Union College
Union | Digital Works

Honors Theses Student Work

6-2011

Design and Testing of an Automated

SemiA#®®] Trailer Control System

Conor H. Dodd
Union College - Schenectady, NY

Follow this and additional works at: https://digitalworks.union.edu/theses

b Part of the Mechanical Engineering Commons, and the Transportation Engineering Commons

Recommended Citation

https: //dlgltalworks union.edu/theses/967

This Open Access is brought to you for free and open access by the Student Work at Union | Digital Works. It has been accepted for inclusion in Honors

Theses by an authorized administrator of Union | Digital Works. For more information, please contact digitalworks@union.edu.

https://digitalworks.union.edu?utm_source=digitalworks.union.edu%2Ftheses%2F967&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalworks.union.edu/theses?utm_source=digitalworks.union.edu%2Ftheses%2F967&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalworks.union.edu/studentwork?utm_source=digitalworks.union.edu%2Ftheses%2F967&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalworks.union.edu/theses?utm_source=digitalworks.union.edu%2Ftheses%2F967&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=digitalworks.union.edu%2Ftheses%2F967&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1329?utm_source=digitalworks.union.edu%2Ftheses%2F967&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalworks.union.edu/theses/967?utm_source=digitalworks.union.edu%2Ftheses%2F967&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalworks@union.edu

MER-498

Design and Testing of an
Automated Semi-Trailer
Control System

Conor Dodd

Mechanical Engineering, Advisor: Prof.Keat
MER-498

Contents

L. Introduction....... ..ot 2
2. The Proposed System...........coooiiiiiiiiiiiiiiiiii e, 4
2.1 Requirements.........cceeeviiriiiiiiiieiiiiee e e aanann, 4
2.2 BINding.......ocoiiiii 7
2.3 Project Schedule...........oooiiiiiiiiii 11
3. Detailed Design.........oooiiiiiiiii i 12
3.1: The Tractor.....ooveie e e 12
3.2: The BOGIC. ..ot 13
33:The Trailer.....coovviiiii e 16
3.4 The Electrical System..........ccocviiiiiiiiiiiiiiiiiin, 19
3.5 Programming...........ooouiiiiiiiiii i e 27
4. SUMMATY .. .ottt et ee e 31
Appendices
A: References and Acknowledgments............................... 32
B: Budget and Sourcing.............ooooiiiiiiiiiii 33
C: MATLAB and C++Code....c.ovvnviiiiiiiiiiiiciiciiee 34
C: Detailed Drawings........c.ooviiiiiiiiii i, 35

l|Page

1. Introduction: Addressing a Problem in the Trucking Industry

Growing up in Maine, the trucking industry is an ever-present part of life. With a very sparse,
lightly used rail system, almost all of the raw materials and goods that enter and leave the state do so by
truck. Truckers in Maine are constantly challenged by Maine’s roads, which can often be difficult or even
treacherous to navigate. The rough logging roads near Jackman or Millinocket, or the sharp ninety degree
turns near the Portland oil docks, can ruin a trucker’s day, or even worse, cause an accident. For example,
there is a tiny four-way intersection on Broadway in South Portland, where full-length oil semi-trucks
have to turn ninety degrees as they leave the massive oil storage tanks at the docks. Broadway is a very
busy road; as soon as the trucks get the signal to turn, there are lines of cars stopped at the light. The
trucks have to turn wide, right into the stopped line of cars. This means the cars then have to coordinate
and back up to allow the truck to turn. After much confusion and after the light has turned green, then red,
then green again about ten times with the trailer completely cutting off the intersection, the truck can
move on. The same thing happens along the backroads of Millinocket. When trucks come off the logging
roads they usually have to turn ninety degrees onto the main road. This is tricky to do at best, and
dangerous at worst. The roads usually aren’t wide enough for the truck to turn onto them without going
over the other side. If the logging companies don’t build pulloffs on the side of the road for the trucks to
run through, then eventually a trucker is going to try to turn on to the main road and end up in the ditch on

the other side, with the trailer completely blocking the way until the truck can be moved.

The cause of all of these problems is the fact that the truck must turn wide: the cab must make a
turn much wider than necessary in order to keep the trailer from going over the curb. The reason for this
lies in the wheels of the semi- trailer. The assemblage of wheels is often called a “bogie”. The term comes
from the rail industry, as almost all train cars and engines roll on bogies. The problem with a truck is that
the rear bogie on the trailer is fixed, the wheels always point toward the truck. So when the truck makes a
turn, the bogey on the trailer follows a different path. A standard turn of a semi truck is shown in Figure
1.1. These turning curves are also often published for trailers of a certain length. Figure 1.2 showes the

turning curves for a 42’ trailer.

2|Page

Path taken by front of truck.

Path taken by rear of truck.

Figure 1.1: Path Diagram for a 90 Degree Turn.

STAA Semitrailer Wheel Tracks
18 m Radius

30° 60°

Path taken by front of truck. J

Path taken by rear of truck.

Figure 1.2: Path Diagram for Multiple Turns.

3|Page

My project is to design a system to eliminate the need for a semi-truck to make wide turns. I will
do this by implementing a system of self-steering trailer bogies. The bogies will be able to steer
themselves automatically and will follow the path the cab takes, so the driver can drive as if there is
nothing behind him. There are also many other capabilities a self-steering system could bring to a truck
company or driver. [will design my system so that the rear bogies think independently, with no central
computer system. That means a trucker can hook as many bogies, and thus trailers, up as is legal and they
will all steer themselves. So a truck with three trailers will still turn as sharply as a cab with nothing
behind it at all. Other possible benefits could include having the bogies steer themselves to avoid

accidents, correct for skidding and jackknifing, allow for easy reversing, and reduce braking distance.

To get some feedback on the design, I posted the basics of my idea on “The Trucker’s Report”, a
forum for truckers and trucking companies. Responses to the idea have been quickly filling up the pages.
The general opinion is that the idea, especially if I could make it work with multiple trailers, could easily
be a very potent force in the industry if I designed it for at least a ten-year life span. The increase in
maneuverability could open up a significant number of new routes that could save time and fuel. And the
ability to haul multiple trailers could vastly increase the amount of material the truck could haul for the
fuel. Already in some stated road trains, trucks with multiple trailers, have been having a positive impact.
These trains, however need to turn even wider to make turns, and so are even further limited as to where
they can drive safely. The combination of increased maneuverability with increased capacity could really

make a difference if it works.

For the senior project I will build a scale model robot of a steerable bogie system. The robot will
be designed specifically to test the validity of the steering concept, to see whether or not it could work
when implemented on a full-scale truck. The model will be remote controlled. An operator will control
the tractor, and the bogies will attempt to steer on a “virtual track” just like what the full scale system

would do.

As the ultimate goal of this project is to prove or disprove the validity of the whole self- steering
bogie concept, both the physics and the programming of the machine have to be tested. The programming
is the easy part; if [just wanted to test that I could simply simulate it. But for the case of this project, it is
not just the programming that will determine whether or not it can work. There are many physical
unknowns that need to be tested that, if they do not work, then the project cannot succeed no matter how

good the programming is.

4|Page

2: The Proposed System

2.1: Requirements

From the suggestions posted online I developed three critical design requirements for a system

like this to be successful in the real world.

e Must significantly reduce the required width for a truck to maneuver. (Over 50% reduction for all
common turning radii).

e Must be easily adaptable to any trailer configuration, and can be retrofitted to existing trailers.
Must be programmable and adjustable to different road and driving conditions.

e Must be cost-effective over a 15 year service life.

I have designed a theoretical system to achieve this goal. The bogies are modular units, they steer
and compute their position independently and automatically. They just need to be plugged into the truck’s
alternator. The trailers in this case can be anything, and any length, and the bogies will function. They are
also modular. They can be bolted back to back to create a double bogey, connecting two trailers but still
spreading the weight over the required number of wheels. I have attached some pictures of my

SolidWorks design. It is this design that will form the basis of what will be my project.

Figure 2.1: The conceptual model of the future system.

e |

i
@l
=]
&
E;i
e
=

Figure 2.2: A view of a single bogie. The bogie is attached to the trailer with the same 5™ wheel
coupling found on the tractor. This allows the bogie to pivot. To attach this, the trailer owner can

simply cut off the existing bogie wheels and weld on the new coupling.

BOGIES '

N A TIOMN.AL

- ADVANMCED TRAILER CoOmMT ROW

Figure 2.3: Two views showing the undercarriage arrangement for both a single bogie and a pair of
two bogies bolted back-to-back to create a double. Each axle is designed to steer independently, so
the steering behavior can easily be flipped between single-and double configurations. The bogies do
not need special tires or wheels, and can be used with standard brakes, though this configuration
provides a god opportunity to implement smarter braking systems. These bogies are also designed

with AirRide independent air suspension bags for an improved ride over conventional bogies.

6|Page

While I am confident that a system like this can be put together mechanically, that does not necessarily
mean that it will work. There are a lot of different elements that need to work successfully in order for
this system to succeed. The control system needs to be able to work with an erratic human driver, and it
may be that throwing the weight of the rear trailer around makes the truck more difficult to drive. Maybe
it will work under some conditions, but there are limits which need to be observed. In order to see if this
steering system is a viable idea, some testing needs to take place. As I can’t afford a real semi-truck, the
testing will have to take place with a scale model that is a close as possible in construction to the real

thing as possible.

2.2: Binding

By far the most major physical obstacle to the success of this system is a phenomenon known to
the rail industry as “binding”. “Binding” is a phenomenon where a train car with rotating bogies at each

end attempts to roll across a very sharp turn, as illustrated in Figure 2.4.

Long Train Cars Bogie 1

Figure 2.4: A train experiencing “binding”.

7|Page

When an engine pulls a train, all the force it exerts must go through the cars, like links in a chain.
With a train, however, the direction the train can move is defined by the track, not the direction of the
force from the engine. This can lead to a situation where the force of the engine is not in the direction the
train can move. If the engine is somehow oriented 90 degrees to the track, the train won’t move no matter
how hard it pulls. In the situation in Figure 2.4, because the bogie #2 is travelling in such a different
direction than the car is pointing, only a small amount of the force the engine exerts acts in the direction
the bogie can travel. If that component of the force becomes too small to pull the weight of the train
behind bogie #2, then the train will stop, and will not move no matter how hard the engine pulls. This is
“binding”, the train car gets stuck and the train cannot move. The only way to get the train “unbound”
was to get another engine to push bogie #2 through the curve. In the early days of rail, when there were
few track standards and even fewer spare engines to extricate “bound” trains, sometimes the only solution

was to cut the rear bogies off and drag the car through the turn, then attempt to reattach the bogie.

The self-steered truck experiences the same “binding” phenomenon, but with a slightly different

effect.

Figure 2.5: “Binding” behavior for a truck with my system.

In the situation in Figure 2.5, binding will occur if either of the following two equations are true.

FcosO < Y u.F, Equation (1)

8|Page

Fsin0 = ugF, Equation (2)

Equation 1determines whether the truck will be able to pull the trailer. If the force of the truck is
not enough to pull the bogie along its direction of travel, it will not move. This is what happened to those
early trains. But there is a second case unique to this trucking system. In this case, governed by Equation
2 when the truck “binds up”, instead of getting stuck, the front of the truck will simply drag the rear bogie
sideways, since it isn’t on a fixed track like a train bogie. If the truck force is greater than the force
required to pull the bogie sideways it will do so. In this effect lies the physical problem to be tested. There
will always be a situation in which the truck “binds up”, but exactly under what conditions that will
happen is unknown. It could be that the truck will only bind up in turns no sane truck driver would
imagine making, or it could be the case that at even the slightest turn will result in the rear bogies
skidding. If the latter is true, that the entire concept is essentially useless, no matter how good the
programming is. So setting up this proof of concept test in such a way so that the binding behavior of the
test rig matches that of a full-scale truck is absolutely crucial to this project. The reason I mention all of

this is that it will be the crucial factor in selecting my design.

There are three main factors that affect the conditions under which the truck will bind, the friction
coefficient of the tires on the ground, the weight on those tires, and the length of the trailers. So to achieve
a valid test, the size and weight of the rig must be proportional to the actual truck it is modeled after, but
also the friction of the tires needs be as close as possible to what actual truck tires are like. This is the
major factor that determines the scale. If I were to build this rig on a very small scale the friction
coefficients of the small tires would not even approximate those of full scale tires, even if they were made
of rubber and inflated. The test would be essentially useless because the small scale tires would be much
more likely to slide than larger scale ones. I decided that tires on the scale of lawn mower tires, or even

small trailer tires, would be a close enough approximation for the test to retain a reasonable validity.

2.3 Project Schedule

As this project was being conceived it became clear quickly that a schedule was needed to keep
the project moving. In early spring of 2010 a project schedule was created that would govern the entire

process of developing the prototype.

9|Page

Winter ‘03 / 10 Concept developed and researched.
Spring’10 Truck and initial robot design completed.

Tractor vehicle chassis rebuilt in Maine and electronics restored to
working condition. Programming 50% completed.

Summer’10

, Entire robot mechanically complete, Remaining programming
Fall’10 . .
methodology developed, electrical systems designed.

Winter ‘10 / "11 Electrical system including sensors and controllers installed, beta
program completed, begin initial testing.

Spring 11 Debugging and final testing, expansion and addition of features if
time allows.

Figure 2.6: Project schedule (written spring 2010).

It is the completion of these milestones upon which the progress of the project will be judged.

Section 3: Detailed Design

The robot is roughly broken up into three components: the tractor, the bogie, and the trailer.
Construction started over the summer and was completed on Nov.7. The robot design adheres as closely
as possible to the concept outlined in Chapter 2, but there were limitations due to the available materials
and funding. The braking and suspension systems were scrapped from the robot design because they are
really not crucial to testing whether or not this will work. While it may not be an exact model of a real

system, it is accurate in all of the most crucial areas needed to get the best test possible.

The overall machine is a roughly 1/3 scale model of a truck with a 42’ trailer. It is roughly 14 feet
long and about 2.5 feet wide at it’s widest. The three components are separable at the joints, allowing the
robot to be quickly broken up and assembled for easier storage. The electrical controls are separable as
well, so when assembling the robot all one needs to do is plug the three components together. This

eliminates any need to do rewiring during breakdown and assembly.

10|Page

3.1: The Tractor

The first section of the robot to be built was the tractor, (shown in Figure 3.1), in fact, it had been
built five years pervious. For a senior project a few years back a robot was built to run around campus
guided by GPS. The robot had fallen into disrepair, but it is still more than powerful enough to pull
trailers, and even better, it is built to the scale I’'m aiming for. I decided to use this robot as the basis upon
which to scale the rest of the design. Based on the tractor robot’s width the overall machine will be a
roughly 1/3 scale representation of a real truck. Over the summer I refurbished the existing robot into a
reliable tractor unit that will be controlled by remote control. The repairs included new batteries, a new

flip top to accommodate a trailer mount on top, and a refurbished undercarriage.

