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ABSTRACT 

 ESTOK, SUZANNE    Fabrication and Analysis of TEOS- and MTES-based Aerogels Prepared 
via Rapid Supercritical Extraction.  Department of Chemistry, June 2011. 
 

 Silica aerogels were prepared using the precursor tetraethylorthosilicate (TEOS) and an 

organically modified TEOS derivative (methyltriethoxysilane, MTES) via a rapid supercritical 

extraction (RSCE) method.  Multiple consistent batches of monolithic TEOS-based aerogels were 

fabricated via an eight-hour RSCE process.  Fabricating TEOS-based aerogels with an RSCE 

method offers some distinct advantages.  The main advantage is the relative simplicity of the 

RSCE approach: liquid precursors are mixed and poured into a mold in a hydraulic hot-press, 

where gelation, aging and extraction of liquid from the pores occur.  The precursor recipe 

employs TEOS, ethanol, water, oxalic acid to catalyze hydrolysis, and ammonia to catalyze the 

subsequent polycondensation reactions.  Earlier work on silica aerogels by our group focused on 

the use of tetramethylorthosilicate (TMOS)-based precursor mixtures.  Reaction of TEOS to form 

sol gels yields ethanol as a byproduct.  A process that releases ethanol, rather than methanol (as 

in the TMOS-based aerogels) may be more appealing for commercial applications, involving 

scale-up of the process.  The TEOS-based aerogels have good optical transparency, bulk 

densities of 0.099(±0.003) g/cm3, surface areas of 460(±10) m2/g, and contain internal and 

external Si-O framework bonds as observed in FTIR spectra. Using SEM, the surface morphology 

of the aerogel samples was studied.  MTES-based aerogels were also successfully fabricated 

using Union’s RSCE process, but with less consistent results than for the TEOS-based aerogels. 

About half the MTES aerogels remained monolithic.  FTIR spectra indicate that the aerogels are 

organically modified; Si-CH3 groups are present in the aerogel framework.  The MTES aerogels 

are hydrophobic. 
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Chapter 1: Introduction 

1.1 Motivation and Goals of the Project  

Union’s Aerogel Lab has created its own patented method for fabricating aerogels using 

a supercritical technique.  The lab has done extensive work on tetramethylorthosilicate (TMOS) 

aerogels.  Tetraethylorthosilicate (TEOS) aerogels were chosen for this project because TEOS is 

less expensive than TMOS and because ethanol can be used as the solvent in the preparation of 

TEOS-based aerogels.  Methanol is used as the solvent when fabricating TMOS aerogels.  

Ethanol is a more attractive solvent for scale-up of the rapid supercritical extraction (RSCE) 

process because it is more environmentally friendly than methanol.  Preliminary work was 

performed by high school student Thomas Hughes on TEOS aerogels.  His results indicated that 

TEOS xerogels and aerogels could be fabricated, but could not be reproduced consistently.  

Thomas’s TEOS aerogels were white opaque and powdery.  Goals for this project include 

reproducibly fabricating high quality TEOS-based translucent aerogel monoliths with high 

surface areas using the RSCE process, optimizing the fabrication procedure and fully 

characterizing these silica materials.  Two applications for TEOS aerogels are for window and 

thermal insulation applications.  For the window applications, the TEOS aerogels need to be 

optically transparent and monolithic, and for the thermal insulation applications the TEOS 

aerogels need to have low thermal conductivity. 

Methyltriethoxysilane (MTES) aerogels were chosen for the second part of the project.  

MTES is a TEOS derivative; modified silica aerogels would be a logical extension of my work with 

TEOS aerogels.   MTES aerogels had never been fabricated by the RSCE method before.  They are 

of particular interest because researchers had prepared flexible MTES aerogels by other aerogel 

fabrication methods.  A unique potential application of flexible aerogels, soft robots, was of 

interest to Prof. Rieffel of Union’s Computer Science Department.   The goal for the fabrication 
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of MTES aerogels is to create high quality monolithic aerogels that are flexible.  Applications for 

MTES aerogels in building soft robots include laser or optically controlled soft robots.  The 

requirements for the MTES aerogels for any of the soft robot applications are that the aerogels 

be monolithic, flexible, robust and durable.  These aerogels also need to be able to be fabricated 

in a variety of shapes for different types of robots.  MTES aerogels could also be made into 

humidity sensors because of their hydrophobic properties.  A requirement for the MTES aerogel 

applications in humidity sensing and optical (laser) soft robots is that the aerogels need to be 

optically transparent, as well. 

 

1.2 Xerogels, Sol-Gels, Cryogels and Aerogels 

 What is a Sol-Gel? A sol is a suspension of colloidal particles with diameters in the range 

of 1-1000 nm that are dispersed in a liquid.1  A gel consists of a sponge-like, three-dimensional 

solid network whose pores are filled with another substance, which is usually a liquid.  These 

“wet” gels are also called aquagels, hydrogels or alcogels.1 

 

What is a Xerogel? A xerogel is a sol-gel material that is formed upon conventional 

drying of a wet gel under ambient conditions with simultaneous large shrinkage of the uniform 

gel body.1 

 

 What is a Cryogel? A cryogel is a sol-gel material that is fabricated when the pore liquid 

of a wet gel is removed by freeze-drying.1 

 

What is an Aerogel? An aerogel is a sol-gel material that is fabricated when the pore 

liquid of a wet gel is replaced by air without decisively altering the network structure or the 
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volume of the gel body.1  When a sol gel is dried under ambient conditions, the porous 

nanostructure collapses due to surface tension caused by the evaporating solvents and a xerogel 

is formed.  If, however, the solvent is extracted supercritically, the surface tension is reduced, 

preserving the porous nanostructure, resulting in an aerogel monolith.  A schematic showing the 

difference between the sol-gel mixture and a supercritically dried aerogel as well as an 

ambiently dried xerogel is shown below in Figure 1-1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Aerogels can be prepared as powders, granulates, or monoliths, any of which can have either 

amorphous or crystalline portions.1  Aerogels are 90-99% air by volume2 and silica aerogels are 

generally made up of less than 10% silicon dioxide.3  Silica aerogels are generally very porous4, 5 

with low to ultralow densities (0.003-0.500 g/cm3).1,4, 6   Silica aerogels also can have high optical 
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transmission in the visible region (~85-90%),4, 6 low sound velocity (~100-300 m/s, compared to 

quartz glass which is 5000 m/s),1, 4 and large specific surface area (~500-1600 m2/g).5 , 6   

Furthermore, silica aerogels have low thermal conductivity (0.01-0.015 W/mK),4 low dielectric 

constant (<2.0),5 low refractive index1 and low rigidity.1   

Silica aerogels also have form stability and are non-flammable; they are brittle, have a 

compressive strength of 0.15-0.30 N/mm,2 and have an elastic compression of 2-4%.1  Silica 

aerogels have tensile strengths of 0.020 N/mm,2  low acoustic impedance (Z=104-105 kg/m2s), 

excellent temperature stability and can be sintered at low temperatures to be processed to 

extremely pure and totally homogeneous glasses.1  Aerogels have high selectivities in catalytic 

processes and nearly all oxides relevant for catalytic applications can be prepared as aerogels.  

In addition, for compositions with two or three substances, aerogel mixtures of metal oxides, or 

metal particles on oxide carriers can be formed.1   

 

Types of Aerogels:  Aerogels can be fabricated from a wide variety of starting materials, 

some of which include silica (TEOS, tetramethylorthosilicate (TMOS)), titania, alumina, chromia, 

iron, nickel, copper, lead, and carbon.1  Other starting materials include organic starting 

materials, such as resorcinol/formaldehyde (RF), melamine/formaldehyde (MF), and phenolic 

Novolak resin (phenol/formaldehyde: PF) to fabricate carbon aerogels.1 

 

 Aerogel Applications: Some aerogel applications include thermal super-insulators in 

solar energy systems, refrigerators and thermos flasks, very efficient catalysts and catalytic 

supports, and radio luminescent devices.6  Other aerogel applications include transparent 

thermal insulation for windows (bathroom, staircase, ceiling or super-insulating filler in double-

walled window systems3), cooling/heating systems and high temperature batteries, solar energy 
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(paneling house walls or for coating solar energy collectors), and film coatings (optical coatings 

for solar cells and coating on IR detectors to obtain a kind of shield against the heat radiating 

from a substrate).1   

Further applications of aerogels include gas filters with pores in the 20-100 nm range, 

thickening of liquids (rocket fuels), cosmic dust collection and fixation on the outside of 

spacecrafts, which enables a soft landing of extraterrestrial particles and later investigation by 

optical methods.1  Finally, aerogels can be used as heat-storage devices for automobiles, active 

catalysts or catalytic substracts, fillers, gellifying agents.3  For TEOS aerogels, the most relevant 

applications are thermal insulation and window applications because they can be tailored to be 

translucent. 

 

Aerogel Synthesis:  There are many ways to fabricate aerogels.  One of these methods is 

a supercritical drying method using a methanol solvent extraction.7 Another method is a two-

step (acid-base) sol-gel process, which uses strong acidic catalysts, such as HCl, low 

temperatures and an autoclave system.3  The supercritical drying method brings the solvent to 

supercritical temperature and pressure, whereas an autoclave system exchanges the solvent 

with CO2 under high pressure.   In Figure 1-2, the sol-gel reaction mechanism that is used to 

make the wet gels that become aerogels can be seen.  Other methods include ambient pressure 

techniques, conventional supercritical extraction (CSCE), and rapid supercritical extraction 

(RSCE).2   

In ambient-pressure techniques one attempts to dry the wet gel at ambient pressure.  

These techniques are good for synthesizing aerogel films and powders, but not for synthesizing 

aerogel monoliths.2  Ambient pressure drying can also be accomplished by treating the surface 

with a surfactant or surface-tension-reducing chemical, or aging the gel in alkoxide/alcohol 
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solutions to stiffen the microstructure and avoid collapse due to capillary forces.  Furthermore, 

ambient pressure drying can be achieved by manipulating the surface of the gel to aid in solvent 

evacuation, which uses a solvent exchange with hexane, followed by a surface modification with 

a silylation process to promote a reversible shrinkage.2   

 

 

 

 

 

 

 

 

 

 

 

Conventional supercritical extraction (CSCE) is a multi-step technique designed to 

eliminate surface tension by bringing the sol-gel to the critical point of the solvent in its pores. 

Above the critical point there is no surface tension, so the solvent can be evacuated without 

damage to the gel structure.  Generally for this technique pressure vessels are used.2  This 

technique can also be done after one or more solvent exchanges with CO2 inside a pressure 

vessel.2  CSCE using a solvent exchange with CO2 is the most commonly used method of 

fabricating aerogels.  It is also a “cold” method, meaning that the process does not take place 

under high temperature conditions. 



7 
 

Other fabrication methods include drying in organic solvents (a “hot” method, which 

takes place under high temperature conditions), and freeze-drying.1  The freeze-drying 

technique produces cryogels, which are generally non-transparent powders.  The microstructure 

of a cryogel is governed by the size of ice microcrystals that are formed during the freeze-drying 

process. Cryogels tend to be more macroporous than aerogels made using supercritical 

extraction methods.7  

Rapid supercritical extraction (RSCE) is a technique designed to perform the solvent 

extraction under supercritical conditions and is a one-step reactant-to-aerogel process.2  This is 

described in more detail in the next section of this chapter. 

