
Union College
Union | Digital Works

Honors Theses Student Work

6-2012

Evolutionary Fabrication: An Autonomous System
of Invention
Tim Kuehn
Union College - Schenectady, NY

Follow this and additional works at: https://digitalworks.union.edu/theses

Part of the Computer Sciences Commons

This Open Access is brought to you for free and open access by the Student Work at Union | Digital Works. It has been accepted for inclusion in Honors
Theses by an authorized administrator of Union | Digital Works. For more information, please contact digitalworks@union.edu.

Recommended Citation
Kuehn, Tim, "Evolutionary Fabrication: An Autonomous System of Invention" (2012). Honors Theses. 840.
https://digitalworks.union.edu/theses/840

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Union College: Union | Digital Works

https://core.ac.uk/display/229595972?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalworks.union.edu?utm_source=digitalworks.union.edu%2Ftheses%2F840&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalworks.union.edu/theses?utm_source=digitalworks.union.edu%2Ftheses%2F840&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalworks.union.edu/studentwork?utm_source=digitalworks.union.edu%2Ftheses%2F840&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalworks.union.edu/theses?utm_source=digitalworks.union.edu%2Ftheses%2F840&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalworks.union.edu%2Ftheses%2F840&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalworks.union.edu/theses/840?utm_source=digitalworks.union.edu%2Ftheses%2F840&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalworks@union.edu


Evolutionary Fabrication

A System of Autonomous Invention

By

Tim Kuehn

* * * * * * * *

Submitted in partial ful�llment

of the requirements for

Honors in the Department of Computer Science

UNION COLLEGE

June, 2012



Abstract

KUEHN, TIM Evolutionary Fabrication: A system of autonomous invention implementing evo-

lutionary algorithms with rapid prototyping.

Department of Computer Science, June 2012.

ADVISOR: John Rie�el

Evolutionary algorithms have had success in designing complex objects, ranging from antennae used

in NASA's Space Technology 5 mission to astronomical telescope lenses. However, evolutionary

design is limited by the ability of a simulation to accurately represent the physical world. Addition-

ally, evolved designs may be well described, but they carry no set of speci�c instructions describing

how to physically create such a design. Evolutionary Fabrication (EvoFab) recti�es this: EvoFab

is a machine built upon a process that can, in principle, automatically invent and build anything,

from soft robots to new toys, by evolving the process, not the product. We have designed EvoFab,

which consists of four components: A) a genotype for printing objects, consisting of a linear set of

instructions sent to a Fab@Home, an open-source 3D printer; B) a way to evaluate printed objects

using custom machine vision algorithms; C) a way to automate printing by implementing a cus-

tom conveyor belt; D) a way of elaborating upon designs by implementing a genetic algorithm. In

the near term, we aim to produce an evolved arch. Current results indicate increased �tness over

time. Future improvements are possible through restrictions in extrusion along the Y-axis as well

as re�ning �tness evaluation to be less exploitable.



i

0.1 Introduction

In Star Trek: The Next Generation, machines called replicators are capable of creating any object

asked of them: food, toys, clothing, and spare parts for spacecraft repairs are all available at the

push of a button. While such a machine is still far o�, we believe that, in some ways, it is possible

to do even better: the replicators required knowledge of how to create its products before someone

could ask for those products. What if, instead, someone could ask a machine to build something

that it had never built before � something of which it doesn't even have any knowledge of how to

construct � and it could evolve such an object before the person's very eyes? This futuristic vision

is the motivation for our research, and it begins with evolutionary algorithms.

What, exactly, is an evolutionary algorithm (EA)? EAs are grounded in Charles Darwin's

ideas of evolution and survival of the �ttest. The basic premises of survival of the �ttest and

evolution are simple: within a population there exists a certain amount of genetic variance between

its members. These variations lead to some members having a slightly higher survival rate than other

members of the population; with this increased survival rate comes a higher chance of producing

o�spring. Those o�spring, in turn, will share the same genetic variants and will also have a higher

rate of surviving to produce o�spring. Over time, newer generations will have variations of their own;

when the length of time is signi�cant enough, the characteristics can spread to the entire population

and can produce markedly di�erent characteristics when compared to previous generations. It is in

this way that animals are theorized to evolve.