The tractor unit frame is constructed out of 80/20 aluminum extrusion. Steel plates war mounted
between the lower frame rails in order to support two marine deep cycle batteries mounted at either end.
The batteries are actually substantially larger than the original batteries so the original guards on the front
and back were removed and replaced with sheet metal. The sheet metal holds the batteries in place, but
otherwise they are not bolted or mounted to anything to allow for easy removal. In the center of the
tractor are the two 24V DC motors. These are mounted to steel plates on the subframe and also to a
square steel connecting bar. Each motor is mounted un geared to a sprocket and chain. The wheels on
each side are all connected by sprocket and chain, so all three wheels on each side turn together. Each
side’s chain system is connected with the sprocket and chain coming from one of the 24V motors. Each
motors drives all three wheels on one side. In this sense, all of the wheels are drive wheels. This
configuration is called skid steer, like a tank. By having each motor turn a different amount, the wheels on
each side of the tractor turn different amounts, and the tractor turns. Even though the tractor is skid steer,
it can be driven close enough to the way a real truck drives that I don’t anticipate it being a problem. One
future project being discussed is turning the robot into a more “truck-like” machine if time and money

allows.

The wheels themselves are 11.5” pneumatic dolly tires. The ties are mounted to three-piece steel
axles with two liked CV (constant velocity) joints. Inside the frame of the tractor each axle connects to
the chain drive. The CV joints allow the axle to move up and down, which is important because each
wheel is supported by its own independent suspension. The suspension linkage is a steel fourbar with four
pivot points on the frame and the wheel plate. Attached to the each of the suspension arms is a spring-

shock assembly from a mountain bike.

On the top of the tractor the original electronics platform has been replaced with a folding lid.

The lid is constructed out of 80/20 aluminum with a sheet metal top. The lid was built with two main

1l1|Page

purposes in mind. First, When closed it protects the sensitive electronics under the lid from being hit.
Secondly, it allows for the mounting of the trailer hitch on the top without any obstructions. The lid is

locked shut while in use by two %4”-20 bolts.

Figure 3.1: SolidWorks tractor model (above), and real tractor (below).

12|Page

3.2: The Bogie

The second major component is the bogie, shown in detail in Figures 3.2 and 3.3. The primary
material the bogie is constructed of is 80mm x 40mm aluminum extrusion (commonly called “profile”)
donated by my place of internship, Lanco Assembly Systems. It was all metal that had been removed
from automated assembly lines that were being refurbished. I designed a H-frame out of the profile that
would be more than strong enough to handle any load I would put on it. The steering assemblies were
then designed as two fourbar linkages. There are four steering knuckles cut from solid aluminum by the
waterjet which pivot on steel bars set though the profile. Originally there were going to be bearings
included, but these were eventually left out as the aluminum-to-aluminum contact had a very low friction
coefficient already and bearings are expensive. The knuckles are connected by 17 steel square stock bars
and pinned by M8 bolts to the knuckles. On each knuckle is a 1’ long 5/16” threaded steel rod secured
with hex nuts. The threaded rod is sheathed with a %4 steel tube on which the wheel is set. The wheels
themselves are the same type as was used on the tractor robot, but with bearings built-in. Mounting them
on the tubes allows the wheels to be slid along the entire length of the tube, and allows me to test the

bogie in an oversize load configuration. In position the wheels are secured by shaft collars.

With the steering system built [borrowed a few force gauges from Stan Gorski. I used the gauges
to pull on the coupler bars and noted the maximum force indicated by the gauge. When doing this I tried
to pull the steering though it’s full range of motion in about three to four seconds with the assembly
sitting still on the shop floor. The gauges indicated about 151bs of force was needed to actuate the steering
assembly. On this basis I selected a 12V, 251b linear servo which extends 4” in 2 seconds. There are very
few servos with both a 251Ib force and 2in/sec speed available that cost less than $500, this $130 model
was a very good choice. The servo is mounted horizontally on the lower crossbar of the frame and its
position can be easily adjusted to correct for bias. The servo is connected to the steering bars via two 157
aluminum links salvaged from a previous senior project. The long links run almost parallel to the servo
and bars so the force is transmitted as close as possible in the direction of travel, but allows for the full

range of motion of the bars.

13|Page

Figure 3.2: SolidWorks models of the bogie.

Figure 3.3: The model with the steering system isolated.

l4|Page

Figure 3.4: Final bogie assembly with trailer attached.

3.3: The Trailer

The “trailer” assembly was the last to be designed, and is really not a trailer at all. It is more of a
connecting bar connecting the tractor and bogie as seen in Figure 3.5-3.8. The trailer is 13’ from pivot to
pivot, 45” scaled. This makes the robot a scale representation of an average medium-long length trailer.
The trailer itself is constructed from two lengths of profile joined at the middle by a 1/8” steel sheath
bolted between the ends. This holds the two pieces securely together as one and can hold all the weight I
would anticipate this bar would ever hold. At each end of the trailer are two stainless steel hinges,
constructed the same way as the connector joint for a strong joint. A %" pipe section runs through the
steel holes and through a piece of profile, and secured with shaft collars, acts as a hinge pin. The hinge
allows the robot to go up and over bumps without stressing the trailer. The trailer ends pivot about 3/4in
pipe sections which are on the tractor and trailer mounts. This allows both the bogie and tractor to rotate
independently relative to the trailer, which is crucial for the concept to work. The trailer had to be
designed to fit both the construction of the tractor and bogie, so each mounting fixture was slightly
different. Both use the %" fittings for pivoting mounted with a steel flange to a length of profile. On the

tractor, the profile is mounted to the opening lid with two steel plates. The plates had to be custom cut in

15|Page

order to adapt the geometry of the metric profile to the 80/20 aluminum the tractor was built from. This
mounting method allows the lid to be opened with the trailer off, but still support and pull the trailer with
the lid closed. On the bogie the pivot pipe had to be raised 9” off the original frame in order to sit at the
same height as the pipe on the tractor, as the tractor is much higher off the ground. This extra height was

achieved by building a small frame out of the profile used the original bogie frame.

Figure 3.5: Picture of the trailer mount on the bogie.

16|Page

Figure 3.7: View of the entire robot in SolidWorks.

17|Page

Figure 3.8: View of the entire robot in the shop.

3.4 The Electrical System

The electrical system was both the primary focus of the project work over the second term, and
one of the main pieces of work completed over the summer. The electrical system can be cleanly broken
up into two parts, the drive system and the control system. Both systems were built at different times and

operate almost independently of each other.

The drive system is located on the tractor and is an extensive modification of the electronics that
were previously on the robot. The original system provided an extensive system of relays, a DC-AC
charger for a laptop, and a whole other array of control circuits because the robot was originally intended
to operate autonomously. Over time this electrical system had degraded, many of the circuits had burnt
out, and there was no wiring diagram available to try to determine how it worked. So it was decided to
start from scratch. All the tractor needed to do for my project was to drive by remote control, and behave

just like the tractor of a real truck. The entire electrical system including the batteries and motors was

18|Page

removed over the summer because at the time the entire frame was being rebuilt and refurbished. As the

frame came back together a new system was built using as many of the original components as possible.

The two original batteries were replaced with 14.4V marine deep cycle batteries in order to improve the

available running time of the tractor. The original Roboteq AX2550 24V dc motor controller was

mounted under the new flip top for protection. Also the Futaba receiver unit was mounted under the top

and the antenna rerouted around the side. The new drive system is wired according to Figure 3.9.

Futaba
Transmitter

Futaba
Reciever

AN

controller

motar i

14V battery

©@ @

14V battery

Figure 3.9: The drive system diagram.

Figure 3.10: The drive system installed.

19|Page

The basic operation principle of the drive system is as follows. The marine batteries provide
power to operate the motor controller and the motors, and a small battery powers the Futaba 2-channel
receiver. An operator sends signals to the receiver from the remote. The receiver then sends a series of
PWM signals to the Roboteq controller. The Roboteq controller translates these signals into net voltages
across each of the motors. This essentially allows the tractor to be driven like an R/C car. Actually it is
more precisely an R/C tank, which was a small source of concern. The tractor robot has no steering
linkage like a real truck. It uses a method called “skid-steer”, the same as a tank, crawler crane, or bobcat.
It steers by moving the wheels on one side at a different rate than on the other. This allows the tractor to
literally spin in place. It is possible to actually program the tractor using a microcontroller to have “truck-
like” steering behavior, but after some early tests, this was abandoned. It is actually quite easy to drive the

tractor like a truck with a little practice.

The control system was the primary focus of the winter term project. The focus and setup is
completely different from the drive system, and it operates completely independently. The objective of
the control system is to retrieve essential data from sensors set up around the robot, send that data to a
laptop running the control algorithm, and retrieve from the laptop a command telling the steering servo on
the bogie what to do. It must also power and control that steering servo based on the laptop’s command.

Unlike the drive system, the control system is completely autonomous.

Before the start of winter term the program had been mostly written, and the measurements

needed to run it had been identified:

o The absolute X-Y position of the center of the tractor.
e The relative angle of the trailer to the tractor
e The relative angle of the bogie to the tractor

o The angle of the bogie’s steering system.

The final three readings had been thought out ahead of time and were very simple to make. Simple 10kQ
potentiometers were installed at the points where the bogie and tractor pivot relative to the trailer.
Another 10kQ potentiometer was pre-installed on the linear actuator to measure it’s extension length.
These potentiometers output a voltage drop that changes as the resistance in the potentiometer changes. A

simple calibration function is all that is needed to translate this voltage reading into an angle measurement.

What was much more difficult to determine were the absolute measurements of the tractor position. Over
four weeks many ideas were tossed around with the generous help of Prof. Hedrick. The first concept to

be explored was the idea of putting rotation encoders on the wheels of the tractor. By measuring how each

20|Page

side of the skid-steer drive rotates, the position and orientation of the tractor relative to its original
position could be calculated. The problem is that this will not be accurate if the wheels of the tractor slip
at all, which is nearly guaranteed to happen with a skid-steer device. The next option explored was the
GPS option. In a full-scale truck a GPS resolution of a couple feet is not a problem, that is good enough
for the system to work. But in this scale model GPS is simply not accurate enough for the system to work.
So GPS was abandoned. What was then tried was an inertial navigation system. A Logitech MX Air
mouse was purchased for testing. The MX Air mouse is a mouse which operates entirely based on gyros
inside the unit. It is intended for presentations, where the presenter can hold the mouse in the air and use it
to control the cursor on a projector. It is quite accurate, and can essentially function as a “poor-man’s”
inertial navigation system. The problem is that the mouse has the wrong set of axes. That is, the cursor
moves up on the screen if one moves the mouse up, not forward-back like a conventional mouse. Many
fixes were tried, but the mouse was designed well and the axes would not re-orient despite many trials.

That made it useless for getting X-Y coordinates, so it was sent back.

After the failure of the air mouse there were very few options left, but the air mouse itself had
inspired an idea. A conventional mouse works with either an optical camera or laser aimed at the ground.
The mouse fires the laser or takes a picture, and records how the ground has moved under it since the
previous picture or laser firing. It is an absolute position recording. It was decided to investigate a
conventional mouse as a method of recording the X-Y position of the tractor. A Microsoft Laser mouse
was used. The key to making it work was getting the mouse close enough to the ground so that it would
get a signal, because most laser mice are tuned to turn off if lifted a small distance above the ground, to
allow the user to reposition the mouse more easily. It was understood that using the mouse would limit
the robot to smooth, flat floors, but that was deemed acceptable for this demonstrator. After many
unsuccessful trials a cart was built that cradled the mouse 1.5mm off of the floor. This cart is pictured in

Figure 3.11.

21| Page

Figure 3.11: Cart with mouse on the ground.

Figure 3.12: Cart with mouse in the air to illustrate its positioning.

22|Page

The cart is attached to the tractor only by four wires, which ensure the cart is always moving in
the direction of the tractor but do not fix its height. The cart sits on its own set of wheels, which allows it
to move up and down with the slight contours of any floor. This keeps the mouse at the proper distance.
The mouse itself is wireless and has its own onboard batteries. As the tractor moves forward or back, the
cursor moves up or down on the screen. A program using the Windows input manipulator AutoHotkey
was written which resets the cursor to the bottom of the screen if it reaches the top, and vice versa. This
allows the mouse to move forward or back continuously. The laptop running MATLAB reads the position
of the cursor on the screen, and via a conversion factor converts it into a distance. The system works well
on both concrete and tile floors, getting 2cm or better resolution at low speeds, and10cm resolution at
high speeds. The problem with the mouse alone is that it only provides a scalar displacement measure.
The mouse is constrained to the same direction as the tractor, so even if the tractor turns the mouse will
only measure the scalar mount of forward/back travel. To get an X-Y position the heading of the tractor
must be known along with its scalar displacement. This was thankfully much easier to obtain. A
Devantech CMPSO03 digital compass was purchased. The compass outputs a PWM signal which
corresponds to the current heading. Formulas are readily available to convert this PWM signal into a
degree reading. True north is 0 degrees, south 180. The compass is accurate to roughly half a degree,
which allows an accurate heading of the tractor to be obtained. This provides all of the necessary
information to calculate the X-Y position for the tractor. It should also be noted that the compass is
actually mounted on the trailer, but as there is a potentiometer giving the angle of the tractor to the trailer,

the heading of the tractor is still easily computed.

The setup of the control system is shown in system 3.12. .

23| Page

Laser
Mouse

10kQ POT 1 1wkaror
(Bogie) ————1 (Tractor)

Arduino Board

Laptop f-—----—-------

10kQ POT
{Inside serva)

Devantech
CMPSO3

HB-25
Servo Motor 14V battery
Motor Controller

Figure 3.12: System diagram Compass (inside control box)

\ N

Mouse POT (in motor)

Figure 3.13: Sensor Layout

24| Page

Figure 3.14: Picture of the Control Box

There are three main control components which enable all of the sensors and motors in the
control system to work with each other. All of these components are mounted in a box which in turn is
mounted on the center of the trailer. The main controller is the laptop, which runs the top-level MATLAB
code. Currently I have been using my personal laptop but once the code is complete a dedicated Acer Eee
Pc will be used. The laptop runs on its own batteries and connects wirelessly to the mouse via USB port.
Connected to the other USB port of the laptop is the second major control component, the Arduino Mega
2560 microcontroller. The Arduino board is powered by the laptop, and performs almost all I/O functions.
It powers all of the sensors via a 5V signal and sets motor power via PWM. The Arduino runs its own
program, but that program is slaved to the MATLAB code via the serial port. All the Arduino does is take
the sensor inputs and sends them to the MATLAB code. While the Arduino board itself could potentially
control the system without the laptop, the idea to use the board came after most of the code had been
written in MATLAB. The third control component is a Parallax HB-25 motor controller. The HB-25 is
connected to one of the marine batteries on the tractor unit, to the linear actuator, and to the Arduino
board. Upon receiving a command from MATLAB the Arduino board sends a PWM signal to the HB-25,

which then translates it into a voltage seen by the linear motor. The voltage is supplied by the marine

25|Page

battery and is completely reversible. So the motor can be run at full forward, full backward, and anything

in between.

