array

 int num_cols : (input) number of column in the 2D array

 This function return memory addresses allocated for a 2D array.

****/

char** create_2D_char_array(int num_rows, int num_cols) {

 char **2D_array;

 /* Allocate pointer memory for the first dimension of a matrix[][]; */

 2D_array = (char **) malloc(num_rows * sizeof(char *));

 if(2D_array == NULL){

 free(2D_array);

 printf("Memory allocation failed while allocating for dim[].\n");

 exit(-1);

 }

 /* Set all pointers to NULL */

 /* This will make it possible to call free() if out of memory during data allocation

*/

 memset(2D_array, 0, num_rows * sizeof(char*));

 /* Allocate integer memory for the second dimension of a dim[][]; */

 register int i;

 for(i = 0; i < num_rows; i++) {

 2D_array[i] = (char *) malloc(num_cols * sizeof(char));

 if(NULL == 2D_array[i]){

 free(2D_array[i]);

 printf("Memory allocation failed while allocating for dim[x][].\n");

 exit(-1);

 }

 }

 return *&2D_array; /* Return an allocated 2D array */

}

/**

 Write data into a local file for storage

****/

void write_data (char **pkt, char *fn, int num_pkt, int num_char) {

 char temp_char[PKT_SIZE];

Aung Soe Design and Implementation of an RF Data Communication System 88

 int i, j;

 /* open a file */

 FILE *datafile; /* need a pointer to FILE */

 datafile = fopen(fn, "a"); /* Open "file_name" for appending */

 printf("\n Number of packet: %d \n", num_pkt);

 printf("\n Number of character in each packet: %d \n", num_char);

 for (i = 0; i < num_pkt; i++) {

 if (datafile == NULL) {

 printf("Cannot open file (%s)!\n", fn);

 }

 for (j = 0; j < num_char; j++) {

 temp_char[j] = pkt[i][j];

 }

 fwrite(temp_char, num_char, 1, datafile);

 }

 fclose(datafile);

}

/**

 Read character with timeout

 char read_timeout(int port_ID, int timeout_sec);

 int port_ID : (input) file descriptor for RS232 serial port

 int timeout_sec : (input) timeout (in sec)

 return a single character found at Serial port; if no character is found, return

NULL.

****/

char read_timeout(int port_ID, int timeout_sec) {

 char found_char; /* Character found at Serial port */

 int counter, i; /* Time counter for each sec */

 int found; /* indicator for found character */

 int time_out; /* indicator for timeout */

 /* read a character with timeout */

 counter = 0;

 found = FALSE;

 time_out = FALSE;

 while ((! found) & (! time_out)) {

 /* read must be non-blocking */

 if ((i = read(port_ID, &found_char, 1)) > 0) {

 found = TRUE; /*character read*/

 }

 else {

 counter++;

 if (counter >= timeout_sec) {

 time_out = TRUE;

 }

 else {

 /* sleep for 1 ms - 1 character time at 9600 BAUD */

 usleep(1000);

 }

 }

 }

 if (found) {

Aung Soe Design and Implementation of an RF Data Communication System 89

 //printf("Message found: %02X\n", found_char);

 return (found_char); // return a single found character

 }

 if (time_out) {

 //printf("Time out error!\n");

 //printf("Message found: %02X\n", found_char);

 return (found_char); // return NULL char if timeout

 }

}

/**

 Open RS232 Serial port 1

****/

int open_RS232port(void) {

 int port_id;

 port_id = open(PORT_NAME, O_RDWR);

 return(port_id);

}

/**

 Clean up the allocated 2-D array

****/

void cleanUp_2D_array(char **array, int x) {

 int i;

 for(i = 0; i < x; i++)

 free(array[i]);

 free(array);

}

13.3. Appendix C: Completer code listing of a transceiver control program

#pragma CODE //generate assembly code in the LST file

Aung Soe Design and Implementation of an RF Data Communication System 90

//---

// Program : SeniorProject_8051_Final_Code.c

// Author : Aung Soe

// Date : 01/16/2011

//

// This program is used to control data transmission between the PC and the

radio.

