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Abstract: In voting theory, the Borda count’s tendency to produce a tie in an election varies 

as a function of n, the number of voters, and m, the number of candidates.   To better 

understand this tendency, we embed all possible rankings of candidates in a hyperplane 

sitting in m-dimensional space, to form an (m - 1)-dimensional polytope: the m-

permutahedron. The number of possible ties may then be determined computationally 

using a special class of polynomials with modular coefficients.  However, due to the 

growing complexity of the system, this method has not yet been extended past the case of 

m = 3.  We examine the properties of certain voting situations for m ≥ 4 to better 

understand an election’s tendency to produce a Borda tie between all candidates.   
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Introduction 

 This paper covers a wide range of sub-topics in the field of social choice theory, with 

the overarching goal of chronicling and expanding research into the properties of a voting 

rule known as the Borda count.  Specifically, our motivation is to count the number of 

different ways an election will produce a tie between all candidates according to this 

system.  This problem is central to determining the Borda count's decisiveness, or 

proclivity to produce an individual winner from an election instead of a tie.1  Over the last 

fifteen years, a great deal of research in this area has led to some useful results.  However, 

due to the computational complexity of the problem, most of this research has been limited 

to the case of 3-candidate elections. 

 The paper is divided into 3 main sections.  In Section I, we will provide general 

background on voting theory, introduce the Borda count, and present some simple results 

relevant to the problem of counting ties.  In particular, we will discuss a geometric object 

called the permutahedron, and explain how it is used to count the number of "Borda ties" 

(i.e., ties using the Borda count as the voting rule) between all candidates, in a method first 

discovered by Union College Professor William Zwicker in 2008 [3].     

 In Section II, we will review research on the problem of counting ties in 3-candidate 

elections.  The majority of this section focuses on two papers in particular, one by French 

1 The term decisiveness often refers to a black and white condition: a voting rule satisfies 
decisiveness if and only if it always produces a unique winner.  A weaker version of decisiveness 
has been defined as generic decisiveness, where a voting rule satisfies generic decisiveness if and 
only if it nearly always produces a unique winner.  Of course, this begs the question of what 
constitutes "nearly always".  For a comparison of these definitions, we refer the reader to [1].  Our 
use of decisiveness, as a measure of how often a voting rule produces a tie, is more in the vein of 
Cervone et al [2]. 
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economist Thierry Marchant, and the other by Steven Sam and Kevin Woods, professors at 

the Massachusetts Institute of Technology and Oberlin College, respectively [4 - 6].  

Interestingly, both papers were themselves expansions of mathematical research done 

mainly in the 1960s for a purpose entirely unrelated to voting theory.2  Marchant used the 

theory of random walks on special lattices, developed by Cyril Domb in 1960 for the study 

of crystallography, to count 3-way Borda ties in 3-candidate elections as a function of the 

number of voters in the electorate [7 ].  Sam and Woods, meanwhile, provided an 

alternative proof of a theorem first proved by French mathematician Eugene Ehrhart in 

1962 [8].  We will conclude Section II by reviewing Union College thesis student Rhongua 

Dai's 2008 application of Ehrhart theory for counting Borda ties [9].  Dai's research came 

after a 2008 paper by Lepelley, Louichi, and Smaoui, in which they made the first 

connection between Ehrhart Theory and the problem of counting specific sets of ballots 

cast in an election [10].  Drawing on Lepelley et al, and using a different set of assumptions 

than Marchant (thus changing the problem), Dai used computer software to count the 

number of 3-ways Borda ties in 3-candidate elections as a function of the number of voters.   

 We will begin Section III by giving a brief overview of the other half of Dai's thesis, 

where he confirms his computer generated result with basic combinatorial methods.  We 

will then present our own research into the problem of counting Borda ties.  Since Dai's 

Ehrhart Theory approach for more than 3 candidates was impeded by the limitations of 

computing power, our research expands on his combinatorial methods.  In essence, we 

have used the permutahedron to begin to classify and understand the relationships 

2 Sam and Woods do not work on voting theory either; however, we believe their new proof of 
Ehrhart's seminal theorem to be quite useful for anyone attempting to understand why functions 
that count ties in the Borda Count take the form that they do.     
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between different collections of ballots that produce an "all-way" tie when cast in an 

election.  We conclude Section III by presenting the results from a computer program that 

we have written to aid us in our classification efforts.  

 While a great deal of work has been done in the pursuit of determining the 

decisiveness of the Borda count, there is still much that remains, particularly for elections 

with 4 or more candidates.  As we will see, research related to this problem spans various 

topics in discrete mathematics, abstract and linear algebra, and affine geometry, to name 

just a few relevant fields.  Therefore, just as recent efforts to count Borda ties have drawn 

on initially unrelated work, it is quite possible that future research in this direction will 

open doors outside of social choice theory in exciting and unforeseen ways.    
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Section I:  

The Borda Count, Permutahedra, and Central Voting Situations 

1.0 Introduction to the Borda count 

 Historically, methods for choosing the winner of an election have varied from 

society to society.  The best-known method for a two-candidate election is Majority Rule 

voting, wherein each member of an electorate casts one vote for a preferred candidate.  Of 

course, the candidate receiving the greatest number of votes wins the election.  In 1952, 

American mathematician Kenneth May demonstrated that Majority Rule is the only method 

for determining the winner of a two-candidate election that meets a specific set of desirable 

criteria3 [11].  Examples of Majority Rule voting systems abound.  For instance, most U.S. 

states use Majority Rule to determine which presidential candidate will be awarded that 

state's total number of electoral votes.   

 For elections consisting of three or more candidates, the choice of voting rule 

(formally defined in Section 1.3) is less clear.  Different rules obey different sets of 

desirable and undesirable properties, and in 1951, American economist Kenneth Arrow 

showed that there is no one 'perfect' voting rule for an election between three or more 

candidates, i.e., no such voting rule could possess every desirable property4 [12].  Our 

3 While we do not delve into detail here, the conditions that hold for Majority Rule in two-candidate 
elections are anonymity, neutrality, and positive responsiveness.  Formal definitions and May's 
original proof of his theorem may be found in [11]. 
4 Again, we do not define these properties here, but they include Pareto efficiency, non-dictatorship, 
and independence of irrelevant alternatives (IIA), in addition to some other conditions [12].  
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paper is concerned with certain properties of the Borda count, a rule proposed by French 

political scientist and mathematician Jean-Charles De Borda in 1770.  The Borda count is 

currently used by various political and private organizations.5 

 We will now define the Borda count.    Let A = {a1, a2, . . ., am} be a finite set of 

alternatives (or candidates); let V = {v1, v2, ..., vn} be a finite set of voters; let a ranking σ be a 

strict linear ordering of the alternatives; and let L(A) be the set of all rankings.  Since |A| = 

m, then there are m! possible rankings, so |L(A)| = m!.  In the Borda count, each voter casts 

a ballot that corresponds to one of the m! rankings, rather than voting for a single 

alternative.  The first-place alternative in a single voter’s ballot is assigned m - 1 points, the 

second-place alternative is assigned m - 2 points, and so on, until the last-place alternative 

receives 0 points. 

 For instance, consider the three-candidate case where A = {p, q, r}.  Then there are 

3! (so 6) possible rankings in L(A).  For each ballot cast in the election, 2 points are 

awarded to the first-choice candidate on the ballot's ranking, 1 point to the second-choice 

candidate, and no points to the candidate lowest on the ranking. 

 The winner(s) or social choice(s) of the election is/are the alternative(s) with a 

greatest sum of points over all voters at the end of voting.  In some instances, the Borda 

count may result in a tie in the election. 

 

5 The National Assembly of Slovenia uses the Borda Count to elect two ethnic minority (Italian and 
Hungarian) members and the Associated Press uses the Borda Count to rank American college 
(NCAA) athletes, to name just a few current uses [13-14].  Interestingly, the Borda Count dates back 
far before Jean-Charles De Borda described it in the 18th century: the Roman Senate used the Borda 
Count as a voting method as early as 105 AD [15]. 
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1.1 Independent Culture and Independent Anonymous Culture    

 A profile reflects all ballots cast in some election, and it is convention to represent a 

profile by listing each ballot below a corresponding voter in column form.6  For example, 

consider the election with three candidates (A = {p, q, r}) and four voters (V = {v1, v2, v3, 

v4}), where v1 and v2 both cast ballots for the ranking with p first, q second, and r third 

(denoted p > q > r ) , v3 casts a ballot for q > r > p, and v4 casts a ballot for r > p > q.  This 

profile may then be written as   

v1 v2 v3 v4
p p q r
q q r p
r r p q

 

According to the Borda count, in the above profile, p receives 5 points (2 each from v1 and 

v2, 0 from v3, and 1 from v4); similarly, q receives 4 points and r receives 3 points.  Thus p is 

the winner. 

 An anonymous profile or voting situation is an m!-tuple 

∏  =  (n1, n2, … , nm!) 

of non-negative integers satisfying n = ∑ nj
m!
j=1 , where n is the number of voters in the 

electorate.  For the case of three alternatives, we interpret each nj as the number of voters 

who cast the jth ballot in the following list: 

 

6 More formally, a profile may be defined as a function P: N→L(A), i.e., as a function that assigns a 
voter to a ranking in L(A).  We say P ∈ L(A)N. 
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1. p > q > r 
2. p > r > q 
3. q > p > r 
4. q > r > p   
5. r > p > q 
6. r > q > p 

 

Note that for our purposes, the choice of how to index the rankings is largely arbitrary.  In 

⊛, we listed them by lexicographic order, where rankings are positioned according to their 

linear ordering in a dictionary.  By way of example, the voting situation corresponding to 

the previous profile would be 

∏  =  (2, 0, 0, 1, 1, 0). 

A voting situation may also be displayed in the same form as a profile, with number of 

voters, rather than the name of a voter, listed above a given ranking.  We think of a voting 

situation as corresponding to a profile where we are not interested in which voters cast a 

given ballot.  In other words, we treat two profiles as the same voting situation if voters 

simply swap ballots.     

 The probability of there being a tie in the Borda count depends on whether we are 

counting profiles or voting situations, as this probability can be expressed as either the 

number of profiles that produce ties over the number of possible profiles, or as the number 

of voting situations that produce ties over the number of possible voting situations.  There 

are two main assumptions relevant to the problem of counting Borda ties, and which 

assumption we choose corresponds to our choice between counting voting situations and 

counting profiles [16].  If we assume Independent Culture (IC), then we assume that each 

profile is equally likely to occur.  Since there are n ballots in a profile (one for each voter) 

⊛ 
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and m! possible rankings for a ballot, the probability of seeing a given profile is always 

� 1
m!

�
n

 .  For example, the probability of observing any m =3, n = 4 profile is just �1
6
�

4
=  1

1296
, 

or approximately 0.08%. 

 In Independent Anonymous Culture (IAC), we assume that each possible voting 

situation is equally likely to occur.  Thus in order to find the probability of observing a 

specific voting situation, we must count the number of total voting situations for m 

candidates and n voters.  We do this using the following well-known combinatorial 

theorem. 

Theorem 1.1. Consider all r-tuples (a1, a2, … , ar) such that a1, a2, … , ar ∈ ℤ≥0 and 

∑ ai
r
i=0 = b.  Then there exists �b+r−1

r−1 � distinct r-tuples.   

Proof:  Since each ai is nonnegative, we can replace each ai by a sequence of ai 1s (which 

means no 1s at all in the case of ai = 0).  In this form, there are now ∑ ai
r
i=0  1s, or b 1s, 

separated by r - 1 commas.  We see that the placement of the commas now determines the 

value of each ai when we convert the tuple back to its original form.  An example of this is 

shown in Figure 1 below.  Thus there are (b + r - 1) objects (1s + commas), and we can 

form any r-tuple (the original form) by choosing the position of the r - 1 commas.  Thus, 

there are  �b+r−1
r−1 � possible r-tuples, as desired. ∎ 

 

∏  =  (1  1,    ,    , 1 , 1,   ) =  (2, 0, 0, 1, 1, 0) 

Figure 1.  An example of the entries of 1's and commas that correspond 
to the voting situation from our earlier example. 
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 Applying Theorem 1.1 and our definition of a voting situation, we see that the total 

number of voting situations in an election with m candidates and n voters is simply 

�n+m! −1
m! −1 �.  Therefore, if we assume IAC, the probability of a given voting situation occurring 

is 

 
1

� (n + m! − 1)!
�(m! − 1)!�(n + m! − 1 − (m! − 1))!

�
=

1

� (n + m! − 1)!
�(m! − 1)!�(n!)

�
=  

�(m! − 1)!�(n!)
(n + m! − 1)!

. 

 For example, the IAC-probability for seeing a given m = 4, n = 4 voting situation is 

(5!)(4!)
9!

=  1
126

 , or 0.79%.   