 

1.3 Rapid Supercritical Extraction (RSCE) 

Rapid Supercritical Extraction (RSCE): Rapid supercritical extraction techniques use a 

confined mold in either a pressure vessel or a hydraulic hot-press.  The precursor material is 

confined in a mold to inhibit gel deformation so that higher heating rates can be used.7  

 

Union’s Rapid Supercritical Extraction (RSCE) Method: Union’s RSCE method is an 

alcohol supercritical extraction technique, which uses a hydraulic hot-press to both heat and 

seal a mold.  The liquid precursor mixture is poured into a metal mold and the mold is then 

sandwiched between pieces of Kapton film or stainless steel sheets and high-temperature 

gasket material and placed in the hot-press.7  For a typical run, the hot-press is closed to seal the 

liquid mixture inside the mold and the hot-press provides the compressive restraining force.  

The aerogel precursors react to form a wet gel with porous nanostructure during the heating 

process.7  The mold and mixture are then brought above the supercritical temperature of the 

solvent (for example, methanol or ethanol).  The pressure in the mold is not controlled; it is a 
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function of the temperature of the system.  Once a supercritical state is reached the press force 

is decreased and the supercritical fluids are released, leaving behind an aerogel.  For Union’s 

RSCE process, the temperature level, temperature increase and decrease rate and hot-press 

restraining force can be controlled.  The mold size and precursor volume is also selected.7  Two 

significant advantages of this method over conventional methods are that (1) there is less 

solvent waste due to the lack of solvent-exchange steps, and (2) aerogel monoliths can be 

prepared in hours, rather than days. 

 

1.4 TEOS Aerogels 

TEOS Aerogel Synthesis and Characteristics: TEOS aerogels have been produced using a 

variety of methods by a variety of groups.  Rao et al. note that monolithic and transparent silica 

aerogels can be produced.8  Rao et al. noted that low strength acid catalysts (0.01 N) yielded 

monolithic and transparent silica aerogels when using a two-step method, in which the first step 

prepares the silica sol-gel by hydrolysis and condensation of silicon alkoxides and the second 

step supercritically dries the sol-gel in an autoclave using a solvent exchange with N2.
8  They also 

noted that a short chain length solvent (ethanol) produced the best silica aerogels.  The ratio of 

the precursor:solvent:water was kept constant at 1:4:4 with a catalyst concentration of 0.01 N.8  

The acid catalysts that produced the best TEOS aerogels were HCl, HNO3 and H2SO4, which 

resulted in aerogels that had 80% transmission at 900 nm.  The path length for these aerogels 

was not mentioned.  It was also found that greater catalyst concentration decreases the gelation 

time.8  

Pajonk et al. prepared aerogels by a two-step method similar to the method by Rao,3 in 

which the first step prepares the silica sol-gel by hydrolysis and condensation of silicon alkoxides 

and the second step supercritically dries the sol-gel in an autoclave.3  The acid catalysts that 
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produced the best TEOS aerogels were HCl, HNO3 and H2SO4, which resulted in transparent 

(70%) and shrunken aerogels.  The path length for these aerogels was not mentioned.  When 

using organic acid catalysts (tartaric acid and citric acid), however, the silica aerogels had 

densities of 0.23 g/cm3, were monolithic, had good transparency (65%), and little volume 

shrinkage (<15%).3   The path length for these aerogels was not mentioned. 

In a review of aerogels by Pierre and Pajonk, they mention that supercritical drying can 

either be hot or cold, meaning that the method goes to high temperature or does not go to high 

temperature, respectively.9  They also mentioned that the hot method has a poorly controlled 

aging process, while the temperature and pressure are being increased, and the resulting 

aerogels are hydrophobic.9  The cold method, which has better controlled aging processes, 

resulted in more hydrophilic aerogels.  They note that aerogels dried with a solvent exchange 

with CO2 typically have a pore volume above 90% of the sample volume and a surface area that 

can exceed 1000 m2/g.9 

Hedge and Rao also used a two-step sol-gel process, but methanol was used for the 

solvent exchange.4  Another difference is that the temperature and pressure in the autoclave 

was higher than previously reported.  These TEOS aerogels had a gelation time of only 18 hours 

at 50°C and had porosity of 99%, a bulk density of 0.018 g/cm3 and optical transmission of 75% 

for a molar ratio of TEOS:MeOH:acidic (H2O):basic (H2O) of 1:99:10.42:14.58.4 The path length 

for these aerogels was not mentioned. 

Rao and Parvathy obtained the best quality aerogels (in terms of monolithicity and 

transparency) using a molar ratio of TEOS:EtOH:H2O of 1:5:8.10  These TEOS aerogels were also 

prepared via a two-step method using an autoclave with N2.
10  In other work by Rao and 

Parvathy,11 they found that the density of the aerogels increases with an increase in the 

concentration of the catalyst; their aerogels had densities of 0.08-0.6 g/cm3.   
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Other researchers who have used similar two-step TEOS aerogel fabrication methods 

include Tamon et al. who used liquid CO2 for the solvent exchange in the autoclave,12 Mulder et 

al.,13 Meador et al. who used (3-aminopropyl)triethoxysilane  (APTES) and 1, 6-

bis(trimethoxysilyl)hexane (BTMSH) as their base catalysts14 and Li et al. who incorporated 

electrospun polyurethane nanofibers into their TEOS sol-gels.15  In one of Pajonk’s works, he 

notes that it can take three weeks to make TEOS sol-gels with base catalysts, but with citric acid 

as the catalyst sol-gels could be obtained within three days.16  These citric acid catalyzed TEOS 

aerogels had surface areas of 800 m2/g, transparency of 65% and bulk densities of 0.23 g/cm3.  

The path length for these aerogels was not mentioned. 

Rao and Bhagat produced TEOS aerogels by a two-step (acid-base) sol-gel process, in 

which oxalic acid was used as the acid catalyst and ammonia was used as the base catalyst.6  

They found that adding the base catalyst after 24 hours produced the highest optical 

transmission, the best monolithicity and the lowest volume shrinkage.  The TEOS aerogels 

fabricated from a molar ratio of 1:6.9:3.5:2.2 of TEOS:EtOH:acidic (H2O):basic(H2O) had high 

transparency (~90%) and low volume shrinkage (<10%).6  The path length for these aerogels was 

not mentioned.  The researchers chose this two-step process because it offered better control 

over the rates of hydrolysis and condensation reactions.  For their supercritical drying process, 

they used a solvent exchange with N2 in their autoclave.6  This work was the basis for the initial 

work done by Thomas Hughes on RSCE TEOS aerogels in our lab using the recipe seen in Table 1-

1, which was modified from Rao and Bhagat.6 
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Table 1-1: Initial TEOS Aerogel Recipe  
Part I: Ingredient Name Amount (mL) 

TEOS (tetraethylorthosilicate) 7.75 

EtOH (ethanol) 10.00 

H2O (water) 0.25 

H2C2O4 (oxalic acid): 0.01 M 3.00 

Part II: Ingredient Name Amount (mL) 
NH3 (ammonia): 1.5 M 0.67 

 

Our TEOS RSCE aerogels are made from a mixture of TEOS, water, ethanol, and an acid 

catalyst (oxalic acid), which catalyzes the hydrolysis reaction.  Afterwards, a base catalyst 

(ammonia) is added to afford a polymerization reaction that leads to a silicon-oxygen matrix 

surrounded by solvent.  Our TEOS aerogels are fabricated in about eight hours using Union’s 

RSCE method.  Conventionally, silica aerogels are made in an autoclave with a CO2 drying 

process that takes days to a week or more to complete.  Some characteristics of our RSCE TEOS 

aerogels include low density, relatively high optical transmission, monolithicity, and low surface 

areas compared to the literature on silica aerogels for fabricating TEOS aerogels using 

techniques other than Union’s RSCE method. 

 

1.5 MTES Aerogels  

MTES Aerogel Synthesis and Characteristics: In Rao et al., a two-step acid-base 

catalyzed sol-gel process, which undergoes supercritical drying, is used.17  They employed 

methanol as the solvent, and oxalic acid and ammonia as the catalysts.  Their sol-gels were aged 

in a methanol bath and then supercritically dried in an autoclave above the critical temperature 

and pressure of methanol under inert atmosphere.17  They found that their aerogels were 

elastic, flexible and superhydrophobic.  They also found that the rates of the hydrolysis and 

condensation reactions were optimized when 0.001-M oxalic acid and 10-M ammonia were 
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used.17  Furthermore, Rao et al. found that the optimal aging period of the sol gels was two days 

for highly flexible aerogels. 

Our MTES RSCE aerogels are made from a mixture of MTES, water, ethanol, and an acid 

catalyst (oxalic acid), which catalyzes the hydrolysis reaction.  Afterwards, a base catalyst 

(ammonia) is added to afford a polymerization reaction that leads to a silicon-oxygen matrix 

surrounded by solvent.  Conventionally, silica aerogels are made in an autoclave with a CO2 

drying process that takes days to a week or more to complete, whereas, in this work MTES 

aerogels are fabricated using Union’s RSCE method.  The recipe for our MTES aerogels was 

modified from the paper by Rao et al. on TEOS aerogels.6  Characteristics of our MTES RSCE 

aerogels include some optical transmission in the near-IR (generally MTES aerogels have been 

reported to be opaque) and monolithicity. 

 

1.6 Characterization Methods for Aerogels  

Characterization methods for aerogels include measurements of bulk density4 and 

skeletal density,7 porosity4 and surface area,2 optical transmission in the UV-Visible4 and the 

near-infrared regions,2 thermal conductivity, pore diameter (BJH desorption),7 and volume 

shrinkage measurements.6  Other characterization methods include Fourier transform infrared 

spectroscopy (FTIR), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), mechanical 

strength, contact angle, acoustic measurements and differential thermal analysis (DTA).5  Also 

the surface morphologies of the aerogels can be studied using scanning electron microscopy 

(SEM), atomic force microscopy (AFM) and transmission electron microscopy (TEM).6 

 Bulk density is a measurement of the mass of a sample divided by the volume of a 

sample.  For monolithic cylindrical aerogels the bulk density of a sample can be found using the 

following equation:  
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The skeletal density of a sample is a measurement of the ratio of the mass of the sample to the 

sum of the volumes of the sample excluding the pores within the sample.   

Porosity is a measure of the void spaces in a sample (air space in the case of aerogels) 

and is calculated by taking the volume of the voids over the total volume to find a percentage 

between 0 and 100%.   

Surface area is a measurement of how much exposed area a sample has, and is 

expressed in m2/g.  For an aerogel the surface area includes the exposed area of the outer 

surface of the material as well as the surface of the material exposed inside the pores.   

Optical transmission is a measurement of the amount of light that is able to pass 

through a material expressed as a percent.  A perfectly translucent material would have an 

optical transmission of 100%.   

Thermal conductivity is a measure of a material’s ability to conduct heat. 

 Raman spectroscopy and Infrared (IR) spectroscopy provide information about the 

vibrational states of molecules.  Different vibrational motions are usually observed with each 

method due to the selection rules for differentiating between the vibrational motions.  IR 

spectroscopy requires a change in the dipole moment of a molecule to occur resulting from 

vibrational motion, whereas Raman spectroscopy requires a change in the polarizability of a 

molecule to occur resulting from vibrational motion.   

The mechanical strength of a material is the ability of a material to withstand applied 

stress (compressive, tensile or shear) without failure, as seen in Figure 1-3.  In this project, the 

mechanical strength of the aerogels is determined in regards to compressive stress along the y-

axis of a cylinder (see Figure 1-3a).   
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The contact angle of an aerogel is the measurement of the angle at which a liquid, in 

this case, deionized water interfaces with the aerogel surface.  The shape of the droplet is 

determined using Young’s equation, where a contact angle less than 90° indicates a hydrophilic 

surface and a contact angle greater than 90° indicates a hydrophobic surface.  