One type of EA, called genetic algorithms and described in Algorithm 1, while not supposing

to actually present an accurate depiction of Darwin's evolution, are useful tools modeled after the

general premises. First, a population containing randomized solutions to a particular problem is

initialized. Once a population is initialized, each particular solution is evaluated to see how well

they solve the problem � i.e., how "�t" they are. None of these solutions will actually solve the

problem by itself, but some may get closer than others. The worst solutions from the population

are eliminated, or culled, leaving the better solutions to "breed" a new generation. The chance for

any given solution to be chosen as a parent of a new o�spring is proportional to its �tness, decided

during evaluation. Thus, best �t solutions have a tendency to breed with other high-�tness solutions,

producing o�spring with the best traits of both parents. In this way, over many generations � tens to

hundreds, possibly even thousands of generations, depending on the particular problem � high-�tness

solutions can be evolved.

Evolutionary algorithms have had success in designing complex objects, ranging from antennae

used in NASA's Space Technology 5 (ST5) mission (Lohn et al., 2005) to astronomical telescope lenses

(Al-Sakran et al., 2005). As part of its New Millennium Program, NASA's ST5 mission was "to

test, demonstrate and �ight-qualify innovative concepts and technologies in the harsh environment

of space for application on future space missions" (Lohn et al., 2005). In other words, ST5 mission's

intent was to test di�erent technologies that NASA was considering implementing into real space



ii

Algorithm 1 Genetic algorithms, a form of evolutionary algorithm, �nd solutions by "breeding"
well-�t solutions to combine their best elements.
P ← initializePop()
for member ∈ P do

member.fitness← evaluate(member)
end for

while P.best.fitness < desiredF itness do
P ← cull(P )
newP ← P
while len(newP ) < popSize do

parent1, parent2← chooseParents(P )
children← breed(parent1, parent2)
for child ∈ children do

child.fitness← evaluate(child)
end for

newP ← newP + children
end while

P ← newP
end while

missions in the future, to see if they would hold up under environmental conditions in space. The

mission involved sending three small satellites, "micro-sats," into Earth's magnetosphere. Each of

these satellites required two custom-designed antennae, which happen to be very di�cult to hand-

design for a variety of reasons, including the di�culty of accounting for complex electromagnetic

interactions. However, by evolving the antennae designs using evolutionary algorithms, Lohn et al.

(2005) produced, within one month, two antenna designs suitable for the ST5 mission satellites.

Al-Sakran et al. (2005), in turn, used evolutionary algorithms to automatically design an optical

lens, completely from scratch. They found that genetic algorithms were capable of making "human-

competitive" results � lenses that were as good, if not better, than human-designed lenses. Indeed,

one of the evolved lenses actually infringed upon a patent of a preexisting lens; another evolved lens

improved upon another existing lens patent.

Through these examples, we can see that evolutionary algorithms can lead to fast, competitive

real-world designs of important objects. However, evoultionary algorithms have a tendency to exploit

their medium. Thus, if an evolutionary algorithm is run in a simulation that doesn't exactly replicate

a real-world scenario, one may �nd evolved objects that are suitable for the software in which they

are tested but incapable of ful�lling their original intention in practice. Sims (1994) found that, when

simulating a physical environment, the simulation must be "reasonably accurate"; else, various bugs

or rounding errors will certainly occur, leading to undesired solutions that obtain high �tness only

through the exploitation of these discrepencies between simulation and the physical world. This

problem is called the reality gap: desirable characteristics can be missed and undesirable results can

occur when solutions are evolved solely in simulation.



iii

One way to skirt this issue is to evolve solutions in simulation but evaluate their �tness in

physical tests. Such a method would prevent any high-�tess traits from evolving if they only have

high �tness from exploiting simulations. However, what happens when an evolved design is too

di�cult to transform into an actual object? This problem is called the fabrication gap: evolved

designs may be well described, but they often carry no set of speci�c instructions describing how

to get to such an end result (Rie�el, 2006). Consider a picture of a sou�é: it may look tasty, but

someone with merely a picture would have a di�cult time replicating it, due to the hidden process

that led to the end result. In fact, Kavraki et al. (1993) have proven that the problem of assembling

a �nal product from blueprints is NP-Complete. Thus, the task of constructing an object from a

relatively simple design may not be that di�cult for a person to do, but the ease of construction

rapidly falls o� as the initial design increases in complexity.