This and all of the electronics have at present been fully installed and tested, and are all working

correctly.

3.5: Programming

The programming of this system was almost entirely done in MATLAB though there is a small
secondary component which should be mentioned first. The Arduino board is not programmed in
MATLAB, it is programmed in C++. The way it communicates with MATLAB is through a class called
ArduinlO written initially by TheMathWorks. ArduinlO is a MATLAB class and Arduino script which
allow the two to communicate effectively over the serial port. In this way it actually slaves the Arduino to
MATLAB. The way it works is that the Arduino board is set up with a server script. It waits for
commands to be sent from the MATLAB code, it executes those commands, and returns the result back to
MATLAB. In the case of ArduinlO, those commands are generally to read and write to the boards pins.
The MATLAB class is a set of functions which, when called, send commands to the Arduino server, and
waits for it to send results back. These functions allow the MATLAB code to read and write pins on the
Arduino directly. The source ArduinlO code was downloaded from TheMathWorks, and both the C++

server and the MATLAB class were extensively modified for use in this project.

The control algorithm for this system runs entirely in MATLAB and has been designed using the

following goals:

e To control the bogie enough so that it follows the path of the cab as closely as possible.
e To do so in an entirely general way independent of driver behavior or turn geometry.
(Within physical limits, of course.)

e To do so in a way that is user-friendly, reliable, and adaptable.

There are a number of different possibilities for control options, a proportional controller which
corrects based on how far the bogie is from the intended path, and integral controller which corrects based
on how far off it is and how long it has been off for, and a derivative controller which corrects based on
whether it is getting closer to the tractor’s path or not. Each of these alone was deemed insufficient to
solve this problem, for a good reason. A simple reactionary control system will not work in this case
because of the output, the bogie steering. This control system can only really affect one thing, the power

of the linear servo on the bogie steering. This means that all it can really control is the rate of change of

26| Page

the bogie’s steering angle, or the rate of change of the rate of change of the bogie’s heading. The rest is all
determined by physics. Because the control system is so limited in its effect it cannot simply be
reactionary. It cannot simply slide the bogie to the right if it drifts left, it must turn it, which takes forward
motion to make happen. In other words, this system must be a proactive in its control methods. That is,
the system must send the signal to start turning the wheels before it actually reaches the turn in order to

have the linear actuator moving in the right direction when the turn arrives. The need for this functionality

necessitated an original control algorithm.

The basic premise of the control algorithm is illustrated in Figure 3.15.

'S
*
*
L J
L
|]
*
.
|
-
|]
|]
|]
-
|]
|]

Figure 3.15: The Idea Behind the Control Code.

The control program iterates over and over, recording the position of the tractor and the bogie at
each instant in time. The path of the tractor is the red dots above. For each iteration, the program takes the
position of the bogie, and “looks ahead” a certain number of points along the tractor’s path. It then “aims”
for that point. It calculates the vector from the bogie’s position to the point, if that vector is to the right of

where the bogie is currently heading, it sets the motor to steer more right, and vice-versa. Remember, the

program can only set the rate at which the steer angle changes.

Figure 3.16 is a flowchart outlining the logic behind the control algorithm.

27| Page

s Matrotoo

Figure 3.16: Logic Flowchart.

This flowchart outlines the basic program setup, the actual files are in the appendix. The first key
function is the first, blue function. “Matrix” refers to an array in which all pertinent data for each iteration
is stored, like the tractor’s XY position and heading, it’s velocity, and the same for the bogie. It is where
the path of the tractor is stored. The blue function actually performs a number of tasks. First it resets the
Matrix if it gets too long. This just saves memory. When it does so it keeps the last few rows so that the
part of the path that the bogie will still reference is preserved. It also does not add values to Matrix if the

robot is not moving. The reason this is done is because of the method of picking a point.

What this program does when it picks an “aim” point is really to pick an index of Matrix. First it
finds the point on the tractor’s path that is closest to the current position of the bogie. It then takes that
point, and, based on some formula, looks a certain number of rows down in Matrix. It then takes the
tractor’s position data for that row and uses it as the aim point. The weakness of this design is that as the

tractor accelerates and decelerates , the points at which a position measurement is taken become closer or

28|Page

more spread out. This creates a potential problem because the algorithm calculates the number of rows to
look ahead, not the distance to look ahead. If the tractor is moving slowly for a long time and then takes
off, the position point will become very densely populated and large numbers of rows of Matrix may read
almost the same tractor position. This means the bogie will look a certain number of indices ahead and it
will spend much of its time looking at the points where the tractor moves slowly, even though distance-
wise it should be looking farther ahead. This problem becomes most acute if the tractor is not moving for
an extended period. Matrix will fill up with a position of (0,0) for the tractor, and when the cab starts
moving and the bogie “looks ahead”, all it will aim for is the (0,0) point until the Matrix has filled way

beyond those initial points.

Highlighted in red in the flowchart is the function that is really the heart of the control algorithm,
calculating how far to “look ahead”. The rest of the functions are really just doing vector math and
translating sensor readings into variables; it is the function in red that really controls things. At present the
exact nature of this function is being investigated; all that is currently known is that it is a velocity-
dependent function. That is, the bogie looks farther ahead for its aim point if it is traveling faster.

Otherwise, this function is currently unknown.

The programming is at present the only part of this project that is still incomplete. The functions
in grey on the flow chart were all written and tested either over the summer or during the second term of
the project. The entire program is complete except for the red function. It was decided to delay the
running of the first beta programs in the robot, (originally scheduled for week 8 of winter tem), and
investigate the red function further. Initial beta testing has now been moved to the first few weeks of
spring term. The reason for the delay was to allow for time to write and test simulation functions. These
functions simulate the movement of a tractor and bogie and allow the control system to be tested,
debugged, and properly simulated before being run in the robot. Currently these simulation functions are

being debugged, and hopefully the control algorithm can start being tested by final exam week.

29| Page

Section 4: Summary

With the completion of the robot on Nov.7, 2010 I had successfully completed the major goals for

term #1:

e Have the robot mechanically completed.
e Have a basic program architecture completed.

e Made initial determinations as to what would be an optimal sensor layout.
And as of March 8, 2011 I had completed all but one of the major goals for the second term.

e Design and test electrical system
e Calibrate all sensors
e Complete program architecture

o Run first beta program (incomplete)

This puts the project about one or two weeks behind schedule for the spring term. With the robot finished
mechanically, and the electrical system and sensor setup finished, next term will be more devoted to
debugging and testing the control systems, with the ultimate goal of completing a polished demonstrator

by Steinmetz. At present here is the schedule for the next term.

e By 3" week: Complete beta program.
o Testing, debugging.

e Steinmetz day: Completed demonstrator

I believe that achieving these goals is very feasible barring any more major problems with the
programming. It should be noted that when I started this project last spring my goal was a working

prototype by Steinmetz, and I am on track to achieve that.

30|Page

A: References and Acknowledgments

The truckers at Benoit Trucking and TheTruckersReport.com
Prof. Keat
Lanco Assembly Systems
Paul Tompkins, James Howard at the machine shop
Professor Hedrick
Stan Gorski
NSF CT Scholars funding

Union [EF

B: Budget and Sourcing

Funding
Union IEF: $500

NSF CT Scholars $1000

Major Expenses

e Wheels- Northern Tool Inc.: $150

e Servo- ServoCity: $130

e Square Stock, Locknuts, 5/16 Threaded Rod, ¥ Tubing, Flanges, Pipe Connectors, 1/8
and 3/16 Steel Rod, Misc. Hardware: Lowe’s: $100

e MBS Stainless Steel Bolts 45mm,55mm,80mm, Locknuts, Lockwashers, Delrin Bushings,
%" Shaft Collars: McMaster-Carr: $80.

e 35ft of aluminum 80mmx40mm profile: Scrap donated by Lanco Assembly Systems.

e 1/8” steel plate for trailer and servo mounts: Scrap metal from Machine Shop.

e 1/8” aluminum links: Scrap from previous senior project.

e Arduino Mega 2560: $125

e Parallax HB-25 Motor Controller: $50

e Devantech CMPS03 Compass: $75

e Potentiometers: $10

e Electrical box, Terminals, Wire, 3- Wire connectors, Misc. components: $30

32|Page

C: Code

33|Page

=0
w=1600

h=900

CoordMode, Mouse, Screen
Loop {
MouseGetPOS, Xpos, Yypos
XNew=xpos

if xpos E: 1599
MouseMove, 2, ypos
xnew=2

if xpos <= 1

MouseMove, 1598, ypos
xnew=1598

;

MousemoveX, ahk

Page 1

#include <wire.h>

#define address 0x60//defines address of compass

vold satus(){

Sarial,.beglin(9600);

void roop(){
int pot=analogRead{2);
int bearing =pulseln(3, HIGH)/100;
if {bearing < 0){
bearing = 327+ (bearing+327):;
t
else {
}
Sexial.printlin(pot);
delay{1000);

©/* Analog and Digital Input and Cutput Server for MATLAB */

Tt el
WL LA

int i;
for (1=0;1<20;i++) {
pinMode (i, INPUT) ;
digitalWrite(i,0);
}
/* initialize serial L

Saerial.begin(9600) ;

}

void L {
/* variables declaration and initialization */
static int s = =1;/* state */
static int pin = 13;/* generic pin number */
int val = 0:/* generic value read from serial */
int agv = 0;/* generic analoyg value */
int dgv = 0;/* generic digital value */

if {Serisl.avallablel) >0) {

val

/* calculate next state */
if (val>47 s&& val<58) { |
/* the first received value indicates the mede
49 is ascili for 1, ... 290 is ascii for Z
s=0 is change-pin mode
=10 is DI; =20 iz DO; =30 is AIL; s=40 1s AO;
s=50 is servo status; s=60 is aervo attach/detach:;
s=T70 1s servo read; =80 1is servo write
5=90 1is query script type (1 basic, 2 motor)

*/
5=10%*{val-48);

}
break; /* s=-1 (initilal state) taken care of */
/% s=0 or 1 means CHANGE PIN MODE */

case 0:
/* the second received value indicates the pin

from abs ('c¢')=99, pin 2, to abs{'t')=116, pin 19 */
if (val>98 && val <117) {

pin=val-97;/* calculate pin * /
s=1;/* next we will need to get 0 or 1 from serial */
1
aelse {
=-71;/* if value is not a pin then return to -1 */
}
sreaky /* s=0 taken care of * /

case l:
/¥ the third received value indicates the value 0 or 1 */
if {val>47 && val <50) {
/* set pin mode */
if {val==48) {
pinMode (pin, INPUTY ;

}
else {
pinMode(pin,OQUTPUT) ;
t
}
s=-1;/* we are done with CHANGE PIN s0 go to -1 */
bhreak; /% s=1 taken care of * /

/% 5=10 means DIGITAL INPUT *®*kkkokkthhhdhbhhhhhhhhhhsrss &/

case 10:
/* the second received value indicates the pin
from abs{'c'}=99, pin 2, to abs('t")=116, pin 19 */
if (val>98 && wval <117) {
pin=val-97;/* calculate pin */
dgv=pulseln(pin, HIGH)/100; /* perform Digitai Input */
it {dgv < 0)({

dgv = 327+ (dgv+327);
t
elge |
}/* perform Digital Input */
Serial.printin(dgv);

delay(1000)} /* sencd value via serial */
}

g=—-1;/* we are done with DI so next state is ~1 */
break; /* s=10 taken care of | */

/* =20 or 21 mean DIGITAL QUTPRUT **%kididoikkdtikddkidn */

case 20:
/* the second received value indicates the pin
from abs('¢')=99, pin 2, to abs('t')=116, pin 19 */
1f (val>98 && val <117) {
pin=val-97;/* calculate pin */
s=21;/% next we will need to get 0 or 1 from serial */

}
alse |
s=~1;/* 1if value is not a pin then return to -1 */
}
hraalky /* =20 taken care of ®/

case 21:
/* the third received value indicates the value 0 oxr 1 */
if (val>»47 && wval <50) {

dgv=val-48;/* calculate value */
digitalWrite(pin,dgv); /* perform Digital Output */

}
s=~1;/% we are done with DO so next state is -1 */
mrealk; /% s=21 taken care of */

/% 5=30 means ANALOG TNPUT # ok k& ok ok sk dode deode s dese sk e ook o/

case 30:
/* the second recelved value indicates the pin
from abs('a')=97, pin 0, to abs('f')=102, pin &,

note that these are the digital pins from 14 to 19

located in the lower right part of the board */
if (val>96 && val <103) {
pin=val-97;/* calculate pin */

agv=analogRead(pin); /* perform Analog Input %/

Serial.printin({agv); /* send value via serial */
s=-1;/* we are done with AI so next state is -1 */
x; /* =30 taken care of */

Drea

J% 5=40 or 41 mean ANALOG QUTBUT *# ¥k sk ko sokdhsdodskdoobn & /

case 40:
/* the second received value indicates the pin
from abs('¢')=99, pin 2, to abs('t')=116, pin 19 */
if (val>98 && val <117) {
pin=val-97;/* calculate pin */
s=41;/* next we will need to get value from serial */

}
else |
s=-1;/* if value is not a pin then return to -1 */
}
Dreask; /* s=40 taken care of o/

case 471:
/* the third received value indicates the analog valus */

analogWrite{pin,val); /* perform Analog Qutput */

s=-1;/* we are done with A0 s¢ next state is -1 */
mreak; /% s=41 taken care of */
/* 5=90 means Query Script Type (1 basic, 2 motor) */

caszse 90:
if (val==57) {
/* if string sent is 99 send script type via serial */

Saerial.printin(l);

}
s==1;/% we are done with this so next state is -1 */
hreak; /% s=00 taken care of w/
} /% end switch on state s * /
}/* end if serial available *

} /% end loop statement w /

3/16/11 7:35 PM (C:\Users\Conor\Documents\Yr...\arduino.m 1 of 30

classdef arduine < handle

% This class defines an "arduino” object

properties (SetAccess=private,GetAccess=private}

aser % Serial Connection
pins % Pin Status Vector
sSrvs % Servo Status Vector

mspd % Motor Speed Status
sspd % Servo Speed Status
Motor Server Running on the Arduino Board

a5

mots
and

methods

% constructor, commects to the beard and creates an arduino object
function a=ardulnc{comPort}

addpath(fullfile (pwd)):
savepath

% Add target directories and save the updated path

% check nargin
if nargin<i,
comPort="'DEMO"';
disp{'Note: a DEMO connection will be created'):
disp('Use a the com port, e.g. ''COME'' as input argument to connect tok
the real board'):;
andl