Superhydrophobic surfaces have contact angles greater than 150°.   

A scanning electron microscope images a sample by rastering it with a high-energy 

beam of electrons. The electrons interact with the atoms in a sample, producing signals that 

contain information about the sample's surface topography, composition, and other properties 

such as electrical conductivity.  When the electrons interact with the atoms of the sample the 

types of signals produced include secondary electrons (the electrons displace the sample atom’s 

electrons), back-scattered electrons (BSE, the electrons from the beam bounce back out of the 

sample), characteristic X-rays, Auger and chemiluminescence.  Generally, the secondary 

electrons are studied to produce a high-resolution image of the sample surface.  The 
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characteristic x-rays can be used to study the composition of a sample when an SEM is 

employed with energy-dispersive x-ray (EDX) measurements.   

A TEM images a sample using a beam of electrons that is transmitted through an ultra 

thin specimen.  The electrons interact with the sample as they pass through.  The image is 

formed from the interaction of the electrons transmitted through the sample; the image is 

magnified and focused onto an imaging device, such as a fluorescent screen, on a layer of 

photographic film, or to be detected by a sensor such as a CCD camera.  TEM’s are capable of 

imaging at a significantly higher resolution than light microscope. Thus, TEM’s are capable of 

imaging at the atomic scale, but we do not have a TEM at Union. 

An AFM produces a topographical map (in the range of 5 μm to 200 nm) of a sample’s 

surface based on the interaction between a sample surface and a cantilever driven by a 

piezoelectric material.  A change in the amplitude for tapping mode or a change in deflection for 

contact mode of the cantilever is measured as it interacts with the sample surface. 

In this thesis project, I describe the synthesis and characterization of TEOS-based and 

MTES-based aerogels prepared via Union’s RSCE method. 
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Chapter 2: Experimental 

2.1 Experimental Methods for TEOS Xerogels and Aerogels  

This experimental work was performed during the spring, summer and fall of 2010, and 

in the winter and spring of 2011. 

 

 Materials: Tetraethylorthosilicate (TEOS) and oxalic acid dihydrate were procured from 

Sigma-Aldrich Chemical Co., and were used without further purification.  Reagent grade ethanol 

and ammonia were procured from Fisher Scientific, and were used without further purification.  

Other materials used include silicone spray, stainless steel foil, Kapton, cold-rolled steel molds, 

graphite sheets, Maxipetters, digital pipets, varied glassware (beakers, volumetric flasks, stirring 

rods), mortars and pestles, and spatulas. 

 

Preparation of Oxalic Acid (0.01 M): To prepare a 100-mL batch of 0.01 M oxalic acid, 

0.09003 g of oxalic acid dihydrate is added to a 100-mL volumetric flask that is subsequently 

filled to the mark with deionized water and mixed thoroughly. 

 

Preparation of Ammonia (1.5 M, 0.75 M and 0.375 M): To prepare a 500-mL batch of 

1.5 M ammonia solution, 50.7 mL of 14.8-M (concentrated) ammonia is added to water in a 500-

mL volumetric flask that is then filled to the mark with deionized water.  To prepare a 100-mL 

batch of 0.75 M ammonia solution, a 1:2 dilution of the 1.5-M stock solution is employed, in 

which 50 mL of 1.5-M ammonia is added to a 100-mL volumetric flask that is then filled to the 

mark with deionized water.  To prepare a 100-mL batch of 0.375 M ammonia solution, a 1:2 
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dilution of the 0.75-M solution is employed: 50 mL of 0.75-M ammonia is added to a 100-mL 

volumetric flask that is then filled to the mark with deionized water. 

 

Preparation of Xerogel Batches: A TEOS-based precursor recipe was adapted from Rao.6  

Batches # 1-4 were prepared on 4/30/10 using the following recipe (Table 2-1): 

 

Table 2-1: TEOS Xerogel Recipe (4/30/10) 
Part I: Ingredient Name Amount (mL) 

TEOS (tetraethylorthosilicate) 3.88 

EtOH (ethanol) 5.00 

H2O (water) 0.125 

H2C2O4 (oxalic acid): 0.01 M 1.50 

Part II: Ingredient Name Amount (mL) 
NH3 (ammonia): 1.5 M 0.085 

 

Each of the four batches was prepared in the same manner, with the exception of the wait time 

(the time between the mixing of Part I of the recipe and the addition of the ammonia in Part II 

of the recipe). For each of the four batches the ingredients in Part I were added to a test tube, 

left to sit for five minutes and the ingredients were then mixed together with the sonicator for 

fifteen minutes, except for Batch #1 which did not have the five minute wait before mixing Part 

I.  The wait times for each batch can be seen in the table below (Table 2-2).  The wait time is 

started immediately after the fifteen minutes of sonication. 

 

Table 2-2: TEOS Xerogel Preparation Conditions (4/30/10) 
Batch # Wait Time (minutes) 

1 0 (immediate addition of Part II of the recipe) 

2 15 

3 30 

4 45 
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After the addition of Part II of the recipe, Batches #1 and 2 were sonicated for an additional five 

minutes, and Batches #3 and 4 were stirred using a mechanical stirrer and stir bar for five 

minutes to mix in the ammonia.  Afterwards each batch was covered with parafilm and left to 

gel under ambient conditions. 

 Batches #A, B and C were prepared on 5/14/10 using the following recipe (Table 2-3): 

 

Table 2-3: TEOS Xerogel Recipe (40 mL total) (5/14/10) 
Part I: Ingredient Name Amount (mL) 

TEOS (tetraethylorthosilicate) 15.50 

EtOH (ethanol) 20.00 

H2O (water) 0.500 

H2C2O4 (oxalic acid): 0.01 M 6.00 

Part II: Ingredient Name Amount (mL) 
NH3 (ammonia): 1.5 M 0.500 (per 15 test tubes) 

 

All of the batches (A, B and C) were prepared from one large batch, where the ingredients in 

Part I of the recipe were added to a beaker and were then mixed together with the sonicator for 

fifteen minutes.  Then 2.5-mL of the total batch was pipeted into every test tube; each test tube 

corresponded to a particular batch (A1-A5, B1-B5, and C1-C5).  The wait times for each batch 

can be seen in the table below (Table 2-4).  The wait time is started immediately after the fifteen 

minutes of sonication. 

 

Table 2-4: TEOS Xerogel Preparation Conditions (5/14/10) 

Batch # 
Amount of Liquid Used 

from the 40 mL Total (mL) 
Wait Time (minutes) 

A1, B1, C1 2.5 (for each) 
0 (immediate addition of 

Part II of the recipe) 

A2, B2, C2 2.5 (for each) 15 

A3, B3, C3 2.5 (for each) 30 

A4, B4, C4 2.5 (for each) 45 

A5, B5, C5 2.5 (for each) 105 
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For all of the test tubes in Batch A, sonication was used for five minutes after the addition of the 

ammonia.  For all of the test tubes in Batch B, the addition of the ammonia was mixed with a stir 

bar and mechanical stirrer; the solution in each test tube was stirred for five minutes.  For all the 

test tubes in Batch C, a stirring rod was used for mixing after the addition of the ammonia. 

 Batches #A and B were prepared on 5/21/10 using the following recipe (Table 2-5): 

 

Table 2-5: TEOS Xerogel Recipe (40 mL total) (5/21/10) 
Part I: Ingredient Name Amount (mL) 

TEOS (tetraethylorthosilicate) 15.50 

EtOH (ethanol) 20.00 

H2O (water) 0.500 

H2C2O4 (oxalic acid): 0.01 M 6.00 

Part II: Ingredient Name Amount (mL) 
NH3 (ammonia): 1.5 M 0.134 (per 10 test tubes) 

 

Each of the batches (A and B) was prepared from one large batch.  The ingredients in Part I of 

the recipe were added to a beaker and were then mixed together with the sonicator for fifteen 

minutes.  Then 4 mL of the total batch was pipeted into every test tube; each test tube 

corresponded to a particular batch (A1-A5 and B1-B5).  The wait times for each batch can be 

seen in the table below (Table 2-6).  The wait time is started immediately after the fifteen 

minutes of sonication. 

 

Table 2-6: TEOS Xerogel Preparation Conditions (5/21/10) 

Batch # 
Amount of Liquid Used 

from the 40 mL Total (mL) 
Wait Time (minutes) 

A1, B1 4 (for each) 
0 (immediate addition of 

Part II of the recipe) 

A2, B2 4 (for each) 15 

A3, B3 4 (for each) 30 

A4, B4 4 (for each) 45 

A5, B5 4 (for each) 105 
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For each of the test tubes in Batch A, sonication was used for five minutes after the addition of 

the ammonia.  For each the test tubes in Batch B, a stirring rod was used after the addition of 

the ammonia.  A modified batch (M) was made from the recipe detailed in Table 2-5, except the 

amounts of H2O and EtOH were switched.  Part I of the recipe was sonicated for fifteen minutes 

and then Part II of the recipe was added seven days later. 

 Batches #A and B were prepared on 5/28/10 using the following recipe (Table 2-7): 

 

Table 2-7: TEOS Xerogel Recipe (40 mL total) (5/28/10) 
Part I: Ingredient Name Amount (mL) 

TEOS (tetraethylorthosilicate) 15.50 

EtOH (ethanol) 20.00 

H2O (water) 0.500 

H2C2O4 (oxalic acid): 0.01 M 6.00 

Part II: Ingredient Name Amount (mL) 
NH3 (ammonia): 1.5 M or 0.75 M 0.192 (per 14 test tubes) 

 

Each of the batches was prepared from one large batch; the ingredients in Part I of the recipe 

were added to a beaker and were then mixed together with the sonicator for fifteen minutes.  

Then 3 mL of the total batch was pipeted into each test tube corresponding to each tube 

number in each batch (A1-A7, and B1-B7).  The wait times for each batch can be seen in the 

table below (Table 2-8).  The wait time is started immediately after the fifteen minutes of 

sonication.   For all of the test tubes in Batch A and B, a stirring rod was used to mix in the 

ammonia.  After the various xerogel preparations, the “best” xerogel recipe was chosen based 

on optical transparency and gelation time.  The “best” recipe was translucent and gelled quickly, 

but not immediately, so that the mixture could be poured into a mold to make aerogels.  After 

the best recipe was chosen, the TEOS aerogels could be fabricated. 

 

 



21 
 

Table 2-8: TEOS Xerogel Preparation Conditions (5/28/10) 

Batch # 
Amount of Liquid Used 

from the 40 mL Total (mL) 
Wait Time (minutes) 

A1, B1 3 (for each) 45 

A2, B2 3 (for each) 1hr 45 min 

A3, B3 3 (for each) 2hr 45 min 

A4, B4 3 (for each) 5hr 45 min 

A5, B5 3 (for each) 17hr 45 min 

A6, B6 3 (for each) 23hr 45 min 

A7, B7 3 (for each) 47hr 45 min 

 

 Another modified batch (M1-M6) was fabricated on 5/30/11 using the recipe in Table 2-

1, except the amount of 1.5 M ammonia was 0.335 mL.  Part I of the recipe was sonicated for 

fifteen minutes.  The wait times for the addition of Part II of this batch can be seen in Table 2-9 

below. 

 

Table 2-9: Modified Batch Preparation Conditions (5/30/10) 

Batch # 
Amount of Liquid Used 

from the 10 mL Total (mL) 
Wait Time (minutes) 

M1 2 1 day 

M2 2 2 days 

M3 2 3 days 

M4 2 4 days 

M5 2 5 days 

M6 10 (made a full batch) 5 days 

 

For Batch M6 a full 10-mL batch was made, whereas for Batches M1-M5 2 mL of the 10-mL 

batch were used for each. 