Thompson (1997) presented an elegant solution to the problem of the fabrication gap. Tasked

with creating a circuit that could discriminate between 1kHz and 10kHz signals, emphwithout the

bene�t of a clock, he used a reprogrammable circuitboard to evolve the actual hardware rather than

a circuit design. This was very interesting because, in simulation, a circuitboard alone would never

be able to discriminate between two signals without the aid of a clock. However, Thompson (1997)

found that, when running real-world tests rather than simulated results, the circuitboard developed

a pattern that exploited electromagnetic interactions to successfully discriminate between the two

signals.

Watson et al. (1999) later coined the term "embodied evolution" for an approach similar to that

taken by Thompson (1997): they showed how an autonomous population of robots could evolve

behaviors that would allow them to successfully compete each other, without the aid of a central

computer running a genetic algorithm. The main takeaway for our purposes, however, is not that

it was decentralized: it's that instead of evolving blueprints that would then later be converted into

real products; the robots themselves were directly evolved. This notion of embodied evolution leads

us back to our current research.

Our approach, called evolutionary fabrication (EvoFab), bridges the reality and fabrication

gaps by combining evolutionary design with a physical fabrication process. By doing so, we ensure

that any evolved product already comes with the build instructions, in addition to ensuring that

any way in which the evolutionary algorithm exploits the process will be a replicable exploitation.

Our machine that implements evolutionary fabrication, called EvoFab, works in a three-stage cycle

as follows:

1. Print an object

2. Evaluate the printed object

3. Clear the print space for the next object to be printed

This process acts on each member of a population. After a whole population has been printed



iv

Figure 1: �EvoFab� consists of a Fab@Home printer, computer vision software to determine �tness,
and a conveyor belt, all controlled by an evolutionary algorithm.

and evaluated, the best �t members breed a new generation, for which the cycle begins anew. By

re�ning its products over time until it produces a result that �ts the design requirements, EvoFab

is, in principle, capable of automatically inventing and building anything, from soft robots to new

toys.

In this paper, we will detail the previous work, EvoFab 0.1, and will detail the improvements

that went into creating EvoFab 0.2. We will describe the individual mechanisms that, together,

make EvoFab. We will then show our most currently produced results and discuss current pitfalls

of EvoFab 0.2, including ways in which we plan to improve it in the future.

0.2 Previous Work: EvoFab 0.1

With EvoFab 0.1, Sayles and Rie�el (2010) created a system that was, at its core, an interactive

genetic algorithm. An interactive genetic algorithm is the same as a regular genetic algorithm with

one detail: it relies on a human to evaluate each member of the population. Clune and Lipson (2011)

have successfully used interactive genetic algorithms to evolve three-dimensional representations of



v

objects that can be fabricated; however, they are also the �rst to make note of the fact that evolution

in this form is based on subjective measurements made by the human evaluator. When the goal

is inherently the pursuit of artistic aesthetics, such as was the case with their research, this does

not become a very large problem. However, when more objective measurements are required � as

with EvoFab 0.1 � a person's subjectivity can be a large bottleneck in the algorithm's success. For

example, Clune and Lipson (2011) found that human evaluations tend to heavily favor symmetry

in determining �tness of 3-D models; it can be inferred, then, that attempts to evolve shapes that

have inherent asymmetry may prove quite di�cult.

Despite the early limitations of EvoFab, Sayles and Rie�el (2010) have shown that it is possi-

ble to implement a genetic algorithm into the process of fabrication, successfully using a process

of evolutionary fabrication to print two-dimensional objects, such as letters. Such an interactive

evolutionary algorithm requires a person to judge with their own, subjective eyes the best products

of a generation. Additionally, between generations, a person would be required to physically remove

the printed objects and reset the platform to be ready for more objects to be printed. By addressing

these two primary issues, EvoFab (Figure 1) is now capable of making its own judgment of the �tness

of printed objects, in addition to being able to fully automate the process.