% check port
if ~ischar{comPort),

error ('The input argument must be a string, e.g. ''COMB'' ');
end

% check if we are already connected
if isa(a.aser,'serial') && isvalid(a.aser) && strcompi(get(a.¢
aser, 'Status’), 'open'},

disp({'It looks like Arduino is already connected to port ' comPort 1):
disp('Delete the obilect to force disconnection'}):
disp('before attempting a connection to a different port.'};
return;

end

% check whether serial port is currently used by MATLAB

if ~isempty{instrfind{{'Port'}, {comPort})),
disp(['The port ' comPort ' is already used by MATLAB']);
disp(['If you are sure that Arduino is connected to ' comPort]):
disp{'then delete the obliect te disconnect and execute:’}):
disp{{' delete(instrfind{{' "Poxt"''},{'"" comPort '"'}})']};:

3/16/11 7:35 PM C:\Users\Conor\Documents\Yr...\arduino.m 2 of 30

disp{'to delete the port before attempting another connection'):
error (['Port ' comPort ' already used by MATLAB']};
end

o

define serial obiect
a.aser=serial (comPort);

% connection
if strompi(get(a.aser, 'Port'), 'DEMO"),

3,

% handle demo mode

fprintf{l, "Demo mede connection ..7);
for i=1:4,
fprintf{1,".%);
pause{l);
end
fprintf(1l,’\n');
pause(l)};
% chk is 1 or 2 depending on the script running on the beard
chk=round{li+rand):

else
% aclhual connection

% open port
Ly
fopen{a.aser);

catch MEr

disp (ME.message)

delete(a);

error{|'Could not open port: ' comPort]};
end

% it takes several seconds before any operation could be attempted

fprintf(l, 'Attempting connection ..'}):
for i=1:4,

fprintf{(1,'."):

pause (1)
end
fprintf{l, '\n");
% query script type
fwrite{a.aser, {57 571, 'uchar'};
chk=fscanf(a.aser, '%d');

% exit 1if there was no answer
if isempty(chk)
delete(a)
error{'Connection unsuccessful, please make sure that the Arduino i

3/16/11 7:35 PM C:\Users\Conocr\Documents\¥r...\arduinoc.m 3 of 30

powersed on, running either adiocsryv.pde or mororsrv.pde, and that the board is connectedy
to the indicated serial port. You might also try to unplug and re-plug the USE cable
before attempting a reconnection.');

end

and

% check returned value
if chk==1,
disp('Basic I/0 Script detected [7);
algeif chk==2,
disp('Motor Shield Script detected !');
alse
delete(a);
error ('Unknown Script. Please make sure that either adiosrv.pde orv
motorsrv.pde are running on the Arduino'};
end

% sets a.mots flag
a.mots=chk-1;

% sel a.aser tag
a.aser.Tag="ok";

o

initialize pin vector (-1 is unassigned, 0 1s input, 1 is output)
a.pins=-l*ones{1,19);

ol

initialize servo vector (-1 ig unknown, 0 is detached, 1 1s attached}
a.srvs=0*ones(1,2);

el

initialize motor vector (0 to 255 is the speed)
a.mspd=0*ones(1,4);

% initialize stepper vector (0 to Z55 is the speed)
a.sspd=0*cnes (1,2);

% notify successful installation
disp{'Arduine successfully connected !');

end % arduino

% distructeor, deletes the object
function delete(a)

% if it is a serial, valid and open then close it
if isala.aser, 'serial') && isvalid(a.aser) && strcmpi(get(a.¢
ager, 'Status'), "open'},
if ~isemptvi{a.aser.Tag},
try
% trying to leave it in a known unharmful stale
for i=2:19,

3/16/11 7:35 PM C:\Users\Conor\Documents\¥r...\arduino.m 4 of 30

a.pinMode (i, "output’);
a.digitalWrite (i, 0)};
a.pinMode (i, "input’};
end
catch ME
% disp but proceed anyway
disp (ME.message);
disp('Procseding to deletion anyway');
and

and
fclose({a.aser);
and

% 1if it's an object delete it

if isobject{a.aser),
delete(a.aser);

and

end % delels

% disp, displays the obiject
function disp(a) % display
if isvalid(a},
if isala.aser,'serital'} && isvalid(a.aser),
disp(f'<a href="matlab:help arduino"rarduino object connected to¥
' a.aser.port ' port'l):
1f a.motg==1,
disp{'Motor Shield Server running on the arduino board'):
disp{(® ")
a.servoeStatus
a.motorSpeed
a.stepperSpeed
disp{' "):
disp('Servo Methods: <a href="matlab:help servoStatus"e
sservoStatus servoAttach <a href="matlab:helpw
servoletach"»servoDetach» servoRead <a href="i
matlab:help servoWrite >servolWrited/a»’};
disp{'DC Motors and Stepper Methods: <a href="matlab:helpw
motorSpeed " >motorSpeed motorRun <a href="matlab:
nelp stepperSpeed”>stepperSpeed stepperStep');
elge
disp{'I0 Server running on the arduine board'):
disp{" ")z
a.pinMode
disp{' "): .
disp('Pin I0 Methods: pinMode¢
digitalRead <a href="matlab:help digitalWrite"«
»digitalWrite analogRead <a href="matlab:helipy
analogWrite">analogirite"};

e

3/16/11 7:35 PM C:\Users\Conor\Documents\¥r...\arduino.m

end

disp(' "):
else

disp{'arduino object connected to¥

an invalid serial port');

end

disp('Please delete the arduino obiect');
disp{' '}):
end
else
disp{'Invalid arduino object');
disp{'Please clear the object and instantiate another one');
disp{' ')}
end

% pin mode, changes pin mode
function pinMode (a,pin,str)

variable'};

% a.pinMode (pin, str); specifies the pin mode of a digital pins.

% The Ffirst argument before the function name, a, is the arduino obiect.
% The first argument, pin, is the number cof the digital pin (2 te 19).

5 The second argument, str, is a string that can be "input' or 'oulpul',
% Called with one argument, as a.pin{pin) it returns the mode of

% the digital pin, called without arguments, prints the mede of all the
% digital pins. Note that the digital pins from 0 to 13 are located on

% the upper right part of the board, while the digltal pins from 14 to 19
% are better known as "analog input” pins and are located in the lower

% right corner of the board.

%

% Examples:

% a.pinMode{1il, 'output') % sets digital pin #11 as output

% a.pinMode (10, *input’) % sets digital pin #10 as Iinput

% val=a.pinMode (10} ; % returns the status of digital pin #10

% a.pinMode (5); % prints the status of digital pin #5

% a.pinMode; % prints the status of all pins

B gD
BHEREHEENT

% ARGUMENT CHECKING

% check nargin

if nargin>3,

error{'This function cannct have more than 3 arguments, object, pin ande

end
% first argument must be the arduino variable
if ~isa(a, 'arduinc'), error{'The first argument must be an arduinow’

end

if pin argument 1s there check it

5 of 30

3/16/11 7:35 PM C:\Users\Conor\Documents\Yr...\arduino.m 6 of 30

if nargin>i,
errstr=arduino.checknum(pin, "'pin number',2:19);
if ~isempty{errstr), error{errstr); end

and

% 1f str argument is there check it

if nargin>2,
errstr=arduino.checkstr{str, 'pin mode', {'input', "output'}};
1f ~isempty(errstr), error{errstr); end

end

% perform the reguested action
if nargin==3,

% check a.aser for validity
errstr=arduinc.checkser (a.aser, ‘valid');
if ~isempty{errstr), error{errstr}; end

%98

$5%3%% CHANGE PIN MODEW

L0000 h b
TRRONY

% assign value
if lower(str{l))=='0", val=l; else val=0; and

if strompl(get{a.aser,'Port"), 'DEMO'"),
% handle demo mode here

% average digital output delay
pause {0.0087; ;

else
% do the actual action here

€,

% check a.aser [or openness
errstr=arduinc.checkser (a.aser, "open');
1£ ~isempty(errstr), errorierrstr}; end

% send mode, pin and value
fwritel(a.aser, [48 97+4pin 48+4vall, "uchar');

end

% detach serve 1 or 2 if pins 10 or 9 are used
if pin==10 || pin==8, a.servobDetach(ll-pin); end

% store 0 for input and ! for output
a.plns(pin)=val;

elgeif nargin==2,
% print pin mode for the reguested pin

3/16/11 7:35 PM C:\Users\Conor\Documents\¥r...\arduino.m 7 of 30

\

mode={'UNASSIGNED', "set as INPUT', 'set as OUTPUT'};
disp(['Digital Pin ' numZstr(pin) ' is currently ' mode{Z+a.pins{pin)}i);

else
print pin mode for each pin

mode={ 'UNASSIGNED", "set as INPUT', 'set as OQUTPUT'}:
for i=2:19;
disp(i['Digital Pin ' num2str (i, '302d') ' is currently ' mode{Z+a.pins¥
{(i)}ri):

end
end
end % pinncde

% digital read
functicon val=digitalRead({a,pin)

val=a.digitalRead (pin); performs digital input cn a given arduino pin.
The first argument before the Funcfion name, a, is the arduino chbject.
The argument pin, is the number of the digital pin (2 to 19)

where the digital input needs to be performed. Note that the digital pins

oF R o gP

% from O to 13 are located on the upper right part of the board, while the
% digital pins from 14 to 19 are better known as "apalog inpul pins and

% are located in the lower right corner of the board.

% Example:

5 valw=a.digitalRead(4); % reads pin #4

(oo€r 02 oQoi
AR TR G R0

2258 ARGUMENT CHECKING %%%%%%9825%209%80%%%%

% check nargin
if nargin~=2,
error{'Function must have the "pin" argument'):

2

end

% first argument must be the ardulno variable
if ~isaf(a, "arduino'), error('The first argument must be an arduino®’
variable'); end

% check pin
errstr=arduine.checknum{pin, 'pin number',2:19);
Lf ~isempty{errstr), error{errstr); end

% check a.aser for validity
errstr=arduino.checkser{a.aser, 'valid®);
if ~isempty{errstr), error{errstr); end

3/16/11 7:35 PM C:\Users\Conor\Documents\Yr...\arduino.m 8 of 30

L

om0 G (TR A VAT
k GawnunE

REI I I 00 ¥

i

SR A9 8%% PERFORM DIGITAL INPOT
if strcompi(get(a.aser, Port'), "DEMO'),
% nandle demo mode

% average digital input delay
pause (0.0247);

% output 0 or 1 randomly
val=round (rand};

else

% check a.aser for openness
errstr=arduino.checkser(a.aser, 'open');
1f ~isempty(errstr), errori{errstr); end

% send mode and pin
fwrite{a.aser, [49 97+pinl, 'uchaxr');

% get value
val=Ffscanf (a.aser,'%3d");

and

s

end % digitalread

% digital write .
function digitalWrite{a,pin,val)

% a.digitalWrite{pin,val); performs digital ocutput on a given pin.

% The first argument before the function name, a, 1s the arduino obiect.

The second argument, pin, is the number of the digital pin (2 to 19)

where the digital outpul needs o be performed.

The third argument, val, is the value (either 0 cor 1) for the output

Note That the digital pins from 0 to 13 are located on the upper right part
of the board, while the digital pins from 14 to 1% are better known as
"analog input"” pins and are located in the lower right corner of the board.

[t

o d@

wEoaf e oF

Examples:
a.digitalWrite(13,1); % sets pin #13 high
a.digitalWrite{(13,0): % sets pin #13 low

e

DR R
ki BB EA

IS
T T N D T

I

LaoRdaednneeanseuoans
D 0 G KRN s I K3 RR D NG G TS

: ARGUMENT CHECKING %

% check nargin
if nargin~=3,

3/16/11 7:35 PM C:\Users\Conor\Documents\¥r...\arduino.m

9 of 30

variable'):

]

error{'Function must have the "pin" and "val" arguments’);
and

% first argument must be the arduine variable
if ~isala,'arduino'), error('The first argument must be an arduino®
end

% check pin
errstr=arduino.checknum{pin, 'pin numper',2:19);
if ~igsempty(errstr), ervorl{errstr); end

% check val
errstr=arduino.checknumival, 'value',0:1};
if ~isempty{errstr), error{errstr); end

% pin should be configured as output
if a.pins(pin)~=1,
warning { 'MATLAB:Arduino:digitaliWrite', ['If digital pin ' num2str(pin) '¢

is set as input, digital output takes place only after using a.pinMode (' num2str (pin) ¥’
‘,"output”); !]);

end

and

% check a.aser for wvalidity
errstr=arduinc.checkser(a.aser, 'valid'};
1f ~isempty(errstr), error(errstr); end

L EE3288% PEREORM DIGITAL OUTRUT %%%¢

if strempi (get{a.aser, 'Port'), 'DEMO"},
% handle demo mode

@

%t average digital output delay
pause (0.0087);

alse
% check a.aser for openness
errstr=arduinc.checkser{a.aser, 'open');

if ~isempty{errstr), error{errstr); end

% send mode, pin and value
furite{a.aser, [50 97+pin 48+vall, ‘uchar');

and

% digitalwrlite

% analog read
function val=analogRead(a,pin)

3/16/11 7:35 PM C:\Users\Conor\Documents\Yr...\arduinc.m 10 of 30

variable'):

i)

val=a.analogRead(pin}:; Performs analog input on a given arduino pin.

The first argument before the function name, a, i1s the arduino obiect.

The second argument, pin, is the number of the analog input pin (0 to 5}
whare the analog input needs to be performed. The returned wvalue, wval,
ranges from O to 1023, with 0 corresponding to an input veltage of 0 volts,
and 1023 to & value of 5 volts. Therefore the resolution is .0049% volits
(4.9 mV} per unit.

Note that the analog input pins 0 te 5 are also known as digital pins

from 14 to 19, and are located on the lower right corner of the board.
Specifically, analog inpuil pin 0 corresponds to digltal pin 14, and analog
input pin 5 corresponds to digital pin 19. Performing analog input does
not affect the digiltal state {high, low, digital input) of the pin.

FE TP

o

E Gl

o g0 o ge

4

Example:
val=a.analogRead (0); % reads analog input pin # 0

WooE

%% ARGUMENT CHECKING %

ae

check nargin
if nargin~=2,

error ('Function must have the "pin" argument'});
ancl

% first argument must be the arduino variable
if ~isa(a,‘'arduino’), error('The first argument must be an arduino’
end

% check pin
errstr=arduino.checknum{pin, 'analog input pin number',0:5);
if ~isempty{errstr), error{errstr); end

% check a.aser for wvalidity
errstr=arduino.checkser{a.aser, 'valid'};
if ~isempty(errstr), errcr{errstr); end

PV
T

o

PERFORM ANALOG INPUT

if strempl (get{a.aser,'Port'), "DEMO'),
% handle demc mode

% average analog input delay
pause{0.0267);

% output a random value between 0 and 1023
val=round (1023*rand);

elga

% check a.aser for openness

3/16/11 7:35 PM C:\Users\Conor\Docum@nts\Yr...\arduino.m

11 of

30

errstr=arduino.checkser (a.aser, 'open');
if ~isempty(errstr), error{errstr):; end

% send mode and pin
fwrite(a.aser, [51 97+pinl, ‘uchar');
% get value

val=fscanf (a.aser, '%d")

-~

and
end % analogread

% function analog write
function analogWrite(a,pin,val)

% a.analoghirite({pin,val}; Performs analog output on a given arduine pin.
% The first argument before the function name, a, is the arduino object.
% The first argument, pin, is the number of the DIGITAL pin where the analog

G e

B

se

upper right part of the board.

