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ABSTRACT

Background  Electronic medical records (EMRs) from primary care may be a 
feasible source of height and weight data. However, the use of EMRs in research 
has been impeded by lack of standardisation of EMRs systems, data access and 
concerns about the quality of the data.
Objectives  The study objectives were to determine the data completeness and 
accuracy of child heights and weights collected in primary care EMRs, and to iden-
tify factors associated with these data quality attributes.
Methods  A cross-sectional study examining height and weight data for children 
<19 years from EMRs through the Electronic Medical Record Administrative data 
Linked Database (EMRALD), a network of family practices across the province 
of Ontario. Body mass index z-scores were calculated using the World Health 
Organization Growth Standards and Reference.
Results  A total of 54,964 children were identified from EMRALD. Overall, 93% 
had at least one complete set of growth measurements to calculate a body mass 
index (BMI) z-score. 66.2% of all primary care visits had complete BMI z-score 
data. After stratifying by visit type 89.9% of well-child visits and 33.9% of sick visits 
had complete BMI z-score data; incomplete BMI z-score was mainly due to miss-
ing height measurements. Only 2.7% of BMI z-score data were excluded due to 
implausible values. 

Research article

Cite this article: Carsley S, Birken CS, Parkin PC, 
Pullenayegum E, Tu K. Completeness and accuracy 
of anthropometric measurements in electronic 
medical records for children attending primary care.  
J Innov Health Inform. 2018;25(1):019–026.

http://dx.doi.org/10.14236/jhi.v25i1.963

Copyright © 2018 The Author(s). Published by BCS, 
The Chartered Institute for IT under Creative Commons 
license http://creativecommons.org/licenses/by/4.0/ 

Author address for correspondence:
Sarah Carsley
Child Health Evaluative Sciences
Hospital for Sick Children
Peter Gilgan Centre for Research and Learning
Toronto, ON M5G 0A4, Canada
Email: sarah.carsley@sickkids.ca

Accepted February 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Informatics in Primary Care (BCS, The Chartered Institute for IT)

https://core.ac.uk/display/229595302?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Journal of Innovation in Health Informatics Vol 25, No 1 (2018)

Carsley et al.  Completeness and accuracy of anthropometric measurements in electronic medical records for children attending primary care  20

INTRODUCTION

The use of electronic medical records (EMRs) in primary 
health care has recently improved in Canada with estimates 
of physician uptake increasing from 37% in 2009 to 75% in 
2015.1,2 Using primary care EMRs to measure, track and 
evaluate childhood obesity have been proposed for mul-
tiple reasons. First, children attend primary health care for 
well-child visits frequently in the first years of life.3 This time 
period has also been proposed as a critical period when 
prevention and early intervention strategies may be most 
effective.4 Second, it is a long-standing standard of care to 
measure children’s weight and height (or length for children 
younger than 2 years) at these visits, offering a potentially 
robust source of growth data.5,6 Finally, leveraging data from 
a previously established clinical infrastructure may be cost-
effective7 and has been proposed in previous health policy 
recommendations.8

To date, the use of primary care EMRs in research has 
been impeded by lack of standardisation of EMRs systems, 
data access and concerns about the quality of the data.9,10 
However, research networks, such as the Canadian Primary 
Care Sentinel Surveillance Network11 and the Electronic 
Medical Record Administrative data Linked Database 
(EMRALD)12 in Canada, and the Electronic Pediatric 
Research in Office Settings (ePROS) network in the United 
States, have attempted to move EMR research forward by 
acting as an intermediary between primary care providers 
and researchers. Multiple studies have been published using 
these data sources to estimate both child and adult obesity 
rates.13–15 However, descriptions of data cleaning techniques 
are often insufficient to be reproduced, or are not reported.16 
As well, height and weight data are often subject to error 
because of multiple units that may be used to record the mea-
surement (centimeters, meters, inches, feet, kilograms and 
pounds), multiple decimal places and reversal of measure-
ments (recorded weight as height and vice versa). Therefore, 
methods for determining data quality within these EMR net-
works are necessary to ensure that the derived prevalence 
estimates are accurate. The overarching goal of this study 
was to assess the feasibility of using anthropometric data 
from primary care EMRs to generate prevalence estimates 
of childhood obesity. The primary objective of this study was 
to assess data quality by examining data completeness and 
accuracy. The secondary objective was to examine factors 
that may be associated with these data quality attributes 
in order to develop recommendations on best practices for 
using routine EMR data. 