0.3 EvoFab 0.2: A Fully Automated Evolutionary Fabrication

System

EvoFab is, at its basest, a machine that combines an evolutionary algorithm with a fabrication

process. EvoFab creates each population via a three-stage process (Figure 2): �rst, an object is

printed; the object is then evaluated; then, the object is moved o� the printing platform to begin

the process anew. The information for each printed object is stored within a genotype controlled

by a genetic algorithm, written in python. What follows is al deconstruction of EvoFab 0.2 into its

basic components.

The primary process of fabrication is controlled by Fab@Home, an open-source 3D printer de-

signed by Malone and Lipson (2007) and useful for its low cost and relative ease of use. Fab@Home

operates by extruding material through a syringe and depositing it onto a platform, constructing

objects layer-by-layer. The carriage that holds the syringe is free to move along the X- and Y-axes.

The platform upon which the material is deposited is free to move along the Z-axis.

Fab@Home is currently in its second revision, Model 2 (Lipton et al., 2009); however, due to

currently greater access to the API of the Model 1, we have used the Model 1 as the basis for EvoFab.

Additionally, previous work attempted to make use of the Model 2's ability to extrude plastic, which

would have allowed for magnitudes longer durations of printing without material re�lls. However,

printing with plastic requires the plastic to be melted, and the associated high temperatures to do

so necessitate caution and constant vigilance by the user. Because this negates the ability of EvoFab



vi

Figure 2: A graphical representation of the three-stage process: print, evaluate, recycle.

to act autonomously, it was decided that the long-term bene�ts of other materials (discussed below)

outweighed the ability of plastic to print for long periods without re�lls.

Fab@Home normally builds its products by interfacing through USB with a program that contains

the products' blueprints in .STL �les. However, our Fab@Home is out�tted with a serial connection

in lieu of USB, allowing us to send commands directly to Fab@Home (Sayles and Rie�el, 2010). The

utility of this is that it allows the evolutionary algorithm to store genotype encodings as a list of

commands. The commands that we use to control the printer's actions are as follows:

• extrude � This command causes a small amount of material to be deposited onto the print

platform.

• beginExtrude � This command, rather than send a command directly to the printer, controls

the action of the other commands. When activated, all other commands except endExtrude

will send their command coupled with an extrude command. E�ectively, all other commands

say "do this while extruding" when beginExtrude is activated.

• endExtrude � This command deactivates beginExtrude.

• goUp � Raises the print platform. The platform starts at its max height and cannot be moved

upward until a command has been sent to lower it �rst. This prevents problems of the platform

bumping into the syringe (which would, in e�ect, break the system).

• goDown � Lowers the print platform.

• goLeft � Causes the print carriage to move left along the X-axis (in the negative X-axis

direction). goLeft and its similar commands all act within certain bounds, outside of which



vii

the command ceases to e�ect movement of the print carriage. For example, the X-axis range

may be [-300, 300], so that if the X-axis position is currently -300, goLeft will have no e�ect

on print carriage's movement.

• goRight � Causes the print carriage to move in the positive X-axis direction.

• goIn � Causes the print carriage to move toward the back of the Fab@Home (along the negative

Y-axis direction).

• goOut � Causes the print carriage to move in the positive Y-axis direction.

With a printer ready for use, the next step was deciding what material to print with. Previously,

Sayles and Rie�el (2010) chose silicone bath caulk as the material of choice. With new goals,

however, come new requirements, and after attempts with plastic (described above) and silicone

caulk, we settled on a brand of modeling compound similar to Play-Doh. Silicone caulk is easily

extrudable, readily available, and comes in many colors, which is useful in allowing computer vision

software to easily di�erentiate a printed object from its background. However, it is also sticky

when �rst printed, and its cure time of approximately thirty minutes for faster-drying variants is

too long to wait between prints. Thus, the material would inevitably stick to the print platform,

making automation di�cult. Some workarounds were attempted (discussed below), but the Play-

Doh variant proved much more usable for our purposes. It has the same bene�ts of being readily

available in many colors and easily extrudable without the drawback of stickiness upon �rst being

extruded. This lack of stickiness comes with its own set of problems (see results), but it has proven

to be the best option that has been tried thus far.