S

% Examples:
% oa.analogWrive(11,90): % sets pin #11 te 920/250
% a.analogWrite(3,10): & sets pin #3 to 10/255

%% BRGUMENT CHECKING %%

oL

check nargin
if nargin~=3,
error{'Function must have the "pin"” and "wval" arguments’);

end

% first argument nust be the arduino variable

if ~isa{a,'arduino'), error('The first argument nust be an arduinow’
r

variable'}); end

% check pin
errstr=arduino.checknum{pin, 'pwn pin number',[3 5 6 9 10 111);

if ~isempty{errstr), error{errstr}; end

% check val
errstr=arduino.checknum{wval, 'analog output level',0:255);
if ~isempty(errstr), error{errstr); end

% pin should be configured as output
if a.pins{pin)~=1,

warning{ 'MATLAB:Arduino:analogWrite', ['If digital pin ' numZstr (pin)

(PWM) outpult needs to be performed. Allowed pins for AO are 3,5,6,9,10,11
The second argument, val, is the value from 0 to Z55 for the level of
analog output. Note that the digital pins from 0 to 13 are located on the

T

ise

3/16/11 7:35 PM (:\Users\Conor\Documents\Yr...\arduino.m 12 of 30

set as input, pwn ocutput takes place only after using a.pinMode(' run2str(pin) ¥
S loutputt iy 1)
and

2 check a.aser for wvalidity
errstr=arduino.checkser(a.aser, 'valid');
if ~isempty(errstr), error{errstr); end

-
RCFEREN)

(ORI A R PR W)
R R R

s E LoD G O
BEAED (i TEHHED

PERFORM ANALOG CQUTPUT %

if strompl(get{a.aser, 'Port'), 'DEMO'},
% handle demo mnode

% average analog output delay
pause (0.0088);

alse

% check a.aser for openness
errstr=arduino.checkser{a.aser, 'open';);
if ~isempty(errstr), errcr(errstr); end

% send mode, pin and value
fwrite{a.aser, [52 %74pin wvall,'uchar'};

end

o

end analogwrite
% servo attach
function servoAttach(a,num)

% a.servolAitach(num!; attaches a servo Lo the corresponding pwm pin.

& The first argument before the function name, a, Ls the arduinc object.

% The second argument, num, is the number of the servo, which can be either 1
& (top serve, uses digital pin 10 for pwm), or 2 {kottom servo, uses digltal
% pin 9 for pwm). Returns Random results if motor shisld is not connected,

% Example:
% a.servoAttach(l): % attach servoe #1

ARGUMENT CHECKING 5%%%%5%

% check nargin
if nargin~=2,

error {'Function must have the "num" argument');
and

3/16/11 7:35 PM C:\Users\Conor\Documents\¥r...\arduino.m 13 of

30

variable');

end

% first argument must be the arduino variable
if ~isala, 'arduinc'), error('The first argument musi be an ardulinok
and

% check servo number
errstr=arduinc.checknum{numr, 'servo number', [1 2]1);
if ~isemptv{errstr), error{errstr); end

% check a.aser for validity
errstr=ardulno.checkser{a.aser, 'valiad');
if ~isempty{errstr), error(errstr); end

ATTACH SERVD %%%:

if strcempi(get(a.aser, 'Port'), "DEMC') || a.mots==0,
% handle demo mode

% average digital output delay
pause (0.0087) ;

else
% check a.aser for openness
errstr=arduino.checkser{a.aser, 'open'};

if ~isempty(errstr), error{errstr); end

% send mode, num and value {1 for attach)
fwrite(a.aser, {54 96+num 48+11, 'uchar');

end

% store the sexrvo statur
a.srvs{num)=1;

% update pin status to unasgsigned
a.pins{li-num)=~1;

% servoattach

% servo detach

function servoDetach({a,num)

o

a.servoletach (num); detaches a servo from its corresponding pwm pin.
% The first argument before the function name, a, is the arduino object.

oo

pin 9 for pwm). Returns random results if motor shield is not connected.

T oE gf

% Examples:

The second argument, num, is the number of the serve, which can be elther 1
(top serveo, uses digital pin 10 for pwm), or 2 (bottom servo, uses digital

3/16/11 7:35 PM C:\Users\Conor\Documents\¥Yr...\arduino.m 14 of 30

variable'):

and

% a.servobDetach(l); % detach servo #1

ARGUMENT CHECKING %

% check nargin
if nargine~=2Z,
error {'Function must have the "num" argument'):

and

& first argument must be the arduino variable
if ~isala,’'arduino’), error('The first argument must be an arduinok
end

% check servo nunber
errstr=arduino.checknum{num, 'servo number', [l 2]):
if ~isempty(errstr}, error({errstr); end

% check a.aser for validity
errstr=arduino.checkser(a.aser, 'valid');
if ~isempty(errstr}, error(errstr); end

% 5% B 55%%%% DETACH SERVO

if strempi(get(a.aser, 'Porlt'}, 'DEMC") |} a.mots==0,

o

% handle demo mode

@

% average digital ocutput delay
pause (0.0087);

alse
% check a.aser [or openness
errstr=arduino.checkser{a.aser, 'open'):

if ~isempty(errstr), error{errstr): end

% send mode, num and value (0 for detach)
fwrite({a.aser, [54 96+num 4840}, 'uchar');

end
a.srvs{num)=0;

% servodetach

% servo status
function val=servoStatus(a,num)

% a.servoStatus (num); Reads the status of a servo [(attached/detached)
% The {irst argument before the function name, a, is the arduino object,

3/16/11 7:35 PM C:\Users\Conor\Documents\Y¥r...\arduino.m

15 of 30

% The second argument, num, is the number of the servo, which can be either 1

% (top serve, uses digital pin 10 for pwm), or Z (bhottom serve,
uses digital pin 9 for pwm).

=]

Poan o

The returned wvalue is either 1 {(servo altiached) or 0 (servo detached),
Called without ocutput arguments, the function prints a string specifying

the status of the serveo. Called without input arguments, the function

% elther returns the status vector or prints the status of each sexvo.
L

% Returns Random results 1if motor shield is not connected.

% Examples:

% valwa.servoStatus{i); % return the status of servo #l
% a.servoStatus(l); % prints the status of servo {1

% a.servoStatus; % prints the status of both servoes

Lo

DEWE DT

THEES ARGUMENT CHECKING %

[ORRE AN
CRG RS

% check nargin
if nargin>2,

[T T RGN TN s A A A P
BHBOHEEE N

error {'Function cannot have more than one argument (servo number) beyondf'

the object name');
end

t argument must be the arduino variable
rariable’); end

% with no arguments calls itself recursively for both servos
if nargin==1,
1f nargout>G,
val{l)=a.servoStatus{l);
val{2)=a.servoStatus{2);
raeturn
else
a.servosStatus (1) ;
a.servoStatus(2);
return
end
end

% check servo number
errstr=arduince.checknum (num, 'servo number',[1 2]};
1f ~isemptyl{errstr), error({errstr); end

% check a.aser for wvalidity
errstr=arduinoc.checkser{a.aser, 'valid"};
if ~isempty(errstr), error{errstr):; end

SR
PRI I PO

ASK SERVO STATUS %

rs
if ~isalla, farduine'), error({’'The first argument must be an arduinc¥’

3/16/11 7:35 PM C:\Users\Conor\Documents\Yr...\arduinc.m 16 of 30

it strompl (get{a.aser, "Port'), 'DEMO'}Y || a.mots

i3

handie demo mode

% average digital input delay
pause(0.0247);

% output 0 or 1 randomly
val=round (rand};

else

and

2

& check a.aser for openness
errstr=arduino.checkser (a.aser, 'open');
if ~isempty{errstr), error{errstr); and

% send mode and num
fwrite{a.aser, {53 96+num], 'uchar');

% get value
val=fscanf(a.aser, '%d");

a.srvs(num)=val;

if nargout==0,

end

[+

str={ "DETACHED', "ATTACHED'};

zeeal}

disp(['Servo ' numZstr{num) ' is ' str{i+vall}l):

clear val
return

end % servostatus

% servo

read

function val=servoRead(a,num)

o o

o

1

=i

o

val=a.servoRead {num) ;

reads the angle of a given servo.
The first argument before the function name,
The second argument, num, 1s the numper of the servo, which can be either

a, is the ardulno opject.

(top servo, uses digital pin 10 for pwm), or 2Z (botliom servo, uses

digital pin 9 for pwm). The returned value is
typically from 0 Lo 180. Returns Random results if motor shield is not
% connected.

5 Example:
b val=a.servoRead (1) % reads angle from servo #1

s ARGUMENT CHECKING %%%%

the angle in degrees,

eAR RN WU s A RN R o WA R VLR B R A N W RE T e N A N e
VHVBDTUWBRVRDVOBEDDTERTDON D IS

3/16/11 7:35 PM C:\Users\Conor\Documents\Yr...\arduino.m 17 of 30
% check nargin
if nargin~=2,
error{'Ffunction must have fthe servo number argument');
end
% first argument must be the arduino variable
if ~isala, 'arduino'}, error('The first argument must be an arduinow’
variable')r end
% check servoe number
errstr=arduino.checknum{num, "'servo number', [1 21};
if ~isempty{errstr), error({errstr); end
% check status
if a.srvs{num)~=1,
error{['Servo ' num2str{num) ' is not attached, please use a.servoAttachy

(" num2str{num) ') to attach it'}l):

end

end

% check a.aser for validity
errstr=arduino.checkser (a.aser, 'valid');
if ~isempty{errstr), error(errstr); end

[N AN WA Y
S

ol D08 g
GEBEEDE X%

READ SERVO ANGLE %25%%%%%%3%%5%

1f strempi{get{a.aser, 'Port'), "DEMO") || a.mots==0,
% handle demo mode

% average analog input delay
pause (0.0267);

% output a random value between 0 and 180
val=round{180*rand)

else
% check a.aser for openness
errstr=arduinc.checkser{a.aser, 'open');

1f ~isempty{errstr), error{errstr); end

% gend mode and num
fwrite({a.aser, [55 %64+num], "uchar');

% get value
val=fscanf (a.aser, '%d');

end

% servoread

3/16/11 7:35 PM C:\Users\Conor\Documents\Y¥r...\arduino.m

18 of

30

variable');

(5

% servo write
function servoWrite{a,num,val}

&

G

e

o

o gE

o8

a.servoWrite (num,val); writes an angle on a given servo.

The First argument before the Ffunction name, a, is the arduino object.
be

The second argument, num, 1s the number of the servo, which can
either 1 (top serve, uses digltal pin 10 for pwm), or 2 (bottom
uses digital pin 9 for pwm). The third argument isg the angle in
typicaily from O to 1B80. Returns Random resulite 1if motor shield

connected.

Example:
a.servoWrite(l,45); % rotates servo #1 of 45 degrees

ARGUMENT CHECKING %

check nargin
if nargin~=3,
error ('Function must have the servo number and angle arguments’)

end

=X
o

first argument must be the arduino variable

Zervo,
degrees,
i

S

if ~isafa, ‘arduine'), error('The first argument must be an arduino«

o
g

end

check servo number

errstr=arduino.checknum{nun, 'servo nﬁmbex',[l 2131
if ~isemptyi{errstr), error{errstr); end

%

check angle value

errstr=arduinc.checknum({val, ‘angle’, 0:180);
if ~isempty(errstr), errcr(errstr); end

@

o

check status

if a.srvs(num)~=1,
error(['Servo ' pum2str{num} ' is not attached, please use a.servohttach¥

numzZstr{num) ') to attach i1t']1}:
end

o
Kl

check a.aser for validity

errstr=arduinc.checkser({a.aser, 'valld'};
if ~isemptv{errstr), error{errstr); end

WRITE ANGLE TO SRERVO

if strompi{get(a.aser, "Port'), 'DEMO') 1| a.mots==0,

% handle demo mode

nolb

3/16/11 7:35 PM C:\Users\Conor\Documents\¥r...\arduino.m

o3

% average analog output delay
pause (0.0088);

% check a.aser for openness
erratr=arduino.checkser (a.aser, 'open');
if ~isempty(errstr), error(errstr); end

% send mode, num and value
fwrite(a.asex, [56 96+num vall, 'uchar'});

end
end % servowrite

% motor speed
function val=motorSpeed{a,num,val)

% val=a.motorSpeed{num,val); sets the speed of a DC motor.

% The First argument before the function name, a, i3 the arduine obhject.
% The second argument, num, is the number of the moton, which can go

5 from 1 to 4 (the motor ports are numbered on the motor shield).

% The third argument is the speed from 0 (stopped] to 255 (maximum), note
% that depending on the motor speeds of at least 60 might be necegsary

% to actually run it. Called with one argument, as a.motorSpeed (num),

t it returns the speed al which the given moter is seb to run. LI there

% is no output argument it prints the speed of the motor.

% Called without arguments, itprints the speed of sach motor.

% Note that you must use the command a.motorRun to actually run
% vhe mobor ab the given speed, either forward or backwards.

% Returns Random results if motor shield is not connected.

