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ABSTRACT

PHILLIPS, COURTNEY Lattice Theory. Department of Mathematics, June
2011.

ADVISOR: Susan Niefield

A lattice is a type of structure that aims to organize certain relationships that

exist between members of a set. This thesis seeks to define lattices, and demonstrate

the different types. It will give examples of lattices, as well as various ways to describe

and classify them.

ii



Contents

1 Introduction 1

2 An Introduction to Posets 2

3 An Introduction to Lattices 7

4 An Introduction to Ring Theory 13

5 Lattice Homomorphisms 16

6 Properties of Lattice Elements 17

7 Types of Lattices 24

8 Adjoints Between Posets 39

iii



1 Introduction

Mathematicians began studying what is now known as lattice theory in the early nin-

teenth century. English mathematician George Boole sought to formalize the concept

of propositional logic, which led to the study of a type of lattice, known as a Boolean

algebra, which will be discussed later. In the late ninteenth and early twentieth

centuries, American mathematician Charles Sanders Peirce and German mathemati-

cian Ernst Schröder introduced the concept of lattices, while German mathematician

Richard Dedekind introduced lattices in his research of algebraic numbers.

Lattice theory became securely rooted in the field of abstract algebra. The Amer-

ican mathematician Garrett Birkhoff, who studied abstract algebra and group theory,

published a series of papers in the 1930s, as well as the book Lattice Theory in 1940

which converted lattice theory into a major branch of abstract algebra. Birkhoff used

contributions both from Charles Sanders Peirce and Ernst Schröder, and showed that

lattice theory could provide a unifying framework for various unrelated developments

of mathematics.

Distributive lattices were among the first lattices to be considered, and are there-

fore the most extensive and well-researched subportion. Because of this, mathemati-

cians find it easier to work with lattices after developing a strong grasp on distributive

lattices. Distributivity has provided the motivation for many results in general lat-

tice theory, and as well, weakened forms of distributivity have been used to prove

conditions on lattices and on lattice elements. (For more information, see [6])

In sections two through four, we will introduce the notions of partially ordered sets,

lattices, and rings, giving definitions, properties, and examples for each. In section

five, we will describe and categorize functions that exist between different lattices.

Section six will show an alternate method of describing a relationship between lattice

elements. In section seven, we will consider different types of lattices, giving methods

of distinguishing between them and examples of these types. Finally, section eight
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will introduce functions between posets (and between lattices) known as adjoints, and

describe properties of these adjoints.

2 An Introduction to Posets

In this section, we will introduce the concept of a poset and give definitions, examples,

and properties of partial orderings and posets. We will prove an important theorem

that will give us the ability to establish properties of lattices.

Definition 2.1. A binary relation ≤ on a set P is called

(i) reflexive if a ≤ a, for all a ∈ P

(ii) antisymmetric if a ≤ b and b ≤ a imply that a = b

(iii) transitive if a ≤ b and b ≤ c imply that a ≤ c

(iv) a partial ordering if it is reflexive, antisymmetric, and transitive.

Note that for antisymmetry, we can consider more than just two elements of P .

If x0 ≤ x1 ≤ . . . ≤ xn−1 ≤ x0, then x0 = x1 = . . . = xn−1.

Definition 2.2. A set P together with a partial ordering ≤ is called a partially

ordered set or poset, and is denoted by 〈P ;≤〉, or merely P .

Like any mathematical structures, posets and partial orderings have certain prop-

erties that hold in all cases. For example, if 〈P ;≤〉 is a poset and Q ⊆ P with ≤Q

denoting the restriction of ≤ to Q, then Q is a poset with partial ordering ≤Q.

Examples 2.3. The following are examples of posets:

(1) 〈P(X);⊆〉, where P(X) is the set of subsets of a given set X. In this case, the

relation ≤ is defined for X0, X1 ∈ P(X) by X0 ≤ X1 if and only if X0 ⊆ X1.
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(2) 〈O(Rn);⊆〉, where O(Rn) is the set of open subsets of the real numbers.

(3) 〈Idl(R);⊆〉, where Idl(R) is the set of ideals of a ring R.

(4) 〈P ;≤〉, where P = {0, a, b, 1} and ≤= {(0, a), (0, b), (a, 1), (b, 1)}.

Since 〈P(X);⊆〉 is clearly a poset, we know that Examples 2 and 3 are posets

since O(Rn) ⊆ P(Rn) and Idl(R) ⊆ P(R). We will go into detail in later sections

concerning the definitions and properties of open subsets of Rn and ideals of a ring

R. In Example 4, we defined the relation ≤ explicitly. We interpret this set as

(x, y) ∈ ≤ if and only if x ≤ y

When referring to a general poset, we often refer to the set itself without explicit

reference to the relation.

There are many ways to express a poset, particularly when the underlying set

is finite. Our first option is to represent a poset P using a Hasse diagram, a visual

representation of both the set, and the relationship between items, defined as follows.

Definition 2.4. Let P be a poset, and let a, b ∈ P . Write a < b if a ≤ b and a 6= b.

Then a is covered by b, or b covers a, if a < b and there is no c such that a < c < b.

Definition 2.5. A Hasse diagram for a poset P is the graph (as defined by [2]) such

that its vertices are elements of P , its edges are sets {a, b} such that b covers a, and

it is drawn so that a is lower than b.

Definition 2.5 gives us the following Hasse diagram for Example 4 above.
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With these beginning tools, we can now begin to demonstrate properties of posets.

We will first look at the concept of duality, and how it relates to posets. The following

is the Hasse diagram of “another” poset. We will see later that these posets are

intrinsically the same.
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This is the poset 〈P ◦;≤◦〉 obtained from Example 4 by the following general

construction. The dual of a poset 〈P ;≤〉 is the poset denoted by 〈P ◦;≤◦〉 or just P ◦,

and defined by P ◦ = P and x ≤◦ y if and only if y ≤ x. Note that for every poset P ,

(P ◦)◦ = P .

We can relate two elements of a poset with a partial ordering relation, deciding

which element, if either, is greater than the other. We can also define relations to

relate multiple elements, even entire subsets, of a poset.

Definition 2.6. Let 〈P ;≤〉 be a poset, H ⊆ P , and a ∈ P . Then a is an upper bound

of H if h ≤ a, for all h ∈ H. An upper bound a is a least upper bound if a ≤ b, for

all upper bounds b of H.
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The least upper bound of H is also called the supremum or the join of H, and is

denoted by supH and
∨
H, respectively. By replacing instances of ≤ with ≥, we get

the definitions of lower bound and greatest lower bound. The greatest lower bound of

H is called the infimum or the meet of H, denoted by inf H and
∧
H, respectively.

Proposition 2.7. For every set P , if x ∈ P and S ⊆ P such that for all y ∈ P

(s ≤ y, for all s ∈ S if and only if x ≤ y), then x =
∨
S.

Proof. Since x ≤ x by reflexivity, we know s ≤ x, for all s ∈ S, and so x is an upper

bound of S. Then, for every upper bound y, since s ≤ y, for all s ∈ S, it must be that

x ≤ y. Thus, x is the least upper bound of S, and we conclude that x =
∨
S.

Similar to posets, the concepts of upper bound and lower bound are dual to each

other, because one can be obtained from the other by reversing the inequality. In

particular, a = supH in P if and only if a = inf H in P ◦. More generally, if Φ is a

statement about posets, then the dual of Φ, denoted Φ◦, is the statement obtained

by replacing all occurances of ≤ with ≥.

Proposition 2.8. (Duality Principle) If Φ is true for all posets, then Φ◦ is also

true for all posets.

Proof. Suppose Φ holds for all posets, and let P be an arbitrary poset. Since P ◦ is a

poset, it follows that Φ holds for P ◦. Then Φ◦ holds for P , and thus Φ◦ holds for all

posets.

With the concepts of meets and joins, we can demonstrate another method of

representing certain finite posets. For Example 4 above, we can create a meet table,

a join table, and a join/meet table, pictured below.

In Table 1, the intersection between any two elements will give the meet of these

two elements. Similarly, in Table 2, the intersection will give the join. In Table 3, we

combined the previous two tables since both are symmetric about a forty-five degree
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∧
0 a b 1

0 0 0 0 0
a 0 a 0 a
b 0 0 b b
1 0 a b 1

Table 1:
∧

Table

∨
0 a b 1

0 0 a b 1
a a a 1 1
b b 1 b 1
1 1 1 1 1

Table 2:
∨

Table

∨
\
∧

0 a b 1
0 ? 0 0 0
a a ? 0 a
b b 1 ? b
1 1 1 1 ?

Table 3:
∨
/
∧

Table

line, marked with stars. To find the meet of two elements, we use the intersection

that lies above the star line; to find the join, we use the intersection below the star

line.

Since ∅ ⊆ P , for every poset P , we can consider inf ∅ and sup ∅. We know that

inf ∅, if it exists, is the lower bound that is greater than every other lower bound.

But since every element of P is a lower bound of ∅, inf ∅ is the element that is greater

than every element of P . Thus, inf ∅ = supP . This element is also called top, written

> or 1. Dually, sup ∅ = inf P is called bottom, written ⊥ or 0.

However, like with any subset, ∅ may not have a meet or a join in P . For example,

the poset 〈Z;≤〉 is one in which inf ∅ and sup ∅ do not exist.

We can show a dual relationship between least upper bounds and greatest lower

bounds.

Theorem 2.9. Let P be a poset. Then
∧
H exists, for all H ⊆ P , if and only if

∨
H

exists, for all H ⊆ P .

Proof. Let
∨
K exist for all K ⊆ P , and let H ⊆ P . Then H l denotes the set of

lower bounds of H. Now, since H l ⊆ P and all joins of P exist,
∨
H l exists.

Since m ≤ h, for all m ∈ H l and h ∈ H, it follows that
∨
H l ≤ h, for all h ∈ H,

and so
∨
H l is a lower bound of H. To show that

∨
H l =

∧
H = inf H, let a be a

lower bound of H. Then a ≤ h, for all h ∈ H. So a ∈ H l, and thus a ≤
∨
H l, as

desired.