 As we will see, the probability that an election will produce a Borda tie is different 

depending on whether we assume IC or IAC for our probability distribution (a simple 

demonstration of this difference can be done for the case of m = 3 and n = 2).  With the 

exception of Sections 2.0 and 2.1, the remainder of the paper will be concerned with IAC, 

and therefore the problem of counting voting situations.  

1.2 Permutahedra and the Borda count 

 In order to geometrically interpret the Borda count, we now assume that every 

finite set A of alternatives comes equipped with a single, fixed reference enumeration, 

where we take the reference enumeration of {a1, a2, . . ., am} to be the linear ordering a1 > a2 

> . . . > am.  We denote the reference enumeration of A = {a1, a2, . . ., am} as Ar = <a1, a2, . . ., 

am>.   For ai and aj as any two candidates in Ar, we write ai >σ aj if the ranking σ ranks 

alternative ai above aj.  For a given ranking σ, the rank ρ(aj) is the number of alternatives ak 
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in Ar satisfying aj >σ ak, and a rank vector ρ(σ) is the m-tuple (ρ(a1), ρ(a2), .  .  ., ρ(am) ), 

listing ranks in reference enumeration order.   

 As an example for the lexicographic reference enumeration <p, q, r> of three 

alternatives, consider the 3rd ranking, q > p > r, taken from our list ⊛ .  Then the rank ρ(p) = 

1, since alternative p is only ranked above one other alternative, r.  It follows that the rank 

vector ρ(3) for the 3rd ranking is (1, 2, 0), as ρ(p) = 1, ρ(q) = 2, and ρ(r) = 0.  Note how ρ(3) 

corresponds to how many points p, q, and r receive, respectively, from a single ballot cast 

for the 3rd ranking.   

 From a geometric perspective, the function ρ assigns each ranking to a point in ℝm.  

These points are the vertices of the m-permutahedron, an (m – 1)-dimensional polytope 

(see Section 2.5 for definition of dimension and polytope) living in ℝm with edges between 

points that differ only in the reversal of a single pair of alternatives.  As seen in Figure 2, the 

3-permutahedron is a regular hexagon in ℝ3.  Recently, Zwicker showed that the Borda 

count has an equivalent geometric form, called the Permuta-mean rule, whereby the 

winner of the election is the candidate atop the ranking on the permutahedron closest to 

the mean of all rank vectors of cast ballots (counting multiplicity) in the election [3].  Thus, 

an m-way tie corresponds to the mean point existing at the center of the permutahedron.  

10 
 



 
Figure 2.  The 3-permutahedron is a regular hexagon centered at the 
point (1,1,1). 

 

 It should be noted that traditionally, the m-permutahedron has vertices that are 

permutations of the set {1, 2, . . . , m}, not {0, 1, . . ., m - 1}, and lives in the hyperplane x1 + x2 

+ … + xm = ∑ 𝑚 − 𝑖𝑚−1
𝑖=0 .  We use our version of the m-permutahedron to correspond to our 

definition of the Borda count.  However, we observe that our definition of the Borda count 

is equivalent to a version that assigns scoring weights (introduced in Section 1.3) from m 

down to 1, rather than m - 1 down to 0.  We will also discuss other variations of the Borda 

count in Section 1.3. 

 Although the 4-permutahedron lives in ℝ4, it can still be visualized as a 3-

dimensional polytope, the truncated octahedron.  This is shown in Figure 3. 

1: p > q > r 
ρ(1)=(2,1,0) 

2: p > r > q 
ρ(2)=(2,0,1) 

3: q > p > r 
ρ(3)=(1,2,0) 

4: q > r > p 
ρ(4)=(0,2,1) 

5: r > p > q 
ρ(5)=(1,0,2) 

6: r > q > p 
ρ(6)=(0,1,2) 
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Figure 3. The 4-permutahedron is a truncated octahedron [2]. 

 

 The 4-permutahedron has 14 faces (8 regular hexagonal and 6 square), 24 vertices, 

and 36 edges.  The myriad symmetries in the truncated octahedron are central to the 

problem of counting the number of ways candidates can tie in the Borda count. 

1.3 The origin-centered Borda count 

 Before we begin our discussion of counting ties, it is necessary to take a step back 

and briefly discuss how the Borda count fits into the bigger picture of methods used to 

determine election outcomes.  First, we define a voting rule.  For a finite set A of m 

alternatives and a finite set V of n voters, a social choice correspondence (or voting rule) is a 

function that assigns to each profile or voting situation in L(A)N a non-empty set of 

alternatives containing the winner(s) or social choice(s).  The Borda count belongs to a 

particular set of voting rules called scoring rules, which can be defined in the following way:   

 Choose a vector w = 〈w1, w2, … , wm〉 of real-number scoring weights, satisfying w1 ≥ 

w2 ≥ . . . ≥ wm.  Each voter awards w1 points to a top choice, w2 points to a second choice, 

etc.  The winner is the alternative(s) with the greatest point total (sum of points over all 

voters). 
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 Thus, in Section 1.0, we defined the Borda count as a scoring rule where the scoring 

weights are set as w1 = m - 1, w2 = m - 2, . . . , wm= 0.  However, it is possible to adjust the 

scoring weights to obtain a scoring rule equivalent to this version of the Borda count.  In 

general, we can prove that a scoring rule is equivalent to the Borda count as defined above 

iff it its scoring vector is a positive affine transform (see Section 2.3) of the scoring vector 

defined above.  In other words, any scoring rule with evenly-spaced weights that are 

strictly decreasing yields the Borda count.  One common version of the Borda count is a 

scoring rule with the scoring weights decreasing from m to 1 rather than from m - 1 to 0.  

However, we are interested in another version of the Borda count, which we'll call the 

origin-centered (o-c) Borda count.  The o-c Borda count for m alternatives is the scoring 

rule with the vector of scoring weights 〈wi〉 defined as follows: 

(a)    〈wi〉 = 〈2(j − i) + 1〉i=1
m  where m = 2j for some j ∈  ℤ>0 

(b)    〈wi〉 = 〈(j − i) +  1〉i=1
m   where m = 2j + 1 for some j ∈  ℤ≥0 

 As an example, in a three-candidate election, m = 2j + 1with j = 1, so that the 

candidate in first place on a voter’s ballot receives (1 – 1) + 1 = 1 point, the second-place 

candidate receives (1 – 2) + 1 = 0 points, and the candidate in last place receives (1 – 3) + 1 

= -1 point.  For four candidates, m = 2j with j = 2, so that first place receives 3 points, 

second place receives 1 point, third place receives -1 point, and last place receives -3 

points.  

 At first glance, it may seem that the only real advantage from using the o-c Borda 

count is the more natural position of the m-permutahedron, which is now centered at the 

origin.  However, because of the equivalency between the Borda count and the Permuta-
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mean rule, the o-c Borda count also makes for greater combinatorial simplicity when it 

comes to counting the number of possible m-way ties for a given number of voters, as we 

will see later in Section 2.8. 

1.4 Central voting situations and m-way ties in the Borda count. 

 Our motivation for counting m-way ties is relevant to the broader interests of 

studying voting theory.  Among the properties a society might consider when selecting a 

voting rule is that rule’s propensity to produce a unique winner [1].  A rule that is likelier to 

yield an m-way tie, i.e., a less decisive rule, is therefore less likely to produce a unique 

winner.  While this occurrence may seem rare, and not worth considering for a large 

number of voters, it is certainly relevant when the number of voters is small.  For instance, 

assuming IAC for three alternatives and two voters, there are 3 different voting situations 

that will produce a 3-way tie in the Borda count, corresponding to an  1
7
 (or 14.3%) 

probability that the system will produce a 3-way tie. 

 For m alternatives and n voters, a central voting situation is a voting situation 

∏  =  (n1, n2, . . , nm!) that produces an m-way tie in the Borda count.7 

Proposition 1.4.1.  For m alternatives and n voters, a voting situation ∏  =  (n1, n2, . . , nm!) 

is central iff the (not necessarily distinct) rank vectors ρ(1), ρ(2), . . ., ρ(m!), corresponding 

to cast ballots in a list, satisfy the following criterion: 

7 We note that this definition of central is different than the one used by Cervone et al [2] and Dai 
[9], although in both papers, the conditions for centrality are proven to be equivalent to our 
definition for the case of 3 alternatives.   
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� nk𝛒(
m!

k=1

k) =
n
m

W���⃑  

where W���⃑  is the constant m-tuple of values corresponding to the sum W of the scoring 

weights wi.   

 Thus for the standard definition of the Borda count, W = ∑ m − im
i=1 , while for the o-

c Borda count, W = ∑ 2(j − i) +  1m
i=1  for m = 2j, and W = ∑ (j − i) +  1m

i=1  for m = 2j + 1. 

Proof of Proposition 1.4.1:   

(⇐): Let AR = <a1, a2, .  .  ., am> be a reference enumeration of m alternatives, and for an 

arbitrary voting situation ∏  =  (n1, n2, . . , nm!) with n voters, let s(ai) denote the Borda 

score of alternative ai for 1 ≤ i ≤ m.  Let ρ(k) denote the rank vector corresponding to the 

ranking on the kth ballot in a specified list.  Now assume 

� nk𝛒(
m!

k=1

k) =
n
m

W���⃑  

Thus the sum of rank vectors is constant over all entries, since n
m

W���⃑  is constant, meaning 

that s(a1) = s(a2) =  .  .  . = s(am).  Thus there is an m-way Borda tie, so ∏ is central, as 

desired. 

(⇒): Assume ∏ is central.  Let σ be any ranking with rank vector ρ(σ).  Then the sum of the 

ranks ρ(ai) (for 1 ≤ i ≤ m) in the rank vector ρ(σ) is  

� ρ(ai)
m

i=1

=  � wi

m

i=1

.  
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Since there are n rank vectors (corresponding to a single vote for each of n voters), then the 

sum of Borda scores over all candidates is  

n � wi

m

i=1

, 

which is just 

� s(ai)
m

i=1

. 

But s(a1) = s(a2) = .  .  . = s(am) by our centrality assumption.  So then  

� s(ai)
m

i=1

= m ∗ s(ai) = n � wi

m

i=1

 

Thus we may conclude that  

s(ai) =
n
m

� wi

m

i=1

.  

Since each alternative receives a total Borda score of  n
m

∑ wi
m
i=1 , it follows that the sum of all 

rank vectors is  

� nk𝛒(
m!

k=1

k) =
n
m

W���⃑ .  ∎ 

Corollary 1.4.2. In the o-c Borda count for m alternatives and n voters, a profile 

∏  =  (n1, n2, . . , nm!) is central iff the (not necessarily distinct) rank vectors ρ(1), ρ(2), . . ., 

ρ(m!), corresponding to cast ballots in a list, satisfy the following criterion: 
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� nk𝛒(
m!

k=1

k) = 0�⃑  

Proof of Corollary 1.4.2: 

For the o-c Borda count, either 

W = � 2(j − i) + 1
m

i=1

, where m = 2j for some j ∈  ℤ>0, or 

W = �(j − i) + 1
m

i=1

, where m = 2j + 1 for some j ∈  ℤ≥0. 

In either case, we can show that W = 0.  The corollary follows. ∎ 

Theorem 1.4.3.  For m = 2j (j=1, 2, 3, .  .  .) alternatives and n voters, if a voting situation is 

central, then n = 2k (k = 1, 2, 3, .  .  .).  ("A voting situation for an even number of 

alternatives can only produce an m-way Borda tie if there is an even number of voters.") 

Proof of Theorem 1.4.3: 

Let AR = <a1, a2, .  .  ., am> be a reference enumeration of m alternatives such that m = 2j for 

some j ∈ ℤ>0, and let ∏  =  (n1, n2, . . , nm!) be a central voting situation with n voters.  Take 

any alternative ak in A.  Let s(ak) be ak's o-c Borda score and let ri denote the number of 

votes for ballots where ak is ranked ith for 0 ≤ i ≤ m.  Then 

� ri

m

i=1

= n 

Now, we know ∏ is central iff s(ak) = 0, by Corollary 1.4.2.  So then  

17 
 



� riwi

m

i=1

= s(ak) = 0, 

where wi =  2(j −  i)  +  1 and m = 2j for some j ∈ ℤ>0.  Subtracting, we compute  

� ri

m

i=1

− � riwi

m

i=1

= n  

� ri

m

i=1

�1 − (2j − 2i + 1)� = n 

2 � ri

m

i=1

(i − j) = n 

So then 

� ri

m

i=1

(i − j) =
n
2

. 