% Examples:

% a.motoripeed{d,200; % sets speed of motor 4 as 200/255

% val=a.motorSpeed(l); % returns the speed of motor 1

% a.moLorSpeed(3); % prints the speed of motor 3

% a.motorSpeed; % prints the speed of all motors

o

ARGUMENT CHECKING %3%%¢

% check nargin
if nargin>3,
error{'This functicn cannot have more than 3 arguments, arduino object,f

motor number and speed')y

end

% first argument must be the arduino variable
if ~isa(a, 'arduine’), error('The first argument must be an arduinok’

variable'); end

19 of 30

3/16/11 7:35 PM C:\Users\Conor\Documents\Yr...\ardulno.m 20 of 30

% if motor number is there check it

if nargin>l,
errstr=arduino.checknum(num, 'moter number',l:i4);
if ~isempty(erxstr), error(errstr); end

end

% 1if speed argument is there check it
if nargin>Z,
errstr=arduino.checknum{val, "speed",0:255);
if ~isempty(errstr), error{errsir); end
end

% perform the requested action
if nargin==3,

% check a.aser for validity
errstr=arduino.checkser{a.aser, "valid');
if ~isemptylerrstr), error{errstr); end

SET MOTOR S3PEED

if strcmpi(get(a.aser,‘Port'),‘DEMQ‘) 1]l a.motgw=0,
%2 handle demo mode

3 average analceg output delay
pause (0.0088);

alse

% check a.aser for openness
errstr=arduinoc,checkser(a.aser, 'cpen'’);
if ~isempty(errstr), error{errstxr); end

% send mode, num and value
fwrite(a.aser, (65 48+num vall, 'uchar’);

end

% store speed value in case it needs to be retrieved
a.mspd (num) =val;

% clear val if is not needed as output
if nargout==0,

clear val;
and

elself nargine==2,

1f nargouts==0,

[

% print speed value

3/16/11 7

+35 PM C:\Users\Conor\Documents\Y¥r...\arduinoc.m 21 of 30

disp(['The speed of motor number ' num2str{num) ' is set to: "4

nusttx(a.mépd(num)) ' oover 255'1);

else
% return speed value
val=a.mspd{num) ;

end

)
bt
o
D

if nargout==0,
% print speed value for each motor
for num=l:4,

disp({['The speed of meotor number ' num2str(num} ' is set to: '

numZstr{a.mspd{num}) " cover 2553']);

end

end
else

% return speed values
val=a.mspd;

end
end

o)

% motorspead

% motor run
function motorRun{a,num, str)

direction');

% a.motorRun{num,str); runs a given DC motor.
% The First argument before the functicon name, a, is the arduine obiject.
% The second argument, num, 1s the number of the motor, which can go

% from 1 to 4 (the motor ports are numpbered on the motor shield;.

2 The third argument, str, 1s a string that can be 'forward® {runs the
% motor forward) 'hackward' {runs the motor backward) or 'release’,

% (stops the motor). Returns Random results 1f motor shield is not

§ connected.

& Examples:

% a.motorRun{l, ‘forward"®); % runs motor 1 forward
% a.motorRun{3, "hackward'}; % runs motor 3 backward
2 a.mobtorRun{l, 'release’); % release motor 1

L3 E%% %% ARGUMENT CHECKING

%

check nargin
if nargin~=3,
arror{'Function must have 3 arguments, object, motor number and¥

end

4 first argument must be the arduino variable

shield) .

% check motor number
arrstr=arduino.checknum{num, 'motor number',l:4);
if ~isempty(errstr), error{errstr}; end

% check direction
errstr=arduino.checkstr{str, 'direction', {'forward', 'backward', 'release'}};
if ~isempty(errstr), error{errstr}; end

% check a.aser for validity

errstr=arduino.checkser (a.aser, 'valid'};

if ~isemptylerrstr), error(errstr); end

%%% RUN THE MOTOR %%%

if strompiiget(a.aser, 'Port'), 'DEMO') 1] a.mots ==0,
% handle demo mode

% average analog output delay
pause (G.0088);

else

% check a.aser for openness
errstr=arduino.checkser (a.aser, 'cpen');
if ~isempty(errstr), error{errstr); end

% send mode, num and value
fwritela.aser, [66 484+num abs{str(l})], 'uchar');

end

o

% motorrun

stepper speed
function val=stepperSpeed({a,num,val)

% valw=a.stepperSpeed(num, val); sets the speed of a given stepper motor
% The First argument befere the function name, a, is the arduinc object.
% The second argument, num, is the number of the stepper motor,

% which can go from 1 to 4 (the motor porls are numbered on the motor ¥

% The Lhird argument is the RPM speed from 1 (minimum} to 255 (maximum).
% Called with one argument, as a.stepperSpeed(num), it returns the

% gpeed at which the given motor is set to run. If there is no output

% argument it prints the speed of the stepper motor.

% Called without arguments, ltprints the speed of esach stepper motor.

% Mote that vou must use the command a.stepperStep Lo actualilly run

3/16/11 7:35 PM C:\Users\Conor\Documents\Yr...\arduino.m 22 of 30

iF ~tmala. 'ardninoty. errvror{!The first aronment mnust he an ardiinoe

3/16/11 7:35 PM C:\Users\Conor\Documents\Yr...\arduino.m 23 of

30

el

the motor at the given speed, either forward or backwards (or release
it). Returns Random results if motor shield is not connected.

Examples:

a.stepperSpeed (2, 50) % sets speed of stepper 2 as 50 rpm
val=a.stepperSpeed(l); % returns the speed of stepper 1
a.stepperSpeed (2 % prints the speed of stepper Z
a.stepperspead; 4 prints the speed ol both steppers

sS85 %% ARGUMENT CHECKING %%%

check nargin

if nargin>3,
error('This Function cannot have more than 3 arguments, object, steppery’

number and speed');
and

variable');

3
©

first argument must be the arduino variable

if ~isa(a,'arduino'}, error('The first argument must be an arduino

end

%
G

if stepper number is there check it

if nargin>l,

errstr=arduino.checknum(num, 'stepper number',1:2);
if ~isempty(errstr), error(errstr}; end

end

2

G

if speed argument is there check it

if nargin>2,

errstr=arduino.checknum(val, 'speed', 0:255);
if ~isemptyl(errstr), error{errstr); end

,

@na

3
o

perform the reguested action

if nargin==3,

% check a.aser for validity
errstr=arduinc.checkser{a.aser, 'valid'};

i#f ~isempty{errstr}, error(errstr); end

PERFORM ANALOG QUTPUTY
if strompi(get{a.aser,’'Port’';, 'DEMO")} Il a.mots==0,

3 handle demo mode

% average analog output delay
pause (0. 0088) ;

else

3/16/11 7:35 PM C:\Users\Conor\Documents\¥r...\arduino.m 24 of 30

% check a.aser for openness

errstr=arduino.checkser{a.aser, 'open');
if ~isemptyl{errstr), error{errstr); end

% send mode, num and value
fwrite(a.aser, [67 48+num val]l, 'uchar');

end
% store speed value in case it needs to be retrieved
a.sspd(num)=val;
%2 clear val Lf is not needed as output
if nargout==0,
clear val;
end

elself nargin=s=2,

if nargout==0,
% print speed value
disp(['The spead of stepper number ' numZstr{num) ° is set to: "4
numZstr{a.sspd{num)) ' over 255%]):
else
% return speed value
val=a.sspd{num);
end

else

if nargout==(,
% print speed value for each stepper
for num=1:2,
disp(['The speed of stepper number ' num2str(num) ' is set tg: "¢
num2str{a.sspd(num)) ' over 255'1);
end
else
% return speed values
val=a.sspd:
end

end
end % stepperspeed

% stepper step
function stepperStepl(a,num,dir,sty, steps)
% a.stepperStep(num,dir,sty,steps); rotates a given stepper motor
% The first argument before the function name, a, is the arduino object.

3/16/11 7:35 PM C:\Users\Conor\Documents\Yr,..\arduino.m 25 of 30

2 The second argument, num, is the number of the stepper motor, which is

5 either 1 or 2. The third argument, the direction, is a string that can

% be 'forward' (runs the motor forward) '‘backward' (runs the motoxn backward)
or 'ralease’, {stops and releases the motor). Unless the direction is
‘release', then two meore argument are needed: the fourth one is the style,
which is a string specifying the style of the molion, and can be 'single’
(only one coil activated at a time), ‘double! {2 coils activated, gives
an higher torque and power consumpiion] ‘inteleaave’, {alternates hetween
single and double to get twice the resolubtion and half the speed), and
‘microstep’ {the colls are driven in PWM for a smoother motion) .

The final argument is the number of steps that the meotor has

to complete.

Returns Random results if motor shield is not connected.

o 8@ 3E g@ od

S0 Sg

a®

i

o g

o0

Examples:

% rotates stepoer 1 forward of 100 steps in interleave node
.stepperStepn (1, 'forward', "double’, 100}

rotates stepper 2 forward of 50 steps in double mode
.stepperStep (i, 'forward’, 'double’, 50);

% rotates stepper 2 backuward of 50 steps in single mode
.stepperstep (2, 'backward’, "single®, 50}

CEE

GO
Y

e
0 or

S gR of
ol

G200
ThEE

ARGUMENT CHECKING

% check nargin
if nargin>5 || nargin <3,

error ('Function must have at least 3 and no more than 5 arguments');

end

% first argument must be the arduino variable
if ~isala,'srduine’), error{'The first argument must be an arduinoy
variable'}); end

% check stepper number
errstr=arduinc.checknunm (nun, 'stepper number’,1:2):
if ~isempty{errstr), error(errstr); end

% check direction
errstr=arduino.checkstr (dir, 'direction', { "forward', ‘backward’, 'release’})?
if ~isempty(errstr), error(errstr); end

% if it is not reieased must have all arguments
if ~strempi{dir, 'release’) && nargin~=5,

error{'Either the motion style or the number of steps are missing') !
end

% can't move forward or backward if speed is set to zero
if ~strompi{dir, ‘release') && a.stepperSpeed (num)<l,
error('The stepper speed has to be greater than zero for the stepper o
move');

3/16/11 7:35 PM C:\Users\Conor\Documents\Yr...\arduino.m

N

26 of 30

end

% check motion style

if nargin>3,
% check direction
errstr=arduino.checkstr (sty, 'motion style', ¥

{'single’, 'double', 'interleave', 'microstep’});
d

and

end

if ~isemptyl{errstr), error(errstr): ancl
else

gty="'single’;
end

% check number of steps

if nargins=h,
errstr=arduino.checknum{steps, 'nunber of steps',0:1255});
if ~isempty(errstr}, error{errstr); end

alse
steps=0;

end

% check a.aser for validity

errstr=arduino.checkser{a.asexr, 'valid’);
if ~isempty{errstr), error(errstr); end

Wotonoh o LSl
KRN I I I T

ROTATE THE STEPPER %42

if strompi(get(a.aser, 'Fort'), 'DEMO") || a.mots==0,

3

% handle demo mode

% average analog output delay
pause (0.0038);

else
%2 check a.aser for openness
errstr=arduino.checkser{a.aser, 'open');

if ~igempty(errstr), error{erxrstr); end

% send mode, num and value

fwrite{a.aser, [68 48+num abs(dir(l)) absi{sty(l)) steps],’uchar’):

and

% stepperstep

% methods

methods (Statiec) % static methods

function errstr=checknum{num,description,allowed)

3/16/11 7:35 PM C:\Users\Conor\Documents\Yr,..\arduino.m 27 of 30

¢ srrstr=arduino.checknum(num,description,allowed); Checks numeric argument.
& This Functicn checks the first argument, num, described in the string

% given as a second argument, to make sure that it is real, scalaf,

v and that it is equal to one of the entries of the vector of allowed

% values given as a third argument. If the check is successful then the

% returned argument 1s empty, otherwise it is a string spacifying

%2 the type of error.

o

preliminary: check nargin
if nargin~=3,

error{ checknun needs 3 arguments, please read the help'):
end

% preliminary: check description
if isempty(description) || ~ischar{description)

error ('checknur second argument must be a string');
end

% preliminary: check allowed
if isempty(allowed) || ~isnumeric{allowed)
error ('checknum third argument must be a numeric vector'):

and

%2 initialize errvor string
errstr=[};

% check num for type

if ~isnumeric(num),
errstr=["'The ' description ' must be numeric'];
return

end

% check num for size

i F numel (num)~=1,
errstr=['The ' description ' must be a scalar'i;
return

and

% check num for realness

if ~isreal {num),
errstr=['The ' description ' must be a real value'}l;
return

end

% check num against allowed values
if ~any{alloweds==nunm),

% form right error string

if numel (allowed)==1,
errstr=['Unallowed value for ' description ', the value must be ¥

3/16/11 7:35 PM c:\Users\Conor\Documents\Y¥r...\arduino.m 28 of 30

raotly ' num2str{allowed(1l))]:
elseif numel{allowed)==2Z,
errstr=['Unallowed value for ' description ', the value must be
eithbr ' num2striallowed(l)) ' or ' numZstr(allowed{2)}];
elseif max{(diff (allowed))==1,
errstr=1'Unallowed value for ' description ', the value must be any
integer going from ' num2str(allowed (1)) ' to ' num2str{allowed(end})];

else
errstr={'Unallowed value for ' description ', the value nust be one ¥

of the following: ' mat2str(allowed)]:;
end

end
end % checknum
function errstr=checkstr(str,description,allowed)

o errstrearduino.checkstr (str,description,aliowed); Checks string argument.
5 THig function checks the first argument, str, described in the string

% given as a second argument, to make sure that it is a string, and that

% its first character is equal to one of the entries in the cell of

% allowed characters given as a third argument. If the check is successful

% phen the returned argument is empty, otherwise i1t is a string specifying

3 the Lype of erxor.

% preliminary: check nargin
if nargin~=3,

error{'checkstir needs 3 arguments, please read the help'):
end

g preliminary: check description
if isempty(description) 1] ~ischar (description)

error ('checknum second argument must be a stzing')y
end

% preliminary: check allowed
if ~iscell(allowed) || numel (allowed)<Z,

error{'checknum third argument must be a cell with at least Z entries');
end

% initialize error string
errstr={];

% check string for type

if ~ischar{str),
errstr=['The ' descripticn ' argument must be a string'];
return

end

% check string for size

3/16/11 7:35 PM C:\Users\Conor\Documents\Y¥r...\arduino.m 29 of 30
if numel (str)<l,
errstr=['The ' description ' argument cannct be empty']?
return
end
% ¢heck str against allowed values
if ~any{strcmpi{str,allowed)},
3 make sure this is a hozizontal vector
allowed=allowed(:)';
% add a comma at the end of each value
for i=l:length(allowed)-1,
allowed{i}=[*""'" allowed{i} *'', '1;
end
% form error string
errstr={'Unallowed value for ' description ', the valus must be either: '¢

allowed{l:end-1} 'or "' allowed{end} ''"'}1;

‘pefore

return
and

end % checkstr

function errstr=checkser (ser,chk)

SIS

errstr=arduino.checkser (ser,chk); Checks serial connection argument.

» This functien checks the first argument, seér, Lo make sure that either:
%2 1) it is a valid serial connection {if the second argument is 'wvalid!')
3y it is open {if the second argument is ‘open’)

1f the check is successful then the returned argument is empty,
otherwise it is a string specifying the type of error.