By the Duality Principle, we get that if
∧
H exists for all H, then

∨
H exists for

all H.
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Since we have defined least upper bound and greatest lower bound, we can see

one type of a lattice:

Definition 2.10. A complete lattice is a poset P for which
∨
H (or equivalently∧

H) exists, for all subsets H ⊆ P .

In the following section, we will see how this changes if
∨

and
∧

exist only for

finite subsets. We can also consider functions between posets.

Definition 2.11. Let P and Q be posets. A function f : P → Q is order preserving,

or equivalently monotone, if a ≤ b implies that fa ≤ fb.

We will give examples of order-preserving functions in later sections.

3 An Introduction to Lattices

Now we can begin our inquiry into lattices. In this section, we will start with two

different definitions, one order theoretic and one algebraic, and then we will prove

that these definitions are equivalent.

Definition 3.1. A poset 〈P ;≤〉 is a lattice if sup{a, b} and inf{a, b} exist for all

a, b ∈ P , or equivalently, if supH and inf H exist for every finite nonempty subset H

of P .

There is also an algebraic approach to lattices, one that does not use the concept

of posets.

Definition 3.2. A set together with binary operations ∨ and ∧ is a lattice if

(i) ∨ and ∧ are idempotent, i.e., a ∧ a = a and a ∨ a = a

(ii) ∨ and ∧ are commutative, i.e., a ∧ b = b ∧ a and a ∨ b = b ∨ a

(iii) ∨ and ∧ are associative, i.e., (a∧ b)∧ c = a∧ (b∧ c) and (a∨ b)∨ c = a∨ (b∨ c)
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(iv) ∨ and ∧ satisfy the absorption identities, i.e., a∨ (a∧ b) = a and a∧ (a∨ b) = a

But since we have two definitions of lattices and only one concept, we are able to

prove that these two definitions are equivalent and can thus be used interchangably.

First, we will relate the binary relations used in each definition.

Lemma 3.3. If L× L ∗ // L is commutative, associative, and idempotent, then ≤∗,

defined by a ≤∗ b⇔ a ∗ b = b, is a partial ordering on L and a ∗ b = sup{a, b}.

Proof. We know a ≤∗ a⇔ a∗a = a. But since ∗ is idempotent, we know by definition

that a ∗ a = a, and thus ≤∗ is reflexive.

Assume a ≤∗ b and b ≤∗ a. Since a ≤∗ b and b ≤∗ a, we know that a ∗ b = b and

b∗a = a. Since ∗ is commutative, it follows that a∗b = b∗a, and so a = b∗a = a∗b = b,

as desired.

Assume a ≤∗ b and b ≤∗ c. We know that a ∗ b = b and b ∗ c = c. Then, by

substituting b ∗ c for c and b for a ∗ b, and by associativity of ∗, we have:

a ∗ c = a ∗ (b ∗ c)

= (a ∗ b) ∗ c

= b ∗ c

= c

Thus, a ∗ c = c, so a ≤∗ c, and thus ≤∗ is transitive.

To show that a ∗ b = sup{a, b}, we know that a ≤∗ a ∗ b ⇔ a ∗ (a ∗ b) = a ∗ b.

We know already that ∗ is associative, idempotent, and commutative. Consider the

following:

a ∗ (a ∗ b) = (a ∗ a) ∗ b

= a ∗ b
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Similarly, for b ≤∗ a ∗ b, we first have

b ∗ (a ∗ b) = b ∗ (b ∗ a)

= (b ∗ b) ∗ a

= b ∗ a

= a ∗ b

Then, a ∗ b is an upper bound of {a, b}.

Now, assume we have c ∈ L such that a ≤ c and b ≤ c. Then a ∗ c = c and

b ∗ c = c. Now, to show that a ∗ b ≤ c, we have the following:

(a ∗ b) ∗ c = a ∗ (b ∗ c)

= a ∗ c

= c

Thus, a ∗ b = sup{a, b}, as desired.

Next, we will show that our poset is an “algebraic semilattice”. However, we must

first define what this means.

Definition 3.4. Let 〈A; ◦〉 be a set with one binary operation ◦. Then 〈A; ◦〉 is called

an algebraic semilattice if ◦ is idempotent, commutative, and associative. A poset

〈P ;≤〉 is a join semilattice if sup{a, b} exists, for all a, b ∈ P . A meet semilattice is

defined dually.

Note that a poset is a lattice if and only if it is both a meet semilattice and a join

semilattice.

Now we can continue on to our proof.

Lemma 3.5. If (P,≤) is a join semilattice, then (P,∨) is an algebraic semilattice.
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Proof. Assume (P,≤) is a join semilattice, i.e., a∨b = sup{a, b} exists, for all a, b ∈ P .

To show that ∨ is commutative, consider a ∨ b. Then:

a ∨ b = sup{a, b}

= sup{b, a}

= b ∨ a.

Thus, ∨ is commutative, as desired. Now, to show that ∨ is idempotent, consider

a ∈ P . Then we have that a ∨ a = sup{a, a} = sup{a} = a, so ∨ is idempotent.

Finally, to show that ∨ is associative, first, we will show that a ≤ b and

c ≤ d ⇒ a ∨ c ≤ b ∨ d. We know that a ≤ b ≤ b ∨ d, and c ≤ d ≤ b ∨ d. So

b ∨ d is an upper bound of {a, c}. But since a ∨ c = sup{a, c}, a ∨ c ≤ b ∨ d, as

desired. Now, consider (a ∨ b) ∨ c ≤ a ∨ (b ∨ c). To show this, since a ≤ a ∨ (b ∨ c)

and b ≤ b ∨ c ≤ a ∨ (b ∨ c), we have that a ∨ b ≤ a ∨ (b ∨ c). Also, we have that

c ≤ b ∨ c ≤ a ∨ (b ∨ c). Then since we have a ∨ b ≤ a ∨ (b ∨ c) and c ≤ a ∨ (b ∨ c),

so we get that (a ∨ b) ∨ c ≤ a ∨ (b ∨ c). Similarly, consider a ∨ (b ∨ c) ≤ (a ∨ b) ∨ c.

For this, we have a ≤ (a ∨ b) ≤ (a ∨ b) ∨ c. Also, since b ≤ (a ∨ b) ≤ (a ∨ b) ∨ c and

c ≤ (a∨ b)∨ c, we have that b∨ c ≤ (a∨ b)∨ c. Thus, since we have a ≤ (a∨ b)∨ c and

(b ∨ c) ≤ (a ∨ b) ∨ c, we have a ∨ (b ∨ c) ≤ (a ∨ b) ∨ c, as desired. Now, since we have

a∨ (b∨ c) ≤ (a∨ b)∨ c and (a∨ b)∨ c ≤ a∨ (b∨ c), we have a∨ (b∨ c) = (a∨ b)∨ c,

and thus ∨ is associative.

Finally, we are ready to prove the equivalence of our two definitions of a lattice.

Theorem 3.6. (L,≤) is a lattice with a ∧ b = inf{a, b} and a ∨ b = sup{a, b} if and

only if ∧,∨ are idempotent, commutative, associative, and satisfy the two absorption

identities.

Proof. Assume ∧,∨ are idempotent, commutative, associative, and satisfy the two
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absorption identities. Define ≤∨ by

a ≤∨ b⇔ a ∨ b = b

and define ≤∧ by

a ≤∧ b⇔ b ≤∧ a⇔ b ∧ a = a

Then by Lemma 3.3, ≤∨ is a partial ordering on L with a∨ b = sup{a, b}, and by the

duel of Lemma 3.3, ≤∧ is a partial ordering on L with b ∧ a = inf{a, b}.

Now, we have assumed that a ∨ (a ∧ b) = a and a ∧ (a ∨ b) = a. To show that

a ∨ b = b⇒ a ∧ b = a, suppose a ∨ b = b. Then

a ∧ b = a ∧ (a ∨ b)

= a

To show that a ∧ b = a⇒ a ∨ b = b, suppose a ∧ b = a. Then

a ∨ b = b ∨ (b ∧ a)

= b

Thus, a ∨ b = b ⇔ a ∧ b = a, so (L,≤) with ≤ defined by a ≤ b ⇔ (a ∨ b = b and

a ∧ b = a) is a lattice.

Now, assume that (L,≤) is a lattice with a ∧ b = inf{a, b} and a ∨ b = sup{a, b}.

Then (L,≤∨) is a ∨−semilattice, so by Lemma 3.5, we have that ∨ is commutative,

idempotent, and associative. Similarly, ∧ is commutative, idempotent, and associa-

tive.

To show that a∨ (a∧ b) = a, we know that a ≤ a∨ (a∧ b). And, since a ≤ a and

a ∧ b ≤ a, we have that a ∨ (a ∧ b) ≤ a. Thus, we get that a ∨ (a ∧ b) = a.
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To show that a∧ (a∨ b) = a, we first know that a∧ (a∨ b) ≤ a. Then, since a ≤ a

and a ≤ a ∨ b, we know that a ≤ a ∧ (a ∨ b). Thus, a ∧ (a ∨ b) = a, as desired.

Consider the four examples in 2.3. Each of these examples is a complete lattice.

In Example 1,
∧
Aα =

⋂
Aα and

∨
Aα =

⋃
Aα. For Example 2,

∨
Uα =

⋃
Uα

and since O(Rn) is closed under unions, we have that

∧
Uα =

⋃
{V |V ⊆

⋂
Uα}

denoted (
⋂
Uα)◦, by the proof of Theorem 2.9. In Example 3,

∧
Aα =

⋂
Aα, and∨

Aα = ΣAα, which will be defined in a later section. For Example 4,∧
X = inf X and

∨
X = supX, for all X ⊆ P , as expected. So we must ask

ourselves: Is every poset a lattice?