METHODS

Data source/study population
A cohort of children 0 to <19 years of age was identified from 
EMRALD, containing data from primary care family medicine 
practices in the province of Ontario.17 As of 2016, 355 phy-
sicians within 41 practices using PS Suite, the largest mar-
ket share vendor of EMR in the province, contributed data to 
this study.18 EMRALD is housed at the Institute for Clinical 
Evaluative Sciences (ICES) which allows this research to 
comply with the Ontario Personal Health Information and 
Protection Act. This study was approved by the Sunnybrook 
Health Sciences and the Hospital for Sick Children research 
ethics boards. 
All EMRALD pediatric patient records as of March 31, 

2016 were included based on two levels of inclusion cri-
teria: 1) physicians had to be using their EMR for a mini-
mum of 2 years and 2) patients had to be rostered to an 
active EMRALD physician, be less than 19 years old as of 
March 2016 and have a valid identification number to link 
with the administrative databases at ICES. Exclusion crite-
ria included patients in the newborn period (<28 days old) 
where potential complications from birth could increase the 
number of growth measurements. Variables extracted from 
the EMR were height/length, weight, date of measurement, 
sex, age at measurement and the number of years the phy-
sician has been using EMR. 

Completeness
The primary outcome for this study was the presence of a 
complete set of data required to calculate age- and sex-stan-
dardised body mass index (BMI) z-score (zBMI) per primary 
care visit, including age at measurement, sex, height/length 
and weight. The presence of all four data points was recoded 
as a binary variable, representing a complete record. Data 
completeness was assessed for all visits as well as stratified 
by visit type, either well-child, sick visit or unknown. 

Accuracy
Data accuracy was determined using two methods: 1) the 
proportion of biologically implausible values (BIVs) and 
2) assessing potential invalid inliers using repeated measure-
ments on the study subsample with ≥3 zBMI measurements. 
BIVs were defined by a validated algorithm19 and the World 
Health Organization (WHO) Expert Committee20 as z-scores 
for BMI-for-age < −5.0 to > +5.0, height-for-age <  −6.0 to 
> +6.0, weight-for-age < −6.0 to > +5.0 (0–10 years of age), 
weight-for-length < −5.0 to > +5.0 (0–5 years of age).21 

Conclusions  Data completeness at well-child visits and overall data accuracy 
were greater than 90%. EMRs may be a valid source of data to provide estimates 
of obesity in children who attend primary care. 

Keywords: electronic health records, child, body mass index, data accuracy, 
obesity
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Measurement data extracted from EMRALD are numeric val-
ues with up to two decimal places and no associated units. 
Weight is stored by default in kilograms and height in centi-
meters. If the physician enters units in the EMR as pounds or 
feet/inches, the value is automatically converted to kilograms 
and centimetres when the data is extracted from the EMR. If 
no unit is written, it is assumed that the data are recorded as 
kilograms and centimetres.
To identify invalid inliers, defined as potential data errors 

within the clinically acceptable range, we investigated 
those subjects with ≥3 zBMI measurements. The mean and 
standard deviation of zBMI were calculated for each sub-
ject as well as the time interval between measurements. 
Standardised differences (SD) were calculated by subtract-
ing the mean zBMI per subject from each measurement 
divided by the standard deviation. For children <12 months, 
we used a rule if one measurement was more than ±2.5 SDs 
(where SD is the SD of the individual’s measurements) of a 
measurement within 3 months, or for children ≥12 months 
more than ±3 SD of a measurement within 6 months, it would 
be flagged as implausible. This rule, henceforth referred 
to as the ‘invalid inlier rule’, was tested on a subsample of 
patients with known correct and incorrect zBMI values (veri-
fied through chart review), and found a sensitivity to detect 
true errors of 100% and a specificity of 28.3%. Previous stud-
ies have applied similar rules to their study populations with 
repeated measurements.16,22 