@ ge o

o

preliminary: check nargin
if nargin~=2,

error ('checkser needs two arguments, please read the help'):
end

% initialize ervor string
errstr={]1;

% check serial connection
switch lower (chk},

cage 'valid',

% make sure is a serial port
if ~isal(ser, 'serial’),
disp('Arduinc is not connected, please re-create the obiect ¥
using this function.'});
errstr='Arduino noct connected';

3/16/11 7:35 BM C:\Users\Conor\Documents\Yr...\arduino.m 30 of 30

return
and
% make sure ig valid
if ~isvalid(ser),

disp('Serial connection invalid, please recreate the objact tow
reconnect to a serial port.'):

r
errstr='Serial connection invalid":
return

and

case ‘opsn',

ko)

% check openness
if ~strompi(get{ser, 'Status'), 'open’),

disp{'Serial connection not openad, please recreate the object to
reconnect to a serial port.'};

errstr="Serial conneciion not opened';
refturn
end

otherwisge

=3

% complain

error ('second argument must be either "'valid'' or ''open''');

end
end % chackser
end % static melhods

end % class defl

3/16/11 7:34 PM C:\Users\Conor\Documents\Yr4\...\cabpath.m 1 of

function [x,yl=cabpath()

.
2

3CENERATE THE CAB PATH

%General path starts with a straightway that heads due north {+vy dir), then
sturns left or right aleng a circular arc of specified angle {fturnang), and
4finally continues along another straightaway (equal in length to the
first straightaway)

%

20ther Notes:

% 1. Points are always egually spaced along the arc

% 2. Spacing along stralghtaways can increase in proportion bto distance
% from ends of arc

% 3. The code probably will not work well for turn angles close to

% zero [corresponding to a straight path)

% 4. The input variable "turnang” sheuld always be given a positive

% value.

% 5. I nave nobk yet leoaded the path coordinates and headings into a

% matrix. These values are currently stored in the vectors: x,y,theta
%

Hinputs

%

dir=1; flag to indicate right{dir=1) or left (dir=Z) turn
rho=30.; $radius of curvature of turn

turnang=pi/2.; %turn angle {(e.g. =pi/2 for 90 dey turn; =pl for U-turn)
narc=200; zno of egually spaced intervals along the arc

nstr=10; sno of intervals along each stralghtaway

rate=1.1; srate at which spacing increases on stralghtaways at either end of arc)

scalcoulate length of each interval along arc
C:?s

arcang=turnang;

arclength=arcang*rho;

ds=arclength/narc;

1,

G

tgenerate positional cocrdinates along first straight away
% (Note: origin is at the end of this first straightaway)

theta (nstr+l)=0.;

x{nstr+l}=0.;

y{nstr+l}=0.;
dy=ds;

For i=nstr:i-1:1
dy=1.1*dy;
theta (i)=0.;
x{(i)y=0.;
y{ly=y{i+l}-dy;

end

ki)

3/16/11 7:34 PM C:\Users\Conor\Documents\¥Yrd\...\cabpath.m 2 of 3

$generate positional coordinates along arc

i=nstr+l;
delang=turnang/narc;
for j=1l:inarc
1=i+1;
theta{i)=j*delang;
% {i)}=rho-rho*cos (theta(i)}:
y(i)=rho*sin(theta{i}):
end
%
tgenerale positional coordinates along second straight away
angsav=theta(l);
dx=ds*sin (angsav);
dy=ds*cos {angsav);
for j=l:nstr
dx=1.1*dx;
dy=1.1*dy;
i=i+1;
theta (i)=angsav;
Z(1)=x(i-1)+dx;
y(i}=y(i-1)+dy?
end

<,

smodify signs for left turn
imaxs=i;
if dips==
for i=l:imax
X(Jy=x({J):
theta(]j)=-theta(j):
end
end

fplot path
xmin=min {x);
xmax=max {x) !
yin=min{y);
ymax=max (y) 5

3/16/11 7:34 PM C:\Users\Conor\Documents\Yr4\...\cabpath.m 3 of 3

3/16/11 7:34 PM C:\Users\Conor\Documents\Yr...\calcIndex.m 1 of

cunction [bval] = calcIndex (dbPos,Matrix,bPosX, bPosY, index}
sindex=Msearch{bPosX, bPosY,Martrix); %The bogle has a position, but it needs
sto referene a position point of the robot. The way my algoritm works is
%31 needs co sart at a point on the robot's path, then look a calculalted
snumber of indicies forward. That is the aiming point. But the bogle lis
snotnecessarily on the robot's path. This function searhes the Matrix for
g¢he closest point on the robot's path to the begie's position. It then
tgives the index number for that poinl. From now oi the bogie is considerad

sto be where the robob was at that index.

Effw=cell (10/ (dbhPos+.00001))¢ % How many indicies to look shead "fudge factor”
££=0;
bral=index-Fff;%bval 1Ls the index to look for.
if hval < 1
bval = 1;
else

end

3/16/11 7:34 PM ¢ \Users\Conor\Document...\GetSensorVals.m 1 of 1

“unction [mouse,hdg,ra,ba,drPosi= GetSensorVals (mousel, a)
cimerObi = timer (' TimerFen', @timerCallback, "Period',1};
start{timerObi);
mousewtimerCallback(); %the preceding code retrieves the mcuse position on the screen.
dmouse= (mouse-mousel) ;
if dmouse < -800 %the screen is 900 pixels tall, if the mouse reaches the top of the
screen 1t jumps to the bottom %if the mouse jumps then thisy
code calculates Lhe distance traveled.

drPos={900-mouse() +mouse;

if dmouse > 800 % this is if it jumps in reverse.
drPos=mousel- (200-mouse) ;
@lse snormal operation, if no Jump occurs.
drPos=mouse-mousel;
drPos=drPos/16400; $pixels to meters conversion
ra=a.analogRead(d); % arduino class functions Yo retrieve potentiometers.
ra=(ra~-3.4025)*58; tvoltage 1o degrees conversion,

ba=a.analogRead(l);

ba=(ba-1.5)*100;

sa=a.analogRead(1l);

sa={sa~-2.5)*7.2;

hdg=a.digitalRead(3) xreads compass heading in degrees

3/16/11 7:34 PM C:\Users\Concr\Documents\¥rd...\matSetup.m 1 of 1

function [Mat,ind,repl = matSetup(Mat,ind, rep,drPos)
if ind == rep %maltrix reaches full length
Mat{0:99,:)= Mat{{rep~100):rep,:); %Moves iast 100 indicies to the top.
Mat {10C:rep,:) = 0; %Deletes the rest.
ind=100; %starts at first emply index.

alse

if drPos == % if robot is not moving,do not 11l up matrix

ind=ind+l; %advances an index. 1f robot ls moving

end
and

3/16/11 7:34 PM C:\Users\Conor\Documents\Yr4\.. \Msearch.m 1 of 1

function [il] = Msearch (bPosX,bPosY,Matrix)
£ = Matrix(:,1):

v = Matrix(:,2);

dt = DelaunayTri{x,y):

grypts = [bPosX bPosY];

pid = nearestNeighbor (dt, grypts):

3/16/11 7:34 PM C:\Users\Conor\Documents\Yr4.. \robotSim.m 1 of 1

~fpnetion [rPos¥, rPosY, vHDG, drPos]= robotSim{index, X, ¥, rPosX0, rPosY0)

cPos¥=X (index); % sebts cab positions from the points that came out of "cabpath"
rPosY=Y (index} ;

drPos¥=rPosX~rPosX0;

drPosY=rPosY-rPos¥0;

riDG=atand (drPosX/drPosY)

drPos=sqrt (drPosX"2+drPosY"2};

3/16/11 7:33 PM C:\Users\Conor\Documents...\setBsteering.m 1 of

“unction setBsteering(bVals, sa)

4 This code is very simple, if the steering is at a different angle than
5 reqguirved, it goss full one way until the steering 13 at the right
% position. Just full one way-full other way-stop operation.

1f bVals
{

if bVals
{

else

> sa

a.analogWrite(Z2,0); %arduino functlons, sels motor power.

}
< sa

a.analogWrite(2,255);
}

a.analogWrite (2,127}
}

3/16/11 7:33 PM C:\Users\Conor\Documents\...\st@eringsim.m 1 of 1

“unction sa=steeringSim(bVals,sa,tstep)

This code ls very simple, if the steering

FER

is at a different angle than

required, 1t goes full one way unitil the steering lsg at the right

% position. Just full one way-full other way-stop operation.

if hVvals > sa

dir=(18/2)*tstep; % rate of steering angle change. {degrees/second]

elgself bVals < sa
dir=-{18/2) *tstep;
elae

dir=0;
end

saMAX=10; % sa is the steering angle of begie. The il statement below just keeps it fromw

turning beyond the physical limits.
if sa <= -saMAX

sa = -saMAX;
elseif sa >= saMBAX

sa = saMBX;
else

sa=ga+dir; % diime is the time since the
the steering angle. This takes the original
and

tast iteration. dir is the rate of change of#
steering angle and gets a new one.

3/16/11 7:33 PM C:\Users\Conor\Documents\...\stee}:ingsim.m 1 of 1

function sa=steeringSimi{bVals, sa,tstep)

3 This code is very simple, if the steering is at a different angle than
% required, it goes full one way until the steering is at the right

% position. Just full one way-full other way-stop operation.

if bVals > sa

Qir=(18/2)*tstep; % rats of steering angle change. {degrees/second]
algself bvals < sa
dir=-(18/2)*tstep;

else

end
saMAX=10; % sa is the steering angle of bogie. The if statement pelow just keeps it frome
turning beyond the physical limits.
if sa <= -saMAX
sa = —sgaMAX;
elself sa >= saMAX
Sa = saMbX;
else
sa=sa+dir;% dbime 1s the time since the last iteration. dir is the rate of change of¢
the steering angle. This takes the original steering angle and gets & new one.
nd ;

3/16/11 7:33 PM C:\Users\Conor\Documents\...\bogieUPdat@.m 1 of

functicon [bPosX,bPosY,dbPos,bHDG]= bogieUpdate(rPosX,rPosY,hdg,ba,b?osXO,b?osYG)

sPosX=rPosX+ (5*sin(hdg)); %Calculating bogie position,

bPosY=rPesY- (5*cos (hdyg))

bHDG=hdg+ba; sCaleulating trailer angle. Same formula used for cab heading.
dbPosX=bPosX~bPosX0;

dbPosY=bPosY~bPosY0;

dbPos=sqrt ((dbPosX"2) +{dbPosY"2)]); sCalculating the absolute velocity of the bogle.

3/16/11 7:33 PM C:\Users\Conor\Documents\...\robotUpdate.m 1 of

function [rPos¥, rPesY, rHDG]= robotUpdat@{drPos,hdg,rPosXO,r?osYO,rHDGO,ra);

HDG=hdg+ra; %the compasss is located on the trailer, not the cab, so the cab's
sheading is the compass heading plus the angle of the potentiometer at the pivet point.
rHDGAvg= (rHDG-rHDGO) /2; sAverage heading of the robot

rocs¥=rPoski+ {drPos*sind {rHDGAVYg)) ; %calcoulating x-y movemrents.

rPosY=rPosY(0+ {drPos*cosd (rHDGAVY)) 7

3/16/11 7:33 PM ¢:\Users\Conor\Document...\GetSensorVals.m

1 of 1

function [mouse,hdqg,ra,ba,drPosl= GetSensorVals (mousel,a)

timerCh] = timer (' TimerFon',@timerCallback, "Period’, 1)

start (timerObj}

mouse=timerCallback () %the preceding code retrieves the mouse position on the screen.

dmouse= (mouse-mousel) ;

if dmouse < -800

screen it jumps to the bottom

code calculates the distance traveled,
drPos={900-mousel) +tmouse;

if dmouse > 800 & this is if it Jumps in reverse.

drPos=mougel- (900-mouse} ;

tthe screen is 900 pixels tall, if the mouse reaches the tep of the ¥

%if the mouse jumps then thisw

else snormal operation, if ne jump ccours.

drPos=mouse-moused;

drPos=drPos/16400; tpixels to meters conversion

ra=a.analogRead(0); % arduino class functions to retrieve potentiometers.

ra=(ra-3.,4025)*58;
ba=a.analogRead(1l):
ba=(ba~1.5}*100;
sa=a.analogRead{l):
sa={sa~-2.5)%7.2;
hdg=a.digitalRead(3)

svoltage to degress conversion,

treads compass heading in degrees

3/16/11 7:33 PM C:\Users\Conor\Document...\timerCallback.m 1l of 1

unction y= timerCallback()
5 this function is executed every time the timer object

ke

ini
[
Lo
]
1]
s
ur

% read the coordinates

coords = get (0, 'PointerLocation’);
% print the coordinates to screen
fprintf('x: %41 y: %4i\n',coords)
y=coords (2);

end

3/16/11 7:33 PM C:\Users\Conor\Documents\Yrd...\bogieSim.m 1 of 2

functicn [bPosX,bPosY,bHDG,dbPos, sa, 02X,02Yi= bogieSim{rPosX,r?osY,rHDG,drPos,sa,rPosXG,!
rPosY0, rHDGE, bPosX0, bPosY0, bHDGO)

s +he first section of the simulation calculates the bogie's center of
% curvalbure, point 0Z.

rPos=|rPos¥, rPosY];% rPos is the cab's current pesition
rVec= [rPosX-rPosX0, rPosY~rPosY0l; % rvec i3 the vector from the cab's initial position tow
the new position.
rVecU=rVec/norm{rVec); $unit vector
rVecM=norm{rvVec); %magnitude.
R3=5; %R3 is the trailer length in meters.
hdgwatand{(r?osXO~bPosXO)/(rPosYOwbPGSYO)); % this is the traller heading.
if ga > 0 % a steering anlge of zero is straight ahead. negative is one way and pogitiVGZ’
is the other.

R2=.23/sind(abs(sa)); % this calculateds the perpendicuar distance from Lhe hogie to¥
it's center of curvature. i.e., the length of the "phantom" link.

02%=bPosXi-RZ*sind {(90~-bHDGO) ;

02¥=bPosY0+R2*cosd {90-bEDGO) ¢

02=[02%X,02Y}; % ©2 is the pin that the bogie turns around, that is, the centery of e
it's radius of curvature.
alseif sa < 0 %positive and negative steering angles putb 072 on different sides of the¥
bogey.

RZ=.23/sind{abs{sal)}:

02%=bPosX0+R2*sind {90-bHDGO) ;

02Y=bPosY0~RZ*cosd{90~-bHEDG0) ;

02=[{02%,02Y];
else

R2=1000; % this is a bit of a hand wave. At a steering anlge of zerc the radiug of«
curvature ig infinite. T Jjust say it is really big.

02¥=bPosX0-R2*sind (90-bHDGO} ;

02Y=hPosY0+R2*cosd (20-0HDGO)

C2=[02X,02Y];
end

% now that point 02 is found, the cab is moved to it's new location and
the new bogie position is calculated.

it does this by creating a circle of length R3 and center at the cab's new position, ¢
and a circle of length RZ with 02 the center polnt.
% it then solves for the two points where those circles intersect. those

o

% are the Lwo possible bogie positions.

i

dvecs[rPos¥—-02X, rPosY-02Y]; % Vector from 02 to the new robot position.

D=norm(dvVec):

a=(R2°2~R3%2+D"*2)/(2*D); %this is the distance along dVec between 02 and the point wherew
the perpendicular bisector, h intersects dvec.

1=sqrt (abs (R2"2-a”2)); % h is the normal distance from dVec to the bogle's position, i.e.

3/16/11 7:33 PM C:\Users\Conor\Documents\¥rd...\bogieSim.m 2 of

, where R3 and RZ intersect.