By definition, every lattice is a poset. The following Hasse diagrams are examples

of posets:

•

• •

A
A
A

�
�
�

•

• •

�
�
�

A
A
A

• •

•

• •

�
�
�

A
A
A

A
A
A

�
�
�

The first poset is a meet semilattice, but not a join semilattice. Dually, the second

poset is a join semilattice, but not a meet semilattice. Finally, the third poset is

neither a meet semilattice nor a join semilattice. Thus, none of these three posets are

lattices.
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4 An Introduction to Ring Theory

This section will develop a basis for working with rings and ideals of a ring. We will

begin by defining a ring and giving examples. Then, we will define different types of

ideals. We will prove certain properties about ideals, and define residuals. In a later

section, we will use this concept of rings and ideals to study lattices more in depth.

Definition 4.1. A ring is a set R with binary operations + and · such that

(i) (R,+) is an abelian group

(ii) a(bc) = (ab)c, for all a, b, c ∈ R

(iii) a(b+ c) = ab+ ac and (b+ c)a = ba+ ca, for all a, b, c ∈ R

A ring is commutative if ab = ba, for all a, b ∈ R. A ring has unity, also called a

ring with 1, if there exists an element 1 such that 1 · a = a · 1 = a. Such an element

is necessarily unique.

Examples 4.2. The following are rings. Unless otherwise stated, define + and · as

usual.

(1) (Z,+, ·)

(2) (2Z,+, ·), the even integers

(3) (Zn,+n, ·n), with Zn = {x ∈ Z|0 ≤ x ≤ n − 1}, +n defined as (x + y) mod n,

and ·n defined as (x · y) mod n

(4) ({0},+, ·), known as the trivial ring

Note that the only ring listed above without unity is Example 2. Unless otherwise

stated, all rings we consider will be commutative rings with 1.

Definition 4.3. An ideal of a ring is a nonempty subset I ⊆ R such that a + b ∈ I

and ra ∈ I, for all a, b ∈ I and r ∈ R.

13



One example of an ideal is a generated ideal. Let R be a ring, and let S ⊆ R.

The ideal generated by S, denoted 〈S〉, is the set

〈S〉 =

{
n∑
i=1

risi

∣∣∣∣ri ∈ R and si ∈ S

}

Since
⋂
Iα is an ideal for all ideals Iα, this set is the smallest ideal that contains S,

and equivalently is

〈S〉 =
⋂
{I ∈ Idl(R)|S ⊆ I}

Note that if S = {a} is a set with a single element, then 〈S〉 is called a principal ideal,

and is also written 〈a〉 or Ra.

Proposition 4.4. Let I be an ideal of a ring R. Then S ⊆ I ⇔ 〈S〉 ⊆ I.

Proof. Consider the following:

〈S〉 ⊆ I ⇔ r1s1 + . . .+ rnsn ∈ I, for all r1, . . . , rn ∈ R and s1, . . . , sn ∈ S

⇔ s ∈ I, for all s ∈ S, since I is an ideal

⇔ S ⊆ I

So we have 〈S〉 ⊆ I ⇔ S ⊆ I, as desired.

With this result, we can look at some properties of ideals.

Definition 4.5. For ideals I, J of a ring R, the product of I and J , written I · J or

equivalently IJ , and the sum, written I + J , are defined as

IJ = 〈{ij|i ∈ I, j ∈ J}〉 I + J = {i+ j|i ∈ I, j ∈ J}

Clearly IJ is an ideal by definition, and we note also that I + J is an ideal.

Proposition 4.6. Let I, J,K be ideals of a ring R. Then
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(a) I(JK) = (IJ)K

(b) IJ = JI

(c) IJ ⊆ I ∩ J

(d) I(J +K) = IJ + IK

(e) I ⊆ J ⇒ IK ⊆ JK

(f) I(J ∩K) ⊆ IJ ∩ IK

(g) I ⊆ K ⇒ I + (J ∩K) = (I + J) ∩K

Proof.

(a) Since I, J,K are ideals, by Proposition 4.4, we know that

I(JK) = 〈i(jk)|i ∈ I, j ∈ J, k ∈ K〉

To show that I(JK) ⊆ (IJ)K, we need only show that i(jk) ∈ (IJ)K, for all

i ∈ I, j ∈ J , k ∈ K. Given i, j, k, we know i(jk) = (ij)k, since multiplication

is associative, and so i(jk) ∈ (IJ)K. A similar proof is used to show that

(IJ)K ⊆ I(JK). Thus, I(JK) = (IJ)K.

(b) To show that IJ ⊆ JI, we need only show that ij ∈ JI, for all i ∈ I, j ∈ J . But

ij ∈ JI since ij = ji. So IJ = JI, since the other subset inclusion is proved

similarly.

(c) Take ij ∈ IJ with i ∈ I and j ∈ J . Since I and J are both ideals of R, we know

i, j ∈ R. Then, since i ∈ I and j ∈ R, it follows that ij ∈ I. Similarly, ij ∈ J .

Thus, ij ∈ I ∩ J . So IJ ⊆ I ∩ J .

(d) Suppose i ∈ I, j ∈ J , k ∈ K. Then i(j + k) = ij + ik, and it follows that

I(J +K) = IJ + IK.
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(e) Let ik ∈ IK, for i ∈ I and k ∈ K. Then since I ⊆ J implies that i ∈ J , and so

ik ∈ JK. Thus, I ⊆ J ⇒ IK ⊆ JK.

(f) Let ir ∈ I(J ∩K) with i ∈ I and r ∈ J ∩K. Then r ∈ J and r ∈ K. So ir ∈ IJ

and ir ∈ IK. Thus, ir ∈ IJ ∩ IK, and so I(J ∩K) ⊆ IJ ∩ IK.

(g) Let I, J,K ∈ Idl(R) with I ⊆ K, and consider I + (J ∩ K). We know that

I + (J ∩ K) ⊆ I + J . Since I ⊆ K, we have that I + (J ∩ K) ⊆ K, and so

I + (J ∩K) ⊆ (I + J) ∩K. Let r ∈ (I + J) ∩K. Then r ∈ K and r = i+ j, for

some i ∈ I and j ∈ J . So i ∈ K since I ⊆ K. Then, since i ∈ K and r ∈ K, and

since K is an ideal, r − i ∈ K. Thus, since j ∈ J and j = r − i, it follows that

j ∈ J ∩K, and so r ∈ I+ (J ∩K). Then we have that (I+J)∩K = I+ (J ∩K).

Definition 4.7. Let I and J be ideals of a ring R. Then the residuation of I by J ,

written I : J , is the set

I : J = {r ∈ R|rJ ⊆ I}

5 Lattice Homomorphisms

Like with any structure, we can study not only lattices, but also functions between

lattices. In this section, let L and M be lattices.

Definition 5.1. A function f : L→M is a homomorphism if

(i) f(a ∨ b) = fa ∨ fb, for all a, b ∈ L

(ii) f(a ∧ b) = fa ∧ fb, for all a, b ∈ L

Proposition 5.2. If f : L→M is a homomorphism, then f is order preserving.
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Proof. If a, b ∈ L with a ≤ b, then a ∨ b = b and so f(a ∨ b) = fb. Since f is

a homomorphism, f(a ∨ b) = fa ∨ fb. Then we have that fa ∨ fb = fb, so that

fa ≤ fb. Thus, f is order preserving.

Definition 5.3. A function f : L → M is an isomorphism if f is a 1-1 and onto

homomorphism. We say two lattices are isomorphic if there exists an isomorphism

between them.

Consider Examples 2.3. We saw the Hasse diagram of Example 4, and we saw

that this poset is a lattice. It is easy to see that this lattice P is isomorphic to its

dual P ◦. As well, both P and P ◦ are isomorphic to P({1, 2}). In fact, two finite

lattices are isomorphic if they have the same unlabeled Hasse diagram.

Proposition 5.4. A homomorphism f : L → M is an isomorphism if and only if

there exists a homomorphism g : M → L such that g ◦ f = idL and f ◦ g = idM .

Proof. We know that f : L→M is invertible if and only if f is a bijection. It suffices

to show that if f is an isomorphism, then f−1 is a homomorphism. Assume f is a

bijective homomorphism. Then we have

f(f−1(a) ∧ f−1(b)) = f(f−1(a)) ∧ f(f−1(b))

= a ∧ b

= f(f−1(a ∧ b))

Then, since f is 1-1, f−1(a)∧ f−1(b) = f−1(a∧ b). A similar equation holds for ∨, so

f−1 is a homomorphism.

6 Properties of Lattice Elements

This section will give more detail about lattices. We will give relationships between

lattice elements, and categorize different lattice examples.
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First, we will look at lattice elements and how we can relate them to each other.

Definition 6.1. Let L be a complete lattice, and let a, b ∈ L. Then a is way below b,

denoted a << b, if b ≤
∨
S implies that a ≤

∨
F , for some finite F ⊆ S. If a << a,

we say that a is compact.

If S is nonempty, we can rewrite this as b ≤
∨
S implies that a ≤ s1∨s2∨ . . .∨sn,

for some s1, . . . , sn ∈ S.

Definition 6.2. A nonempty subset S of a lattice L is:

(i) directed if x, y ∈ S implies that x ∨ y ∈ S

(ii) an ideal if S is directed, and if x ∈ S and y ≤ x implies that y ∈ S

Note that if S is a directed set and a << b, then b ≤
∨
S implies that a ≤ s for

some s ∈ S. If S is an ideal, then b ≤
∨
S implies that a ∈ S.

The following are properties of complete lattices.

Proposition 6.3. Suppose a << b in L. Then

(a) a ≤ b

(b) b ≤ c⇒ a << c

(c) c ≤ a⇒ c << b

Proof. For (a), assume that a << b and let S = {b}. Then clearly b ≤
∨
S. Since

a << b, there exists s1, . . . , sn ∈ S with a ≤ s1 ∨ . . . ∨ sn. But since S = {b}, by

letting n = 1 and s1 = b, we get that a ≤ b.