When printing objects, original iterations did not have movement in the Z-axis due to restrictions

put on the system by the camera (see below). However, more recent revisions to the vision system

allowed us to free Z-axis movement. This, in turn, allowed us to set the platform much closer to the

syringe tip at the beginning of each fabrication. Previously, the platform was at a constant distance

of a few inches from the syringe tip. This tended to cause circular extrusions in which the thread of

material would spiral downward. This e�ect, in turn, caused a high degree of unpredictability in how

certain instructions would translate to the print: for instance, a command to extrude in a straight line

along the X-axis previously would have resulted in something more similar to a sinusoidal function

than a linear thread. Now, however, this has been vastly improved, as the average distance between

syringe tip and platform is much smaller.

In moving away from the blind watchmaker algorithm, we have devised a new method of evalu-

ation: using openCV wrapped in Python, we have developed computer vision software that works

in tandem with a camera a�xed to the front of the printing platform. In this way, we can reliably

control the method of evaluation. The camera that we used for this process is an Ipevo Point 2 View

USB Camera (Figure 3), useful for its ability to focus on close-up images. Additionally, the Point

2 View is supported by open-source Ubuntu drivers, making installation and access to a useful API



viii

Figure 3: A stock photograph of the Ipevo Point 2 View USB Camera: the Point 2 View
is useful for its close-up focusing capabilities as well as its ease of positioning. Source:
http://www.everythingusb.com/ipevo-p2v-usb-webcam-18262.html

relatively easy. Additionally, the Point 2 View is remarkably versatile in its ability to be positioned

in various ways: it comes with a clip that can be attached to virtually anything, allowing us to

attach it directly to the print platform. This ability has allowed us to free the platform to move

along the Z-axis without worrying that the platform will move out of visible range of the camera.

To allow for automation, we introduced a conveyor belt into EvoFab. Once an object has been

evaluated, it is moved o� of the platform and deposited in a disposal container via a conveyor

belt that interfaces with the evolutionary algorithm via USB. Through this system, EvoFab can

run unattended for approximately thirty minutes before requiring a re�lled syringe. Not including

re�lling, EvoFab can run unattended inde�nitely. Thus, the only factor that currently inhibits

EvoFab from working completely independently of human attendence is, simply, a large enough

syringe.

Initially, when we were still testing plastic printing, we used an Automated Build Platform Kit

developed by MakerBot Industries for use with their own MakerBot 3D printer (Figure 4). Because

the MakerBot also uses plastic, the Automated Build Platform provided a heated base to print

onto and would have meshed very well with the printer. However, when switching to silicone caulk,

we needed to devise a new conveyor belt, because the Automated Build Platform, as a conveyor



ix

Figure 4: Stock photograph of the MakerBot Automated Build Platform. Originally useful for its
heated platform, after further iterations of EvoFab it became obsolete. Source: www.makerbot.com

belt, would have quickly become too messy to be useable. We therefore devised a new conveyor

belt that worked much like a scroll works: instead of depositing products after being printed and

evaluated, the "scroll" would roll it up into one side of the scroll, destroying the print but clearing

the platform. This solved the short term problem of the objects sticking to the platform; however,

it merely delayed the inevitable work required of a human to �x the platform. Once the scroll ran

out on one end, it needed to be replaced. Thus, it did not entirely solve the problem of complete

automation. Thus, when we converted to modeling material, it was a natural transition to turn the

"scroll" back into a conveyor belt much like the initial Automated Build Platform. There were two

primary reasons why we did not go back to the original MakerBot conveyor belt: �rst, it was simpler

to build a larger conveyor belt, given that the Fab@Home used a much larger platform than the size

of the conveyor belt. Second, a custom conveyor belt allowed us to control the color of the surface,

making the job of the computer vision software that much easier.



x

0.4 Proof of Concept: Evolution of Arches

In evolutionary algorithms, a di�erent software implementation is required for each type of object

one wishes to evolve. Thus, due to the proof-of-concept nature of this research, we implemented

software that evaluates exactly one type of object. In choosing what object to evolve, we looked for

some shape that is currently not easily produced by a 3D printer. The reason we wanted something

that is not easily produceable is that evolutionary algorithms are only truly useful in designing

things that have not previously been designed � otherwise, there would be no need to use the

evolutionary algorithm in the �rst place. In determining what a 3D printer cannot easily produce,

we focused on the fact that Fab@Home always prints from the bottom-up. In other words, it builds

upwards, layer by layer, and cannot construct an object with a portion that is "�oating" without

any supporting material underneath. Consider, for example, an arch. An arch's supporting columns

are easily constructed by Fab@Home, but how will the middle area be created? It cannot deposit

material onto mid-air. While a software-limited approach may have trouble desigining a method of

construction for such an arch, an evolutionary algorithm is not restricted to follow any set of rules,

allowing it to freely explore all possibilities, thought-of or unthought-of by the algorithm's creators.