But we see that n/2 must be an integer, so we conclude that n is in fact even, as desired.  ∎ 

 A version of this proof by Marchant, as pertains to profiles in IC, may be found in [4]. 
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Section II: 

Using Lattices to Count Ties: Random Walks and Ehrhart Theory 

2.0 Counting m-way ties in the Borda count in different "cultures" 

 The problem of counting m-way ties in the Borda count is not new.  Over the past 

fifteen years, research in this field has followed two different paths: one for counting 

profiles under IC assumptions, and one for counting voting situations under IAC 

assumptions.  In 2001, French economist Thierry Marchant corrected a forty-year-old 

formula used to explain the magnetic properties of crystals with random lattices walks and 

applied it to count the number of profiles that produce 3-way Borda ties between 3 

candidates as a function of n voters [4].  He then used lattice Green's functions to derive an 

approximate expression for 3-way ties as a function of n voters and compared values given 

by this expression to numerical results.  More recently, Union College Professor William 

Zwicker, thesis student Ronghua Dai, and others used the Ehrhart Theory of quasi-

polynomials and computer software to find the number of voting situations producing a 3-

way tie between three candidates as a function of the number n of voters [2, 9].   They 

confirmed their result with brute force combinatorial methods.  We now review and 

discuss both research into counting profiles and research into counting voting situations, 

and present a proof of Ehrhart's famous theorem.    

2.1 Counting profiles: random walks and Green's functions 

 In 2001, Marchant [4 - 5] used existing literature on the magnetic properties of 

crystals to study the IC-probability that a 3-candidate profile would produce a 3-way tie in 
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an election.  Marchant’s results corrected and expanded previous work by C. Domb some 

four decades earlier [7].   

 In the context of crystallography, a lattice can take on a variety of structures, 

including triangular structure, as seen below in Figure 4. 

 
Figure 4. Triangular lattice [4]. 

 

 A cycle in the above lattice is a path or “walk” that begins at a given start node x, 

travels along any number l of (not necessarily distinct) edges, and returns to the same 

node.  For instance, the shortest cycle of non-zero length has length l = 2, when a cycle 

travels one edge away from x and then returns; and it easy to see that for a fixed x, the 

number r2 of possible cycles for l = 2 is 6.  In a cycle where l =3, the path is around a single 

triangle in the lattice, and r3= 12 (there are six triangles surrounding each node, and each 

triangle can be travelled in two directions).  In 1960, Domb claimed to find a general 

expression for rl, that is, the number of possible cycles of length l for a given node on the 

triangular lattice, and he published his findings along with numerical values for 2 ≤ l ≤ 9.  

While his numerical results were correct, his published formula was flawed due to a 

multiplicative factor that was lost in the typing process [5].  After communicating with 

Domb, Marchant published the correct expression and showed how it could be used to 
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count the number of profiles producing m-way ties in the Borda count, where l = n, the 

number of voters in the election.   

 Although we do not go into detail here, the relationship between counting 3-way 

Borda ties and cycles on the triangular lattice is related to our notion of rank vectors and 

the permuta-mean rule.  Notice that any collection of 6 triangles centered around a node x 

on the lattice in Figure 4 forms a regular hexagon (think: 3-permutahedron), and a line 

between x and an adjacent node corresponds to one of the six rank vectors.  Therefore, 

taking a step between adjacent nodes on the lattice corresponds to a single ballot cast in 

the election.  In the same way that the Permuta-mean rule says that the mean of rank 

vectors in an election is at the center of the m-permutahedron if and only if there is an m-

way tie, a path on the lattice will end back at the start node x in the center of 6 triangles 

forming a hexagon (think: center of the 3-permutahedron) if and only if there is a 3-way tie.  

We will now present Marchant's main results and point the reader to [4 - 5] for the 

derivation. 

Theorem 2.1.1 [Domb and Marchant].  For 3 candidates and n voters, the number of 

profiles that produce a 3-way Borda tie is 

rn =  �
n!

s! t!
� 2s−q (t + q)!

��t + q
2 � !�

2
1

q! (s − q)!
qs,t

, 

where s, t = 0, 1, . . ., n; 2s + t = n; and 0 ≤ q ≤ s with (t + q) even.  Since there are (m!)n ways 

to form a profile under IC assumptions for an election with m candidates and n voters, the 

above theorem leads to the following corollary. 
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Corollary 2.1.2 [Marchant].  For 3 candidates and n voters, the probability that a profile 

produces a 3-way Borda tie is  

P3−way tie,m=3(n) =  
1

6n �
n!

s! t!
� 2s−q (t + q)!

��t + q
2 � !�

2
1

q! (s − q)!
qs,t

, 

where s, t = 0, 1, . . ., n; 2s + t = n; and 0 ≤ q ≤ s with (t + q) even.  As a simple example, let's 

consider a 3-candidate election with n = 3 voters.  Then according to our constraints, we 

must have, t = 0, 1, 2, 3 with 2s + t = 3 and t + q even.  The only combination of s, t, and q 

where these conditions hold is: s = 1, t = 1, q = 1.  So we compute 

P3−way tie,m=3(3) = �
1

216
6

(1)(1)
� �20 2

12
1

(1)(1)
� =

1
18

, or 5.55%  

In contrast, there are 2 voting situations with 3 voters and 3 candidates that result in a 3-

way Borda tie (see Section 3.0 below), so the probability that a voting situation where m, n 

=3 results in a 3-way Borda tie is  

2
�(m! − 1)!�(n!)
(n + m! − 1)!

=  2
(120)(6)

40320
=  

1
28

, or 3.57% 

 Shown below are some of Marchant's numerical results, which he obtained from 

Corollary 3.2, where we have multiplied by 6n to obtain corresponding approximate rn 

values (representing the total number of profiles with n number of voters that result in a 3-

way Borda tie). 
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n 1 2 3 4 5 6 7 8 9 ∞ 

rn 0 6 12 90 360 2040 10080 54800 290640 --- 

P3-way tie, m = 3(n) 0 0.167 0.056 0.069 0.046 0.044 0.036 0.033 0.029 0 

Table 1. Approximate numerical results from Theorem 3.1 and Corollary 3.2 [4]. 

 

 As seen above in Table 1, the probability that a profile produces a 3-way Borda tie 

does not decrease steadily as a function of voters.  In fact, the probability increases from 

three to four voters, before decreasing in non-constant intervals for 4 ≤ n ≤ 9.  However, for 

n ≥ 10, the probability of an m-way tie will decrease asymptotically as it approaches zero in 

the limit as n approaches infinity.  This may be seen in Appendix I, where we show results 

from Marchant's Monte-Carlo simulations for up to 10 candidates and up to 100 voters.  A 

function that approximates this asymptotic behavior well for n ≥ 10 can also be derived 

using lattice Green's functions.  We will now present the basic concepts behind this 

derivation.  Since our analysis is only an outline, we direct the interested reader to 

Marchant's primary reference on random walks [17] and two other helpful resources [18 - 

19]. 

 Choose any starting node x on a d-dimensional lattice and let l be a d-dimensional 

vector.  Now let Pn(l) denote the probability that a random walk of n steps (where a step 

can be of any length) from x will conclude at the end point of the vector (relative to x).  It is 

convention that we may refer to this end node as l although we have already defined l as 

the vector itself.  From any node l' on the lattice, the probability that a single step move will 
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result at l is denoted p(l - l').  Therefore, the probability that a walk starting at x and ending 

at l in n + 1 steps is given by the simple recurrence relation: 

Pn+1(𝒍) =  � p�𝒍 − 𝒍′�Pn�𝒍′�,
𝑙′

                                Equation 2.1.4 

where the sum is taken over all nodes l' of the lattice.  Since the above relation holds 

regardless of how we choose our starting point x (a property known as translational 

invariance), the above form can be reduced to a discrete convolution: 

Pn+1(𝒍) =  p�𝒍 − 𝒍′� ∗ Pn�𝒍′�,                               Equation 2.1.5      

where ∗ denotes the convolution and we note that Pn(l') is itself a convolution. 

Furthermore, Pn+1(l) may be written in terms of the probabilities of reaching each node on 

steps along the way to l, i.e.,  

Pn+1(𝑙) =  p1 ∗ p2 ∗  .  .  .  ∗ pn ∗ pn+1 ∗ P0,              Eq  uation 2.1.6 

where we set P0 = δ(x) = � 1 for 𝒍′ = 𝒙
0 otherwise

� to denote that our starting point is at x. 

 In order to simplify Equation 2.1.6, we must introduce the discrete Fourier 

transform (DFT).  For a given sequence of N complex numbers X={x0, x1, .  .  ., xN-1}, the DFT 

of X is the N-periodic sequence of complex numbers, whose kth entry is given as: 

x�k =  � xn

N−1

n=0

⋅ e−i2πkn/N. 
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Now, according to the convolution theorem (the formal statement and proof of which may 

be found in [18]), the Fourier transform of a convolution of two functions is the product of 

the Fourier transforms of each function.  Thus, Equation 2.1.6 may be written as  

P�n+1(𝒌) =  p�1p�2 .  .  . p�n+1 =  � p�i,
n+1

i=1

                              Equation 2.1.7 

where we have changed l  to k since the domain of our function has changed after the DFT.  

At this point, we can introduce what is known as the 'structure function,' which describes 

the DFT of the probability function p for an individual step on a given lattice.  For the 

triangular lattice shown in Figure 4, the structure function is given as  

𝜆(𝒌) =  
1
3

(cos𝑘1 + 𝑐𝑜𝑠𝑘2 + cos(𝑘1 +  𝑘2).                     Equation 2.1.8 

We can now invert the DFTs in Equation 2.1.6 and use Pn+1(l) to obtain the generating 

function,  

P(𝒍, ξ) =  � Pi(𝒍)ξi
∞

i=0

=
1

(2π)d � .  .  . �
e−i𝒍⋅𝒌dd𝒌

1 −  ξ𝜆(𝒌)
𝐵

,                       Equation 2.1.9 

where d is the dimension of the lattice (2 in this case) and B = [-π, π]d  is called the first 

Brillouin zone.  The function on the right in Equation 2.1.9 is called the Green's function of 

our lattice, or the lattice Green's function (LGF).  Setting l equal to the 0 vector to limit the 

above function to the probability that our path is a cycle, Zumofen and Blumen [20] showed 

that we can substitute our structure function (Equation 2.1.7) into the LGF to get 
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P(𝟎, ξ) =  
6

πξ√a + 1√b − 1
𝐾 ��

2(b − a)
(a + 1)(b − 1)

� ,                   Equation 2.1.10 

where a =  3
ξ

+ 1 − �3 + 6
ξ
, b =  3

ξ
+ 1 + �3 + 6

ξ
, and K is itself a function known as the 

complete elliptic integral of the first kind.  For the right conditions of  ξ (specifically, ξ ≈ 1), 

we can expand Equation 2.1.10 and substitute back into the left side of the equality in 

Equation 2.1.9 to see that, for n sufficiently close to infinity,  

Pn+1(𝟎) ≈
√3

2πn
. 

Thus, this expression explains the asymptotic behavior of P as a function of n, and as 

demonstrated in Appendix I, actually fits the Monte Carlo results for n ≥ 10 fairly well.  

Marchant attempted to use the above method to derive LGF's and approximate probability 

functions for elections with 4 or more candidates, where one can imagine that the 2-

dimensional triangular lattice would become a 3-dimensional lattice with truncated 

octahedrons divided into 12 subsections with a node at the center.  In the end, Marchant 

was unable to integrate the LGF for more than three alternatives [4]. 

2.2 Counting voting situations: an introduction to Ehrhart theory  

 Whereas random walks and lattice Green's functions have proved most useful for 

finding the probability of a 3-way Borda tie assuming IC, French mathematician Eugene 

Ehrhart's theory of quasi-polynomials (polynomials with periodic coefficients) has done 

equally well assuming IAC.  Developed in the 1960s, Ehrhart theory is used to count the 

number of integer lattice points contained within a region in Euclidean space called a 
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polytope, when the polytope is dilated by an integer factor, i.e., when every element of the 

polytope is multiplied by an integer [8].  However, the utility of Ehrhart polynomials for 

voting theory was only realized in 2008, when Lepelley, Louichi, and Smaoui published 

some initial results on the Borda count and Plurality voting [10].  In essence, a region in 

space can be parameterized with linear constraints such that the integer points within the 

region represent specific voting situations.  Hence the applicability of Ehrhart theory, with 

the dilation factor becoming the number of voters in the electorate. This connection paved 

the way to further research.  Later in 2008, Union College thesis student Ronghua Dai used 

Ehrhart theory to find an expression for the number of 2 and 3-way Borda ties as a function 

of n number of voters in the case of 3 alternatives [9].  We now discuss the basics of 

Ehrhart theory and present Dai's results. 

2.3 Introduction to affine geometry I 

 In order to properly understand Ehrhart Theory, we must first introduce some basic 

definitions from affine geometry.  Let S be a subset of Euclidean space and take any s1, s2, . . 

., sk in S.  Let λ1, λ2, . . . , λk  be any nonnegative real numbers such that ∑ λi
k
i=1 = 1.  Then S is 

convex if ∑ λisi
k
i=1 ∈  S always holds.8  Geometrically, S is convex if for any two points si and 

sj in S, all of the points on the straight line between si and sj are also in S.  For example, in 

Figure 5, the set A is convex while the set B is not. 