Now, for (b), suppose b ≤ c, and let c ≤
∨
S, for S ⊆ L. Then since b ≤ c ≤

∨
S,

we know b ≤
∨
S. So, since a << b, it follows that a ≤ s1 ∨ s2 ∨ . . . ∨ sn, for some

s1, s2, . . . , sn ∈ S. Thus, a << c.
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For (c), let b ≤
∨
S, for S ⊆ L, and assume c ≤ a. Since a << b, we know

a ≤ s1 ∨ s2 ∨ . . . ∨ sn, for some s1, s2, . . . , sn ∈ S. But, then we have

c ≤ a ≤ s1 ∨ s2 ∨ . . . ∨ sn

and it follows that c << b.

Proposition 6.4. If a << c and b << c in L, then a ∨ b << c.

Proof. Assume that a << c and b << c, and assume that c ≤
∨
S, for some S ⊆ L.

Then a ≤ s1 ∨ s2 ∨ . . . ∨ sn, for some s1, . . . , sn ∈ S, and b ≤ t1 ∨ t2 ∨ . . . ∨ tm, for

some t1, . . . , tm ∈ S, and so a ∨ b ≤ s1 ∨ s2 ∨ . . . ∨ sn ∨ t1 ∨ t2 ∨ . . . ∨ tm, for these

s1, . . . , sn, t1, . . . , tm ∈ S. Thus, a ∨ b << c.

Corollary 6.5. The set ⇓ b = {a|a << b} is an ideal of L.

Proof. This follows directly from Propositions 6.3c and 6.4

There is a stronger relationship that elements of a lattice can have.

Definition 6.6. Let L be a complete lattice, and let a, b ∈ L. Then a is completely

below b, denoted a <<< b, if, for every set S 6= ∅, b ≤
∨
S implies that a ≤ s, for

some s ∈ S.

Remark 6.7. The concept of <<< has properties similar to those of << as described

in 6.3.

Proposition 6.8. Let L be a lattice with a, b ∈ L. If a <<< b, then a << b.

Proof. Let S ⊆ L be a set such that b ≤
∨
S. Then, since a <<< b, we know that

a ≤ s, for some s ∈ S. So we have that a << b.

We can categorize which elements are way below and completely below other

elements in certain lattices.
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Example 6.9. Consider P(X), where X = R. Let A1 = 3N = {3, 6, 9, . . .} and

B = N. We know that B ⊆
⋃
S, for S = {{1}, {2}, {3}, . . .}. But since A1 has

multiple elements, and each C ∈ S has only one, there does not exist any C ∈ S such

that A1 ⊆ C, so A1 <6<< B.

Now let A2 = {5, 10, 15, . . . , 100} and let

S ′ = {{1, 2, . . . , 10}, {11, 12, . . . , 20}, . . . , {10n− 9, 10n− 8, . . . , 10n}, . . .}

But since 5 ∈ {1, 2, . . . , 10} and 15 ∈ {11, 12, . . . , 20}, again, we find that there does

not exist any C ∈ S such that A2 ⊆ C, so A2 <6<< B.

Finally, let A3 = {26}, and consider S from the first example. Then 26 ∈ {26},

so A3 ⊆ {26}, and thus A3 <<< B. Now consider S ′ from the second example.

Then 26 ∈ {21, 22, . . . , 30}, so A3 ⊆ {21, 22, . . . , 30}, so again A3 <<< B. Finally

let S ′′ = {2Z, {. . . ,−5,−3,−1, 1, 3, 5, . . .}}. Then since 26 ∈ 2Z, A3 ⊆ 2Z, and so

A3 <<< B.

Proposition 6.10. In P(X), A <<< B if and only if A = ∅ or A = {x}, for some

x ∈ B.

Proof. Assume A <<< B. We know, then, that B ⊆
⋃
S ⇒ A ⊆ C, for some C ∈ S.

Let S = {{b}|b ∈ B}. Then B ⊆
⋃
S. Then we have that A ⊆ C, for some C ∈ S.

But then since each C ∈ S is some set {x} ⊆ B, it must be that A = ∅ or A = {x},

for some x ∈ B.

Note that if A = ∅, A <<< B since the empty set is completely below everything.

Assume that A 6= ∅ and A = {x}, for some x ∈ B. To show that A <<< B, let

B ⊆
⋃
S, for some set S. Then x ∈

⋃
S, so x ∈ C, for some C ∈ S, and it follows

that {x} ⊆ C, for some C ∈ S. Then, since A = {x}, we have that A ⊆ C, for some

C ∈ S.

Example 6.11. Again, consider P(X) where X = R. Let A1 = 2N = {2, 4, 6, . . .}
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and B = N. For S = {{1}, {2}, {3}, . . .}, we know that B ⊆
⋃
S. But since

A1 is infinite, there does not exist any finite set {C1, C2, . . . , Cn} ⊆ S such that

A1 ⊆ C1 ∪ C2 ∪ . . . ∪ Cn. Thus, A1 6∈ ⇓B.

Let A2 = {1, 2, 3, . . . , 10}. We will show for multiple S that

B ⊆
⋃

S ⇒ A2 ⊆ C1 ∪ C2 ∪ . . . ∪ Cn

for some C1, . . . , Cn ∈ S.

(1) Consider the same S as in the previous example. Then, letting Ci = {i}, for

i = 1, 2, . . . , 10, we have that A2 ⊆ C1 ∪ C2 ∪ . . . ∪ C10.

(2) Now let S = {2Z, {. . . ,−3,−1, 1, 3, . . .}}. So we have that B ⊆
⋃
S. Then,

letting C1 = 2Z and C2 = {. . . ,−3,−1, 1, 3, . . .}, A2 ⊆ C1 ∪ C2.

(3) Finally, let S = {{1}, {1, 2}, {1, 2, 3}, . . . , {1, 2, . . . , n}, . . .}. Then clearly

B ⊆
⋃
S. Let C1 = {1, 2, . . . , 10}. Then A2 ⊆ C1.

Proposition 6.12. In P(X), A << B if and only if A is a finite subset of B.

Proof. Assume A << B and let S = {{b}|b ∈ B}. Then clearly B ⊆
⋃
S. So

A ⊆ {b1} ∪ {b2} ∪ . . . ∪ {bn}, for some b1 . . . , bn ∈ B. Then A is finite since

{b1} ∪ {b2} ∪ . . . ∪ {bn} = {b1, b2, . . . , bn}

Now assume A 6= ∅ and A ⊆ B with A finite, and let B ⊆
⋃
S. Then A ⊆

⋃
S.

Since A is finite, we can write A = {a1, a2, . . . , an}, for a1, . . . , an ∈ A. Since A ⊆
⋃
S,

we know that for each ai ∈ A, there exists some Ci ∈ S such that ai ∈ Ci. Thus,

A ⊆ C1 ∪ C2 ∪ . . . ∪ Cn, for C1, . . . , Cn ∈ S, so A << B.

We can classify the elements of the lattice 〈Idl(Z);⊆〉 that are way below and

completely below each other. First recall that I ∈ Idl(Z) if and only if I = nZ, for
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n ∈ Z , and that nZ + mZ = gcd(m,n)Z (see [7]). First, we look at the way below

relationship.

Proposition 6.13. mZ << nZ if and only if n|m.

Proof. If mZ << nZ, then mZ ⊆ nZ, and so n|m.

If n|m, then mZ ⊆ nZ, so it suffices to show that nZ << nZ. Suppose

nZ ⊆
∑
α∈A

nαZ

Then n = nα1k1 + . . .+nαN
kN , where nαi

∈ Z and ki ∈ Z. So n ∈ nα1Z+ . . .+nαN
Z,

and thus nZ << nZ. So by Proposition 6.3c, we conclude that mZ << nZ.

Now, for completely below, we begin with two examples, which we will generalize

and prove later.

Examples 6.14.

(1) Let m = 0 and n = 2. Then mZ = {0} and nZ = {. . . ,−4,−2, 0, 2, 4, . . .}.

Then nZ ⊆
∨
S, for S = {3Z, 5Z}. Note that

∨
S = 3Z + 5Z = Z. Then since

{0} ⊆ 3Z, we know mZ ⊆ I, for I ∈ S. Similarly, for any nonempty set S of

ideals, since 0 ∈ I for every ideal I, this result can be generalized.

(2) Let m = 6 and n = 2. Then mZ = {. . . ,−18,−12,−6, 0, 6, 12, 18, . . .} and

nZ = {. . . ,−6,−4,−2, 0, 2, 4, 6, . . .}. Now consider nZ ⊆
∨
S, for S = {12Z, 14Z}.

Then
∨
S = gcd(12, 14)Z = 2Z. But 6Z 6⊆ I, for any I ∈ S, and so 6Z is not

completely below 2Z

Proposition 6.15. mZ <<< nZ if and only if m = 0.

Proof. Let m = 0 and suppose nZ ⊆
∨
S, where S = {nαZ|α ∈ A}. Then equiva-

lently, nZ ⊆ Σα∈AnαZ. But since 0 ∈ nαZ for all α, it follows that mZ ⊆ nαZ, for all

α. Thus, mZ <<< nZ.
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Now, suppose mZ <<< nZ. Then n|m since mZ ⊆ nZ. Now, let p, q be prime

numbers such that p 6= q and p, q - m. Consider the set pnZ + qnZ. Recall that

pnZ + qnZ = gcd(pn, qn)Z. But since p and q are prime and thus relatively prime,

gcd(pn, qn) = n. So pnZ + qnZ = nZ. Then mZ ⊆ pnZ or mZ ⊆ qnZ. This

means that either pn|m or qn|m. But by our choice of p and q, each of these are an

impossibility if m 6= 0. Thus, it must be that m = 0.

Recall for the remaining propositions that all rings are assumed to be commutative

rings with 1. First, we can categorize ideals of a ring.

Lemma 6.16. For all I ∈ Idl(R),

I =
∑
a∈I

Ra

Proof. Let I ∈ Idl(R), and let x ∈ I. Since 1 ∈ R, 1x ∈ Rx, so x ∈ Σa∈IRa.

Now let x ∈ Σa∈IRa. Then x = r1a1 + r2a2 + . . . + rnan, for r1, . . . , rn ∈ R and

a1, . . . , an ∈ I. But since a1, a2, . . . , an ∈ I, and since I ∈ Idl(R), we have that x ∈ I.