Thus, the potential for �nding a solution greatly increases when using an evolutionary algorithm,

making "archness" a good object to evolve as a proof of concept.

In evaluating archness of a printed object, �tness increases proportionally to the percent of

overhanging mass that an object contains. Figure 5 shows how such a �tness is evaluated: an

image is captured by a camera that views the printing stage. Then, the image is thresholded so

that the printed object is white and the background is black. This is made simple by printing in

a color negatve to that of the background, in this case pink being the negative of green. Then,

a bounding box is drawn around the contours of the white image. For all pixels contained within

the bounding box, �tness increases for every black pixel that is vertically below a white pixel in its

column. Fitness is then divided by total pixels within the bounding box to account for di�erent

sized objects, returning the percentage of overhanging mass in the image.

In determining the evolutionary algorithm to use, it was worthwhile to consider the di�erences

between genetic algorithms and random mutation hill climbers. Both genetic algorithms and random

mutation hill climbers both create new generations based on the best �t of previous generations,

but the way in which they do so is meaningfully di�erent. With genetic algorithms, a child can be

created in the following ways:

1. A child can be based o� of one mutated parent, in which a combination of the following

actions occurs: random instructions in the parent's genotype are deleted, new instructions are

randomly added, and existing instructions are mutated into di�erent instructions.

2. A child can be based o� of crossover between two parents: each parent provides a segment of

its genotype, and the two segments are combined to make the genotype of the new child.



xi

Figure 5: Evaluating "archness": Fitness is determined by �rst, thresholding the image into black
and white, and second, drawing a bounding box around the object and calculating the percentage
of overhanging mass.

Compared to genetic algorithms, random mutation hill climbers create children only though method

1. Additionally, the type of hill climber used in this research, called a 1 + N hill climber, di�ers in

another way: each new generation, of size 1 + N, consists of 1 parent and N children all created

from that same parent. In other words, all but the one best of each generational population are

culled before choosing a parent to use as the basis for the new generation.

Although genetic algorithms may seem more versatile at �rst glance � and they are, in some ways

� they are not, in many scenarios, any more e�cient than 1 + N hill climbers. In practice, genetic

algorithms are only more useful when solutions to the problem at hand are known to be formed

from building blocks (Mitchell et al., 1991) that can be joined together, through crossover, to form

higher-order solutions. The implemenation di�erences between the 1 + N hill climber algorithm and

the genetic algorithm are as follows:

• With the 1 + N hill climber, cull(P) will always cull all but the single best member of

population P

• The 1 + N hill climber only chooses one parent when mutating (beceause there is no crossover

and thus two are not needed), and because the population of P after culling is always 1,

chooseParent(P) always chooses the same parent to mutate.



xii

• Instead of calling the function breed(parents), the 1 + N hill climber calls the function mu-

tate(parent).

With the sort of problems that EvoFab is currently trying to solve, there is little to suggest that

building blocks exist. Thus, for our purposes, a 1 + N hill climber is satisfactory, the pseudocode of

which is seen in Algorithm 2.

Algorithm 2 Random mutation hill climbers are a form of evolutionary algorithm that search for
�t solutions by "climbing" the �tness slopes of the search space by making slight random changes
to current best-�t solutions.
P ← initializePop()
for member ∈ P do

member.fitness← evaluate(member)
end for

while P.best.fitness < desiredF itness do
P ← cull(P )
newP ← P
while len(newP ) < popSize do

parent1← chooseParent(P )
children←mutate(parent1)
for child ∈ children do

child.fitness← evaluate(child)
end for

newP ← newP + children
end while

P ← newP
end while

0.4.1 Results

Over sixteen generations of running EvoFab on a 1 + 4 random mutation hill climber, best �tness

per generation increased only three times, as seen in Figure 6. However, average �tness makes quite

large jumps between low �tness (around 0.17) to high �tness (around 0.26).