%

greater than RZ for unknown reasons.

it is this value that is gelLting fouled up as "a" occasionally becomes

P2=02+(a.* (rPos-02))./D; % P2 is the peint where dVec and h intersect.
bPosX1=P2 (1) +h* (rPos¥Y-02Y)/D; % there are two places there these circles cross, one on¥
either side of Lhe trailer. this calculates the position of both points.

HPosY1=P2 {2) ~h* (rPosX~02X) /D;
bPosX2=P2 (1) ~h* (rPosY-02Y) /D;
bHPosYZ=P2 (2} +h* (rPogX-02X) /D;

if sa > 0 % there are Lwo points the could be the bogie position, but conly one real &
position. This if statement chooses which one is correct bhased on the steer angle.

bPosX=bPosXZ;

bPosY=bPosY2;
elself sa < 0

bPosX=bPosXl;

bPosY=bPosYl;
alse

bPosX=hPosX2;

bPosY=bPosYZ;
end

dbPos¥=bPos¥X~bPosX0; 3caculates the scalar changes

dbPosY=bPosY-bPosY(;

dbPos={ (dbPos¥) "2+ (dbPosY)} "2} " .5;
bMHDG=atand {dbPosX/dbPosY) ;
ang=bHDGI~bMHDG;

bHDG=bMHDG-ang;

in position.

3/16/11 7:32 BPM C:\Users\Conor\Documents\Yr4\Pr...\TestA.m 1 of 2

% commented ocut functicns are the 'real' things. because we are just running
& & performance simulation, some functions are not needed or relevant. Bul

3

in the final fest they will be.

clear

clc

$import ardulno

$a=arduino (YCOM3')

screend=1600;

ra=0;

ba=0;

sa=0;

index=0;

[X,¥Yi=cabpath(): % runs your cabpath Funchion, which I modified a bit.
X=X ;

Y=Y"';

sa=0;

dir=0;

pause cn

index=2;

rPosX0=X{1};

rPosY0=Y (1};

rPosX=X(2Y; % sets cab positions from the points that came out af "cabpath"
rPos¥Y=Y (2);

rHDGO=0;

drPos=0;

tstep=.08;

repeat=max{size (X)) +1;

bPosX0=0;

bPosYO=xrPosY-5;

bPosX=0;

bPosY¥=rPosY-5;

DHDG=0;

DHDGO=0;

dbPos=0;

Q2¥=0;

02Y=bPosY;

while index<200 % stops the simulation when it's gone through ali of "cabpath"'s points.
gmousel=mouse;

thdgl=hdg;

[rPosX, rPosY, rHDG, drPos]= robotSim(index, X, ¥, rPos%0, rPosY0); % simulates cab position.

[bPosX, bPosY, bHDG, dbPos, sa, 02X, 02Y] = bogieSim&rPosX,rPosY,rHDG,drPos,sa,rPosXO,rPosYO,K
rHDGY), bPosX0, bPosYD, bHDGO) ;

% Imouse, hdg, ra, ba, sa, drFos] = GerSensorvals (mouse0,a); %retrieve sensor values.

% irPos¥, rPosyY, rBDG] = robotUpdate (drPos, hdg, rPesxd, rPosY0, rADGE, ra); sUpdate robot ¥
position

% [bPosX, bPosY, dbPos, bHDG = bogi@Updat@(rPosX,rPoSY,hdq,ba,bPosXO,bPosYG); $Update bogi@E'
position

Matrix{index, : =[rPosX,rPosY,rHDG,dr?os,b?osX,bPosY,bHDG,dbPos,OZX,OZY]; 5tore these ind

3/16/11 7:32 PM C:\Users\Conor\Documents\Yr4\Pr...\TestA.m 2 of 2

Matrix

bIndex=calcIndex (dbPos,Matrix,bPosx,bPosY, index); %calculate index
bVals=steering{Matrix(blndex,l),Matrix(bindex,z),Matrix{index,S),Matrix(index,G),bHDG); 74
Calculate veoctor to "aim" peoint and generate a steering angle.
tsetBsteering(bVals, sa); %S5et servo position

sa=steeringSim{bvals, sa,tstep); % simulates the steering function.

[Matrix, index]= matSetup{Matrix,index, repeat,drPos); %resets matrix if too long, «
advances Lndex Lf not.

rPosX0=rPos¥X; %Saves previcus values for quick reference

bPosK(=bPosX;

rPosYO0=rPosY:

bPosYO=bPosY;

rHDGG=rHDG;

bHDGO=LHDG;

pause (tstep)icreates a realistic delay.

end

fprintf{'donein')
plot(X,Y,Matrix(:,5),Matrix(:,6),'o'),xlabel('x'},ylabel(‘y’),axis equal

D: Detailed Drawings

34[Page

,
LHOLIEHS GIHOEM ZEvOS
PIod] ¥

AR ~ "ON 'OMa. 3J7S

| Ummoi IS

pPO(JouoD

J1L

- () ysySuy

TR

SAN4 H1O8 dVLI 8W X¢

~
| EO L waw :._Om_{, g p w.?.ow

Jolol] v

LA _ ON "OMa 378
_bm_oi IS
UUOD JOUOD

- (w) sm:mmm

m.m.:w

\

\PU/LA9UED T
\ NYHLSE @ X¥

\

© 0

O O
&Y O—0O S
B 0001
B gl o
B 887G =
o 0006 _
= 0001 -
N N
O O @) @
PN
@ @) @) D=

SULA6G T 1
NHL mm@ X

L ,

140 L3S LHOEM SiLIEIVOS

ool v

| ... ON'OMa 31s
108lold "IS

PPO(JIOUOD

A

(ur) ysisuyg
OU/IAS60 T
NAHLSE ¢ Xy
$8|OH apIS dbi W Y
. = © S ~=——_$O|OH 9PIS db) 8W

at————SOJOH OPIS AD| BN

©
)

$Sj0H opis dol gW—""

A

\

2. RS,
r/ H
o 3 b :
A :
/./ X
AV & . : o

{

O HOBMOSIEWS
el v

AR ONOMQ 31S
108lold “IS
ppRrod 10uoD

< T

() ysigug

L

PIol] ¥
AT "ON "OMd. 37IS

| Um_oi IS
pPoOQ Jouod
(up) ysySug

X

ELS

SU/ZASL/6D T 14

MAHL SE 4 XT /

\

uy./,

Y i
D o
@ :
O~
MO
© LB
=
3

) MW

{lwwoz) 28270

! :
4O LEEHS GIHOEMOSL VIS
=S T2

AR ON omdl

1o8lold IS

PO JOUOD
- (ur) ysSug.

“ oAU

l

4O LEHS IHOBM SLEIVOS
EToY I 2
A3 ~ 'ON ‘OM@ 378

108l01d *IS
PPOQ JOU0D
- (ysySug

L

. 9
]

000°Z

[
[

0006

(eBps splisul
~ wioy /8/)

o Er—}

GLS

M L
o

000l

&> @
f

/

/
/

TRNHLOCE00

sobpa 3AISN| ©} suoisusug

-
S

GL5

e

1

LHO1EMHS IHOEM TLEIVOS
. ._m__O; < __
A ~_ON 'OMQ, 3IS.

u._bm_o_n_ ‘IS
PPOQ JOU0D
) we

AL

8806

i 7
o6pa 3AISNI }
WoJ) suoisusig
o = o
298¢ 2
=77 0l| o
I
-
]
& o
i
(6]
o
[B]
<O
U
sbpe JAISN
WO} suUoIsusuwiIq
ﬂwm
o
(@]
=
(-
3
3
,ﬂl\

[wwggf osl's

L
140 L 133HS AHOEM LLEWOS

ool Y
AZ¥ | CON "©OMQ; 3z7s

M_ﬁum_oi ‘IS m
PpPoO(IouUoD

ey [DORUD JOU ‘|93)S 8/1 P v
= 000E
= 000
ool
I
I @ @ @ﬁ NHL 05200
w
8
O 7u ,
2 _ -~
o -@l /M\nu NAHL 0SS0 ¢
I |
i - N
ciz'l _
= 7677 |

L :
LHOLIEHS UHOBMOZLEIVOS.

| =TI A
AJd ... 'ON 'omd 3IS

josloid s
ppod IouoD

T AL
(ur) ystsug
e = - ‘spua yjod Jb sajoy asay} ind

-aul aIp sybua] juaund ayj ‘yjbus| Aup o} @o1ad jnd juod

NAHL SC @ XT

i i
£

o
Lo Y]
5 0
iR

o0

~ B ==

000" L

" Conor Dodd

Sr. Project

“SIZE :DWG. NO.

A

REV

Frame

SCALE: 1O WEIGHT:

{

L0 UEHS | CHOBM TLEIVOS.
- eppnuy v
AR ~ 'ON OMmd 31S

Umwoi ‘IS
PPO(] IOU0D

AL

_ @5 mmSUZm Aﬁﬁ BNXZ | NAHL8/EP

8/9
8/¢

T] ¥ | m
— — oo I o — == - H i
L ! 1 \ i&;..«..l_)t -
QU SRS R S R ———] 1 . |
H ! el 1 L
i
i

0 |
I 1 I
LLi N m
o .
o ~
n :
[0.] ;
&0 ﬁ m
i :
T o o
.W M 1 if . :
N \ | “ ; nfm w :
. = |
& g\,vw o i

=3 _ .

o f a mﬁu

- , ik On

1 wt_ 1] " i ~0

Lot L — I
/i | -
7

i
NAHLY/E D

! ”
T - o :
- DPOoNuy Ajuo asn [euononajsu|
AR "ON 'OMa 3IS. 9sUd9[T jeuonednps SHIOMPLOS
psloig s W
PPOQ I0USD .ﬁEN
(u) HSTIONA

et

poipepoaiyl 0006
000¢lt o

_
140 | 133HS -

AJY

CIHOBM TLETVOS

Sponuy v

o801 e
~ ppoQ JouoD

T

S AP

/angéww®.
| _

o \0ZAdVIBNXZ
I |
v =) g
=] ww
oy I P
i
= 07 -
Ge i
i
W i)
; !
L] w
i
O
0 o
| j
al = =
" i MMC,_ (@8]
i 7 i n
M.W o
“ o
“ s
- H —
\m _.._“ _* M Sh ¥l
N Y _ L /
/

NaHLO0C®

7/

| SHEET1OF1 |

A Linkage

(/BIZE DWG. NO.
~ SCALE: 1:5 WEIGHT:

A
‘{
o

_
14Ot Emzw

CUHSEM. 5l 5<ow

OIYL U9 /| seold 984S ||V :3LON

mov_c: v
A ‘ 'ON O?m Vi
J_umﬁoi IS
UUOD _OCOU 3L
QE :m:wmm
] .ﬂ ,Jm
| = — N
To9l/er T 1egT w
= 000y o
ﬂu 00%°e - =
| 0050 T
W Ni3-
@ @ A

e
=

il
e

6970

5070

e
PR

N

L
Eo_mwzm U HoEM SLEWVOS

@@ov_c_._ <

_bm_o_n_ _m
- PpoQ Jouc)H

md._w

@c am:wmm

000°¢1

|
140

HOBM €1 TVOS.

oboyul v

A "ON 'OMQ 375

| _____,_um_._oi IS
PPOJ IOUOD

oIy} U9 L/ seipld |98is IV :F1ON

s T
(ur) ysisug
s S —
SPEUI 9 1/11
; |
M 2
i
~
g @
S 8
(]
./ N
ASAL6e D
<
(&}
V
I
=TTe/e X

U =T I
o _ 3
3 ©®- S
o N | i
b
~
o
o
O
N
o
o
I S
]
I
~ooo T B
000€ =

1

ViouEms HoEM SLAVOS
oboyun v

AR ~ "ON OMQ 7S

| ._.Um_oi IS
PPO(] JIOUOD
R —

~

\

i

V4

N/

!

LIOLEMSIHOBM SLEIVOS
- eboyun v
S A "ON "OMQ: 3ZS

posloig s
. UUOD LOCOU nm.:._.m.m
- pPoqiouey

/ L/Lr9t/6 T

c0l¢

0170t

| NAHLSE @ Xy
/
-]
D &
h
. s &
® ® s F
~
i)

L

4O LLIIHS . IHOEM SLITIVOS

oboyul v

AR . ON "omd 37S

.,Gm_oi IS
-~ pPpPoQg Iouod
e

=1

AVA'

8¢

B

_. 5
LHO LS| CUHOBM SiLEIVOS.

oboyun v

pPPOQ JOU0D

~ A

Al

Oce

MAHL 00880 X¢ /

O

%

097

I —)
T

\VA'

08y

00¥'S¢C

L
tdoLEHs (HOBM §i1 VS

N:o_._ E@m VvV

AR CON "OMQ. 375]
Ummok_n_ IS
ppoq Jouocd

REH

9:%14

&
&

e

SLAGCYLD T
NAHL 008 8P X2

09¢

0¢¢

CIACTID T
NIHL 0088 D X9

53
3]
=)

-1
(e
)

[
.

)

(@ (&)

09

(&)
A0

I:‘:)

0c

00e

09y

m
Zommmzm o Ewm_zoz m:<om_

:oEoN:oz v

AR __'ON 'OMQ 3IS
JGQOE.‘_m

UUOQ gOCOU W.Em

@3 HSITONI

QU LA T

NAHL 8/€Q X9

/

/

.\
1)

T
B
L

@
@

cIeC

/870

[80°L

/8.0

L8

- oLl

Sz

9CC 01

oo
36581

QULILAUED T

NAHLB/EP XT

.

fin
©

(i}
{it]

I
o E,@m;o: mﬁém

: ZO;mwxw
| __oEoNcoT_ v
AR ~ 'ON COM@: 3TS
_ﬁommoi IS _]]
ppoQ Jouod .,
Aaav ORALAN 5
§ \m 5

CLASYLY T
NAHL 0088 XZ

ZLASYLO T M
D%S%m@ xﬁ

|
me]

0%

T
L
L

2
N

/
0C

= 00¢
= 0%

L
401133 | GIHORM §LFIVOS

uOmEEoB(

PROd 10U %EW
(W) ISITONA. dvd LND-3¥d ASN

- AR

NOULAU6D T 1
\ NIHLSE D X

cot’¢

- ZoL 0l

i
LAOLIEHS UHOBM, GLAVOS.

og uIszL9 v

A . _ON OMQ 318 -
108lold IS

- ppoq Iouo)d

(ur) ysySuy

X

dVIBW X ¥

5@ s
3
.aﬂ ¢ 20

1
OIS LHOHEM ZTLEIVOS.

W.L_om,sc_mm |V

PO JouoD

T

AT

U 0
w@_@
¢ 20

:-D:

ac)
b@
oG »

GGl

	Union College
	Union | Digital Works
	6-2011

	Design and Testing of an Automated SemiÂ�]Trailer Control System
	Conor H. Dodd
	Recommended Citation

	Microsoft Word - The project.docx