 

 

8 It is sufficient to define convexity for k = 2, but this more general statement follows as a 
consequence. 
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Figure 5.  For the above sets A and B living in an arbitrary plane,  A is 
convex while B is not, as evidenced by the red line connecting two 
points in B, where part of the line is outside B. 

 

 Next, let X = {x1, x2, x3, . . .} be a set of points in Euclidean space.  Then the convex hull 

of X, denoted CH(X), is the (unique) minimal convex set containing X.  Equivalently, 

CH(X) =  ��� αixi
i

� ∀i: αi ∈  ℝ, αi ≥ 0 and � αi
i

= 1�. 

By way of example, let X be the set of three points in an arbitrary plane shown in Figure 6.  

Then the set C = CH(X), while D ≠ CH(X), although it is still convex. 

 

    

Figure 6.  Left: C is the convex hull of the 3 points in X. Right: D is 
convex, but D ≠ CH(X). 

  

 The definition for the affine hull of X, denoted Aff(X), is the same as the definition for 

CH(X), except that the αi scalar coefficients may be negative. 

Aff(X) =  ��� αixi
i

� ∀i: αi ∈  ℝ and � αi
i

= 1�. 

A B 

C D 
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Geometrically, this means that the affine hull of two points is the line going through the 

points; the affine hull of three non-collinear points is the plane containing the points; and 

the affine hull of four points in ℝ3, not lying in the same plane, is all of ℝ3.   

 An affine transform is a function f: ℝ → ℝ of the form x ↦ ax + b where a and b are 

real constants, and a positive affine transform adds the restriction a > 0.  

2.4 Pick's Theorem 

 A convex lattice polygon P is a convex polygon in ℝ2 whose corners are integer 

lattice points.  We define nP = {na | a ∈ P}, where n is a positive integer called the dilation 

factor, and we say nP is the polygon P dilated by a factor of n.  Let A(P) denote the area of P 

with dilation factor of 1 (i.e., no dilation), let B(P) denote the number of lattice points on 

the boundary of P (also not dilated), and let Lp(n) denote the total number of lattice points 

in nP (including boundary points).  By way of example, consider the following convex 

polygon "P5" in ℝ2 with different dilation factors. 

 

Figure 7. Convex lattice polygon in ℝ2 dilated by factors of 1 ≤ n ≤ 4 [21]. 
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 Taking the above lattice to be the first quadrant of ℝ2 with x and y as the horizontal 

and vertical axes, respectively, we may define P5 with the following system of linear 

equations: 

𝑥 ≥  0 
𝑦 ≥  0 

𝑦 ≤  𝑥 +  2 

𝑦 ≤  −
1
2

𝑥 +  3.5 
𝑦 ≥ 2𝑥 − 3 

 
 Note that this may be written more simply in matrix form as:  

⎣
⎢
⎢
⎢
⎢
⎡
−1 0
0 −1

−1 1
1
2

1
2 −1⎦

⎥
⎥
⎥
⎥
⎤

�
𝑥
𝑦� ≤

⎣
⎢
⎢
⎢
⎡

0
0
2

3.5
3 ⎦

⎥
⎥
⎥
⎤
 

 Now, as seen in Figure 7, P5 is a pentagonal convex lattice polygon with area A(P5) 

that we may find by separately considering the two lattice triangles (one on top and one on 

the right side) and the lattice square.  Summing these three parts, we get A(P5) = A⧠ + 

A⧍upper + A⧍side = 4 + 1.5 + 1 = 6.5.  By inspection, we also see that the number of lattice 

points on the boundary of P5 is B(P5) = 7 and the number of total lattice points including 

the boundary is LP5(1) = 11.   

 In 1889, Austrian mathematician George Alexander Pick formulated the following 

result:  
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Pick’s Theorem9 (or Ehrhart's Theorem for ℝ2, integer vertices).  Let P be a convex lattice 

polygon, n ϵ ℕ.  Then 

Lp(n) =  A(P) n2 + B(P)
2

n + 1. 

 We omit a proof of Pick's Theorem here, but direct the reader to [23].  Returning to 

the example of the pentagonal convex lattice polygon from Figure 5, we can now solve for 

the number of lattice points for the largest shown dilation of 4P5 as follows: 

Lp5(4) = (6.5) 42 +  7
2

(4) + 1 = 119. 

More generally, we get the following quadratic polynomial for the number of lattice points 

as a function of n dilations: 

Lp5(n) = 6.5n2 +  3.5n + 1 

2.5 Introduction to affine geometry II 

 Over a half-century ago, Ehrhart generalized Pick's theorem to the case of rational 

vertices and higher dimensions.  However, for us to expand some of the concepts from the 

lattice polygon case, we must first introduce some more definitions from affine geometry.  

For the rest of the paper, when we refer to dimension, we mean affine dimension, defined as 

follows: 

 A subset X of Euclidean space has affine dimension d where d + 1 is the minimal size 

of a subset X' of X for which Aff(X') = Aff(X).   

9 Pick's original theorem did not actually concern the dilated polygon, but the step from Pick's 
original polygon to the dilated polygon can be easily made, e.g., [22]. 
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 For instance, a plane is 2-dimensional since it can only be formed by 3 or more 

points; a line is 1-dimensional since it can only be formed by 2 or more points; and a single 

point is 0-dimensional.  A hyperplane is an affine subspace (closed under affine transforms) 

of ℝd with dimension d – 1, or co-dimension10 1.  Thus, in ℝ2, a hyperplane is a line (e.g., one 

of the lines from the system of linear equations for the P5 example); in ℝ3, a hyperplane is a 

plane; and in ℝd, a hyperplane is the set of solutions to a single linear equation: 

�⃑� · �⃑� =  𝑎1𝑥1 + 𝑎2𝑥2 +  … + 𝑎𝑑𝑥𝑑 ≥ 𝑏       �𝑏 ϵ ℝ,   𝑎 ≠ 0�⃑ �. 

A Closed half-space is the set of all points on or to one side of a hyperplane.  Equivalently, it 

is the solution set to a single linear inequality.  A polytope is a bounded intersection of 

finitely many closed half spaces.  Equivalently, a polytope is the convex hull of finitely many 

points of ℝd.  For instance, P5 (from Section 2.4) is a polytope because it is the bounded 

intersection of five closed half spaces (think 5-sided polygon), where each closed half space 

is the set of all points on or to one side of 1-dimensional hyperplanes, or lines.  In terms of 

convex hulls, P5 is a polytope because it the convex hull of the set of points {(0, 0), (2, 0), (3, 

2), (1, 3), (0, 2)}.    

   The following is a famous example of a 2-dimensional polytope living in ℝ3.  

Consider the intersection of the set of closed half spaces: x, y, z ≥ 0, with x + y + z ≤ 1 and x + 

y + z ≥ 1.  This may be represented as CH{(1, 0, 0), (0, 1, 0), (0, 0, 1)}, or with matrix 

notation as 

10 In general, the co-dimension of an affine subspace V living in an affine space W is Dim(W) - 
Dim(V). 
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⎣
⎢
⎢
⎢
⎡
−1 0 0
0 −1 0
0 0 −1
1 1 1

−1 −1 −1⎦
⎥
⎥
⎥
⎤

�
𝑥
𝑦
𝑧

� ≤  

⎣
⎢
⎢
⎢
⎡

0
0
0
1

−1⎦
⎥
⎥
⎥
⎤
 

The intersection of the five closed half spaces forms a 2-dimensional polytope known as the 

2-simplex, shown below in Figure 8. 

 

Figure 8. The standard 2-Simplex in ℝ3. 

 More generally, we form the n-simplex as follows: Let xi ≥ 0 (i = 1, …, n + 1) 

   ∑ 𝑥𝑖 ≥ 1𝑛+1
𝑖=1                                          ∑ 𝑥𝑖

𝑛+1
𝑖=1 ≤ 1. 

 If for some V ⊂ ℤd, a polytope P = CH(V), then P is called an integral polytope.    If V ⊂ 

ℚd, then P is called a rational polytope.  Note that the standard 2-Simplex shown above is 

an integral polytope, as it is the convex hull of the integer points (1, 0, 0), (0, 1, 0), and (0, 0, 

1).  Also, in our earlier example, P5 is an integral polytope, since all vertices are on integer 

lattice points. 

 

33 
 



2.6 Quasi-Polynomials, Ehrhart's Theorem, and McMullen's Theorem 

 Ehrhart theory allows us to count integer points in rational polytopes, not just 

integral polytopes.  Take for example the following rational polytope, which we'll call PΔ, on 

an integer lattice. 

 

 

 

 

Figure 9. A rational polytope in ℝ2, the triangle with vertices (0,0), (2/3, 
0), and (0, 2/3), is seen dilated by factors of 2, 3, and 4. 

 

 

 In Figure 9, LPΔ(1)  =  1, or in other words, the original triangle only contains one 

lattice point (at the origin); LPΔ(2) = 3; LPΔ(3) = 6; and LPΔ(4) = 6.  Notice how LPΔ(n) 

increases, but then stalls when LPΔ(3) = LPΔ(4) = 6.  Rational polytopes can pick up 

integer lattice points in fits and starts as they dilate, but although this behavior may appear 

random, we will soon see that it actually has periodic features.  Accordingly, we use 

functions known as quasi-polynomials, a generalized form of polynomials, to calculate 

Lp(n).  

 A function f: ℕ → ℕ is a quasi-polynomial if there exists an integer N > 0 and 

polynomials fo, f1, …, fN-1 such that  

f(n) =  fi(n)     if n ≡ i mod N, 

(0, 2/3) 

(0, 2/3) 

(0, 0) 
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where the (non-unique) integer N is called the quasi-period of f .  Equivalently, we can write 

f(n) =  cd(n)nd  +  cd−1(n)nd−1+ .  .  . + c0(n),  

where ci(n) is a periodic function with integral period.  For all 0 ≤ i ≤ d, the quasi-period N 

must divisible by the minimal period of each function ci(n), although its non-uniqueness is 

due to the fact that it need not be least common multiple (lcm) [24]. 

 To illustrate how we interpret the above definitions, we will consider the following 

quasi-polynomial of degree 2, which we note does not correspond to any figure in this 

paper. 

f(n) = ≪ 1, 2 ≫ n2+ ≪ 3, 4, 5 ≫ n+≪ 6 ≫ 

Here, the fact that the quadratic coefficient  <<1, 2>> has two entries represents that c2(n) 

has period 2.  Thus c2(n) = 1 if n ≡ 0 mod 2, and c2(n) = 2 if n ≡ 1 mod 2.  Similarly, c1(n) 

has period 3 and c0(n) has period 1, i.e., c0(n) = 6 all of the time.   By way of example, for n = 

5, we would get c2(5) = 2, c1(5) = 5, and c0(5) = 6.  In the context of the first definition, we 

see that N = 6 is a quasi-period for f(n), as it is divisible by each of the coefficient functions' 

periods of 2, 3, and 1.  And we can see that there exists polynomials: 

𝑓0(𝑛) =  𝑛2 +  3𝑛 + 6 

𝑓1(𝑛) =  2𝑛2 +  4𝑛 + 6 

𝑓2(𝑛) =  𝑛2 +  5𝑛 + 6 

𝑓3(𝑛) =  2𝑛2 +  3𝑛 + 6 

𝑓4(𝑛) =  𝑛2 +  4𝑛 + 6 

𝑓5(𝑛) =  2𝑛2 +  5𝑛 + 6 
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where f(n) = fi(n) if n ≡ i mod 6.  For the remainder of this discussion, we will use the 

second definition of quasi-polynomials, rather than the definition that makes use of quasi-

period.  We are now ready to state the generalized version of Ehrhart’s Theorem.  

Ehrhart’s Theorem: Let nP be a d-dimensional (affine dimension d) rational polytope P in 

ℝk dilated by a factor of some n ϵ ℕ.  Then the number of lattice points Lp(n) is always a 

degree d quasi-polynomial, called the Ehrhart quasi-polynomial.  In particular, if P is an 

integral polytope, Lp(n) is a polynomial.11 

 In the late 1970s, British mathematician Peter McMullen expanded on Ehrhart's 

work by further interpreting the coefficients of the Ehrhart quasi-polynomial.  First, let the 

i-index of a rational d-dimensional polytope P be the smallest number si ∈ ℤ>0, i ∈ ℤ≥0, such 

that for each i-dimensional face Fi of P, the affine hull of siFi contains at least one integer 

point.  For this definition, we say the entire polytope P is a d-dimensional face of itself.  

Note that if i ≥ j, then si|sj [6, 25].  To better understand these definitions, consider the 2-

dimensional rational polytope, P = CH{(1
2

, 3
4

, −1
12

),  (1
6

, −1
12

, 5
12

), (−2
3

, 5
6

, 1
6
)} and its corresponding 

affine hull. 