In our runs of EvoFab, we have also found the evolutionary algorithm to consistently exploit

the �tness function in an undesirable fashion. The �tness function, as it currently stands, captures

a three-dimensional image but treats it as if it were two-dimensional. Because of this, pixels that

occur at higher elevations in the captured image are treated as if they are higher along the Z-axis;

in reality, they may only be further along the negative Y-axis, which the �tness function treats as

nonexistant. Thus, archness is frequently measured to be higher in objects that have an "arm"

extending forward on the Y-axis, as seen in the second and third images of Figure 5.

Another undesirable exploitation that occurs when printing is that, if the material is not extruded

quickly enough, it will not have time to stick to the platform, causing the print carriage to drag

around the thread of material instead. This has led to a certain degree of unpredictability in how



xiii

Figure 6: While best �tness per generation rarely increases, average �tness jumps quite drastically
for better and for worse. One possible cause is too many degrees of freedom.

a given set of instructions will translate into a printed product. In some cases, this can even cause

material that has already been deposited onto the print platform to be dragged along with the

hanging thread. This is an example of a mostly-negative exploitation that would go unaccounted

for in a simulation-only evolutionary environment. Because of the dramatic e�ects on overall �tness

that this can lead to, we believe that 3-D printers in particular, such as Fab@Home, lend themselves

to a method of embodied evolution.

One exploitation that may still turn out to have interesting e�ects is that, when the platform

moves upward along the Z-axis until it is very close to the tip of the syringe, sometimes the syringe

tip moves across the object and "picks up" material, moving it to form a new design. This is

an example of a potentially positive exploitation that would be nonexistent in a simulation-only

evolutionary environment.

0.5 Challenges in EvoFab

As seen by the types of evolutions in Figure �g:evaluation, the horizon line of the stage greatly a�ects

measured �tness. When an image is evaluated, pixels higher on the Y-axis are assumed to higher in

elevation. However, when the camera captures an image while looking down upon a printed object

� thus causing the horizon to shift upward � this measurement becomes skewed. One possible cause



xiv

for this is that there are too many degrees of freedom in the movement of the carriage. An arch is

well suited to be represented in two dimensions; thickness is no concern. Thus, the carriage's extra

variability a�orded by movement on the Y-axis may very well be the cause of these jumps. Future

tests that restrict movement along the Y-axis � so that only movements up, down, left, and right

are allowed � will be able to test this hypothesis.

Another possible way in which this can potentially be �xed in future iterations of EvoFab could

involve changing the weighting of the �tness function. Currently, an equal weight is applied to all

black pixels found beneath white pixels. If, however, we instead weight more heavily black pixels

found at higher elevations in the two-dimensional representation, we speculate that this would o�set

some of the erroneous �tness encountered below the horizon line. We do not want to completely

discount the data below the horizon line, because it could still potentially lead to true higher �tness

in non-exploitive ways.

With respect to the dragging of threads that have not yet been deposited onto the print platform:

while it may seem like increasing extrusion rates would solve this problem, it is not so simple in

practice. The problem does not occur constantly, and it is di�cult to predict when it will. It is

likely due to an uneven dispersion of pressure throughout the syringe, causing some areas to dispense

more quickly than others. There is no easy solution, and it presents a problem in that it will always

lead to some unreliability in reproducibility of prints. The best way to control for this is careful

preparedness in how material is inserted into the syringe. Avoiding air bubbles and using the same

method of insertion every time will help control for these kinds of problems. Again, this is another

example of a physical-representation that could not be easily represented in simulation.

Regarding the phenomenon of the syringe tip picking up and moving about material, while no

positive results have yet been seen from this, it is likely that this exploitation could potentially lead

to objects that would not be able to be formed in simulation alone. One could imagine the syringe

tip dragging a a dangling thread of material across two pillars, forming a makeshift arch. Hard to

anticipate and almost impossible to control manually, this is exactly the kind of thing that makes

software simulation so much harder to use e�ectively.