// The purpose of this program is to isolate the characteristic of the PC and

that of

// radio. Replacing the radio will not affect any hardware or software

components of

// the PC. This program uses two UARTs to transmit data from the PC to the

radio and

// vice versa. The data is received from the PC via RI0 of UART0 and transmit

to the

// radio via TX1 of UART1. The data from the radio is received via RI1 of UART1

and

// transmit the PC via TX0 of UART0. RI0 and RI1 (receive interrupt flags) are

used

// to detect the incoming data from the PC and the radio respectively. The

advantage

// of this program is that prior to receiving the data, it does not need to

know the

// number of characters. The program uses timeout to indicate the end of the

received

// data.

//

// I am not sure the way I implement the timeout is efficient but it works the

way I

// want. First, I initialize the timeout as an int variable (16 bits) starting

from

// 2. After receiving the first character, the timeout is start counting and

each

// remaining character is read at the same time. The timeout is incremented

from 2 up

// to 2^16. If the timeout is greater than 2^16, the timeout becomes overrun

and

// returns back to 0. It keeps incrementing again. The timeout period between

each

// character is approximately 200 ms which is counting from 2 until reching 1

again.

// If the subsequent character is not received within 200 ms, the receiving

process

// is ended and the transmission process is initialized.

//---

#include <c8051f020.h> // SFR declarations

#include <stdio.h>

//---

// 16-bit SFR Definitions for 'F02x

//---

sfr16 DP = 0x82; // data pointer

sfr16 TMR3RL = 0x92; // Timer3 reload value

sfr16 TMR3 = 0x94; // Timer3 counter

sfr16 ADC0 = 0xbe; // ADC0 data

sfr16 ADC0GT = 0xc4; // ADC0 greater than window

sfr16 ADC0LT = 0xc6; // ADC0 less than window

Aung Soe Design and Implementation of an RF Data Communication System 91

sfr16 RCAP2 = 0xca; // Timer2 capture/reload

sfr16 T2 = 0xcc; // Timer2

sfr16 RCAP4 = 0xe4; // Timer4 capture/reload

sfr16 T4 = 0xf4; // Timer4

sfr16 DAC0 = 0xd2; // DAC0 data

sfr16 DAC1 = 0xd5; // DAC1 data

//---

// Global CONSTANTS

//---

#define SYSCLK 22118400 // approximate SYSCLK frequency in Hz

#define BAUDRATE 9600 // Baud rate of UART0 and UART1 in bps

#define TRUE 1

#define FALSE 0

unsigned char xdata PC_msg[1000];

unsigned char xdata Radio_msg[1000];

unsigned char *char_ptr0;

unsigned char *char_ptr1;

unsigned char buffer0, buffer1;

int Timeout;

int total_char;

int char_count0;

int char_count1;

int i, j;

bit PC_msgReady, Radio_msgReady;

bit finish_receiving;

//---

// Function PROTOTYPES

//---

//

void Port_IO_Init(void);

void UART0_Init(void);

void UART1_Init(void);

void Oscillator_Init(void);

void Interrupts_Init(void);

//---

// MAIN Routine

//---

//

void main (void) {

 WDTCN = 0xde; // Disable watchdog timer

 WDTCN = 0xad;

 Oscillator_Init(); // Enable external oscillator

 Port_IO_Init(); // Enable ports

 UART0_Init(); // Enable UART0

 UART1_Init(); // Enable UART1

 Interrupts_Init(); // Enable global interrupts

Aung Soe Design and Implementation of an RF Data Communication System 92

 PC_msgReady = 0;

 Radio_msgReady = 0;

 char_count0 = 0;

 char_count1 = 0;

 char_ptr0 = PC_msg;

 char_ptr1 = Radio_msg;

 while (1) { // Loops forever

 // While RI0 is not set and RI1 is not set (polling) ...

 while ((RI0 != 1) && (!(SCON1 & (1 << 0))));

 Timeout = 2; // Initialize the timeout

 // If RX0 is set, incoming char from PC is read and transmitted to

Radio

 // Receive port : RI0

 // Transmit port : TX1

 if (RI0 == 1) {

 RI0 = 0; // Reset receive interrupt flag (RI0 =

0)

 buffer0 = SBUF0; // Put a received char in a buffer

 *(char_ptr0++) = buffer0; // Retrieve incoming char from PC and

 // store it into an array (PC_msg)

 char_count0++; // Increment character counter

 finish_receiving = FALSE; // Initialize reading process indicator

 while (! finish_receiving) {

 // while RI0 is not set and there is no Timeout...