Thus, we can conclude that I = Σa∈IRa, for all I ∈ Idl(R).

Lemma 6.17. Let R be a ring with a ∈ R. Then Ra is compact.

Proof. Let Ra ⊆ ΣαJα. Since a ∈ ΣαJα, we know that a = r1+ . . .+rn where ri ∈ Jαi

for some a1, . . . , an. Thus,

a ∈
n∑
i=1

Jαi
and so Ra ⊆

n∑
i=1

Jαi

by Lemma 4.4. Therefore, Ra << Ra.

Consequently, for a ∈ I, Ra ⊆ I, and so Ra << I.

We can categorize and relate << for ideals of a ring just as we did before with

P(X)
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Proposition 6.18. In Idl(R), I << J if and only if I ⊆ Ra1 + . . .+Ran, for some

a1, . . . , an ∈ J .

Proof. Suppose I << J . Since J ⊆ Σa∈JRa, by Lemma 6.16, we know

I ⊆ Ra1 +Ra2 + . . .+Ran, for some a1, . . . , an ∈ J

Suppose I ⊆ Ra1 + . . .+ Ran, for a1, . . . , an ∈ J . Since Ra << Ra, for all a ∈ R

by Lemma 6.17, we know Ra1 + . . .+Ran << Ra1 + . . .+Ran, by Propositions 6.3b

and 6.4. Again by Proposition 6.3b, Ra1 + . . .+Ran << J . Finally, by 6.16 and 6.3c,

I << J .

7 Types of Lattices

There are several different types of lattices, many of which we will be considering

later.

Proposition 7.1. Let L be a lattice. The following are equivalent:

(a) (x ∧ y) ∨ (x ∧ z) = x ∧ (y ∨ z), for all x, y, z ∈ L

(b) (x ∨ y) ∧ (x ∨ z) = x ∨ (y ∧ z), for all x, y, z ∈ L

Proof. Assume (a) holds. Then we have:

(x ∨ y) ∧ (x ∨ z) = ((x ∨ y) ∧ x) ∨ ((x ∨ y) ∧ z)

= x ∨ (z ∧ (x ∨ y))

= x ∨ ((z ∧ x) ∨ (z ∧ y))

= (x ∨ (z ∧ x)) ∨ (z ∧ y)

= x ∨ (z ∧ y)

= x ∨ (y ∧ z)
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Thus, (a) implies (b). Dually, (b) implies (a).

Definition 7.2. A lattice L is distributive if (x ∧ y) ∨ (x ∧ z) = x ∧ (y ∨ z), or

equivalently, if (x∨ y)∧ (x∨ z) = x∨ (y∧ z), for all x, y, z ∈ L. L is modular if x ≥ z

implies that (x ∧ y) ∨ z = x ∧ (y ∨ z).

Note that for a distributive lattice L with x, y, z ∈ L such that x ≥ z, we have

(x ∧ y) ∨ z = (x ∨ z) ∧ (y ∨ z)

= x ∧ (y ∨ z)

Thus, distributivity implies modularity.

Remark 7.3. In the modular law, we can replace z with x ∧ z to get a more general

form: (x ∧ y) ∨ (x ∧ z) = x ∧ (y ∧ (x ∧ z)).

The lattices P(X) and O(Rn) are distributive lattices, since it is easy to see that

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C), for all sets A,B,C. By Proposition 4.6g, Idl(R)

is modular for all commutative rings with 1, but is not, in general, distributive. In

fact, by Theorem 6.20 of [8], a Noetherian integral domain is distributive if and only

if it is a Dedekind domain.

We can categorize exactly the lattices that are distributive and modular. But

first, we need a definition.

Definition 7.4. Let L be a lattice with A ⊆ L. Then A is a sublattice if x, y ∈ A

implies that x∨ y ∈ A and x∧ y ∈ A, i.e., A is closed under the operations ∨ and ∧.

Note that A ⊆ L is a sublattice if and only if the inclusion function i : A → L is

a homomorphism.

For example, consider the lattice P({1, 2, 3}) and the subset A, pictured below.
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Then clearly A is a subset of P({1, 2, 3}), but {1} ∈ A and {3} ∈ A, so {1} ∪ {3}

should also be in A. However, {1} ∪ {3} = {1, 3} 6∈ A, so A is not a sublattice of

P({1, 2, 3}).

Theorem 7.5. (M3N5 Theorem) Let L be a lattice.

(a) L is non-modular iff L has a sublattice isomorphic to N5

(b) L is non-distributive iff L has a sublattice isomorphic to M3 or N5.
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Proof. (a) Note that if L has a sublattice isomorphic to N5, then since N5 is non-

modular, L is non-modular. Assume L is not modular. Then we have elements

d, e, f ∈ L such that d ≥ f and (d ∧ e) ∨ f 6= d ∧ (e ∨ f). If d = f , then we have

(d ∧ e) ∨ f = (f ∧ e) ∨ f = f and d ∧ (e ∨ f) = f ∧ (e ∨ f) = f , so it must be that

d > f .

Now let u = (d ∧ e) ∨ f and v = d ∧ (e ∨ f), and note that d ∧ e ≤ d and

d ∧ e ≤ e ≤ e ∨ f . So we have that d ∨ e ≤ d ∧ (e ∨ f). Similarly, since f ≤ d and

f ≤ (e ∨ f), we have that f ≤ d ∧ (e ∨ f). Thus, u = (d ∧ e) ∨ f ≤ d ∧ (e ∨ f) = v.

But we already have that u 6= v, so it must be that u < v.
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We will show that the following is a sublattice of L.
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We have that

e ∧ v = e ∧ ((e ∨ f) ∧ d)

= (e ∧ (e ∨ f)) ∧ d

= e ∧ d

and

e ∨ u = e ∨ ((e ∧ d) ∨ f)

= (e ∨ (e ∧ d)) ∨ f

= e ∨ f

Now, consider

d ∧ e = (d ∧ e) ∧ e ≤ u ∧ e ≤ v ∧ e = d ∧ e

and

e ∨ f = e ∨ u ≤ e ∨ v ≤ e ∨ (e ∨ f) = e ∨ f

Thus, since d ∧ e ≤ u ∧ e ≤ d ∧ e, we have that u ∧ e = d ∧ e = v ∧ e. Similarly,

we have v ∨ e = e ∨ f = u ∨ e. Thus, since u ∨ e = v ∨ e and u ∧ e = v ∧ e, we can

conclude that L has a sublattice isomorphic to N5.
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(b) Note that if L has a sublattice isomorphic to M3 or N5, then L is not distribu-

tive since neither of these lattices are distributive. Also, if L is non-distributive and

non-modular, by (i) L has a sublattice isomorphic to N5. So it suffices to show that

if L is a modular, non-distributive lattice, then L has a sublattice isomorphic to M3.

Let L be modular and not distributive. Then, for all a, b, c ∈ L, we know that

a ≥ c implies that (a ∧ b) ∨ c = a ∧ (b ∨ c), and there exist d, e, f ∈ L such that

d ∧ (e ∨ f) 6= (d ∧ e) ∨ (d ∧ f). Note that since d ∧ e ≤ d and d ∧ e ≤ e ≤ e ∨ f ,

then d ∧ e ≤ d ∧ (e ∨ f). Also, since d ∧ f ≤ d and d ∧ f ≤ f ≤ e ∨ f , we have

that d ∧ f ≤ d ∧ (e ∨ f) and so (d ∧ e) ∨ (d ∧ f) ≤ d ∧ (e ∨ f). Thus, since we know

d ∧ (e ∨ f) 6= (d ∧ e) ∨ (d ∧ f), we can conclude that (d ∧ e) ∨ (d ∧ f) < d ∧ (e ∨ f).

Now, we define

p := (d ∧ e) ∨ (e ∧ f) ∨ (f ∧ d)

q := (d ∨ e) ∧ (e ∨ f) ∧ (f ∨ d)

u := (d ∧ q) ∨ p

v := (e ∧ q) ∨ p

w := (f ∧ q) ∨ p

We will show that the following is a sublattice of L:

•

•

•

•

•

�
�
�

@
@
@

@
@
@

�
�
�

0

1

u v w

Clearly, p ≤ u, p ≤ v, and p ≤ w. We can also prove that p ≤ q. So,
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u ≤ (d ∧ q) ∨ q = q, and similarly v ≤ q and w ≤ q. Then since L is modular,

we have that d ∧ q = d ∧ (e ∨ f). We also have that

d ∧ p = d ∧ ((e ∧ f) ∨ ((d ∧ e) ∨ (d ∧ f)))

= (d ∧ (e ∧ f)) ∨ ((d ∧ e) ∨ (d ∧ f))

= (d ∧ e) ∨ (d ∧ f).

The second equality holds since L is modular. So, since d∧q 6= d∧p, p 6= q. Thus,

p < q. To show that u ∧ v = p, we have

u ∧ v = (((d ∧ q) ∨ p) ∧ (e ∧ q) ∨ p)

= (((e ∧ q) ∨ p) ∧ (d ∧ q)) ∨ p

= ((q ∧ (e ∨ p)) ∧ (d ∧ q)) ∨ p

= ((e ∨ p) ∧ (d ∧ q)) ∨ p

= ((d ∧ (e ∨ f)) ∧ (e ∨ (f ∧ d))) ∨ p

= (d ∧ ((e ∨ f) ∧ (e ∨ (f ∧ d)))) ∨ p

= (d ∧ (((e ∨ f) ∧ (f ∧ d)) ∨ e)) ∨ p

= (d ∧ ((f ∧ d) ∨ e)) ∨ p

= ((d ∧ e) ∨ (f ∧ d)) ∨ p

= p

The second, third, seventh, and ninth equalities hold since L is modular. Similarly,

v ∧ w = w ∧ u = p. By similar calculations, u ∨ v = v ∨ w = w ∨ u = q. Note then

that if any pair of u, v, w, p, q are equal, then p = q, an impossibility.

Since a distributive lattice has no sublattice isomorphic to N5, if a lattice is dis-

tributive, it is modular.
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We have seen complete lattices in Section 2, and now we have seen distributive

and modular lattices. There are several other types of lattices as well.