Factors associated with data quality
We assessed clinic, physician and patient level factors to 
determine what characteristics may have affected com-
pleteness or accuracy of data. Clinic level factors examined 
included the size of practice (number of rostered patients) 
and proportion of pediatric patients (number of pediatric 
patients divided by practice size). The physician level factor is 
years the physician has been using EMRs. It was previously 
shown that it takes approximately 2 years for a physician to 
adequately populate the EMR records for their practice.12 
Patient level factors examined were age and sex. Visit type 
was determined by linking growth data to the Ontario Health 
Insurance Plan (OHIP) database to determine the visit-code 
billed on the corresponding date of measurement. Well-child 
visits were coded using fee codes and diagnostic codes 
defined by ICES3 and are available in Supplementary Table 
1. Since standard of care is to measure children for both 
height and weight during well-child visits, the factors affecting 
data completeness analysis were modelled only for well-child 
visits.

Statistical analysis
Descriptive statistics were performed for all variables to 
determine distributions and to create the main outcome vari-
ables. Baseline characteristics between children in EMRALD 
and all Ontario children, from administrative data holdings at 
ICES, were compared. The data completeness variable was 
first created by identifying each record with a missing height, 
weight, age or sex. This data were then linked to the OHIP 

database to identify which measurement records were taken 
at a well-child visit, sick visit or unknown. A large number of 
well-child visits occur during the first years of life due to sched-
uled immunisations;23 therefore, the age by visit type interac-
tion terms for data completeness were tested using a p-value 
for statistical significance of <0.05. Previously published rules 
to identify BIVs in EMRs19 were applied, followed by the 
WHO flags for weight-for-age, height-for-age or BMI-for-age. 
All those patients with three or more zBMI measurements 
within −5 and +5 SD were assessed using the ‘invalid inlier 
rule’. All records identified using these rules were recoded as 

Characteristics EMRALD 
study 

sample

Rostered 
Ontario 
patients 

<19 years

All Ontario 
patients 

<19 years

Sample size 54,964 2,709,742 4,068,251
Patient
Sex
  Male 49.5% 49.5% 48.9%
  Female 50.5% 50.5% 51.1%
Age groups (as of 

31 March 2016)
  <1 5.4% - -
  1–4 33.6% 12.8% 15.4%
  5–9 30.0% 18.3% 19.6%
  10–14 20.9% 20.9% 19.9%
  15–19 10.1% 24.2% 22.0%
Neighbourhood income 

quintile
  1 – Lowest income 15.6% 18.2% 19.6%
  2 17.5% 18.7% 18.5%
  3 21.2% 20.4% 19.5%
  4 21.9% 21.9% 20.8%
  5 – Highest income 22.5% 20.5% 19.7%
  Unknown 684 0.4% 2.0%
Rurality
  Rural 18.7% 11.6% 10.6%
  Urban 81.4% 88.3% 87.8%
  Unknown 0.1% 1.6%
Physicians (N = 355)
Years on EMR (mean) 7.44
  Range 0.2–25
Practices (N = 41)
Practice size (patient 

volume)
  Small < 5000 36.6%
  Medium 5000–10,000 34.2%
  Large > 10,000 29.3%
Proportion of pediatric 

patients 
  Mean % 18.2%
  Range 9.0%–28.0%

Table 1 Baseline characteristics of EMRALD patients
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inaccurate values. Proportions and 95% confidence intervals 
(CIs) were calculated for data completeness and accuracy.