 // Timeout between each incoming char is about 200 ms

 while ((RI0 != 1) && (Timeout != 1)) {

 for(i=0;i<5;i++);

 ++Timeout;

 }

 // if incoming character from PC is ready without Timeout...

 // or if incoming character from PC is ready when Timeout

occurs...

 if (((RI0 == 1) && (Timeout != 1)) || ((RI0 == 1) && (Timeout

== 1))) {

 RI0 = 0; // Reset receive interrupt flag

(RI0)

 buffer0 = SBUF0; // Put a received char in a

buffer

 *(char_ptr0++) = buffer0; // Retrieve incoming char from

PC and

 // continue stroing it in the

array

 Timeout = 2; // Reset Timeout

 char_count0++; // Character counting

 }

 // if incoming character from PC is not ready and Timeout

occurs...

 else if ((RI0 == 0) && (Timeout == 1)) {

Aung Soe Design and Implementation of an RF Data Communication System 93

 total_char = char_count0; // total characters in received

msg

 char_count0 = 0; // Clear character counter

 finish_receiving = TRUE; // Indicate message reading

finish

 SCON1 |= 0x02; // Set TI1 (TX interrupt flag)

to 1

 PC_msgReady = 1; // Indicate message from PC is

ready

 }

 }

 // if the transmitter (TX1) avaliable and PC message is ready...

 if ((SCON1 & (1 << 1)) && PC_msgReady) {

 char_ptr0 = PC_msg;

 for (j = 0; j < total_char; j++) {

 while (!(SCON1 & (1 << 1)));// While TI1 = 0

 SBUF1 = *(char_ptr0++); // Load char to send through

TX1

 for(i=0;i<2500;i++); // Delay between each byte

 }

 char_ptr0 = PC_msg;

 PC_msgReady = 0; // Mark msg buffer empty

 SCON1 &= 0xFC; // Clear UART1 interrupt flags

 break;

 }

 } // End of if statement for checking whether RI0 or RI1 is set

 // If RX1 is set, incoming message from radio is read and transmitted

to PC

 // Receive port : RI1

 // Transmit port : TX0

 else if ((SCON1 & (1 << 0))){

 SCON1 &= ~(1 << 0); // Reset receive interrupt flag

(RI1 = 0)

 buffer1 = SBUF1;

 *(char_ptr1++) = buffer1; // Retrieve incoming char from PC

 char_count1++; // Start character counter

 finish_receiving = FALSE;

 while (! finish_receiving) {

 // while RI1 is not set and there is no Timeout...

 // Timeout between each incoming char is about 200 ms

 while ((!(SCON1 & (1 << 0))) && (Timeout != 1)) {

 for(i=0;i<5;i++);

 ++Timeout;

 }

 // if incoming character from radio is ready without Timeout

 // or if incoming character from radio is ready when Timeout

occurs

 if (((SCON1 & (1 << 0)) && (Timeout != 1)) || ((SCON1 & (1 <<

0)) && (Timeout == 1))) {

Aung Soe Design and Implementation of an RF Data Communication System 94

 SCON1 &= ~(1 << 0); // Reset receive interrupt flag

 buffer1 = SBUF1;

 *(char_ptr1++) = buffer1; // Retrieve incoming char from

PC

 Timeout = 2; // Reset Timeout

 char_count1++; // Character counting

 }

 // if incoming character from radio is not ready and Timeout

occurs

 else if ((!(SCON1 & (1 << 0))) && (Timeout == 1)) {

 total_char = char_count1; // Total char in received

packet

 char_count1 = 0; // Clear character counter

 finish_receiving = TRUE; // Indicate message reading

finish

 TI0 = 1; // Set TI0 (TX interrupt flag)

to 1

 Radio_msgReady = 1; // Indicate Radio message ready

 }

 }

 // if the transmitter (TX0) avaliable and Radio message is ready...