Definition 7.6. A lattice L is

(i) bounded if
∨
L and

∧
L exist, i.e., if > and ⊥ exist in L.

(ii) complemented if L is bounded, and if, for every a ∈ L, there exists a′ ∈ L such

that a ∨ a′ = > and a ∧ a′ = ⊥. We say that a′ is a complement of a.

(iii) a Boolean algebra if L is a complemented, distributive lattice.

Note that P(X) is a Boolean algebra with > = X, ⊥ = ∅, and A′ = X\A, for

every set A ⊆ X. The lattices Idl(R) and O(Rn) are clearly bounded, but are not

generally complemented, and hence not Boolean algebras.

Proposition 7.7. Let L be a Boolean algebra, and let a ∈ L. If b is a complement of

a, and c is a complement of a, then b = c. In other words, complements are unique

in Boolean algebras.

Proof. If b and c are complements of a, then b∨ a = > = c∨ a and b∧ a = ⊥ = c∧ a.

Then we have that:

b = b ∧ >

= b ∧ (a ∨ c)

= (b ∧ a) ∨ (b ∧ c)

= ⊥ ∨ (b ∧ c)

= (c ∧ a) ∨ (c ∧ b)

= c ∧ (a ∨ b)

= c ∧ >

= c
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Thus b = c and so complements are unique.

Proposition 7.8. De Morgan’s Laws Let L be a complemented, distributive lattice.

Then (a ∧ b)′ = a′ ∨ b′ and dually, (a ∨ b)′ = a′ ∧ b′, for all a, b ∈ L.

Proof. Consider the following.

(a ∧ b) ∨ (a′ ∨ b′) = (a ∨ (a′ ∨ b′)) ∧ (b ∨ (a′ ∨ b′))

= ((a ∨ a′) ∨ b′) ∧ (a′ ∨ (b ∨ b′))

= (> ∨ b′) ∧ (a′ ∨ >)

= > ∧>

= >

(a ∧ b) ∧ (a′ ∨ b′) = ((a ∧ b) ∧ a′) ∨ ((a ∧ b) ∧ b′)

= (b ∧ (a ∧ a′)) ∨ (a ∧ (b ∧ b′))

= (b ∧ ⊥) ∨ (a ∧ ⊥)

= ⊥ ∨⊥

= ⊥

Thus, (a ∧ b) ∨ (a′ ∨ b′) = > and (a ∧ b) ∧ (a′ ∨ b′) = ⊥, so (a ∧ b)′ = a′ ∨ b′.

We can categorize exactly the finite lattices that are Boolean algebras. To do this,

recall the definition of cover from Definition 2.4, and consider the following.

Definition 7.9. Let L be a lattice with ⊥ ∈ L. Then a ∈ L is an atom if a covers

⊥. The set of atoms of L is denoted A(L).

Lemma 7.10. If L is a finite Boolean algebra, then a =
∨
{x ∈ A(L)|x ≤ a}, for all

a ∈ L.
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Proof. If a = ⊥, then {x|x ≤ a} = ∅, and so ⊥ =
∨
∅ =

∨
{x|x ≤ a}. If a is an atom,

then {x|x ≤ a} = {a} since a is an atom, and so a =
∨
{x|x ≤ a}.

Suppose a 6= ⊥, and a is not an atom. Then there exists some b ∈ L such that

⊥ < b < a. Now we have:

a = a ∧ >

= a ∧ (b ∨ b′)

= (a ∧ b) ∨ (a ∧ b′)

= b ∨ (a ∧ b′)

So a = b ∨ c, where c = a ∧ b′. By assumption, ⊥ < b < a. To see that ⊥ < c < a,

assume c = ⊥. Then we have that a = b ∨ c = b ∨ ⊥ = b, contradicting that b < a,

so c 6= ⊥. Now, assume c = a, so we have a ∧ b′ = a and so a′ ∨ b = a′ by 7.8. Then

b < a and b ≤ a′, so b ≤ a ∧ a′ = ⊥ and thus b = ⊥, a contradiction, so c 6= a.

Then ⊥ < b, c < a. If b and c are atoms, then a ≤
∨
{b, c} ≤

∨
{x|x ≤ a} ≤ a,

as desired. If b and c are not atoms, repeat this process substituting a for b and c

until they can be written as the joins of atoms. We know we will eventually reach

this point since L is finite. Then, a is the join of atoms, so a =
∨
{x|x ≤ a}.

Proposition 7.11. A lattice L is a finite Boolean algebra if and only if L is isomor-

phic to P(X), for some finite set X.

Proof. First we show if L is isomorphic to P(X), for some set X, then L must be a

Boolean algebra. Note first that >P(X) = X and ⊥P(X) = ∅. Suppose f : P(X)→ L

is an isomorphism. Then fX ≤ >L = f(A), for some A since f is onto. Then

f−1fX ≤ f−1f(A), so X ⊆ A and thus A = X. So >L = f(X). The proof that

f(∅) = ⊥L is similar. Finally, for L to be a Boolean algebra, it must be distributive

and complemented. To see that it is distributive, consider the following:
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a ∧ (b ∨ c) = ff−1a ∧ (ff−1b ∨ ff−1c)

= f(f−1a ∩ (f−1b ∪ f−1c))

= f((f−1a ∩ f−1b) ∪ (f−1a ∩ f−1c))

= (ff−1a ∧ ff−1b) ∨ (ff−1a ∧ ff−1c)

= (a ∧ b) ∨ (a ∧ c)

To see that L is complemented, let a ∈ L. Then since f is onto, there exists some

A ∈ P(X) such that a = fA. So a ∧ f(A′) = fA ∧ f(A′) = f(A ∩ A′) = f(∅) = ⊥L,

and a ∨ f(A′) = fA ∨ f(A′) = f(A ∪ A′) = f(X) = >L. Thus, f(A′) = a′ and so L

is complemented.

Now let L be a finite Boolean algebra with X = A(L), and define f : L→ P(X)

by fa = {x ∈ X|x ≤ a}. To see that f is 1-1, let fa = fb, for some a, b ∈ L. Then

{x ∈ X|x ≤ a} = {x ∈ X|x ≤ b}. So we have

∨
{x ∈ X|x ≤ a} =

∨
{x ∈ X|x ≤ b}

and so a = b by Lemma 7.10. To see that f is onto, let S = {x1, . . . , xn} ⊆ X, and

let a = x1 ∨ . . . ∨ xn. Clearly, S ⊆ fa since xi ≤ a, for i = 1, . . . , n, and so xi ∈ fa.

Let x ∈ fa. Then x is an atom such that x ≤ a. So

x = x ∧ a = x ∧ (x1 ∨ . . . ∨ xn) = (x ∧ x1) ∨ . . . ∨ (x ∧ xn)

Since x 6= ⊥, we know that there exists some i such that x∧ xi 6= ⊥. Then for this i,

⊥ < x ∧ xi ≤ x, so it follows that x ∧ xi = x since x is an atom. But then x ≤ xi, so

it must be that x = xi since xi is an atom, and thus x ∈ S. Then S = fa, and so we

have that f is onto.
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To show that f is a homomorphism, we must prove the following:

(a) f(a ∧ b) = fa ∩ fb

(b) f(a ∨ b) = fa ∪ fb

First we show that f is order preserving. Assume a ≤ b and consider

fa = {x|x ≤ a} and fb = {x|x ≤ b}. Since x ≤ a for each x ∈ fa, by transi-

tivity, we have x ≤ b, so x ∈ fb. Thus, fa ⊆ fb, and so f is order preserving.

For (a), since f is order preserving, we need only show that fa ∩ fb ⊆ f(a ∧ b).

Consider the following:

x ∈ fa ∩ fb ⇒ x ≤ a, x ≤ b, and x is an atom

⇒ x ≤ a ∧ b and x is an atom

⇒ x ∈ f(a ∧ b)

Similarly in (b), since f is order preserving, we need only show that

f(a ∨ b) ⊆ fa ∪ fb. Consider the following:

x ∈ f(a ∨ b) ⇒ x ≤ a ∨ b and x is an atom

⇒ x = x ∧ (a ∨ b)

⇒ x = (x ∧ a) ∨ (x ∧ b)

Then since x 6= ⊥, x ∧ a 6= ⊥ or x ∧ b 6= ⊥. If x ∧ a 6= ⊥, then ⊥ < x ∧ a ≤ x, so

x ∧ a = x and thus x ≤ a. So we have that x ∈ fa and thus x ∈ fa ∪ fb. Similarly,

if x ∧ b 6= ⊥, then x ∈ fb and so x ∈ fa ∪ fb.

So, we have that f is a 1-1 and onto homomorphism, and thus L is isomorphic to

P(X), as desired.

Definition 7.12. A lattice L is
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(i) algebraic if it is complete and if every element is the join of compact elements.

(ii) continuous if it is complete and x =
∨
{y|y << x}, for all x ∈ L.

(iii) completely continuous if it is complete and x =
∨
{y|y <<< x}, for all x ∈ L.

Note that there are certain relationships between lattices. We have seen already

that a distributive lattice is a modular lattice. By definition, a Boolean algebra is a

complemented lattice and a distributive lattice, and similarly a complemented lattice

is a bounded lattice. To see that an algebraic lattice is a continuous lattice, assume L

is an algebraic lattice and let x ∈ L. We have that
∨
{y|y << x} ≤ x, since y << x

implies that y ≤ x. Now, since L is algebraic, x =
∨
{a|a << a, a ≤ x}. But since,

for each a in this set, a << a and a ≤ x, a << x. Thus,

{a|a << a, a ≤ x} ⊆ {y|y << x}, and so
∨
{a|a << a, a ≤ x} ≤

∨
{y|y << x}

So x =
∨
{y|y << x} and L is continuous. To see that a completely continuous

lattice is a continuous lattice, let L be a completely continuous lattice, let x ∈ L be

arbitrary, and consider the following:

x =
∨
{a|a <<< x}

≤
∨
{a|a << x}

≤ x

Thus, since x ≤
∨
{a|a << x} ≤ x, we have that x =

∨
{a|a << x}, and so L is

continuous.