0.6 Conclusion

We have constructed a system of Evolutionary Fabrication, the �rst closed-loop cycle of evolving

physical objects. The system consists of four components: A) a genotype for printing objects,

consisting of a linear set of instructions sent to a Fab@Home, an open-source 3D printer; B) a way

to evaluate printed objects using custom machine vision algorithms; C) a way to automate printing

by implementing a custom conveyor belt; D) a way of elaborating upon designs by implementing a

genetic algorithm. We have shown that the system can produce objects of increasing �tness over

time. We have additionally shown how embodied evolution can uniquely exploit physical realities of



xv

various parts of the fabrication process. We have additionally speci�ed areas that currently hamper

the system.

Future work will consist of bettering the reliability of EvoFab 0.2 through improvements to the

accuracy of its �tness function and restrictions of movement along the Y-axis. Additionally, new

types of objects will be presented for evolution to test the versatility of the system, along with new

�tness functions to tackle those objects.



Bibliography

Al-Sakran, S. H., Koza, J. R., and Jones, L. W. (2005). Automated re-invention of a previously patented optical lens

system using genetic programming. In Keijzer, M., Tettamanzi, A., Collet, P., van Hemert, J. I., and Tomassini,

M., editors, Proceedings of the 8th European Conference on Genetic Programming, volume 3447 of Lecture Notes

in Computer Science, pages 25�37, Lausanne, Switzerland. Springer.

Clune, J. and Lipson, H. (2011). Evolving 3d objects with a generative encoding inspired by developmental biology.

SIGEVOlution, 5(4):2�12.

Kavraki, L. E., Latombe, J.-C., and Wilson, R. H. (1993). On the complexity of assembly partitioning. Information

Processing Letters, 48(5):229�235.

Lipton, J. I., Cohen, D., Heinz, M., Lobovsky, M., Parad, W., Bernstein, G., Li, T., Quartiere, J., Washington, K.,

Umaru, A.-A., Masano�, R., Granstein, J., Whitney, J., and Lipson, H. (2009). Fab@home model 2: Towards

ubiquitous personal fabrication devices. In Solid Freeform Fabrication Symposium, pages 70�81.

Lohn, J. D., Hornby, G. S., and Linden, D. S. (2005). An Evolved Antenna for Deployment on NASA's Space

Technology 5 Mission. In O'Reilly, U.-M., Riolo, R. L., Yu, T., and Worzel, B., editors, Genetic Programming

Theory and Practice II. Kluwer.

Malone, E. and Lipson, H. (2007). Fab@home: The personal desktop fabricator kit. Rapid Prototyping Journal,

13(4):245�255.

Mitchell, M., Forrest, S., and Holland, J. H. (1991). The royal road for genetic algorithms: Fitness landscapes and ga

performance. In Proceedings of the First European Conference on Arti�cial Life, pages 245�254. MIT Press.

Rie�el, J. (2006). Evolutionary Fabrication: the co-evolution of form and formation. PhD thesis, Brandeis University.

Sayles, D. and Rie�el, J. (2010). Evofab: A fully embodied evolutionary fabricator. In Tempesti, G., Tyrrell, A.,

and Miller, J., editors, Evolvable Systems: From Biology to Hardware, volume 6274 of Lecture Notes in Computer

Science, pages 372�380. Springer Berlin / Heidelberg.

Sims, K. (1994). Evolving virtual creatures. In Proceedings of the 21st annual conference on Computer graphics and

interactive techniques, pages 15�22. ACM Press.

Thompson, A. (1997). An evolved circuit, intrinsic in silicon, entwined with physics. In Higuchi, T., Iwata, M., and

Weixin, L., editors, Proc. 1st Int. Conf. on Evolvable Systems (ICES'96), volume 1259 of LNCS, pages 390�405.

Springer-Verlag.

Watson, R. A., Ficici, S. G., and Pollack, J. B. (1999). Embodied evolution: Embodying an evolutionary algorithm

in a population of robots. In CONGRESS ON EVOLUTIONARY COMPUTATION, pages 335�342. IEEE Press.

xvi


	Union College
	Union | Digital Works
	6-2012

	Evolutionary Fabrication: An Autonomous System of Invention
	Tim Kuehn
	Recommended Citation


	tmp.1525282218.pdf.tnH_c