 if ((TI0 == 1) && Radio_msgReady) {

 char_ptr1 = Radio_msg;

 for (j = 0; j < total_char; j++) {

 while (TI0 == 0); // While TI0 = 0

 SBUF0 = *(char_ptr1++); // Load char to send through

TX0

 for(i=0;i<2500;i++); // Delay between each byte

 }

 char_ptr1 = Radio_msg;

 Radio_msgReady = 0; // Mark msg buffer empty

 SCON0 &= 0xFC; // Clear UART0 interrupt flags

 break;

 }

 } // End of else if statement for checking whether RI0 or RI1 is set

 } // End of while loop

} // End of main

//---

// UART0_Init

//---

//

void UART0_Init() // Configures UART to our specifications.

{

 PCON |= 0x80; // Disable Baud Rate / 2 (Set SMOD0 = 1)

 SCON0 = 0x50; // SCON0: mode 1, 8-bit UART enable RX

 SCON0 &= 0xFC; // Clear interrupt pending flags

 //SCON0 |= 0x02; // Set TI0 (TX interrupt flag) to 1

Aung Soe Design and Implementation of an RF Data Communication System 95

 CKCON |= 0x10; // Timer 1 uses SYSCLK as time base

 TCON = 0x40; // Timer 1 enabled

 TMOD = 0x20; // TMOD: timer 1, mode 2. 8-bit reload

 TH1 = -(SYSCLK/BAUDRATE/16); // Set Timer 1 reload value for

baudrate (9600bps)

}

//---

// UART1_Init

//---

//

void UART1_Init() // Configures UART to our specifications.

{

 PCON |= 0x10; // Disable Baud Rate / 2 (Set SMOD1 = 1)

 SCON1 = 0x50; // SCON1: mode 1, 8-bit UART, enable RX

 SCON1 &= 0xFC; // Clear interrupt pending flags

 //SCON1 |= 0x02; // Set TI1 (TX interrupt flag) to 1

 CKCON |= 0x40; // Timer 4 uses SYSCLK as time base

 T4CON = 0x34; // Set baudrate generator for UART1

 RCAP4 = -(SYSCLK/BAUDRATE/32); // Set Timer 4 reload value for

baudrate (9600bps)

 T4 = RCAP4;

}

//---

// Port_IO_Init

//---

//

void Port_IO_Init() // Configures ports to our specifications.

{

 // P0.0 - TX0 (UART0), Push-Pull, Digital

 // P0.1 - RX0 (UART0), Open-Drain, Digital

 // P0.2 - TX1 (UART1), Push-Pull, Digital

 // P0.3 - RX1 (UART1), Open-Drain, Digital

 P0MDOUT = 0x05; // Set P0.0 & P0.2 to be Push-Pull Output

 XBR0 = 0x04; // Enable crossbar

 XBR1 = 0x00;

 XBR2 = 0x44;

}

//---

// Oscillator_Init

//---

//

void Oscillator_Init() // Configures the external oscillator to our

specifications.

{

 int i = 0;

Aung Soe Design and Implementation of an RF Data Communication System 96

 OSCXCN = 0x67; // Enable 22.1184 MHz as external

oscillator

 for (i = 0; i < 3000; i++); // Wait 1ms for initialization

 while ((OSCXCN & 0x80) == 0);

 OSCICN = 0x08;

}

//---

// Interrupts_Init

//---

// Initiate interrupt service routine

void Interrupts_Init(void)

{

 EA = 1; // Enable Global Interrupt (IE: Interrupt Enable)

}

	Union College
	Union | Digital Works
	6-2011

	Design and Implementation of an RF Data Communication System
	Aung K. Soe
	Recommended Citation

	Design and Implementation of an RF Data Communication System