The following are examples of continuous lattices from the posets we introduced

in Example 2.3. Clearly,
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is continuous. We will see that the other three examples, introduced in 2.3, are as

well.

Definition 7.13. Let r ∈ R+, c ∈ Rn and U, F ⊆ Rn. Then

(i) Dr(c) = {x ∈ Rn | ‖x− c‖ < r} is called an open disk.

(ii) Dr(c) = {a ∈ Rn | ‖a− c‖ ≤ r} is called a closed disk.

(iii) c is an interior point of U if Dr(c) ⊆ U , for some r ∈ R+.

(iv) U is open if every element of U is an interior point of U .

(v) F is closed if its complement Rn\F is open.

Note that Dr(x) is open, and Dr(x) is closed. One can also show that Dr(x) is a

compact subset of Rn since it is closed and bounded (see [11]).

Proposition 7.14. The set O(Rn) of open subsets of Rn is a continuous lattice.

Proof. First, note that, for all U ∈ O(Rn),
∨
Uα =

⋃
Uα since

⋃
Uα is clearly open,

and so O(Rn) is complete. By Theorem 2.9,

∧
Uα =

(⋂
Uα

)◦
=
⋃{

W ∈ O(Rn)

∣∣∣∣W ⊆⋂Uα

}

It is easy to show that each of these are open sets, and so O(Rn) is complete since all

meets and joins exist in the lattice. Let V ∈ O(Rn) be arbitrary, and consider the set⋃
{U |U << V }. By Proposition 6.3a, we have that U << V ⇒ U ≤ V , thus, for all

V ∈ O(Rn), V ⊇
⋃
{U |U << V }. Let x ∈ V . Since V is open, we can find an r ∈ N
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such that Dr(x) ⊆ V . Let U = D r
2
(x). Then U ⊆ D r

2
(x) ⊆ Dr(x) ⊆ V . Since D r

2
(x)

is compact, we have that U << V by Proposition 6.3, and so V ⊆
⋃
{U |U << V }.

Then, O(Rn) is continuous.

Proposition 7.15. P(X) is completely continuous, and hence continuous.

Proof. First note that P(X) is complete with
∨
Aα =

⋃
Aα and

∧
Aα =

⋂
Aα, for

all Aα ⊆ X. Let B ∈ P(X). By Proposition 6.10, we found that A <<< B if and

only if A = {x}, for x ∈ B. Since B =
⋃
{{b}|b ∈ B} =

⋃
{A|A <<< B}, it follows

that B =
⋃
{A|A <<< B}, and so P(X) is completely continuous.

Proposition 7.16. Idl(R) is algebraic, and hence completely continuous and contin-

uous.

Proof. We first note that Idl(R) is complete with

∧
Iα =

⋂
Iα and

∨
Iα =

∑
α∈A

Iα

By Lemma 6.16, we have that I = Σ{Ra|a ∈ I}, for all I ∈ Idl(R), and by Lemma

6.17, we have that Ra is compact. Thus, every I ∈ Idl(R) is the join of compact

elements, and so Idl(R) is an algebraic lattice.

Let r < s. We showed in Proposition 7.14 that Dr(x) << Ds(x), and similarly

one can show that there exists a set W such that Dr(x) << W << Ds(x), namely

W = D r+s
2

(c). In fact, for all open sets U << V , we can find an open set between

them. We will see that every continuous lattice satisfies this property.

Lemma 7.17. Suppose I and J are ideals of a complete lattice L. If I ⊆ J , then∨
I ≤

∨
J .

Proof. Let i ∈ I. Then, since I ⊆ J , we have that i ∈ J . So i ≤
∨
J . Then, since

i ≤
∨
J , for all i ∈ I, we conclude that

∨
I ≤

∨
J .
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Lemma 7.18. Suppose {Is}s∈S is a family of ideals of a complete lattice L, and

I =
⋃
s∈S

Is is an ideal of L. Then
∨
I =

∨
{
∨
Is|s ∈ S}.

Proof. Note that for every set X, we have that
∨
X ≤ b iff x ≤ b, for all x ∈ X. Let

i ∈ I. Then there exists s ∈ S such that i ∈ Is. So i ≤
∨
Is ≤

∨
{
∨
Is|s ∈ S}. Thus,∨

I ≤
∨
{
∨
Is|s ∈ S}.

Now let x ∈ {
∨
Is|s ∈ S} be arbitrary. Then there exists s ∈ S such that x =

∨
Is.

Note that Is ⊆ I, so by Lemma 7.17, we can see that x =
∨
Is ≤

∨
I. Then, since

x ≤
∨
I, for all x ∈ {

∨
Is|s ∈ A}, we have that

∨
{
∨
Is|s ∈ A} ≤

∨
I, as desired.

Then, we conclude that
∨
I =

∨
{
∨
Is|s ∈ A}, as desired.

Proposition 7.19. Let L be a continuous lattice, and let a, b ∈ L with a << b. Then

there exists c ∈ L such that a << c << b.

Proof. First, fix a, b ∈ L with a << b, and define

I = {x|x << c << b, for some c ∈ L}.

We claim that I is an ideal of L. Note that ⊥ ∈ I since ⊥ << a << b, and thus

I 6= ∅.

Suppose x ∈ I with y ≤ x. Then there exists c ∈ L such that x << c << b.

So, by Proposition 6.3c, we have that y << c << b, so y ∈ I. Now, let x ∈ I and

y ∈ I. Then there exists c ∈ L and d ∈ L such that x << c << b and y << d << b.

Then by Proposition 6.3c, since c ≤ c ∨ d and d ≤ c ∨ d, we have that x << c ∨ d

and y << c ∨ d. Also, by Proposition 6.4, since c << b and d << b, we have that

c∨ d << b. Again by Proposition 6.4, since x << c∨ d and y << c∨ d, we have that

x ∨ y << c ∨ d. Thus, since x ∨ y << c ∨ d << b, we have that x ∨ y ∈ I. So clearly,

I is an ideal.

Now, since L is continuous and by Lemmas 7.17 and 7.18, we have the following
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system:

b ≤
∨
{c|c << b}

=
∨{∨

{x|x << c} |c << b
}

=
∨{∨

{x|x << c << b, for some c ∈ L}
}

=
∨

I

Thus, we have that b ≤
∨
I. Then, since I is an ideal, and a << b, a ∈ I. So, we

have that there exists c ∈ L such that a << c << b, as desired.

8 Adjoints Between Posets

In addition to lattices and lattice elements, we can also consider functions between

lattices. First, we consider functions between posets.

Definition 8.1. Let P and Q be posets, and let P
f //oo
g

Q be order-preserving maps.

Then f is left adjoint to g, denoted f a g, if fx ≤ y ⇔ x ≤ gy, for all x ∈ P , y ∈ Q.

Equivalently, we say that g is right adjoint to f . We will prove an equivalent

definition.

Proposition 8.2. Let P
f //oo
g

Q be order-preserving maps. Then f a g if and only if

(a) fgy ≤ y, ∀y ∈ Q

(b) x ≤ gfx, ∀x ∈ P

Proof. Assume f a g, and let y ∈ Q be arbitrary. Then, since gy ∈ P and gy ≤ gy

by reflexivity of ≤, we have that fgy ≤ y. Now, let x ∈ P be arbitrary. Then since

fx ∈ Q and fx ≤ fx by reflexivity of ≤, we have that x ≤ gfx.

Now assume that fgy ≤ y, for all y ∈ Q, and x ≤ gfx, for all x ∈ P . Now,

if fx ≤ y, we have x ≤ gfx ≤ gy since g and f are order preserving. Then, if
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x ≤ gy, we have that fx ≤ fgy ≤ y again since f and g are order preserving. So, by

transitivity, we have that fx ≤ y ⇔ x ≤ gy, and so f a g.

For example, 〈−〉 a i, for P(R)
〈−〉 //oo
i

Idl(R), by Proposition 4.4.

Next, we show that right adjoints (dually, left adjoints) are unique, and preserve

all greatest lower bounds (dually, least upper bounds).

Proposition 8.3. Let P Q
uu

g1

P Qf //P Qii
g2

. If f a g1 and f a g2, then g1 = g2.

Proof. Let f , g1 and g2 be as described, and let f a g1 and f a g2. Then we have:

(1) fx ≤ y ⇔ x ≤ g1y.

(2) fx ≤ y ⇔ x ≤ g2y.

Now, by reflexivity of ≤, we have that g1y ≤ g1y, so by (1), we know fg1y ≤ y. Thus,

by (2), we have that g1y ≤ g2y. Similarly, we can conclude that g2y ≤ g1y. Now,

since g1y ≤ g2y and g2y ≤ g1y, for all y ∈ Q, we have g1 = g2, as desired.

Proposition 8.4. Let P
f //oo
g

Q with f a g. If S ⊆ P and
∨
S exists in P , then

f(
∨
S) =

∨
fS. Dually, if S ⊆ Q and

∧
S exists in Q, then g(

∧
S) =

∧
gS.

Proof. Given y ∈ Q,

fs ≤ y, for all s ∈ S ⇔ s ≤ gy, for all s ∈ S (1)

⇔
∨

S ≤ gy (2)

⇔ f(
∨

S) ≤ y (3)

We get (1) and (3) by definition of f a g, and (2) by definition of
∨

. Thus, by

Proposition 2.7, f(
∨
S) =

∨
fS, and so f preserves

∨
.
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We can expand this to a stronger proposition.

Proposition 8.5. Let f : P → Q with P and Q complete. Then f has a right adjoint

if and only if f preserves
∨

. Moreover, the right adjoint is given by

gy =
∨
{x|fx ≤ y}

Proof. Assume that f has a right adjoint. Then by Proposition 8.4, f preserves
∨

.

Now assime f preserves
∨

. Define g : Q → P by gy =
∨
{x|fx ≤ y}. Then

fgy = f
∨
{x|fx ≤ y} =

∨
{fx|fx ≤ y}, since f preserves

∨
. Since for each

a ∈ {fx|fx ≤ y}, we have a ≤ y, we conclude that
∨
{fx|fx ≤ y} ≤ y and so

fgy ≤ y.