A generalised linear mixed model (GLMM) was used to 
examine the effect of patient, physician and practice fac-
tors on the data completeness and accuracy. The multiple 
repeated measurements of patients (level 3) were clustered 
within physician (level 2), within practice (level 1) required 
the use of a multilevel model to account for correlated data, 
which was specified as unstructured. A null model with ran-
dom intercept was run initially to determine the amount of 
level-1 error variation attributable to the multiple practices 
providing data and an inter-class correlation coefficient was 
calculated.24 A full model was run with all patient, physician 
and practice variables. All potential explanatory variables 
were selected a priori based on the literature and expert 
advice. All statistical calculations were performed using SAS 
Enterprise version 7.1 (SAS Institute, Cary, NC, USA).

RESULTS

A total of 54,694 children 0 to <19 years of age were iden-
tified from the EMRALD database contributing a total of 
385,767 visits. Table 1 presents baseline characteristics 
of the patient, physician and practice level characteristics. 
The number of years physicians used the EMR ranged from 
3 months to 25 years and the proportion of pediatric patients 
in a family practice ranged from 8% to 29%. Group practice 
size was categorised into small (<5000 patients), medium 
(5000–10,000) and large (>10,000) and accounted for 
15 (36.6%), 14 (34.2%) and 12 (29.3%) practices, respec-
tively. The EMRALD pediatric patients in this study were 
slightly younger than the overall Ontario pediatric population 

and were similar in sex distribution and neighbourhood 
income quintile. In total, 70.7% of visits were from children 
aged 0–4 years and 29.3% from children and adolescents 
aged 5 to <19 years. 38,694 visits were excluded due to age 
<28 days old which included birth weights and children requir-
ing multiple weight checks in the first month of life. However, 
only 201 patients did not have any visits after 1 month of age 
and were excluded. 

Completeness
Overall, 66.2% (95% CI 66.1%–66.4%) of all primary care vis-
its had a complete set of measurements to calculate a zBMI 
on 51,385 (93.5%) patients. Table 2 breaks down the missing 
data by variable type and age group for all visits. Missing 
height measurements accounted for the majority of incom-
plete data with 111,188 visits (32.0%, 95% CI 31.9%–32.2%) 
missing height; only 6044 (1.7%, 95% CI 1.7%–1.8%) vis-
its were missing weight. When measurements were strati-
fied by visit type 50.1% of growth measurements occurred 
at well-child visits, 35.2% occurred at sick visits, and 14.7% 
of records were at an unknown visit type. The proportion of 
complete data from well-child visits was 89% and 34% for 
sick visits. 

Accuracy
Table 3 shows the proportion of inaccurate data based on 
each method to assess accuracy. In total, 6261 (2.72%) 
observations were determined to be likely inaccurate values. 
The first BIV identification using previously published cut-
offs found 0.3% of weights and 0.2% of heights outside the 
biologically plausible range. The number of BIVs based on 
the WHO for BMI-for-age was 5661, 90.4% of all errors. The 

Data completeness Total Complete Incomplete
N N % 95% CI N % 95% CI

Overall 347,073

  Height 235,885 68.0 (67.8–68.1) 111,188 32.0 (31.9–32.2)

  Weight 341,029 98.3 (98.2–98.3) 6044 1.7 (1.7–1.8)

  Sex 347,073 100 (100–100) 0 0.0 (0.0–0.0)

  Age 347,073 100 (100–100) 0 0.0 (0.0–0.0)

  Complete zBMI 229,841 66.2 (66.1–66.4) 117,232 33.8 (33.6–33.9)

By age group

0–4 years 245,298

  Height 173,924 70.9 (70.7–71.1) 71,374 29.1 (28.9–29.3)

  Weight 240,804 98.2 (98.1–98.2) 4494 1.8 (1.8–1.9)