 

Process: Mold Design, Sealing the Mold and Hot-Press Parameters: To seal the mold 

correctly a graphite sheet must be placed on top of the bottom hot-press plate followed by a 

layer of either Kapton or stainless steel foil, then the mold, followed by another layer of Kapton 
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or stainless steel foil and finally, another layer of graphite (as seen in Figure 2-1).  Kapton was 

used for aerogels Batches #1-8 and stainless steel foil was used for Batches #9-21. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The mold schematic seen in Figure 2-1 was modified from the schematic created by Smitesh 

Bakrania.  The mold is then sealed using Program 1 on the hot-press, which can be seen in 

Tables 2-10 and 2-11 below.  The program detailed in Table 2-10 was used for Batches #1-9 and 

the program in Table 2-11 was used for Batches #10-21. 
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Table 2-10: Hot Press Parameters for Setting the Mold: Batches #1-9 

Step # 
Temperature 

(°F) or (°C) 
Rate Force Rate 

Dwell: 
Time 

(minutes) 

Duration 
Of Each 

Step 
(minutes) 

1 off 
200 °F/min 

or 
111 °C/min 

10k lbs. or 
44 N 

600k lbs./min 
or 

2.7 N/min 
10 10 

2-5 END STEP 

Duration of Entire Program: 10 minutes 

 

Table 2-11: Hot Press Parameters for Setting the Mold: Batches #10-21 

Step # 
Temperature 

(°F) or (°C) 
Rate Force Rate 

Dwell: 
Time 

(minutes) 

Duration 
Of Each 

Step 
(minutes) 

1 off 
200 °F/min 

or 
111 °C/min 

20k lbs. or 
89 N 

600k lbs./min 
or 

2.7 N/min 

10 10 

2-5 END STEP 

Duration of Entire Program: 10 minutes 

 

For Batches #1-4, the mold was uncoated, whereas for Batches #5 and 6, the mold was 

completely sprayed (both top and bottom) with a non-stick silicone spray (CRC Industrial Dry 

PTFE Lube: Dry Film Lubricant).  For Batches #7-13, half the wells in the mold were sprayed with 

the silicone spray and half were left unsprayed.  For Batches #14-21, the whole mold was 

sprayed with the silicone spray.  For Batches #1-7, a 4-well square mold (as seen below in 

Schematic 2-1 well size: 1.5” by 1.5” by 1”) was used with a 120-mL aerogel recipe, whereas for 

Batches #8-21 a custom mold (as seen below in Schematic 2-2 well size for each of the 16 wells: 

¾” diameter by ¾” height) was used with a 100-mL aerogel recipe: 
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Preparing the Aerogel Mix and Hot-Press Parameters:  A TEOS-based precursor recipe 

was adapted from Rao.6  To prepare the 100- or 120-mL sol-gel mixture that is poured into the 

sealed mold, the reagents listed under Part I of the 20-mL recipe (given below in Table 2-12) are 

scaled up appropriately and mixed together, then sonicated for 15 min after which the recipe is 

left to rest for another 45 min.  Hydrolysis of the TEOS occurs in this step.  Subsequently, in Part 

II of the recipe, base catalyst is added to the mixture and the mixture is stirred with a glass 

stirring rod.  The polycondensation reactions occur in this step. 

 

Table 2-12: TEOS Aerogel Recipe 
Part I: Ingredient Name Amount (mL) 

TEOS (tetraethylorthosilicate) 7.75 

EtOH (ethanol) 10.00 

H2O (water) 0.25 

H2C2O4 (oxalic acid): 0.01 M 3.00 

Part II: Ingredient Name Amount (mL) 
NH3 (ammonia): 0.375 M or 0.75 M 0.67 

 

For Batch #2, the base catalyst was added immediately after sonication of Part I of the recipe.  

For Batches #1-6, 0.75-M ammonia was used, whereas for Batches #7-21, 0.375-M ammonia 

was used.  Once both parts of the mixture were added, the mixture was poured into the sealed 

mold to undergo rapid supercritical extraction.2  Processing parameters are detailed in Tables 2-

13, 2-14, and 2-15.  The hot-press program detailed in Table 2-13 was used for Batches #1-9, the 

hot-press program detailed in Table 2-14 was used for Batch #10 and the hot-press program 

detailed in Table 2-15 was used for Batches #11-21. 
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Table 2-13: Hot Press Parameters for Making TEOS Aerogels: Batches #1-9 

Step # Temperature Rate Force Rate 
Dwell: 
Time 

(minutes) 

Duration Of 
Each Step 

1 
90 °F or  

32 °C 
200 °F/min or 

111 °C/min 
40k lbs. or 

178 N 
600k lbs./min 
or 2.7 N/min 

602 10 hrs 6 min 

2 
550 °F or  

288 °C 
3 °F/min or  

2 °C/min 
40k lbs. or 

178 N 
600k lbs./min 
or 2.7 N/min 

30 3 hrs 4 min 

3 
550 °F or  

288 °C 
200 °F/min or 

111 °C/min 
1k lbs. or 

4.4 N 
1k lbs./min or 
0.004 N/min 

30 1 hr 10 min 

4 
100 °F or  

38 °C 
3 °F/min or  

2 °C/min 
1k lbs. or 

4.4 N 
600k lbs./min 
or 2.7 N/min 

1 2 hrs 31 min 

5 END STEP 

Duration of Entire Program: 16 hours 51 minutes 

 

 

 

 

Table 2-14: Hot Press Parameters for Making TEOS Aerogels: Batch #10 

Step # Temperature Rate Force Rate 
Dwell: 
Time 

(minutes) 

Duration Of 
Each Step 

1 
90 °F or  

32 °C 
200 °F/min or  

111 °C/min 
40k lbs. or 

178 N 
600k lbs./min 
or 2.7 N/min 

602 10 hrs 6 min 

2 
480 °F or  

249 °C 
3 °F/min or  

2 °C/min 
40k lbs. or 

178 N 
600k lbs./min 
or 2.7 N/min 

30 2 hrs 10 min 

3 
480 °F or  

249 °C 
200 °F/min or  

111 °C/min 
1k lbs. or 

4.4 N 
1k lbs./min or 
0.004 N/min 

30 1 hr 10 min 

4 
100 °F or  

38 °C 
3 °F/min or  

2 °C/min 
1k lbs. or 

4.4 N 
600k lbs./min 
or 2.7 N/min 

1 2 hrs 31 min 

5 END STEP 

Duration of Entire Program: 15 hours 57 minutes 
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Table 2-15: Hot Press Parameters for Making TEOS Aerogels: Batches #11-21 

Step # Temperature Rate Force Rate 
Dwell: 
Time 

(minutes) 

Duration Of 
Each Step 

1 
90 °F or  

32 °C 
200 °F/min or  

111 °C/min 
40k lbs. or 

178 N 
600k lbs./min 
or 2.7 N/min 

2 6 min 

2 
550 °F or  

288 °C 
2 °F/min or  

1 °C/min 
40k lbs. or 

178 N 
600k lbs./min 
or 2.7 N/min 

30 4 hrs 20 min 

3 
550 °F or  

288 °C 
200 °F/min or  

111 °C/min 
1k lbs. or 

4.4 N 
1k lbs./min or 
0.004 N/min 

30 1 hr 10 min 

4 
100 °F or  

38 °C 
3 °F/min or  

2 °C/min 
1k lbs. or 

4.4 N 
600k lbs./min 
or 2.7 N/min 

1 2 hrs 31 min 

5 END STEP 

Duration of Entire Program: 8 hours 7 minutes 

 

 

2.2 Experimental Method for MTES Xerogels and Aerogels 

This experimental work was performed during the fall of 2010, and the winter and 

spring of 2011. 

 

Materials: Methyltriethoxysilane (MTES) and oxalic acid dihydrate were procured from 

Sigma-Aldrich Chemical Co., and were used without further purification.  Reagent grade ethanol, 

reagent grade methanol and ammonia were procured from Fisher Scientific, and were used 

without further purification. 

 

Preparation of Oxalic Acid (0.01 M and 0.1 M): For the preparation of 0.01 M oxalic acid 

see section 2.1.  To prepare a 100-mL batch of 0.1 M oxalic acid, 0.9003 g of oxalic acid 

dihydrate is added to a 100-mL volumetric flask that is subsequently filled to the mark with 

deionized water and mixed thoroughly. 
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Preparation of Ammonia (10 M, 1.5 M, 0.75 M and 0.375 M): For the preparation of 1.5 

M, 0.75 M and 0.375 M ammonia see section 2.1.  To prepare a 100-mL batch of 10 M ammonia 

solution, 60.76 mL of 14.8-M (concentrated) ammonia is added to a 100-mL volumetric flask 

that is then filled to the mark with de-ionized water. 

 

Preparation of Xerogel Batches: A MTES-based precursor recipe was adapted from the 

TEOS-based recipe (Table 2-12) previously adapted from Rao.6  Batch #1 samples (1A1, 1A2, 1B1, 

1B2, 1C1, and 1C2) were prepared using the following recipe (Table 2-16): 

 

Table 2-16: MTES Xerogel Recipe: Batch #1 
Part I: Ingredient Name Amount (mL) 

MTES (methyltriethoxysilane) 3.88 

EtOH (ethanol) or MeOH (methanol) 5.00 

H2O (water) 0.125 

H2C2O4 (oxalic acid): 0.01 M 1.50 

Part II: Ingredient Name Amount (mL) 
NH3 (ammonia): 1.5 M or 0.75 M or 0.375 M 0.335 

 

Batches #1A1, 1B1 and 1C1 all used ethanol as the solvent, whereas Batches #1A2, 1B2 

and 1C2 all used methanol as the solvent.  Batches #1A1 and 1A2 both used 0.375-M ammonia, 

whereas Batches #1B1 and 1B2 used 0.75-M ammonia.  Batches #1C1 and 1C2 used 1.5-M 

ammonia.  For each of the six batches the ingredients in Part I were added to six test tubes and 

the mixtures were then sonicated for fifteen minutes.  After forty-five minutes the ammonia 

was added to each batch.  After the addition of Part II of the recipe, all six batches were stirred 

for a few seconds with a glass stirring rod.  Afterwards each batch was covered with parafilm 

and left to gel under ambient conditions. 

Batch #2 samples (2A1, 2A2, 2B1, 2B2, 2C1, and 2C2) were prepared using the following 

recipe (Table 2-17):  
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Table 2-17: MTES Xerogel Recipe: Batch #2 
Part I: Ingredient Name Amount (mL) 

MTES (methyltriethoxysilane) 3.88 

EtOH (ethanol) 5.00 

H2O (water) 0.125 

H2C2O4 (oxalic acid): 0.01 M or 0.1 M 1.50 

Part II: Ingredient Name Amount (mL) 
NH3 (ammonia): 14.8 M (concentrated) or 1.5 M or 0.75 M 0.335 

 

Batches #2A1, 2B1 and 2C1 all used 0.01 M oxalic acid, whereas Batches #2A2, 2B2 and 2C2 all 

used 0.1 M oxalic acid.  Batches #2A1 and 2A2 both used 14.8-M (concentrated) ammonia, 

whereas Batches #2B1 and 2B2 used 0.75-M ammonia.  Batches #2C1 and 2C2 used 1.5-M 

ammonia.  For each of the six batches the ingredients in Part I were added to six test tubes and 

the mixtures were then sonicated for fifteen minutes.  After forty-five minutes the ammonia 

was added to each batch.  After the addition of Part II of the recipe, all six batches were stirred 

for a few seconds with a glass stirring rod.  Afterwards each batch was covered with parafilm 

and left to gel under ambient conditions. 