Consider gfx =
∨
{z|fz ≤ fx}. Then, x ∈ {z|fz ≤ fx} since ≤ is reflexive and

so x ≤
∨
{z|fz ≤ fx} = gfx.

Thus, since fgy ≤ y, for all y ∈ Q and x ≤ gfx, for all x ∈ P , by Proposition 8.2,

we have that f a g and so f has a right adjoint.

We conclude the following by duality:

Corollary 8.6. Let g : Q → P with P and Q complete. Then g has a left adjoint if

and only if g preserves
∧

. Moreover, the left adjoint is given by

fx =
∧
{y|x ≤ gy}

Proposition 8.7. If X and Y are sets, and f : X → Y is a function, then

(a) f : P(X)→ P(Y ) preserves
⋃

(b) f−1 : P(Y )→ P(X) preserves
⋃

and
⋂

(c) f a f−1
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Proof. First, we show that f a f−1. Let B ∈ P(Y ) and y ∈ f(f−1(B)). Then y = fx,

for some x ∈ f−1(B). But, since x ∈ f−1(B), we know that fx ∈ B, and so y ∈ B.

Thus, f(f−1(B)) ⊆ B. Now let A ∈ P(X), and x ∈ A. Then fx ∈ fA, and so

x ∈ f−1(f(A)). Thus, A ⊆ f−1(f(A)). So by Proposition 8.2, we have f a f−1. Then

by Proposition 8.4, f preserves
⋃

, and by the dual of Proposition 8.4, f−1 preserves⋂
.

To show that f−1 preserves
⋃

, consider the following:

x ∈ f−1
(⋃

Bα

)
⇔ fx ∈

⋃
Bα

⇔ fx ∈ Bα, for some α

⇔ x ∈ f−1Bα

⇔ x ∈
⋃

f−1Bα

Thus, f−1(
⋃
Bα) =

⋃
f−1(Bα), and so f−1 preserves

⋃
, as desired.

We can use adjoints to categorize complete lattices. Suppose P is a poset and

x ∈ P . Let ↓ x = {y ∈ P |y ≤ x}. Then ↓ defines an order-preserving function from

P to P(P ), since ≤ is transitive.

Proposition 8.8. The function ↓ : P → P(P ) is order preserving.

Proof. Let a, b ∈ P with a ≤ b. Then ↓a = {x|x ≤ a} and ↓b = {x|x ≤ b}. But then

x ≤ a ≤ b for x ∈ ↓a, so by transitivity, x ≤ b. Thus, x ∈ ↓b, and so ↓a ⊆↓b. So, we

conclude that ↓ is order preserving.

Proposition 8.9. ↓ : P → P(P ) has a left adjoint if and only if P is complete. In

this case,
∨
a ↓.

Proof. Assume ↓ has a left adjoint. Then there exists some f : P(P )→ P such that
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f a ↓. So, for every set S ∈ P(P ), we have:

s ≤ x, for all s ∈ S ⇔ S ⊆ ↓ x

⇔ fS ≤ x

Then, since s ≤ x, for all s ∈ S ⇔ fS ≤ x, we have that
∨
S exists, and fS =

∨
S,

and thus P is complete.

Now, assume P is complete. Then we know that for every S ∈ P(P ), we have:

∨
S ≤ y ⇔ s ≤ y, for all s ∈ S

⇔ S ⊆↓ y

So, since
∨
S ≤ y ⇔ S ⊆↓ y, we conclude that

∨
a ↓.

Proposition 8.10. Suppose P is a join-semilattice. Then

(a) ↓ x is an ideal of P , for all x ∈ P .

(b) ↓ : P → Idl(P ) has a left adjoint if and only if
∨
I exists for all ideals I. In this

case,
∨
a ↓.

Proof. Consider y ∈ ↓ x and let z ≤ y. Since y ∈ ↓ x, y ≤ x. Then, by transitivity,

z ≤ x so z ∈ ↓ x. Now, let y, z ∈ ↓ x. Then y ≤ x and z ≤ x. So y ∨ z ∈ ↓ x by

definition of least upper bound. Then, since ↓x is downward closed and closed under

joins, ↓x is an ideal.

Suppose there exists some f : Idl(P ) → P such that f a ↓. So, for every set

I ∈ Idl(P ), we have:

a ≤ x, for all a ∈ I ⇔ I ⊆ ↓ x

⇔ fI ≤ x
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Then, since a ≤ x, for all a ∈ I ⇔ fI ≤ x, we have that fI =
∨
I, and thus

∨
I

exists for all ideals I of P .

Now assume
∨
I exists for all ideals. Then we know that for every J ⊆ Idl(P ),

we have:

∨
J ≤ x ⇔ a ≤ x, for all a ∈ J

⇔ J ⊆ ↓x

Thus, since
∨
J ≤ x⇔ J ⊆ ↓x, we conclude that

∨
a ↓.

In a lattice L, we recall that ⇓ x = {y ∈ L|y << x}. Note that ⇓ x is an ideal by

Proposition 6.5.

Proposition 8.11. Assume
∨
I exists for all I ∈ Idl(P ). Then

∨
: Idl(P )→ P has

a left adjoint if and only if P is continuous. In this case, ⇓a
∨

.

Proof. Assume P is continuous. Consider ⇓ : P → Idl(P ), and let I ∈ Idl(P ). Then

⇓
∨
I = {y|y <<

∨
I}. Given a ∈ {y|y <<

∨
I}, since I is an ideal, a <<

∨
I

implies that a ∈ I. So we have that ⇓
∨
I ⊆ I.

Now let x ∈ P . Then
∨
⇓ x =

∨
{y|y << x} = x since P is continuous. Thus, by

Proposition 8.2, ⇓a
∨

, so
∨

has a left adjoint.

Assume there exists f : P → Idl(P ) such that f a
∨

. First, we show fx ⊆ ⇓x,

for all x ∈ P . Let x ∈ P , and assume a ∈ fx. To show a << x, let x ≤
∨
I, for some

I ∈ Idl(P ). Then since f is order preserving, a ∈ fx⇒ a ∈ f
∨
I. But since f a

∨
,

we know f
∨
I ⊆ I, and so a ∈ I. Thus, a << x, and we can conclude that fx ⊆ ⇓x.

Now, since f a
∨

, we know that x ≤
∨
fx. Then, since fx ⊆ ⇓ x, we know∨

fx ≤
∨
⇓ x by Lemma 7.17. Since x ≤

∨
fx ≤

∨
⇓ x ≤ x, it follows that

x =
∨
⇓ x, for all x ∈ P . Thus P is continuous.

Propositions 8.10 and 8.11 give us that if P is a continuous lattice, then ⇓a
∨
a ↓,
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for

P Idl(P )
uu
⇓

P Idl(P )
∨ //P Idl(P )ii
↓

We can prove properties of functions between ideals of a ring. Recall that for

I, J ∈ Idl(R),

IJ =

{
n∑
i=1

aibi

∣∣∣∣ai ∈ I, bi ∈ J
}

and I : J = {r ∈ R|rJ ⊆ I}

Proposition 8.12. Suppose J ∈ Idl(R). Then −·J a − : J , where Idl(R)
−·J //oo
− : J

Idl(R).

Proof. By Proposition 4.4,

IJ ⊆ K ⇔ 〈{ab|a ∈ I, b ∈ J}〉 ⊆ K

⇔ ab ∈ K, for all a ∈ I, b ∈ J

⇔ aJ ⊆ K

⇔ a ∈ K : J, for all a ∈ I

⇔ I ⊆ K : J

Then, since IJ ⊆ K ⇔ I ⊆ K : J , by definition, we have that − · J a − : J .

Proposition 8.13. Consider P(X) and O(Rn). Then − ∩ B : P(X) → P(X) and

− ∩ V : O(Rn)→ O(Rn) have right adjoints.

Proof. Let A,B,C ∈ P(X), and define the function B ⇒ − by B ⇒ C = (X\B)∪C.

To show that −∩B a B ⇒ −, assume that A∩B ⊆ C and let x ∈ A. Then, if x ∈ B,

we know that x ∈ A∩B, so x ∈ C and thus x ∈ (X\B)∪C. Alternatively, if x 6∈ B,

then x ∈ X\B, and so x ∈ (X\B) ∪ C. Thus, A ∩ B ⊆ C ⇒ A ⊆ (X\B) ∪ C. Now

assume A ⊆ (X\B)∪C, and let x ∈ A∩B. Then x ∈ A and x ∈ B. But since x ∈ A,

we know that x ∈ (X\B)∪C, so x ∈ X\B or x ∈ C. Since x ∈ B, we know x 6∈ X\B,
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so it must be that x ∈ C. Thus, these give us that A ∩ B ⊆ C ⇔ A ⊆ (X\B) ∪ C,

so by definition, − ∩B a B ⇒ −.

By 8.5 we have that − ∩B preserves joins in P(X), and so

(⋃
α

Aα

)
∩B =

⋃
α

(Aα ∩B)

In particular, we have that −∩ V preserves joins in O(Rn) from the proof in P(Rn).

So also by 8.5, − ∩ V has a right adjoint, and if f(U) = U ∩ V , we get that

g(W ) =
⋃
{U |f(U) ⊆ W}. Then we can find the right adjoint, V ⇒ −. So we have:

V ⇒ W =
⋃
{U |U ∩ V ⊆ W}

=
⋃
{U |U ⊆ (Rn\V ) ∪W}

= [(Rn\V ) ∪W ]◦

Then we have that − ∩B a B ⇒ − in P(X), and − ∩ V a V ⇒ − in O(Rn).

We have shown in 8.9 and 8.10 that Idl(R), P(X), and O(Rn) are each what is

known as a commutative quantale, i.e. a complete lattice Q together with a com-

mutative, associative operation · such that a · (
∨
bα) =

∨
(a · bα), for all a ∈ Q and

{bα} ∈ Q. For more on quantales, see [10].
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