  Complete zBMI 169,430 69.1 (68.9–69.3) 75,868 30.9 (30.8–31.1)

5–19 years 101,775

  Height 61,961 59.5 (59.2–59.8) 39,814 38.2 (37.9–38.5)

  Weight 100,225 96.2 (96.1–96.4) 1550 1.5 (1.4–1.6)

  Complete zBMI 60,411 59.4 (59.1–59.7) 41,364 40.6 (40.3–40.9)

Table 2 Data completeness by variable and age group
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second examination of the data for invalid inliers included 
31,495 patients that had ≥3 measurements contributing 
196,327 observations. After applying the invalid inlier rule, 
only 86 (0.04%) additional errors were found. 

Factors associated with data quality
Interaction terms for age and visit type were statistically 
significant (p < 0.01). Therefore, models assessing factors 
associated with completeness were restricted to well-child 
visits and stratified into age <5 years and ≥5 years. In chil-
dren 0 to <5 years of age attending well-child visits, for every 
1 year increase in age the odds for having both a height and 
a weight were 33% (95% CI: 30%–36%) higher (see Table 4). 
Conversely, in children 5–19 years for every 1 year increase 

in age, the odds of having a complete height and weight 
was 2% (95% CI: 1%–4%) lower. Physicians that had been 
using the EMR longer had a marginally higher proportion of 
complete data. Larger clinics had 9% more complete data 
for every increase in 5000 patients in practice volume for 
younger children, however, 3% less complete data in older 
children. There was no significant difference between boys 
and girls. As well, examining the variation explained by prac-
tice cluster [level 1 null model inter-class correlation coeffi-
cient (ICC) = 14%–21%], there was significant variation in 
data completeness between practices for both age groups. 
Only the proportion of pediatric patients was statistically sig-
nificant in the younger age group; however, clinical signifi-
cance is debatable.

Data accuracy Total Accurate Inaccurate
N N % 95% CI N % 95% CI

Published cut-offs19 229,841

  Height 229,308 99.8 (99.8–99.8) 533 0.2 (0.2–0.3)

  Weight 229,223 99.7 (99.7–99.8) 618 0.3 (0.3–0.3)

WHO BIV rules

0–4 years 169,430

  Height/Length <-6 or >+6 167,203 98.7 (98.6–98.7) 2227 1.3 (1.3–1.4)

  Weight <−6 or >+5 167,126 98.6 (98.6–98.7) 2304 1.4 (1.3–1.4)

  BMI <−5 or >+5 165,560 97.7 (97.6–97.8) 3870 2.3 (2.2–2.4)

5–19 years 60,411

  Height <−6 or >+6 59,211 98.0 (97.9–98.1) 1200 2.0 (1.9–2.1)
  Weight* <−6 or >+5 32,759 32,257 98.5 (98.3–98.6) 499 1.5 (1.4–1.7)
  BMI <−5 or >+5 58,620 97.3 (96.9–97.2) 1791 3.0 (2.8–3.1)

Invalid inlier rule 196,327
  zBMI 196,241 99.9 (99.9–99.9) 86 0.04 (0.04–0.05)

Table 3 Data accuracy by each BIV method and age group

*Only calculated for children <10 years

Predictor Age < 5 years 
Adjusted ORs (95% CI) p-value Age ≥ 5 years

 Adjusted ORs (95% CI) p-value

Total sample size 159,390 26,188

Null model (Level 1) 0.535 0.883

ICC 13.9% 21.0%

Patient level
Age in years 1.33 (1.30–1.36) <0.01 0.98 (0.96–0.99) <0.01
Sex (ref = M) 1.01 (0.96–1.05) 0.81 1.02 (0.91–1.13) 0.86

Physician level

Years on EMR 1.01 (1.00–1.01) <0.01 1.03 (1.01–1.04) 0.01

Practice level

Patient volume (for every 
5000 patients) 