 Batch #3 samples (3A1 and 3A2) were prepared using the following recipe (Table 2-18): 

  

Table 2-18: MTES Xerogel Recipe: Batch #3A 
Part I: Ingredient Name Amount (mL) 

MTES (methyltriethoxysilane) 1.058 

EtOH (ethanol) 10.30 

H2C2O4 (oxalic acid): 0.01 M 0.536 

Part II: Ingredient Name Amount (mL) 
NH3 (ammonia): 1.5 M 0.536 

 

 

Batch #3 samples (3B1 and 3B2) were prepared using the following recipe (Table 2-19): 
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Table 2-19: MTES Xerogel Recipe: Batch #3B 
Part I: Ingredient Name Amount (mL) 

MTES (methyltriethoxysilane) 1.058 

EtOH (ethanol) 5.15 

H2C2O4 (oxalic acid): 0.01 M 0.536 

Part II: Ingredient Name Amount (mL) 
NH3 (ammonia): 1.5 M 0.536 

 

The only difference in the recipes for Batches #3A and 3B is the amount of ethanol added to 

each batch.  Batches #3A1-2 and 3B1-2 all used 1.5-M ammonia and 0.01-M oxalic acid.  For 

each of these four batches, the ingredients in Part I were added to four test tubes and the 

ingredients were then mixed together with the sonicator for fifteen minutes.  For Batches #3A1 

and 3B1, Part II of the recipe was added at the same time as Part I of the recipe, whereas for 

Batches #3A2 and 3B2 Part II of the recipe was added after forty-five minutes.  After the 

addition of Part II of the recipe, Batches #3A2 and 3B2 were stirred for a few seconds with a 

glass stirring rod.  Afterwards each batch was covered with parafilm and left to gel under 

ambient conditions. 

Batch #4 samples (4A1-4A9 and 4B1-4B9) were prepared using the following recipe 

(Table 2-20): 

 

Table 2-20: MTES Xerogel Recipe: Batch #4 
Part I: Ingredient Name Amount (mL) 

MTES (methyltriethoxysilane) 3.88 

EtOH (ethanol) 3.42 

H2O (water) 0.112 

H2C2O4 (oxalic acid): 0.01 M or 0.1 M 1.35 

Part II: Ingredient Name Amount (mL) 
NH3 (ammonia): 14.8 M (concentrated) or 10 M or 1.5 M 0.301 

 

Batches #4A1 through 4A9 used 0.1-M oxalic acid, whereas Batches #4B1 through 4B9 used 

0.01-M oxalic acid.  Batches #4A1-4A3 and 4B1-4B3 used 1.5-M ammonia.  Batches #4A4-4A6 
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and 4B4-4B6 used 10-M ammonia, whereas Batches #4A7-4A9 and 4B7-4B9 used 14.8-M 

(concentrated) ammonia.  For each of the eighteen batches, the ingredients in Part I were 

added to six test tubes and the ingredients were then mixed together with the sonicator for 

fifteen minutes.  The wait times for each batch can be seen in the table below (Table 2-21), 

where the wait time is started immediately after the fifteen minutes of sonication. 

 

Table 2-21: MTES Xerogel Preparation Conditions 
Batch # Wait Time (minutes) Batch # Wait Time (minutes) 

4A1 
0 (immediate addition of 

Part II of the recipe) 
4B1 

0 (immediate addition of 
Part II of the recipe) 

4A2 45 4B2 45 

4A3 1 hr 45 min 4B3 1 hr 45 min 

4A4 
0 (immediate addition of 

Part II of the recipe) 
4B4 

0 (immediate addition of 
Part II of the recipe) 

4A5 45 4B5 45 

4A6 1 hr 45 min 4B6 1 hr 45 min 

4A7 
0 (immediate addition of 

Part II of the recipe) 
4B7 

0 (immediate addition of 
Part II of the recipe) 

4A8 45 4B8 45 

4A9 1 hr 45 min 4B9 1 hr 45 min 

 

 After the addition of Part II of the recipe, Batches #4A2-4A3, 4A5-4A6, 4A8-4A9, 4B2-4B3, 4B5-

4B6 and 4B8-4B9 were stirred for a few seconds with a glass stirring rod.  Afterwards each batch 

was covered with parafilm and left to gel under ambient conditions. 

 

Process: Mold Design, Sealing the Mold and Hot-Press Parameters: The hot-press and 

the layers necessary for surrounding the mold when being placed in the hot-press is shown in 

Figure 2-1.  The mold is then sealed using Program 1 on the hot-press, which is given in Table 2-

10.  For all batches, the mold was completely sprayed (both top and bottom) with a non-stick 

silicone spray (CRC Industrial Dry PTFE Lube: Dry Film Lubricant).  For all batches a custom mold 

was used (as seen in Schematic 2-2). 
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Preparing the Aerogel Mix and Hot-Press Parameters:  A MTES-based precursor recipe 

was adapted from Rao.6,17  To prepare the 50-mL sol-gel mixture that is poured into the sealed 

mold, the reagents listed under Part I of the various recipes (given below in Tables 2-22, 2-23, 2-

24) are mixed together and then sonicated for 15 min after which the recipe is left to rest for 

another 45 min or 1 hour and 45 minutes.  Batches #1-4 and 6 were left to rest for 45 minutes, 

whereas Batch #5 was left to rest for 1 hour and 45 minutes.  Hydrolysis of the MTES occurs in 

this step.  Subsequently, in Part II of the recipe, base catalyst is added to the mixture and the 

mixture is stirred with a glass stirring rod.  The polycondensation reactions occur in this step.  

Once both parts of the mixture were added, the mixture was poured into the sealed mold to 

undergo rapid supercritical extraction.2  For MTES Batches #1-6, two different recipes were used 

in each batch: half the mold was filled with the mixture from the first recipe and half the mold 

was filled with the mixture from the second recipe. 

 

Table 2-22: Ingredients in Recipes 1 and 2 
for MTES Aerogel Batches #1, 2, 3 and 4 

Part I: Ingredient Name Amount (mL) 
MTES (methyltriethoxysilane) 19.38 

EtOH (ethanol) 25 

H2O (water) 0.625 

H2C2O4 (oxalic acid): 0.01 M 7.50 

Part II: Ingredient Name Amount (mL) 
NH3 (ammonia): 1.5 M or 0.75 M 1.676 

 

 

For Batches #1-4 Recipe 1, the base catalyst (0.75 M) was added 45 minutes after 

sonication of Part I of the recipe, as was the base catalyst (1.5 M) for Batch #1-4 Recipe 2.   
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Table 2-23: Ingredients in Recipes 1 and 2 for MTES Aerogel 
Batch #5 

Part I: Ingredient Name Amount (mL) Recipe 2 was 
made by 

changing the 
concentration of 
oxalic acid from 

0.1 M in Recipe 1 
to 0.01 M. 

MTES (methyltriethoxysilane) 42.70 

EtOH (ethanol) 37.64 

H2O (water) 1.232 

H2C2O4 (oxalic acid): 0.01 M or 0.1 M 14.86 

Part II: Ingredient Name Amount (mL) 

NH3 (ammonia): Concentrated = 14.8 M 3.311 

 

For Batch #5 Recipes 1 and 2, the base catalyst was added 1 hour and 45 minutes after 

sonication of Part I of the recipe. 

 

Table 2-24: Ingredients in Recipes 1 and 2 for MTES 
Aerogel Batch #6 

Part I: Ingredient Name 
Recipe 1 Recipe 2 

Amount (mL) Amount (mL) 
MTES (methyltriethoxysilane) 27.18 19.38 

EtOH (ethanol) 23.67 25 

H2O (water) 0.784 0.625 

H2C2O4 (oxalic acid) 9.45 of 0.1 M 7.50 of 0.01 M 

Part II: Ingredient Name Amount (mL) Amount (mL) 
NH3 (ammonia) 2.11 of 14.8 M 1.676 of 1.5 M 

 

For Batch #6 Recipes 1 and 2, the base catalyst was added 45 minutes after sonication of 

Part I of the recipe. 

Processing parameters are detailed in Tables 2-25, 2-26, 2-27 and 2-28.  The hot-press 

program detailed in Table 2-25 was used for Batch #1; the hot-press program detailed in Table 

2-26 was used for Batches #2 and 3, the hot-press program detailed in Table 2-27 was used for 

Batch #4 and the hot-press program detailed in Table 2-28 was used for Batches #5 and 6. 

 

 



34 
 

Table 2-25: Hot Press Parameters for Making MTES Aerogels: Batch #1 

Step # Temperature Rate Force Rate 
Dwell: 
Time 

(minutes) 

Duration Of 
Each Step 

1 
90 °F or  

32 °C 
200 °F/min or 

111 °C/min 
40k lbs. or 

178 N 
600k lbs./min 
or 2.7 N/min 

2 6 min 

2 
550 °F or 

288°C 
2 °F/min or  

1 °C/min 
40k lbs. or 

178 N 
600k lbs./min 
or 2.7 N/min 

30 4 hrs 20 min 

3 
550 °F or  

288 °C 
200 °F/min or 

111 °C/min 
1k lbs. or 

4.4 N 
1k lbs./min or 
0.004 N/min 

30 1 hr 10 min 

4 
100 °F or  

38 °C 
3 °F/min or  

2 °C/min 
1k lbs. or 

4.4 N 
600k lbs./min 
or 2.7 N/min 

1 2 hrs 31 min 

5 END STEP 

Duration of Entire Program: 8 hours 7 minutes 

 

 

 

 

 

Table 2-26: Hot Press Parameters for Making MTES Aerogels: Batches #2-3 

Step # Temperature Rate Force Rate 
Dwell: 
Time 

(minutes) 

Duration Of 
Each Step 

1 
90 °F or  

32 °C 
200 °F/min or  

111 °C/min 
40k lbs. or 

178 N 
600k lbs./min 
or 2.7 N/min 

602 10 hrs 6 min 

2 
550 °F or  

288 °C 
2 °F/min or  

1 °C/min 
40k lbs. or 

178 N 
600k lbs./min 
or 2.7 N/min 

30 4 hrs 20 min 

3 
550 °F or  

288 °C 
200 °F/min or  

111 °C/min 
1k lbs. or 

4.4 N 
1k lbs./min or 
0.004 N/min 

30 1 hr 10 min 

4 
100 °F or  

38 °C 
3 °F/min or  

2 °C/min 
1k lbs. or 

4.4 N 
600k lbs./min 
or 2.7 N/min 

1 2 hrs 31 min 

5 END STEP 

Duration of Entire Program: 18 hours 7 minutes 
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Table 2-27: Hot Press Parameters for Making MTES Aerogels: Batch #4 

Step # Temperature Rate Force Rate 
Dwell: 
Time 

(minutes) 

Duration Of 
Each Step 

1 
90 °F or  

32 °C 
200 °F/min or  

111 °C/min 
40k lbs. 
or 178 N 

600k lbs./min 
or 2.7 N/min 

302 5 hrs 6 min 

2 
550 °F or  

288 °C 
2 °F/min or  

1 °C/min 
40k lbs. 
or 178 N 

600k lbs./min 
or 2.7 N/min 

30 4 hrs 20 min 

3 
550 °F or  

288 °C 
200 °F/min or  

111 °C/min 
1k lbs. or 

4.4 N 
1k lbs./min or 
0.004 N/min 

30 1 hr 10 min 

4 
100 °F or  

38 °C 
3 °F/min or  

2 °C/min 
1k lbs. or 

4.4 N 
600k lbs./min 
or 2.7 N/min 

1 2 hrs 31 min 

5 END STEP 

Duration of Entire Program: 13 hours 7 minutes 

 