11 Ehrhart also showed that the minimum quasi-period of Lp(n) divides the lcm of the denominators 
of the coordinates of P's vertices [8, 24]. 

36 
 

                                                           



 

Figure 10.  Upper left: the 2-dimensional rational polytope P= 
CH{(1

2
, 3

4
, −1

12
),  (1

6
, −1

12
, 5

12
), (−2

3
, 5

6
, 1

6
)},  dilated by factors of 1 ≤ n ≤ 6, with 

three 1-dimensional faces, F1,1, F1,2, F1, 3.  Lower right: the intersection of 
corresponding affine hulls and the first octant for each nP. 

 

 Here, P = F2 is necessarily the only 2-dimensional face of the polytope.  From the 

three points that build P, we find that the affine hull of F2 is the set of points {x1, x2, x3 | 3x1 

+ 6x2 + 12x3 = 5}.  An easy check to see if the affine hull contains any integer lattice points 

F1,1 

F1,3 

F1,2 
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may be done by calculating the greatest common denominator (gcd) of the coefficients of 

the xi; there exists such an integer solution if and only if the gcd of the coefficients divides 

the constant term (5 in this case).  Observe that by manipulating denominators, we can 

assume that the coefficients and the constant term can always be chosen to be integers if 

the initial polytope is rational.  We leave the proof that the hyperplane {x1, x2, . . ., xd |  ∀i: αi, 

b ∈ ℤ and α1x1 + α1x1 + . . . + αdxd = b}  contains integer points iff gcd(α1, α2, . . ., αd)| b to the 

reader.  Note that this method can only be used to confirm the existence of integer points in 

affine hulls of co-dimension 1.   

 Since gcd(3, 6, 12) = 3, and 3 ∤ 5, we know that Aff(F2) does not contain any integer 

lattice points.  Furthermore, the affine hull of 2F2 = {x1, x2, x3 | 3x1 + 6x2 + 12x3 = 10} and 3 ∤ 

10.  However, continuing in this way, we see that the affine hull of 3F3 does contain integer 

points (e.g., (1, 0, 1)) as 3 ∣ 15.  Thus, since there is only one 2-dimensional face and 3 is the 

smallest integer s2 such that Aff(s2F2)  contains integer lattice points, we conclude that the 

2-index for P is s2 = 3.   We also conjecture that 6 is the smallest integer s1 such that 

Aff�s1F1,1�, Aff�s16F1,2�, and Aff(s16F1,3) all contain integer points, so we conclude that the 

1-index for P is s1 = 6.12  Finally, we observe that the 0-index of P is simply the least 

common denominator (lcm) of the denominators of the coordinates of the three points (as 

a 0-dimensional face and the corresponding affine hull are the same point in P).  By 

inspection, we find that the 0-index is s0 = 12.  We see that s2 ∣ s1 ∣ s0, as noted above.  We 

are now ready to state McMullen's theorem. 

12 This conjecture is based on our only finding integer points contained within each of the three 1-
dimensional face's affine hulls dilated by a factor of 6 (or a multiple thereof).  Recall that we cannot 
apply the same method used for affine hull of the 2-dimensional face, since the affine hulls of the 1-
dimensional faces of P live in ℝ3 and therefore do not have co-dimension 1. 
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McMullen's Theorem: Let P be a rational d-dimensional polytope in ℝk with 

LP(n) =  cd(n)nd  +  cd−1(n)nd−1+ .  .  . + c0(n), 

as the Ehrhart quasi-polynomial.  Given a dimension i, with 0 ≤ i ≤ d, let si be the i-index of 

P.  Then si is a period of ci(t) [6, 25].  

 One consequence of McMullen's theorem is that if P is full-dimensional (d = k), then 

it follows that cd(n) has period 1, since the affine hull of P is all of Rk, which necessarily 

contains integer points.  In fact, Ehrhart showed that for full-dimensional polytopes, cd(n) = 

vol(P) [8, 26].  We will now prove Ehrhart's Theorem and McMullen's Theorem in parallel. 

 2.7 Proof of Ehrhart's Theorem, McMullen's Theorem 

 We will follow the form and substance of Sam and Woods [6], who employed 

simpler but less powerful tools than Ehrhart used in his original proof, which involved 

generating functions [8, 26].  When possible, we will fill in details omitted by the original 

paper.  First, we must prove a series of lemmas. 

Lemma 4.5: Define the falling factorial id ≔ i(i - 1)(i - 2) . . . (i - (d - 1)).  Then 

P(n) asserts that � id
n

i=0

=  
1

d + 1
(n + 1)d+1. 

We'll prove the lemma by induction on n.  For the base case, let n = 0.  Then on the left hand 

side (LHS), we compute:  

� id
n

i=0

=  0d  =   0(0 −  1) . . . (0 −  d +  1)  =  0.   
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And on the right hand side (RHS), we compute: 

1
d+1

(0 + 1)d+1 = � 1
d+1

 � 1d+1  = � 1
d+1

� (1)(0) .  .  . (1 −  d + 1) = 0, as desired. 

Thus P(n) holds for n = 0.  Next we'll assume that that P(n) holds for n and we'll show that 

P(n + 1) holds.  We compute: 

� id
n+1

i=0

=  � id
n

i=0

+ (n + 1)d  =  
1

d + 1
(n + 1)d+1 + (n + 1)d 

And we want to show:  1
d+1

(n + 1)d+1 + (n + 1)d =  1
d+1

(n + 2)d+1 .  We expand the LHS: 

1
d+1

(n + 1)d+1 + (n + 1)d  =  � 1
d+1

(n + 1)(n) .  .  .  �n − (d − 1)�� + �(n + 1)(n) .  .  .  �n − (d − 2)��. 

And similarly, for the RHS: 

1
d+1

(n + 2)d+1 =  1
d+1

(n + 2)(n + 1) .  .  . �n − (d − 2)�. 

Now let a =  1
d+1

(n + 2)(n + 1) .  .  . �n − (d − 2)�. 

Then substituting,, we see that the LHS becomes: 

(n−(d−1))
 (n+2) a +  (d+1)

 (n+2)
a,   

=  (n−d+1+d+1)
 (n+2)

a = (n+2)
 (n+2)

a = a, as desired.   

Thus we have proved that P(n+1) holds, and the lemma follows. ∎ 
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Lemma 4.6: Let f(n) =  cd(n)nd  +  cd−1(n)nd−1+ .  .  . + c0(n) be a quasi-polynomial of 

degree d, where ci(t) is a periodic function of period si, for each i.  Define F: ℤ≥0 →ℚ by 

F(n) =  � f(i),

�an
b �

i=0

 

where a, b ∈ ℤ and ⌊∗⌋ is the greatest integer ("floor") function.  Let Si = sib
gcd (si,a)

.  Then: 

(1)  F(n) =  Cd+1(n)nd+1  + Cd(n)nd+ .  .  . + C0(n) is a quasi-polynomial of degree d + 1; 

(2)  lcm{Sd, Sd-1, . . ., Si} is a period of Ci(t), for 0 ≤ i ≤ d; and 

(3) Cd+1 has period 1. 

 Before we prove the lemma, we'll consider an example given by Sam and Woods [6].  

Suppose we have the very simple quasi-polynomial, 

f(n) = ≪
1
2

, 0 ≫ n, 

and we would like to evaluate the sum, 

F(n) =  � f(i).

�3n
2 �

i=0

 

Then the period of c1(n) is 2 (as there are two spaces in the brackets before n) and the 

period of c0(n) is 1 (as c0(n) = 0 all of the time).  Thus s1 =2 and s0 = 1, and since a = 3, b = 2, 

we get: 
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S1 =
(2)(2)

1
= 4 and S0 =

1(2)
1

= 2. 

From part (3) of Lemma 4.6, we know that the period of Cd+1(n), or the period of the 

coefficient of the quadratic term in this case, is 1; the period of the C1(n) term is lcm(S1) = 

lcm{4} = 4; and the period of the C0(n) term is lcm{S1, S0} = lcm{4, 2} = 4.  In fact, 

F(n) =  � f(i)

�3n
2 �

i=0

=  � j

�3n
4 �

j=0

, 

where we were allowed to cut the number of terms in half and substitute in j because f(i) 

alternates between 0 for i odd, and i/2 for i even.  This gives 

� j

�3n
4 �

j=0

=  
1
2

��
3n
4

�� ��
3n
4

� + 1� =  
1
2

��
3n
4

� + 1�
2

 

=  
9

32
n2+ ≪

3
8 

,
−3
16

, 0,
3

16 
≫ n + ≪ 0,

−3
32

,
−1
8 

,
−3
32 

≫. 

Observe that the periodicities of the coefficients of this quasi-polynomial agree with the 

above calculations we made according to the lemma.  In particular, we see the importance 

of using lcm{Sd, Sd-1, . . ., Si} to find the period of Ci(n); while s1 was the only periodic term 

for f(n), its periodicity also affected the C0 term of F(n).  We will now prove the lemma. 

 For d, s, j ∈ ℤ≥0, let φ be the periodic function 

φs,j(n) =  �1 if n ≡ j (mod s)
0 otherwise

� 

and g be the quasi-polynomial 
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gd,s,j(n) =  φs,j(n) � �
n − j

s
− k�

d−1

k=0

.  

Thus, in our last example, we had ≪ 1
2

, 0 ≫ n = ≪ 1, 0 ≫ �n−0
2

−  0� =  g1,2,0(n).   Since we 

may always write the function f(n) as a linear combination of these quasi-polynomials (for 

various degree d, period s, and j) , we need only prove that  

Gd,s,j(n) = � gs,j(i)

�an
b �

i=0

 

is a quasi-polynomial of degree d+1 with period S = sb
gcd (s,a)

 and leading term periodicity 1.  

Now, for some m ∈ ℤ≥0 with n ≡ j (mod) s, we may reduce g to a regular polynomial in m by 

setting n = ms + j so that 

gd,s,j(ms + j) =  φs,j(ms + j) � �
(ms + j) − j

s
− k�

d−1

k=0

 

=  1 �(m − k)
d−1

k=0

= m(m − 1) .  .  .  �m − (d − 1)� = md. 

Therefore, for any k ∈ ℤ+, we have  

� gs,j(i)
k

i=0

=  � gs,j(ms + j)

�k−j
s �

m=0

 

=   � md

�k−j
s �

m=0
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=
1

d + 1
��

k − j
s

� + 1�
d+1

         by Lemma 4.5.                        

For a, b ∈ ℤ, we may substitute so that k = �an
b

�.  Thus,  

Gd,s,j(n) =  
1

d + 1
��

�an
b � − j

s
� + 1�

d+1

 

is a quasi-polynomial with degree d + 1, as desired.  To check that Gd,s,j(n) has period S = 

sb
gcd (s,a)

 and a leading coefficient with periodicity 1, we will substitute n = mS + k and show 

that the resultant expression reduces to a polynomial in m:   

Gd,s,j(mS + k) =  Gd,s,j �m
sb

gcd (s, a)
+ k�  

1
d + 1

⎝

⎜
⎜
⎜
⎜
⎛

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
�
a �m sb

gcd(s, a) + k�

b � − j

s

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥

+ 1

⎠

⎟
⎟
⎟
⎟
⎞

d+1

=  
1

d + 1
��

ams
gcd(s, a) + �ak

b � − j

s
� + 1�

d+1

, 

where we have removed the floor function for ams
gcd(s,a), since this is necessarily an integer.  

Simplifying further, we get 

Gd,s,j(mS + k) =
1

d + 1
�

am
gcd(s, a) + �

�ak
b � − j

s
� + 1�

d+1

, 
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a polynomial in m with leading coefficient that does not depend on k and thus has period 1.  

The lemma follows. ∎ 

 We will now proceed to prove Ehrhart's Theorem and McMullen's Theorem in 

parallel, by induction on polytope dimension d.  For the base case, let d = 0.  Then a rational 

0-dimensional polytope is just a point in ℚk.  Let D be the smallest positive integer such 

that DP is an integer point.  Then it follows that  

LP(n) =  c0(n), where c0(n) = � 1 if D ∣ n
0 otherwise

�. 

 In other words, the number of integer points in the polytope will always be either 1 

or 0, as the polytope itself is just a single point; it is only an integer point if the dilation 

factor n is some multiple of D.  Therefore, Lp(n) is a degree 0 quasi-polynomial that reduces 

to a polynomial (periodicity 1) when D = 1, so Ehrhart's Theorem for the base case follows.  

Furthermore, the 0-index of P is s0 = D, since the affine hull of a point is just that point, and 

D is the smallest positive integer to produce an integer point.  And since the period of c0(n) 

is D, then McMullen's Theorem for the base case follows as well.   

 We will now assume that these two theorems hold for all d' < d.  For the inductive 

step, we will first prove three claims.   

Claim 1: Without loss of generality (WLOG), P is full-dimensional (dim(P) = k).   