1.09 (1.08–1.11) <0.01 0.96 (0.91–0.99) 0.01

Proportion pediatric patients 
(0–19)

0.96 (0.93–0.98) <0.01 0.99 (0.98–1.01) 0.23

Table 4 Factors associated with data completeness (probability modelled is complete data point = yes)
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Due to the size of the data set and the number of random 
effects, the clustered data models lost stability and failed to 
converge when using the entire sample. Therefore, a subset 
of 10,000 patients was randomly selected in each age group 
and used to examine the effects of the covariates. In young 
children <5 years, for every additional year of age, the odds 
of having accurate data were 15% (95% CI: 11%–19%) less 
likely (see Table 5). On the other hand, in children 5–19 years 
for every year of additional age, the odds of having accurate 
data was 11% (95% CI: 8%–13%) more likely. Physicians that 
had been using EMR longer had a marginally lower propor-
tion of accurate data points in the young age group, and no 
significant difference in the older age group. Larger practices 
had 8% increased data accuracy for every increase in 5000 
patients in practice volume for both age groups. Practice vari-
ation explained a similar amount of the variance (level 1 null 
model ICC = 14.5%–19.9%) as the models examining data 
completeness.

DISCUSSION

This study examined the data quality of anthropometric mea-
surements extracted from primary care EMRs in Ontario. 
Overall, data completeness was 66.2% and accuracy was 
97.3%. Incompleteness was predominantly due to the high 
proportion of missing height data (32%). When we examined 
data completeness for measurements collected only at well-
child visits, the proportion of complete records increased to 
89%. 

These results were similar to previous work on data 
completeness in EMRs. A study from Kaiser Permanente 
Colorado examined EMR data on children 3–17 years of age 
and reported 64% of patients had a BMI measurement at any 
primary care visit and >95% at well-child visits.25 Accuracy 
of data recorded in EMRs was also consistent with the previ-
ous literature. One study in children 3–5 years of age used a 
similar multi-step data cleaning strategy and only found 2% of 

data to be erroneous.22 Another study replicated 11 different 
methods for identification of potential errors and found the 
prevalence of data errors ranged from 0.3% to 2.1%.16

The main factor that influenced data completeness and 
accuracy was child age. The direction and magnitude of 
the effect of age on data completeness at well-child vis-
its changed when examining children separately by age 
group. This is likely due to the high number of well-child vis-
its that occur in the first 2 years of life.23 Primary care pro-
viders who see young infants more often in the early years 
may not complete both a length and weight if the child had 
been seen recently. Moreover, measuring length of a child 
less than 2 years requires appropriate equipment, such as 
a length board, which may be a barrier to a complete growth 
assessment.26 Older children attending well-child visits in the 
5–19 year age group had marginally higher data complete-
ness. One reason may be because older children are less 
likely to attend well-child visits, height and weight measure-
ments may be completed more often if the primary care pro-
vider had not seen the child in a longer time interval. Until 
recently the recommendations for growth monitoring applied 
to well-child visits only.5,6 In 2015, the Canadian Task Force 
on Preventive Health Care changed the recommendation to 
performing both height and weight measurements at all vis-
its for primary and secondary prevention of obesity.27 Future 
analyses of EMR data will be able to assess the uptake of this 
recommendation.
Similar to the findings on data completeness, the effect of 

age on data accuracy was highly significant and differed by 
age group. One possible reason for this discrepancy is the 
tendency of measuring infants in pounds and ounces instead 
of kilograms. Identifying age as a determinant of data accu-
racy is important for future uses of EMR to develop new data 
cleaning algorithms that capture multiple unit conversions, 
especially for the youngest age group where data is most 
abundant. Despite the differences in age, the high proportion 
of accurate data was encouraging. One advantage of using 