 

Table 2-28: Hot Press Parameters for Making MTES Aerogels: Batches #5-6 

Step # Temperature Rate Force Rate 
Dwell: 
Time 

(minutes) 

Duration Of 
Each Step 

1 
90 °F or  

32 °C 
200 °F/min or 

111 °C/min 
40k lbs. or 

178 N 
600k lbs./min 
or 2.7 N/min 

2 6 min 

2 
550 °F or  

288 °C 
1 °F/min or  
0.6 °C/min 

40k lbs. or 
178 N 

600k lbs./min 
or 2.7 N/min 

30 8 hrs 10 min 

3 
550 °F or  

288 °C 
200 °F/min or 

111 °C/min 
1k lbs. or 

4.4 N 
1k lbs./min or 
0.004 N/min 

30 1 hr 10 min 

4 
100 °F or  

38 °C 
3 °F/min or  

2 °C/min 
1k lbs. or 

4.4 N 
600k lbs./min 
or 2.7 N/min 

1 2 hrs 31 min 

5 END STEP 

Duration of Entire Program: 11 hours 57 minutes 

 

 

2.3 Experimental Methods of Characterization 

IR spectra were taken for samples from all TEOS aerogel batches and of MTES aerogel 

Batch #5, with a Nicolet Avatar 330 FT-IR with a Smart Orbit Diamond ATR 30,000-200 cm-1 plate 

using a resolution of 4 cm-1 and 32 scans.   
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Surface areas for all TEOS aerogel batches were acquired with a Micromeritics Tristar 

3000 and a Micromeritics Smartprep degasser using the standard parameters for our lab.  The 

samples were degassed for 2 hours at 90°C and then for 10 hours at 200°C.    

Surface morphology of TEOS aerogels was observed and pore sizes were estimated with 

a Zeiss Evo 50 Scanning Electron Microscope in conjunction with a Denton Vacuum Desk IV 

Sputter Coater, under parameters noted in later figures.   

Bulk densities for TEOS aerogels were obtained using an Ohaus Explorer Pro (Model 

EP64C) balance and the equation: 

 

             
                  

                          
 

                  

          
 

 

where r = ⅜ inches = 0.375 inches = 0.148 cm and h = ¾ inches = 0.75 inches = 0.30 cm.   

Optical transmission was taken with a HP/Aglient 8453 Diode Array Spectrophotometer 

over the range of 400-1100 nm for the TEOS aerogels and over the range of 600-1100 nm for the 

MTES aerogels. Spectra were measured of thirteen monolithic aerogels from TEOS aerogel 

Batches #17-19 with path length = height of cylindrical monolith = 1.91 cm.  Spectra were 

measured of eight monolithic aerogels from MTES aerogel Batch #5 with path length = height of 

cylindrical monolith = 1.5 cm. 

Raman spectroscopy was taken with a DeltaNu Advantage 200A Raman Spectrometer 

averaging 64 scans at low resolution with baseline correction for samples from TEOS aerogel 

Batches #16-19. 

Mechanical strength was studied with a MTS Insight (Electromechanical: 5kN Standard 

Length) Mechanical Tester for two samples from TEOS aerogel Batch #20. 
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Contact angles were acquired using a Kruss Drop Shape Analyzer DSA 100 for seven 

samples from six different recipes (the recipes from MTES aerogel Batches #2, 3, 5 and 6). 
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Chapter 3: Results and Discussion 

3.1 Results and Discussion for TEOS Aerogels 

 The goals of the project were to fabricate high quality TEOS-based translucent aerogel 

monoliths with high surface areas using the RSCE process, and to fully characterize these silica 

materials.  The goals of this project were met.  Monolithic and optically transparent TEOS-based 

aerogels were fabricated using Union’s RSCE process.  These aerogels were successfully 

characterized using FTIR, Raman, optical transmission, bulk density, SEM and surface area 

measurements.  Aerogels were produced with various surface areas, pore sizes, optical 

transparencies (according to UV/Vis/NIR absorbance), and acoustic properties. 

 During this project, time was spent fabricating the xerogel batches to get an idea of 

what recipes led to good sol gels and would, therefore, be reasonable starting points for aerogel 

synthesis.  Thus, the xerogel recipes were used as the starting point for the systematic fine 

tuning of the aerogel recipes.  Furthermore, time was spent during this project on the assorted 

methods used to characterize the aerogels because the group has not previously published work 

with TEOS aerogels and a full characterization of their properties was necessary. For the 

preliminary work done by Thomas Hughes, a precursor mixture of TEOS, ethanol, and water 

(molar ratio of 1.0:4.9:6.3), with oxalic acid to catalyze hydrolysis, followed by aqueous 

ammonia to catalyze the polycondensation reactions was used.  The resulting monolithic RSCE 

aerogels have average bulk density of ~0.088 g/cm3, average pore diameter ca. 40 nm, average 

BET surface areas up to 320 m2/g, and skeletal density of 2.04 g/cm3. 

 

TEOS Xerogels 

The xerogel samples in the various batches ranged from translucent to somewhat 

opaque, where some of the samples had translucent and cloudy sections.  The gelation time for 
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each of the xerogel batches can be seen in Table 3-1 and the gelation time of the two modified 

batches can be seen in Table 3-2. 

 

Table 3-1: Gelation Time of TEOS Xerogel Batches 
Batch # Batch Date Gelation Time Batch # Batch Date Gelation Time 

1 4/30/2010 < 26 hrs 35 min B2 5/21/2010 
Just over 1 hr 30 

min 

2 4/30/2010 < 26 hrs 25 min A3 5/21/2010 < 1 hr 15 min 

3 4/30/2010 < 26 hrs 5 min B3 5/21/2010 < 1 hr 15 min 

4 4/30/2010 < 25 hrs 50 min A4 5/21/2010 > 1 hr 

A1 5/14/2010 < 1 hr 25 min B4 5/21/2010 < 1 hr 

B1 5/14/2010 
Just over 1 hr 25 

min 
A5 5/21/2010 immediately 

C1 5/14/2010 
Just over 1 hr 25 

min 
B5 5/21/2010 immediately 

A2 5/14/2010 < 1 hr 10 min A1 5/28/2010 1 hr 

B2 5/14/2010 < 1 hr 10 min B1 5/28/2010 1 hr 

C2 5/14/2010 < 1 hr 10 min A2 5/28/2010 5 min 

A3 5/14/2010 < 1 hr 10 min B2 5/28/2010 > 20 min and < 5 hrs 

B3 5/14/2010 < 1 hr 10 min A3 5/28/2010 10 min 

C3 5/14/2010 < 1 hr 10 min B3 5/28/2010 > 21 hrs and < 45 hrs 

A4 5/14/2010 < 1 hr 10 min A4 5/28/2010 immediately 

B4 5/14/2010 < 1 hr 10 min B4 5/28/2010 69 hrs 25 min 

C4 5/14/2010 < 1 hr 10 min A5 5/28/2010 1 min 

A5 5/14/2010 immediately B5 5/28/2010 81 hrs 46 min 

B5 5/14/2010 immediately A6 5/28/2010 immediately 

C5 5/14/2010 immediately B6 5/28/2010 51 hrs 27 min 

A1 5/21/2010 < 1 hr 45 min A7 5/28/2010 immediately 

B1 5/21/2010 
Just over 1 hr 45 

min 
B7 5/28/2010 27 hrs 27 min 

A2 5/21/2010 < 1 hr 30 min    

Table 3-1: Each xerogel batch was prepared on the indicated date and the sol-gel formation 
time is given by the gelation time.  The < and > arrows indicate batches that gelled between 
observation times. 

 

 

 

 

 



40 
 

Table 3-2: Gelation Time of Modified TEOS Xerogel Batches 
Batch # Batch Date Gelation Time 

M 5/21/2010 < 1 hr 30 min 

M1 5/30/2010 > 5 days 

M2 5/30/2010 > 4 days 

M3 5/30/2010 > 3 days 

M4 5/30/2010 5 min 

M5 5/30/2010 immediately 

M6 5/30/2010 immediately 

Table 3-2: Each xerogel batch was prepared on the indicated date and the sol-gel formation 
time is given by the gelation time.  The < and > arrows indicate batches that gelled between 
observation times.  The modified batches are batches in which more H2O was added than 
ethanol, instead of adding more ethanol than H2O (non-modified batches). 

  

From the gelation times of the various batches (seen in Table 3-1), the most attractive 

aerogel recipe candidates are the recipes that have short gelation times (< 1 hour), but do not 

gel immediately so that the liquid mixture can be poured into the mold before it gels under 

ambient conditions.  Some of the possible candidates include Batches #B4 (5/21/10), A1-3, A5 

and B1 (5/28/10).  Then, from the potential candidates based on gelation time, the xerogels that 

were the most translucent were chosen as the best possible candidates for making TEOS 

aerogels that were high quality translucent aerogel monoliths.  Some of the possible candidates 

include Batches #A3 and B1 from 5/28/10, which were visually uniform, translucent gels and 

gelled in reasonable amounts of time (10 minutes and 1 hour, respectively).   

For the modified batches (as seen in Table 3-2), none of these recipes could be potential 

aerogel recipes because of the volume of water in the recipe, which would not be a good 

solvent for the RSCE process.  Water is not a good solvent for the RSCE process because our hot-

press cannot take water to its supercritical temperature (374°C) and pressure (22.1 MPa), which 

is how the solvent is eliminated from the aerogel matrix in Union’s RSCE process.  Our hot-press 

can achieve the supercritical temperature (243°C) and pressure (6.3 MPa) of ethanol. 
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TEOS Aerogels 

The recipe initially used for fabricating TEOS-based aerogels resulted in opaque 

monolithic aerogels.  For that preliminary work, we used a precursor mixture of TEOS, ethanol, 

and water, with oxalic acid to catalyze hydrolysis, followed by aqueous ammonia to catalyze the 

polycondensation reactions.  The recipe for the preliminary work can be seen in Table 1-1. The 

recipe was refined during fabrication of several batches (#1-6), and this resulted in aerogel 

materials with varying opacity.  The final recipe (Table 2-11) was used for Batches #7-21.  The 

aerogels fabricated in Batches #7-21 are optically translucent. 

 

Physical Description and Photographs of TEOS Aerogels 

Monolithic, translucent TEOS-based aerogels were fabricated using Union’s RSCE 

process.  All of the TEOS aerogel batches were monolithic and Batches #1-6 were opaque.  

Batches #7-21 were translucent.  Seen in Figure 3-1 are digital photographs taken of some of the 

aerogel batches fabricated during summer and fall 2010, including some photos of aerogels with 

the optical transmission holder.  Some of the samples have a pinkish tint, but many of the 

samples have a bluish tint.  One of the samples from Batch #8 has a clear burn pattern.  Batches 

#17-21 were the most optically transparent TEOS aerogels produced. 

 

Fourier Transform-Infrared Spectroscopy (FT-IR) 

Ideally for a high surface area silica material, such as silica aerogels, the external Si-O 

framework should produce a bigger signal in the IR spectrum than the internal Si-O framework.  