Proof of Claim 1: Let s' be the smallest positive integer such that Aff(s'P) contains integer 

points.  Then s'∣ si for each i, as previously noted.  Now let V = Aff(s'P).   While we do not 

provide a proof, there exists an affine transformation T: V → ℝdim(P) that maps V ∩ ℤk (the 

integer lattice points in V) bijectively onto ℤdim(P), and we say P' = T(s'P).  Since V contains 
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s'P and ℝdim(P) contains T(s'P), then in particular, the bijective mapping T preserves integer 

points in the dilated polytopes.  For example, consider the polytope 

P = CH{(3,0, 0), (0, 3,0), (0, 0,3)}.  P is not full dimensional, as it is a 2-dimensional 

polytope in ℝ3.  In addition, we see that s' = 1, since Aff(P) (and in fact P itself) contains 

integer points.  In this case, we can produce a bijective affine transformation T(1P) by 

simply projecting P onto the x1-x2 plane as follows: 

 

Figure 11. 1P (left) and T(1P) = P' (right). 

 

Although the above example is quite simple, it demonstrates a one-to-one mapping from    

V ∩ ℤ3 onto ℤ2, and in particular, as seen in Figure 11, LP(1) =  LP′(1) = 10. 

 If we can prove the theorem for our full-dimensional polytope P', we can prove it for 

P, since  

LP(n) =  �LP′ �
n
s′

�  if s′ ∣ n

0  otherwise
�. 

Thus we may assume WLOG that P is full-dimensional (dim(P) = k)). 
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Claim 2: WLOG, P = CH{0, Q}, where Q is a (d - 1)-dimensional rational polytope.   

Proof of Claim 2: WLOG, we may translate some rational d-dimensional polytope by an 

integer vector so that it does not contain the origin, as such a translation will clearly not 

alter the number of integer lattice points in the polytope.  As we will see, LP(n) may be 

expressed as sums and differences of the number of integer points in polytopes of the form 

{0,Q} (including lower dimensional Q), using inclusion-exclusion methods to properly 

count the intersection of faces.  To accomplish this, we define two types of faces: 

 

1. The collection ℱv of faces F of P that are "visible": a facet (i.e., a (d -1)-dimensional face) 

is visible if 

∀a ∈ F, ∀ λ s. t. 0 <  𝜆 <  1 [ λa ∉  P], 

and a lower dimensional face is visible if every facet that it is contained in is visible.  

Geometrically, a face is visible if a line from the origin to any point on the face does not 

contain any other point in the polytope. 

2.  The collection ℱh of faces F of P that are "hidden": a facet is "hidden" if it is not visible, 

and a lower dimensional face is hidden if every facet that it is contained in is hidden.  

Geometrically, a face is hidden if some point on the face is 'behind' another point on the 

polytope, i.e., a line from the origin to some point on the face contains another point in the 

polytope. 

 For instance, consider the simple example where P = CH{(1,1),(3,1),(3,2)}. 

 

47 
 



 

 

 

 

Figure 12. The 2-dimensional polytope P = CH{(1,1),(3,1),(3,2)}. 

 We see that CH{(1,1),(3,2)}, a 1-dimensional facet of P, contains the point (3,2), and 

if we choose λ = 1/2, then we get (1/2)(3, 2) = (3/2, 1), which is in P.  Thus this facet is not 

visible, so it is hidden.  We can use the same point (3, 2) and the same λ to show that 

CH{(3,1),(3,2)} is hidden as well.  However, by inspection we see that for each point a in the 

facet CH{(1,1),(3,1)}, λa will not be contained in P (since any λ will send the x2 coordinates 

of points in CH{(1,1),(3,1)} to some x2 < 1, and therefore out of P).  Thus CH{(1,1),(3,1)} is 

visible.  From a geometric stand point, we see that a line from the origin to almost every 

point in CH{(1,1),(3,2)} and CH{(3,1),(3,2)} must pass through P, but a line from the origin 

to any point in CH{(1,1),(3,1)} will not.   In addition, the only 0-dimensional face that is 

hidden is the point on top of the triangle, since both facets containing it are hidden.  The 

other 0-dimensional faces are neither visible, nor hidden.   

 For a face F of P, let PF = CH(0,F).  Then inclusion-exclusion provides the following: 

LP(n) =  � (−1)d−1−dim(F)

F∈ℱH

LPF(n) −  � (−1)d−1−dim(F)

F∈ℱv

�LPF(n) −  LF(n)�. 

While we omit it here, a proof of this identity using a topological approach was included in 

the original paper by Sam and Woods [6].  We will, however, include and explain a helpful 

(3,2) 

(1,1) (3,1) (0,0) 
x1 

x2 
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example from the same paper.  Consider the following generic 2-dimensional polytope P 

(bold) in ℝ2 (the plane of the paper), which has been translated such that it does not 

include the origin. 

 

Figure 13. Arbitrary 2-dimensional polytope P (bold) shown with 4 1-
dimensional facets and 4 0-dimensional faces labeled.  4 2-dimensional 
convex hulls are formed from the origin and facets [6].     

  

In the above figure, we see right away that F1,1  and F1,2 are hidden, so F0,2 is also hidden.  

F1,3 and F1,4 are visible, so F0,4 is visible.  Since F0,1 and F0, 3 are contained in both hidden and 

visible facets, we consider these faces neither hidden nor visible.  We can now interpret the 

above inclusion-exclusion formula for P as follows: 

LP(n) =  � (−1)d−1−dim(F)

F∈ℱH

LPF(n) −  � (−1)d−1−dim(F)

F∈ℱv

�LPF(n) −  LF(n)� 

= �LPF1,1
(n) + LPF1,2

(n) −  LPF0,2
(n)�

−  ��LPF1,3
(n) −  LF1,3(n)� + �LPF1,4

(n) −  LF1,4(n)� −  �LPF0,4
(n) −  LF0,4(n)��. 

Geometrically, this looks like: 
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Figure 14. A polygon decomposition: a geometric interpretation of the 
above inclusion-exclusion formula [6]. 

 

 For an example of such inclusion-exclusion counting, let's assume that the face F0,2 is 

actually a point on the integer lattice.  Then in the above figure and formula, we see that F0,2 

is included once by PF1,1 , once by PF1,2 , excluded once by PF0,2 , and does not appear anywhere 

else.  Thus F0,2 is only counted once, as desired.  As another example, we know that the 

origin is an integer point, but one that is outside of P by assumption.  The origin is included 

a total of 3 times, once each by PF1,1 , PF1,2 , and PF0,1; and it is excluded a total of 3 times, once 

each by PF1,3 , PF1,4 , and PF0,4.  As the inclusions and exclusions cancel, the origin is not 

counted at all, as desired. 

 Returning to the proof of our claim, it remains to be shown that each of the 

decomposed parts of the polytope P (represented by terms in the inclusion-exclusion 

formula) can be dilated by an integer such that their affine hulls contain an integer point. 

We know that for any face F of P, the i-dimensional faces F' of PF are either faces of P or 

contain the origin, depending on whether F is hidden or visible.  If F' is a face of P, then 

Aff(siF') contains integer points by definition of si.  In the other case, if F' contains the 

origin, then Aff(siF') contains integer points because the origin itself is an integer point.  
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Thus, in either case, F' satisfies the assumptions of the Ehrhart's and McMullen's theorems, 

so we have addressed the first two terms of the inclusion-exclusion sum.  For the final term, 

∑ (−1)d−1−dim(F)
F∈ℱv LF(n), we are dealing only with faces of P of dimension d - 1 or lower.  

Here, according to the inductive hypothesis, the conditions of the theorems are also 

satisfied.  Therefore, if we prove the theorems for a polytope P' of the form conv{0, Q}, 

where Q is a (d - 1)-dimensional rational polytope, then the theorems follow for P as well, 

since we have shown that the number of integer points in P can always be considered as 

sums and differences of the number of integer points in different P'. 

Claim 3: WLOG, we may assume P = conv{0, Q}, where Q is a (d - 1)-dimensional rational 

polytope living in the hyperplane xd = q, where q ∈ ℚ>0. 

Proof of Claim 3: We say that a transformation x' = Ax is unimodular if A is a square integer 

matrix with det(A) = ±1.  Furthermore, a linear transformation sends a lattice to itself iff 

the transformation is unimodular.  While we omit a proof of this here, the interested reader 

can find this proof and a general introduction to lattice transformations in [27].  Our ability 

to always perform a unimodular transformation proves the claim. 

 

Figure 15. An example of an application of claims 1 - 3.  From left to 
right: a 2-dimensional polygon in ℝ3 is projected onto ℝ2 via an affine 
transform T, with integer points preserved; inclusion-exclusion is 
applied using CH(0, Q), where here Q is the 1-dimensional facet F1,1 of P; 
a unimodular transformation sends CH(0,Q) to the 1-dimensional 
hyperplane x2 = q, where q ∈ ℚ>0, and integer points are preserved. 
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 We will now proceed to prove Ehrhart's Theorem and McMullen's Theorem for P = 

conv{0, Q}, where Q is a (d - 1)-dimensional rational polytope living in the hyperplane xd = 

q, with q ∈ ℚ>0.  Since q is a positive rational, then WLOG, P lives in the hyperplane xd = a
b
, 

where a, b are positive integers and gcd(a, b) = 1.  Since faces of Q are in fact faces of P, then 

for an i-dimensional face of Q, Aff(siF) contains integer points.  Now let Q = b
a

Q , so then Q 

lives in the hyper plane xd = 1.  Then for an i-dimensional face F of Q, Aff(si
a
b

F) contains 

integer points.  So we have that the integer points in a dilated P, denoted by the 

intersection nP ∩ ℤd, is the disjoint union 

� iQ  ∩  ℤd

�na
b �

i=0

, 

which means that the number of integer points in P is just the sum  

LP(n) = � LQ(i)

�na
b �

i=0

. 

Since we know that LQ(i) is a (d - 1)-degree quasi-polynomial by the inductive hypothesis, 

we may conclude that LP(n) is a quasi-polynomial of degree d by Lemma 4.6.  Furthermore, 

the Si  in the statement of Lemma 4.6 are given by  

Si =
�si

a
b� b

gcd �si
a
b , a�

=
asi

a
= si. 

And since sd ∣ sd-1 ∣ .  .  . ∣ s0, then si = lcm(sd, sd-1, .  .  ., si), which is a period of the ith 

coefficient of LP(n) by Lemma 4.6.  We also see that if P is an integral polytope, then sd = sd-1 

= .  .  . = s0 = 1, so 1 is a period of each coefficient of LP(n), making LP(n) simply a polynomial.  

Thus the inductive step holds and we are done.  ∎ 
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2.8 Computer generation of the Ehrhart quasi-polynomial counting 3-way ties 

 For his 2008 undergraduate senior thesis, Dai modeled voting situations that produce a 3-

way Borda tie between 3 candidates as a system of linear constraints.  In order to understand his 

methodology, we revisit to some notation that we mentioned briefly in Section 1.4.  Let AR = <p, 

q, r> be a reference enumeration of candidates in an election with s(p), s(q), and s(r) denoting the 

Borda scores for p, q, and r, respectively.  Then there is a 3-way tie when s(p) = s(q) = s(r).  

Now, using the same list of rankings from Section 1.1, consider the voting situation 

∏  =  (n1, n2, n3, n4, n5, n6), 

where n1 + n2 + n3 + n4  + n5 + n6 = n.  With the o-c Borda count, we see that s(p) = n1 + n2 - 

n4 - n6 (i.e., p collects 1 point from each of the voters casting ballots where p is ranked first, 

no points from voters who cast ballots where p is ranked second, and -1 point from each of 

the voters casting ballots where p is ranked last).  Similarly, s(q) = n3 + n4 - n2 - n5, and s(r) 

= n5 + n6 - n1 - n3.  And since s(p) = s(q) = s(r), then n1 + n2 - n4 - n6 = n3 + n4 - n2 - n5 = n5 + n6 

- n1 - n3.  We can now set up our system of linear constraints as follows: 

   (1) n1 + n2 + n3 + n4  + n5 + n6 = n 
   (2) n1 + n2 - n4 - n6 = n3 + n4 - n2 - n5 

   (3) n3 + n4 - n2 - n5 = n5 + n6 - n1 - n3 
   (4) n1 ≥ 0 
   (5) n2 ≥ 0 
   ⋮ 
   (9) n3 ≥ 0. 