Predictor Age < 5 years
ORs (95% CI)

p-value Age ≥ 5 years
ORs (95% CI)

p-value

Total sample size 50,615* 22,100*

Null model (Level 1) 0.8159 0.5575

ICC 19.9% 14.5%

Patient level
Age in years 0.85 (0.81–0.89) <0.01 1.11 (1.08–1.13) <0.01
Sex (ref = M) 1.00 (0.87–1.16) 0.98 1.08 (0.92–1.27) 0.37
Physician level
Years on EMR 0.97 (0.96–0.98) <0.01 1.01 (0.99–1.04) 0.32
Practice level
Patient volume (for every 

5000 patients)
1.08 (1.05–1.11) <0.01 1.08 (1.02–1.13) <0.01

Proportion pediatric 
patients (0–19)

0.95 (0.94–0.96) <0.01 1.00 (0.92–1.27) 0.99

Table 5 Factors associated with data accuracy (probability modelled is accurate data point = yes)

*The generalised linear mixed model (GLMM) did not converge using the full sample. A random sample of 10,000 patients was selected
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EMR data is the ability to examine multiple measurements 
on the same child.16,28 This not only aids the data cleaning 
process by being able to examine measurements before and 
after a suspect value, but it allows researchers to examine 
how the same population of children can change over time, 
including into adulthood. 

There were several limitations to this study. There may 
have been misclassification of the data accuracy outcome 
for several reasons. The lack of units for each numeric value 
for height and weight was problematic. Although most impe-
rial system values were excluded in the assessment of BIVs, 
the prevalence of invalid inliers for subjects contributing only 
one or two measurements is unknown. In the WHO computer 
program, weight-for-age is not calculated beyond 10 years 
of age, making it harder to determine which outliers for zBMI 
data are from weight data in adolescents. The BIV cut-offs 
suggested by the WHO for calculation of zBMI may be too 
conservative and be incorrectly excluding those patients with 
extremely high zBMIs.29 One previous study demonstrated 
the BIV cut-offs from the WHO underestimated obesity preva-
lence30 and recently, the Center for Disease Control (CDC) 
changed their upper limit for BIVs from >+5 to >+8.31 To 
the best of our knowledge, there are no validated or stan-
dardised rules on plausible changes over time to differentiate 
true errors from correct values.32 More research is required 
to determine valid BIV cut-offs that can be used for large 
data sets that are becoming more available with improved 
health information databases. Lastly, the clinic size variable 
may have been underestimated for 13% of observations 
because in eight clinics not all physicians contribute data to 
the EMRALD network.

The results from this study raise important considerations 
of the feasibility of using growth data from EMRs for public 
health and surveillance purposes. Visit type and age were 
important determinants for whether or not measurements 
were complete, specifically height. Previous research has 
shown a difference in zBMI between well-child and sick vis-
its15; we found mean zBMI from sick visits to be significantly 
higher than well-child visits. It may also be likely that children 
who attend regular well-child care are systematically different 
than those who only attend when sick. Therefore, it is impor-
tant to acknowledge possible selection biases that may be 
introduced when using data collected in routine primary care. 

Finally, our study population was skewed to be younger than 
Ontario rostered patients due to examining visits with growth 
data which are concentrated in children 0–4 years.

The next step to improving the quality of this EMR data 
should include developing more sophisticated data cleaning 
for efficiently maximizing the available data. This includes 
determining visit type through machine learning text clas-
sification of physicians’ common ‘short-hand’ for indicating 
well-child visits in patient progress notes, validating cor-
rect BIVs for patients with severe obesity and determining 
implausible changes in height and weight over specific time 
intervals. Future research should develop and validate these 
data cleaning algorithms for large study populations in order 
for researchers to standardise techniques. However, despite 
the need for continuous evaluation of data quality, the cur-
rent state of growth data was highly complete and accurate. 
EMRs are a good data source to characterise weight status 
in a large population of young children and may be useful 
in assessing uptake of recommendations or interventions 
related to childhood growth monitoring or obesity.
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