These signals should be distinguishable if there are ligands on the framework to create a shift in 

the peaks. The internal and external (surface) O-Si-O frameworks can be distinguished because 
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the amount of external framework bonds is greater than the number of internal framework 

bonds due to the highly porous nature of aerogels. 
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A typical IR spectrum for RSCE TEOS-based silica aerogels can be seen in Figure 3-2, 

where three silica peaks are noted.  Every IR spectrum obtained for all the aerogel batches 

contained silica peaks at about 1073 cm-1, 796 cm-1 and 451 cm-1.  Here, the silica peak (1073 

cm-1) has a major signal from the external Si-O framework with the minor signal of the internal 

Si-O framework appearing as a shoulder on the side.9  There were no –OH stretching peaks or –

CH stretching signals observed in the spectra; therefore, only the expected silica peaks appear in 

the IR spectra indicating that no significant amount of water has been adsorbed by the aerogel.  

This observation is consistent with RSCE TMOS aerogels, but is not expected because there 

should be left-over Si-O-H and Si-O-CH2CH3 groups from incomplete polycondensation reactions 

in the aerogel framework. 

 

Surface Area Analysis 

A bar graph depicting the surface areas of all the batches of RSCE TEOS-based aerogels 

through Batch #19 can be seen in Figure 3-3, where the lowest surface area is 211 m2/g (Batch 

#2) and highest surface area is 475 m2/g (Batch #16). Most of the samples have surface areas 

>325 m2/g.  The uncertainty in the BET surface area measurements ranges from 10-20 m2/g. 

Each sample was measured under standard BET surface area conditions and was degassed for 

12 hours prior to analysis.  As was described in the experimental chapter Batches #1-6 were 

fabricated with slightly varying recipes due to fine-tuning of the recipe.  As noted by the purple 

arrow, Batches #7-19 were fabricated with the same recipe.  As noted by the red arrow, the 

surface areas of the various aerogel batches became more consistent for the higher numbered 

batches (Batches #16-19).  Also the higher numbered batches had consistently high surface 

areas.  The average surface area of Batches #16-19 was 460 m2/g and the standard deviation 

was 10 m2/g. 
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We can consistently produce TEOS aerogels with high surface area (0.5 g of our TEOS 

aerogels has as much surface area as a tennis court).  Our TEOS RSCE aerogels have surface 

areas lower than TEOS aerogels prepared via other methods, where the literature states that 

the surface areas can be routinely as high as 700 to >1100 m2/g,18 or even as high as 1600 m2/g 

for very high quality silica aerogels.1  These high quality silica aerogels are generally prepared via 

a two-step sol-gel CSCE method.  Our TEOS RSCE aerogel surface areas are below the literature 

values for TMOS RSCE aerogels, and our group has also noted that the RSCE TMOS aerogels have 

surface areas significantly below the literature values for TMOS aerogels prepared via other 

methods.  TMOS-based RSCE aerogels prepared at Union had surface areas around 500 to 600 

m2/g and up to as high as 1000 m2/g,7 while their counterparts in the literature had surface 

areas at least as high.19   

 

Optical Transmission 

Optical transmission spectra of thirteen monolithic TEOS-based RSCE aerogels can be 

seen in Figure 3-4 and representative % optical transmission data are listed in Table 3-3.  Using 

optical transmission it was found that the aerogel samples had up to 74% transmission in the 

Near-IR and up to 45% transmission in the visible region.  For the 900-1100 nm range the optical 

transmission of most aerogels was greater than 60%.  Therefore, the RSCE TEOS aerogels were 

translucent in the Near-IR and are somewhat cloudy in the visible region.  These aerogels would 

be useful as the insulation for cloudy windows, such as some skylights or frosted bathroom 

windows.  Typical silica aerogels prepared from TEOS-based recipes using a two-step acid-base 

sol-gel process have optical transmission of 75% transmission in the visible region and the path 

length of the aerogels was not given.4  In my results, there is considerable sample-to-sample 

variation even within batches. The path lengths may have slight variations due to cracking of the 
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samples.  For our RSCE TEOS aerogels it could be possible to optimize the recipe to yield more 

translucent materials in the visible region, which would be desirable if the RSCE TEOS aerogels 

were used as the insulation for windows because the windows would then be translucent 

instead of cloudy.  Therefore, the windows could be used as the windows in the rooms of homes 

instead of as skylights or in the other windows that are desirable as being cloudy. 

 

Raman Spectroscopy 

A typical Raman spectrum can be seen in Figure 3-5.  This spectrum was taken of a 

crushed sample from Batch #16, averaging 64 scans at low resolution with baseline correction.  

All of the aerogel samples studied had the two expected silica peaks at about 496 and 1260 cm-1.  

The peak at 496 cm-1 corresponds to small 6 or 8-membered rings (3-SiO or 4-SiO respectively), 

and the peak at 1260 cm-1 corresponds to fused silica (Si-O stretching).20  Since there is no peak 

at about 600 cm-1, which also corresponds to the presence of 6-membered rings, this could 

mean that only the 8-membered rings are present.20 

 

Bulk Density 

Bulk densities were measured of 48 monolithic TEOS-based RSCE aerogels.  The mean 

density was 0.099 g/cm3, with a standard deviation of 0.003 g/cm3.  All the bulk densities 

measured fell within the range of 0.094 to 0.104 g/cm3, which is in the range expected for silica 

aerogels (generally1 in the range of 0.003-0.300 g/cm3).  We did not attempt o alter the recipe 

and processing conditions to make lower-density aerogels.  Our RSCE TEOS aerogels are a low 

density form of silica compared to glass, which is a high density form of silica (bulk density of 2-

2.5 g/cm3). 
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Table 3-3: Representative % Optical Transmission (TEOS) 

Sample Name 
Wavelength (nm) 

600 700 800 900 1000 1100 
Batch #17 Sample #1 16.5 27.6 35.5 40.9 44.4 46.5 

Batch #17 Sample #3 28.0 45.4 57.1 64.1 68.4 70.1 

Batch #17 Sample #6 21.7 36.5 47.0 53.6 58.0 59.9 

Batch #17 Sample #8 25.4 43.3 56.1 64.7 70.7 74.2 

Table 3-3: Representative optical transmission data are shown for four of 
the thirteen samples. 
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Scanning Electron Microscopy (SEM) 

Using SEM, the surface morphology of the aerogel samples was studied at 

magnifications that allowed for imaging at scales in the 1 mm to 200 nm range.  The SEM images 

can be seen in Figures 3-6 to 3-12, along with the parameters used to obtain each image. 
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In Figure 3-6, the layered morphology of TEOS aerogels can be seen in the image from 

Batch #1 and the 200 µm image from Batch #3.  The 20 µm image from Batch #3 shows the 

fracture lines where the sample split when it was crushed.  All of the images in Figure 3-6 were 

of non-sputter-coated samples. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Figures 3-7 and 3-8, the aerogels imaged are from Batch #4 and are displayed in 

descending scale bar size.  In Figure 3-7, the overall structure of crushed TEOS aerogel samples 
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can be seen.  In Figure 3-8, the texture of the TEOS aerogels can be seen, especially in the image 

on the left, along with the unique structure of the TEOS aerogels in the image on the right. 
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The samples in Figures 3-9 and 3-10 are all sputter-coated samples.  The images in 

Figure 3-9 show the unique surface texture of the aerogels.  The aerogels seem to have a soft, 

fuzzy texture in these images.  The image on the left in Figure 3-10 also seems to have a soft, 

fuzzy texture and displays more of the lines where the aerogel cracked when the monolith was 

crushed.  In this image, the surface texture looks soft, where the texture is due to the visibility of 

the pores in the aerogel.  The dark region of the image notes the depth of the structure, as 

compared to the 1 µm scale bar. 
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In Figures 3-11 and 3-12, images of more sputter-coated samples are seen.  In Figure 3-

11, pore sizes are estimated on the two unique features sticking out of the side of the aerogel 

seen in the image on the right of Figure 3-10.  The pore sizes in the two images were estimated 

to be 39 and 47 nm.  In these two images the pores are clearly visible and the scale bar 

represents 200 nm.  In Figure 3-12, samples from Batch #16, one of the most optically 

transparent batches, again shows the layered structure of the aerogels, as well as the fracture 

patterns of the sample. 
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The reason that a multitude of images from Batch #4 are presented here is due to the 

fact that the samples from this particular batch imaged well in the SEM compared to some of 

the other samples tried.  The difficulties in imaging the aerogel samples arose from their non-

conductive nature, which caused the samples to build up a charge during imaging, producing 

low-quality images.  Some batches did not need to be sputter-coated and imaged reasonably 

well, whereas other batches needed to be sputter-coated to obtain high quality images. 

 

Porosity 

In the SEM images taken under high magnification (see, for example, Figure 3-11), the 

pore sizes of the aerogels were estimated, using a measuring function of the SEM, to be 25 to 

105 nm in diameter.  These pore sizes are greater than some of the smallest pore sizes 

measured in the literature on TEOS aerogels, where 12 to 17 nm pore sizes were measured.18  

The literature also notes the general range of pore sizes for TEOS aerogels to be 20-150 nm,1 

which is consistent with our range of measurements.  It should be noted, however, that using 

the SEM to measure pore sizes is not the standard method of measuring the porosity of 

aerogels.  The standard method of measuring the porosity of the aerogels is with BJH 

porosimetry on the Micromeritics Tristar 3000. 

 

Acoustic Properties 

I unexpectedly discovered that some of the aerogel samples make a bell-like sound 

when rattled; most of the aerogel samples have a hard rubber-like sound.  The bell-quality of 

the samples was noticed to various degrees.  The unexpected acoustic properties of some of the 

aerogels necessitate further study into the resonance frequencies of these aerogels as well as 
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stress testing to see if they have a higher strength than their non-bell-like sounding 

counterparts. 

 

Mechanical Strength 

 Preliminary data for the TEOS aerogels was taken of samples from Batch #20, but the 

acquired stress-strain curves were not very high quality, probably due to the cracks in the 

samples tested thus far.  A crack in the sample would lead to failure of the aerogel material at a 

stress/strain below the limit which an aerogel of that type can normally endure. 

 

3.2 Results and Discussion for MTES Aerogels 

The goals of the project were to fabricate high quality MTES-based flexible aerogel 

monoliths using the RSCE process, and to fully characterize these silica derivative materials.  

Some of the goals have been met because monolithic MTES-based aerogels were fabricated 

using Union’s RSCE process and partially characterized. 

During this project, time was spent fabricating the various xerogel batches to get an idea 

of what recipes led to good sol gels and would, therefore, be reasonable starting points for 

aerogel synthesis.  Thus, the various xerogel recipes were used as the starting point for the 

optimization of the aerogel recipes.  Furthermore, time was spent during this project on the 

various methods used to characterize the aerogels because MTES aerogels had never been 

made in this lab before and a full characterization of their properties was necessary before 

publication. 
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MTES Xerogels 

 The gelation time of the various xerogel batches can be seen in Table 3-4, where the 

time it took for each batch to gel is given.  The arrows (< and >) indicate that a batch gelled 

between times that it was checked, so the precise gelation time is not known.  The batches that 

are listed as gelling in multiple days gelled sometime after 7 days. 