 Since each of the ni is nonnegative, then the number of integer solutions to the 

above system of linear equations equals the number of voting situations for n voters that 

will produce a 3-way Borda tie between 3-candidates.  However, we are not quite at the 
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final form of the system of linear equations that will be used by the computer software.  In 

order to get there, we will write (1), (2), and (3) using linear inequalities and also re-

arrange terms in (2) and (3).  Thus the first three lines of the above system become:  

   (1) n1 + n2 + n3 + n4  + n5 + n6 ≤ n 
   (2) n1 + n2 + n3 + n4  + n5 + n6 ≥ n 
   (3) n1 + 2n2 - n3 - 2n4 + n5 - n6 ≤ 0 
   (4) n1 + 2n2 - n3 - 2n4 + n5 - n6 ≥ 0 

   (5) n1 - n2 + 2n3 + n4  - 2n5 - n6 ≤ 0 
   (6) n1 - n2 + 2n3 + n4  - 2n5 - n6 ≥ 0, 

which may be written in matrix form as 

⎣
⎢
⎢
⎢
⎢
⎡

1 1 1 1 1 1
−1 −1 −1 −1 −1 −1
1 2 −1 −2 1 −1

−1 −2 1 2 −1 1
1 −1 2 1 −2 −1

−1 1 −2 −1 2 1 ⎦
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎡
n1
n2
n3
n4
n5
n6⎦

⎥
⎥
⎥
⎥
⎤

≤

⎣
⎢
⎢
⎢
⎢
⎡

n
−n
0
0
0
0 ⎦

⎥
⎥
⎥
⎥
⎤

, 

a 3-dimensional polytope living in ℝ6.  Dai used computer software LattE, short for Lattice 

point Enumeration, to find all nonnegative integer solutions for the above system and 

therefore the number of voting situations vs(n) that produce an m-way Borda tie for 3 

candidate elections [28].  Consistent with Ehrhart's Theorem, his result was a quasi-

polynomial, specifically 

vs(n) =  
n3 + 9n2+≪ 42,15 ≫ n+≪ 72,25, −88,9,56,7 ≫

72
, 

with degree 3 and minimal periods of 1, 1, 2, and 6 for c3(n), c2(n), c1(n), and c0(n), 

respectively.   
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Section III 

 Beyond m = 3: Using Permutahedra to Count Borda Ties 

3.0 Brute force combinatorics: confirming the computer result 

 Dai used basic combinatorial methods to calculate the same quasi-polynomial 

function vs(n) from Section 2.8.  Since we cannot currently compute the Ehrhart quasi-

polynomial for 4-way Borda ties between 4 alternatives with the LattE software, this brute 

force combinatorial approach initially seemed the most relevant for our goal of expanding 

beyond the case of m = 3.  However, our current inability to use combinatorial methods to 

find a quasi-polynomial expression that counts 4-way Borda ties between 4 alternatives 

demonstrates that the tremendous increase in complexity from 3 to 4 alternatives is not 

limited to Ehrhart theory.  Indeed, our research has focused on pinning down exactly how 

complex the 'brute force' approach becomes when increasing the number of alternatives 

from 3 to 4, as much as it has been concerned with actually counting ties.  Although we 

have not reached our ultimate goal of counting all 4-way Borda ties between 4 alternatives, 

we have found some interesting connections and results by expanding on Dai's 

combinatorial methods.  Therefore, we will begin this section by discussing the key parts of 

Dai's counting techniques. 

 First, recall from Section 1.4 that a voting situation ∏  =  (n1, n2, . . , nm!) is central if 

it produces an m-way tie in the Borda count.  We can think of all central voting situations 

for m alternatives as forming an ordering in the following way: 
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 Let ∏1 = (n1, n2, . . . , nm!), ∏2 = (n1', n2', . . . , nm!') be any two central voting situations.  

Then ∏1 > ∏2  iff  

  1) ni ≥ ni' for all 0 ≤ i ≤ m!, and 

  2) ni > ni' for at least one i with 0 ≤ i ≤ m! 

 We say that a voting situation is elementary if it is a minimal central voting situation 

in the above ordering.13  Put differently, a voting situation is elementary if it is central and 

contains no smaller central voting situations in the ordering.  For the case of m = 3, there 

are two 'types' of elementary voting situations (we will discuss what 'type' means in the 

next section): reversals and cycles.  As shown below in Figure 16, an elementary reversal is 

a voting situation with 2 voters, where the rank vectors14 of cast ballots are antipodal 

points on the permutahedron, i.e., points opposite each other on the permutahedron with 

mean at the center. 

 

Figure 16. The three elementary reversals for m = 3. 

13 As with our definition of central, our definition of elementary is also different from that used by 
Cervone et al and Dai, but equivalent for the case of m = 3 [2, 9]. 
14 Recall from Section 1.2 that a rank vector ρ(σ) for a ranking σ of m alternatives {a1, a2, . . ., am} is 
the m-tuple of ranks ρ(ai) in reference enumeration order, e.g., for reference enumeration                 
AR = <p, q, r> and a ranking σ = q > p > r, we get the rank vector ρ(σ) = (ρ(p), ρ(q), ρ(r)) = (1, 2, 0). 
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 As seen in Figure 16, an elementary reversal in a 3-candidate election is formed 

when two voters agree on a second place candidate but disagree on first and third choice 

candidates.  Next, we form an elementary cycle for m = 3, also known as a Condorcet15 cycle 

(or Condorcet paradox) for m = 3, by having three voters cast ballots in the following way: 

 Say a ballot is cast for (p > q > r).  Then another cast ballot sends p to third place, 

and q and r each move up one space to first and second place, respectively (q > r > p).  

Finally, a third cast ballot sends q to last place, and moves r and p up to first and second 

place, respectively (r > p > q).   

 Equivalently, a cycle can be formed using rank vectors.  For a rank vector of 

standard Borda scoring weights (w1, w2, w3) corresponding to a cast ballot, another ballot 

is cast with rank vector (w1+ 1 mod 3, w2 + 1 mod 3, w3 + 1 mod 3), and a third ballot is cast 

with rank vector (w1 + 2 mod 3, w2 + 2 mod 3, w3 + 2 mod 3).  This definition can be 

adjusted for non-standard Borda weights (e.g., for the o-c Borda count).  As shown in Figure 

17, there are two elementary cycles for m = 3.  

15 Condorcet cycles are named for 18th Century French mathematician and political scientist 
Marquis de Condorcet, who developed a voting rule in which Condorcet cycles also produce ties.  
Condorcet mysteriously died soon after being imprisoned in the aftermath of the French Revolution 
[29]. 
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Figure 17. 2 elementary cycles (reference enumeration AR = <P, Q, R>). 

 

 Dai's goal was to count the number of central voting situations for 3 candidates (and 

thus the number of 3-way Borda ties between 3 candidates) by counting the number of 

positive linear combinations of elementary voting situations.  His main challenge with this 

approach was the problem of double-counting.  For instance, a voting situation where each 

of 6 voters casts a ballot with a different ranking clearly produces a 3-way tie - in terms of 

the Permuta-mean rule, the mean of the 6 different rank vector coordinates on the 

permutahedron is at the center.  Of course, we only want to count this central voting 

situation once, but we see that it can be created in two ways from elementary voting 

situations: as either a sum of the 3 reversals or a sum of the 2 cycles. 

 Dai's crucial tool for overcoming this issue was proving that every voting situation 

was central if and only if it was created by a unique nonnegative (integer) linear 

combination of the three reversals and only one of the two cycles.  In other words, a central 

voting situation created by a nonnegative linear combination of reversals and a single cycle 

could only be created by that linear combination; conversely, any such linear combination 

58 
 



of reversals and a single cycle created a central voting situation. While we omit the proof 

here, we direct the interested reader to his 2008 thesis [8].  With this powerful result in 

hand, Dai was able to make use of Theorem 1.1 by modeling each central voting situation as 

a 4-tuple with entries corresponding to the number of reversals and one of the cycles in the 

voting situation (multiplying by a factor of 2 at the end to account for central voting 

situations constructed from each of the two cycles).  Dai divided the voting situations into 6 

cases: where the number of voters n = 3k (k odd); n = 3k (k even); n = 3k + 1 (k odd); n = 3k 

+1 (k even); n = 3k + 2 (k odd); n = 3k + 2 (k even).  For each case, Dai obtained a different 

polynomial function of n, and all six polynomials were then combined into one quasi-

polynomial.  Since Dai's quasi-polynomial was formed from 6 polynomials, we see that it 

had quasi-period 6.  As expected, this quasi-polynomial was the same one (vs(n)) given at 

the end of Section 2.8. 

3.1 m = 4: permuting voting situations of the same 'type' 

 In order to extend Dai's methods to the case of 4 candidates, we must also find the 

set of elementary voting situations that will produce all central voting situations via a 

unique nonnegative integer linear combination.  Only in this way we can make use of the 

power of Theorem 1.1.  But where to begin?   

 Dai began by classifying elementary voting situations into two categories, cycles and 

reversals, and this classification seems very natural.  One type corresponds to 2 voters, the 

other to 3.  Furthermore, in a geometrical context, we see that any two antipodal points on 

the 3-permutahedron can be mapped to two other antipodal points with rotations.  

Likewise, three rank vector points corresponding to a cycle can be mapped to the other 
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three-point cycle in the same way.  However, in the case of the 4-permutahedron (4 

candidates), classifying - and even finding - elementary voting situations becomes far more 

complicated. 

 For m = 4, there are 12 pairs of antipodal points on the 4-permutahedron, so we can 

think of these pairs as the analog of reversals for m = 3.  As an example, for the reference 

enumeration AR = <p, q, r, s> of alternatives in an election, the voting situation where one 

voter casts a ballot for (p > q > r > s) and one voter casts a ballot for (s > r > q > p) results in 

a four-way Borda tie.  This voting situation and all other reversals for m = 4 are color-coded 

on the permutahedron below in Figure 18. 
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Figure 18.  The 4-permuahedron with all twelve elementary reversals 
color coded.  For example, the voting situation corresponding to single 
votes for the ballots with rankings (p > q > r  > s) and (s > r > q > p) is 
circled in red. 

 

 Now, we know that there are no elementary voting situations for four alternatives 

and three voters by Theorem 1.4.3.  However, by inspection and computational methods 

(discussed below in Section 3.2) we have found that there are numerous elementary voting 

situations for m = 4 with 4, 6, 8, 10, and 12 voters; and there may be elementary profiles for 

14 or more voters.  Furthermore, even two elementary voting situations with the same 

number of voters may have very different geometrical representations on the 4-
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permutahedron.  For an example of this, we direct the reader to compare Appendix IIa, 

Appendix 2b, and Appendix 2c, where we have included color-coded sketches of the 4-

permutahedron with all elementary voting situations for 4 voters.  In addition, while there 

are no elementary voting situations with an odd number of voters, there are elementary 

voting situations with an even number of voters and an odd number of distinct rankings 

due to repeated ballots cast.  One example of this for AR = <p, q, r, s> is the voting situation 

where 2 votes are cast for (s > r > q > p), and 1 vote each is cast for (q > s > p > r), (q > p > r 

> s), (p > r > s > q), and (p > r > q > s).   

 The new complexity for m = 4 motivates our formal analysis of what it means for 

two elementary voting situations (and more generally, any two voting situations) to be of 

the same type.  Our discussion of types of voting situations will be organized into five parts.  

First, we will discuss our notion of type as being the generalization of Dai's distinction 

between elementary reversals and elementary cycles for 3 alternatives.  Here, we will also 

define rr-type, which we conjecture may be equivalent to our general notion of type.  

Second, we will define what it means for two voting situations to be of the same alternative 

type (or just a-type).  Next, we will define the antipodal map, followed by what it means for 

two voting situations to be of the same weight type (or just w-type).  Finally, we will discuss 

some of the connections and results that we have found by classifying voting situations into 

different versions of type.  We conjecture that all voting situations generated by the 

antipodal map and permutations of alternatives may be equivalent to the set of all voting 

situations of the same rr-type (generated by rotations and reflections).  In addition, we 

direct the reader to Appendix III for a brief discussion of how we can define voter type (or 

just v-type) to describe the relationship between voting situations and profiles.  The reader 
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should also note that throughout this section, we will repeatedly refer to two examples: one 

in which we turn a 4-voter elementary profile ℙ into another 4-voter elementary profile ℙ', 

and a second in which we turn an 8-voter elementary voting situation ℙ* into another 8-

voter elementary profile, ℙ*'.16 

3.1a Overview of type and rr-type   

 Working from Dai's distinction between elementary reversals and cycles, we think 

of two voting situations ∏1, ∏2 as being of the same type if a transformation of the 

permutahedron, where rank vectors from ∏1 are sent to rank vectors from ∏1, preserves 

adjacent vertices.  Now, we will classify two voting situations to be of the same rr-type (or 

just type) if and only if one's rank vector locations on the permutahedron can be obtained 

from the other's by a combination of rotations and reflections in (m - 1)-dimensional space 

(so not the original affine space that the m-permutahedron lives in, but the affine space in 

which the m-permutahedron is full-dimensional).  For m = 3, we only need rotations to go 

between two elementary voting situations of the same type, i.e., while preserving 

adjacency.  A pair of vertices on the 3-permutahedron corresponding to an elementary 

reversal can be rotated in the plane of the hexagon by multiples of 120° to obtain either of 

the other two elementary reversals (or the original reversal).  Similarly, a set of three 

vertices on the 3-permutahedron corresponding to an elementary cycle can be rotated in 

the plane of the hexagon by multiples of 60° to obtain the other elementary cycle (or the 

original elementary cycle).  However, as we will see, the step from 3 alternatives to 4 

16 At times we may also re-introduce labeled voters (and therefore profiles, rather than voting 
situations), but we will make clear when we are doing this.  Recall that any profile(s) can be turned 
into a voting situation if we simply choose to ignore the identities of the voters. 
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alternatives requires both rotations and reflections be used to obtain all elementary voting 

situations of the same type.  In order to rotate and reflect the m-permutahedron, we need 

to define an alternative permutation, an antipodal mapping, and a weight permutation. 