 

Table 3-4: Gelation Time of MTES Xerogel Batches 
Batch # Batch Date Gelation Time Batch # Batch Date Gelation Time 

1A1 10/22/10 <48 hrs 4A1 1/21/11 immediately 
1A2 10/22/10 <6 days 4A2 1/21/11 multiple days 
1B1 10/22/10 < 24 hrs 4A4 1/21/11 multiple days 
1B2 10/22/10 < 24 hrs 4A7 1/21/11 >7 days 
1C1 10/22/10 < 24 hrs 4A8 1/21/11 <7 hrs 
1C2 10/22/10 < 24 hrs 4A9 1/21/11 <8 hrs 
2A1 10/28/10 <19 hrs 4B1 1/21/11 multiple days 
2A2 10/28/10 <19 hrs 4B2 1/21/11 multiple days 
2B1 10/28/10 multiple days 4B3 1/21/11 <7 days 
2B2 10/28/10 multiple days 4B4 1/21/11 >7 days 
2C1 10/28/10 multiple days 4B5 1/21/11 >7 days 
2C2 10/28/10 multiple days 4B6 1/21/11 <8 days 
3A1 1/20/11 multiple days 4B7 1/21/11 >7 days 
3A2 1/20/11 multiple days 4B8 1/21/11 >7 days 
3B1 1/20/11 immediately 4B9 1/21/11 <24 hours 
3B2 1/20/11 <48 hrs    

Table 3-4: Each xerogel batch was prepared on its corresponding date and the sol-gel 
formation time is given by the gelation time.  The < and > arrows indicated batches that 
gelled in between observation times. 

 

The various batches were generally monolithic and were white, translucent or were part 

white and part translucent.  For example, a few batches were white on the bottom layer and 

translucent on the top layer when the batch finally gelled.  From the gelation times of the 

various batches (seen in Table 3-4), the most likely aerogel recipe candidates are the recipes 

that have short gelation times (< 1 hour), but do not gel immediately so that the liquid mixture 
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can be poured into the mold before it gels under ambient conditions.  Some of the possible 

candidates include Batches #2A1-2 and 4A8-9 because these batches did not gel immediately, 

but gelled significantly more quickly than the other batches.  Then, from the potential 

candidates based on gelation time, the xerogels that were the most translucent and most 

flexible were chosen as the best possible candidates for making MTES aerogels that were high 

quality flexible aerogel monoliths with, hopefully, some translucency.  To determine the 

flexibility of the xerogel batches, each xerogel was prodded with a glass stirring rod to see how 

much it could be compressed.  Some of the possible candidates include Batches #2A1 and 4A1, 

where both batches were translucent, but neither batch was flexible as a wet sol gel. 

 

MTES Aerogels 

 Recipes for making MTES aerogels were adapted from the recipes published by Rao and 

Bhagat,6 and Nadargi. 17 For the preliminary work, we used a precursor mixture of MTES, 

ethanol, and water with oxalic acid to catalyze hydrolysis, followed by aqueous ammonia to 

catalyze the polycondensation reactions. 

 After establishing which xerogel recipes were the best MTES aerogel candidates some of 

the recipes were used to make aerogels.  These recipes include Batches #1B1, 1C1, 4A8-9 and 

4B9.  It was found however, that even though the gelation times were not very fast and the 

batches were somewhat translucent the resulting aerogels were mostly opaque and did not 

always gel before the first step of the hot-press program completed.  The status of the gelation 

was known because un-gelled batches that underwent the hot-press program would have the 

aerogel’s ingredients remain in the supercritical solvent that was released during the program, 

resulting in a nearly empty mold.  Some of these recipes also shrunk excessively or looked to be 

more crystalline than aerogel-like when removed from the hot-press.  Furthermore, no flexible 
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aerogel batches were produced, but it should be noted that no flexible xerogel batches were 

produced either.  Thus, there does not seem to be a good correlation between fine-tuning the 

xerogel recipe and producing fine-tuned MTES aerogels. 

 

Physical Description and Photographs of MTES Aerogels 

 MTES-based aerogels were fabricated using Union’s RSCE process.  About half the MTES 

aerogels remained monolithic; others were fragmented or in small grains of the material 

nucleating around a hard core.  The MTES aerogels ranged from whitish/mostly opaque to 

somewhat translucent (crystalline looking pieces).  None of the MTES aerogels were found to be 

flexible, even though they are found to be flexible when fabricated by other methods, such as 

the two-step acid-base catalyzed method performed by Nadargi.17  Seen below in Figure 3-13 

are digital photographs taken of some of the MTES aerogel batches fabricated during winter 

2011.  Many of the samples have a bluish tint or are white.  

As seen in the MTES aerogel photographs, there is considerable batch-to-batch 

variation, as well as variation within the batches.  Some of the samples turned out soft and 

fluffy, while others were shrunken like a xerogel, but had visual characteristics that more closely 

resembled TEOS aerogels.  Other samples looked crystalline and yet others, such as the two 

images from Batch #2 that are noted by the green arrows, look like popcorn, where the soft 

fluffy part is facing out and the hard, crystalline looking parts are on the inside. 
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Fourier Transform-Infrared Spectroscopy (FT-IR) 

 An IR spectrum for an MTES RSCE aerogel from Batch #5 can be seen in Figure 3-14, 

where silica peaks are noted as well as a –CH stretch peak and two Si-C peaks.  The IR spectrum 

of the MTES-based aerogel samples displayed peaks at about 3000 cm-1, 1271 cm-1, 1119 cm-1, 

1025 cm-1, 769 cm-1 and 410 cm-1.  It can be inferred from the data obtained for the RSCE TEOS 

aerogels that the silica peaks present at 1119 and 1025 cm-1 show the internal and external O-Si-
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O framework, respectively.  The–CH stretch at about 3000 cm-1 and the Si-C peaks at 1271 and 

769 cm-1 prove that the aerogels are organically modified because the Si-CH3 is still present in 

the aerogel framework.  No –OH signal was observed in the IR meaning that no significant 

amount of water has been adsorbed into the aerogel.  Only the expected silica peaks and methyl 

groups appear in the IR spectra. 

 

Optical Transmission 

  Optical transmission spectra of eight monolithic MTES-based aerogels can be seen in 

Figure 3-15 along with some representative % optical transmission data in Table 3-5.  The 

monolithic aerogels tested were from both recipes used in Batch #5.  The samples tested were 

opaque in the visible region (scattered visible light), but had some optical clarity in the near-

infrared region.  The aerogel samples had up to 23% transmission in the Near-IR with the best 

sample having between 16 and 23% transmission.  Therefore, the monoliths scatter visible light, 

but transmit in the near-infrared.  There is considerable sample-to-sample variation even within 

batches. This could be due to slight variations in path lengths due to cracking of the samples.  

MTES aerogels are generally opaque.21 
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Table 3-5: Representative % Optical Transmission (MTES) 

Sample Name (Recipe 2) 
Wavelength (nm) 

1000 1100 
Batch #5 Sample #3 16.5 23.4 

Batch #5 Sample #4 1.9 3.1 

Batch #5 Sample #5 9.5 15.9 

Batch #5 Sample #6 3.1 4.7 

 

 

Contact Angle 

Contact angles less than 90° indicate a hydrophilic surface and contact angles greater 

than 90° indicate a hydrophobic surface.  Superhydrophobic surfaces have contact angles 

greater than 150°.   
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Contact angle measurements show that all of the aerogels tested are hydrophobic as 

can be seen in Figure 3-16 and Table 3-6.  Contact angles between 126 and 153° were 

measured.  Most of the contact angles are over 137°.  MTES aerogels made by a two-step acid-

base catalyzed sol-gel method using methanol as the solvent had a contact angle of 160° for one 

sample.17  Thus, the MTES aerogels are hydrophobic and some are even superhydrophobic 

(those with contact angles greater than 150°). 

For comparison, I attempted to make contact angle measurements for the TEOS RSCE 

aerogels.  The drops of water were immediately adsorbed by the aerogel, indicating that the 

TEOS RSCE aerogels are hydrophilic.  

 

 

 

 

 

 

 

 

 

Table 3-6: Contact Angles of MTES Aerogels 
Sample Recipe # Contact Angle (°) for Replicate Measurements 

Recipe 1 132 132 - 

Recipe 2 126 141 - 

Recipe 3 128 139 129 

Recipe 4 135 137 141 

Recipe 5 151 - - 

Recipe 6 152 151 153 
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Further Characterizations and Optimizations 

 Although I was successful in fabricating MTES RSCE aerogels, these materials are not 

flexible and have limited optical transmission.  Both flexibility and optical transmission are 

necessary for optically or laser controlled soft robots. 

The MTES aerogel recipe needs to be optimized to achieve flexibility as one of the 

aerogels’ properties, as well as tailoring the MTES aerogels to be more optically transparent.  

Moreover, we do not yet have batch-to-batch reproducibility for the MTES aerogels. 

 

3.3 Future Work 

Other characterizations to be performed on the TEOS aerogel samples include pore size 

(porosity) using the BJH settings on the Tristar instrument, thermal conductivity, skeletal 

densities with the pycnometer and atomic force microscopy (AFM).  Other characterizations to 

be performed on the MTES aerogel samples include surface area and pore size (porosity) using 

the Tristar instrument, thermal conductivity, skeletal densities with the pycnometer, scanning 

electron microscopy (SEM), atomic force microscopy (AFM), surface area analysis, Raman 

spectroscopy, bulk density, and mechanical strength testing. 

The porosity of the TEOS aerogels should be studied to obtain a more accurate range of 

pore sizes than can be estimated using the SEM and the porosity of the MTES aerogels should be 

studied to obtain an accurate range of pore sizes, which can be compared to the TEOS aerogel 

pore sizes.   

Thermal conductivity should be tested to ascertain how good an insulator the TEOS 

aerogels are since they are proposed to be used as thermal insulation for windows.  The thermal 

conductivity of the MTES aerogels should be tested to ascertain how good an insulator the MTES 

aerogels are so they can be compared to the TEOS aerogels.   
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The skeletal densities should be studied to see if the TEOS RSCE silica aerogels differ 

from the TMOS RSCE silica aerogels and the MTES RSCE modified silica aerogels, although it is 

not expected that the TEOS and TMOS aerogel skeletal densities will differ greatly.   

The AFM can be used to study the surface morphology of the aerogels in the nanometer 

range more effectively than the SEM, thus the nanometer range morphology of the aerogels can 

be studied in more detail.  The SEM and AFM give complementary and more detailed data in 

their various ranges of optimal operation because the SEM gives the best images between 1 mm 

and 1 μm and the AFM gives the best images between 5 μm and 200 nm.   

Bulk densities of the MTES aerogels should be studied to be compared to other types of 

aerogels, such as the RSCE TEOS aerogels. 

The surface area of the MTES aerogels should be studied to see how the surface area 

compares to other aerogels, since aerogels are high surface area materials.   

Raman microscopy of the MTES aerogels should be studied because it gives 

complementary data to that obtained by IR, which could help to identify the peaks in the 

spectra.   

Mechanical strength of the MTES aerogels should be studied because flexibility is one of 

the characteristics being optimized for in the MTES aerogels.  Finally, testing the mechanical 

strength of the MTES aerogels studies the stress-strain curve of the material, which will show 

how elastic (flexible) the MTES aerogels are. 
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Chapter 4: Conclusions 

 Reproducible, monolithic, translucent TEOS-based aerogels have been fabricated and 

optimized using Union’s RSCE method.  The TEOS aerogels have high surface areas, low bulk 

densities, moderate optical transmission, are very porous, are hydrophilic and have unique 

acoustic properties. 

 Monolithic MTES-based aerogels have been fabricated using Union’s RSCE method.  The 

MTES aerogels have yet to be tailored for optical clarity, reproducibility and flexibility, but they 

have adequate optical transmission in the near-IR and are hydrophobic with high contact angles. 

 By using Union’s RSCE method both types of aerogels are fabricated more quickly than 

by conventional methods because conventional methods for silica aerogels take days to a week 

or more to complete for aerogels made in an autoclave with a CO2 drying process. 
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