3.1b Alternative permutations, alternative permutation matrices, and alternative type        

 Let A = {a1, a2, …, am} be a set of m alternatives and V = {v1, v2, …, vn} be a set of n 

voters.  An alternative permutation πa: A A, written  

𝜋𝑎 = �
𝑎1 𝑎2 … 𝑎𝑚

𝜋(𝑎1) 𝜋(𝑎2) … 𝜋(𝑎𝑚)�, 

is a permutation on the set of alternatives.  For example, consider the set of four 

alternatives {a1, a2, a3, a4}.  Then the alternative permutation 𝜋𝑎 = �
𝑎1 𝑎2 𝑎3 𝑎4
𝑎1 𝑎3 𝑎2 𝑎4

� is the 

(bijective) function from A to A where  

πa(a1) = a1,  

πa(a2) = a3,  

πa(a3) = a2, 

πa(a4) = a4. 

Simply put, we have switched alternatives a2 and a3.  Now, an alternative permutation 

matrix 𝑃𝜋𝑎is the m x m square matrix  

𝑃𝜋𝑎 =  

⎣
⎢
⎢
⎡

𝑝1,1 𝑝1,2 … 𝑝1,𝑚

𝑝2,1 ⋱
⋮ ⋱

𝑝𝑚,1 𝑝𝑚,𝑚⎦
⎥
⎥
⎤
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where 𝑝ℎ,𝑘 = �1 𝑖𝑓 𝑎ℎ =  𝜋(𝑎𝑘)
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

�.  So for the above alternative permutation πa, we see that 

p1,1 = 1, p2,3 = 1, p3,2 = 1,p4,4 = 1, and all remaining entries are 0.  This gives the following 

matrix. 

𝑃𝜋𝑎 = �

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

� 

 To see how this matrix acts on a profile, consider the following scenario for 4 

alternatives and 4 voters.  Let Ar = <a1, a2, a2, a4> be an alternative reference enumeration 

and Vr = <v1, v2, v3, v4> be a voter reference enumeration.   

ℙ =  

𝑣1 𝑣2 𝑣3 𝑣4
𝑎1 𝑎2 𝑎3 𝑎4
𝑎2 𝑎1 𝑎4 𝑎3
𝑎3 𝑎4 𝑎2 𝑎1
𝑎4 𝑎3 𝑎1 𝑎2

 

From the (elementary central) profile ℙ, we can form a corresponding m x n integer matrix 

Sℙ in either of two equivalent ways.  In the first method, we can consider the jth column of 

the matrix Sℙ to be the rank vector for the ballot cast by the the jth voter in our voter 

reference enumeration.  In the second method, we can consider the ith row of Sℙ to be the 

score vector of the ith alternative in our alternative reference enumeration, where a score 

vector is defined as follows:   

 Let ai be the ith alternative in an alternative reference enumeration.  Given a profile, 

the score vector sc(ai)is the n-tuple such that the jth entry is equal to the Borda points 

awarded by the jth voter in the voter reference enumeration.  Thus for the above reference 

enumerations and profile ℙ, sc(a2) = (2, 3, 1, 0), as a2 receives two points from v1’s second 
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place vote, three points from v2’s first place vote, 1 point from v3’s third place vote, and no 

points from v4’s last place vote. 

 Using either the score or rank vector method described above, we now form the 

score-rank matrix Sℙ: 

𝑆ℙ = �

3 2 0 1
2 3 1 0
1 0 3 2
0 1 2 3

� 

 Let ℙ1, ℙ2 be two profiles for m voters and n alternatives, with S1, S2 as 

corresponding score-rank matrices.  Then we say ℙ1 and ℙ2 are of the same alternative type 

(or just a-type) if there exists an alternative permutation matrix 𝑃𝜋𝑎∈ 𝕄m x m such that 

𝑃𝜋𝑎S1 =  S2.  For instance, let’s consider the above profile ℙ with score-rank matrix Sℙ, and 

the above alternative permutation πa with alternative permutation matrix 𝑃𝜋𝑎 .  We 

compute: 

𝑃𝜋𝑎Sℙ =  �

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

� �

3 2 0 1
2 3 1 0
1 0 3 2
0 1 2 3

� = �

3 2 0 1
1 0 3 2
2 3 1 0
0 1 2 3

�. 

This second score-rank matrix, which we will call Sℙ’, has a corresponding profile ℙ’ that 

may be obtained from the original reference enumeration.  For instance, using the rank 

vector method, we observe from the first column that the first voter cast a ballot ranking a1 

first, a2 third, a3 second, and a4 last.  Continuing in this way, we get  
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ℙ′ =  

𝑣1 𝑣2 𝑣3 𝑣4
𝑎1 𝑎3 𝑎2 𝑎4
𝑎3 𝑎1 𝑎4 𝑎2
𝑎2 𝑎4 𝑎3 𝑎1
𝑎4 𝑎2 𝑎1 𝑎3

. 

Both of these elementary profiles may be seen on the 4-permutahedron in Appendix IIb 

(with a1 = p, a2 = q, a3 = r, and a4 = s).  Note that a profile/voting situation ℙ is central iff the 

sum of scores in a given row of Sℙ is the same for all rows.   

 By looking at the geometrical representation of all points on the 4-permutahedron 

(Appendix IIb), we see that by switching a2 and a3, we have rotated sets of rank vectors 

(corresponding to voting situations) on the 4-permutahedron by 90° about a plane formed 

by 2 of its 3 axes (e.g., in Appendix IIb, yellow coordinates go to purple coordinates).  

However, we can also see that a permutation acting on the individual rank vectors does not 

rotate each these coordinates by the same amount.  We leave open the question of whether 

an alternative permutation always produces rotations of the permutahedron, and if it does 

always produce rotations, then what these rotations might look like.  However, we note 

that by finding out what a single transposition (such as the one sending ℙ to ℙ') does to 

points on the 4-permutahedron, we can use symmetry to draw more general conclusions 

about the geometrical interpretation of alternative permutations. 

3.1c The antipodal map     

 We can also use an alternative permutation so that the set of rank vector 

coordinates given by ℙ can be mapped to a set containing the antipodal rank vectors, 

where the alternative permutation simply switches a3 and a4.  We originally conjectured 

that every such 'antipodal mapping' (formally defined in a moment) - which preserves 
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adjacent points on the permutahedron and thus clearly falls within our notion of type - 

could be achieved with alternative permutations.   However, we soon proved our intuition 

wrong by finding a counterexample.  For AR = <p, q, r, s> and n = 8, consider the following 

elementary voting situation: 

ℙ∗ =  

𝟐 𝟐 𝟑 𝟏
𝑟 𝑞 𝑠 𝑠
𝑝 𝑟 𝑝 𝑟
𝑞 𝑝 𝑞 𝑞
𝑠 𝑠 𝑟 𝑝

, 

where bold numbers above the ballot rankings represent the number of votes for each 

ballot.  Then ℙ* has score-rank matrix17  

Sℙ∗ =  

𝟐 𝟐 𝟑 𝟏
2 1 2 0
1 3 1 1
3 2 0 2
0 0 3 3

. 

Now, we'll define the antipodal map as the permutation of scoring weights 

𝜋𝑎𝑛𝑡 = �3 2 1 0
0 1 2 3�. 

We will soon provide a more complete definition for how this permutation acts on voting 

situation, but for now, we'll simply say that the antipodal map sends every individual 

scoring weight (an integer) in a score-rank matrix to a new scoring weight given by πant.  

Thus 3s and 0s switch, and 2s and 1s switch.  Equivalently, it sends each rank vector 

17 Since we are not labeling voters in this example, we can only form a unique score-rank matrix by 
fixing some ordering of the columns (instead of referring to specific voters).  Ultimately, however, if 
we are only interested in voting situations (i.e., for IAC-assumptions), the ordering of the columns 
does not matter.  In other words, as long we keep track of the number of votes for a given rank 
vector (column), we can form various equivalent score-rank matrices. 
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(column) in a score-rank matrix to its antipodal rank vector.  For ℙ*, the antipodal map 

takes Sℙ* and creates the new score-rank matrix    

Sℙ∗′ =  

𝟐 𝟐 𝟑 𝟏
1 2 1 3
2 0 2 2
0 1 3 1
3 3 0 0

, 

which in turn corresponds to the new elementary voting situation 

ℙ∗′ =  

𝟐 𝟐 𝟑 𝟏
𝑠 𝑠 𝑟 𝑝
𝑞 𝑝 𝑞 𝑞
𝑝 𝑟 𝑝 𝑟
𝑟 𝑞 𝑠 𝑠

. 

However, there is an easy way to see that this application of the antipodal map does not 

correspond to any alternative permutation.  By inspection, we see that in ℙ*, r gets ranked 

1st twice, 2nd three times, and last 3 times; in ℙ*', meanwhile, no alternative gets ranked in 

this way.  Thus r cannot be permuted into any other alternative to produce ℙ*', although as 

we said before, it is clear that ℙ* and ℙ*' are of the same type.  Since we cannot always use 

alternative permutations to obtain the antipodal map, which is just a reflection of the 

permutahedron, we will define a new mechanism in the context of permutation matrices. 

3.1d Weight type 

 In order to get from ℙ* to ℙ*' with permutation matrices, we have to introduce 

some more definitions.  For A = {a1, a2, …, am}, V = {v1, v2, …, vn}, and Borda scoring weights 

w1, w2, . . . , wm (e.g., m - 1, m - 2, . . ., 0),  we'll define a weight permutation πw: V V, written  
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𝜋𝑤 = �
𝑤1 𝑤2 … 𝑤𝑚

𝜋(𝑤1) 𝜋(𝑤2) … 𝜋(𝑤𝑚)�, 

as a permutation on the set of scoring weights.  Therefore, the antipodal map πant is just a 

special case of a weight permutation with π(3) = 0, π(2) = 1, π(1) = 2, and π(0) = 3.  

A weight permutation matrix 𝑃𝜋𝑤is the m x m square matrix  

𝑃𝜋𝑤 =  

⎣
⎢
⎢
⎡

𝑝1,1 𝑝1,2 … 𝑝1,𝑚

𝑝2,1 ⋱
⋮ ⋱

𝑝𝑚,1 𝑝𝑚,𝑚⎦
⎥
⎥
⎤

 

where 𝑝ℎ,𝑘 = �1 𝑖𝑓 𝑝ℎ = 𝜋(𝑝𝑘)
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

�.  So for the antipodal map πant, we get  

𝑃𝜋𝑤 = �

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

�. 

 We'll denote the product of a weight permutation matrix 𝑃𝜋𝑤  and a voting situation П as 

𝑃𝜋𝑤 ∗ П =  

⎣
⎢
⎢
⎡

𝑝1,1 𝑝1,2 … 𝑝1,𝑚

𝑝2,1 ⋱
⋮ ⋱

𝑝𝑚,1 𝑝𝑚,𝑚⎦
⎥
⎥
⎤

∗

𝑎1,1 𝑎1,2 … 𝑎1,𝑛

𝑎2,1 ⋱
⋮ ⋱

𝑎𝑚,1 𝑎𝑚,𝑛

, 

where each ai,j is an alternative in the list form of the voting situation18.  Then 

𝑃𝜋𝑤 ∗ П =  П′ =  

𝑎′
1,1 𝑎′

1,2 … 𝑎′
1,𝑛

𝑎′
2,1 ⋱
⋮ ⋱

𝑎′
𝑚,1 𝑎′

𝑚,𝑛

, 

18 For repeated ballots, we can either list the repeated rank vectors separately in this matrix or just 
keep track of which column in the matrix corresponds to more than one vote.  
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where we multiply in standard matrix form such that (1)(ai,j) = a'i,j and all (0)(ai,j) are 

ignored.  For instance, with the antipodal map weight permutation and the voting situation 

ℙ*, we get the product  

�

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

� ∗  

𝑟 𝑟 𝑞 𝑞 𝑠 𝑠 𝑠 𝑠
𝑝 𝑝 𝑟 𝑟 𝑝 𝑝 𝑝 𝑟
𝑞 𝑞 𝑝 𝑝 𝑞 𝑞 𝑞 𝑞
𝑠 𝑠 𝑠 𝑠 𝑟 𝑟 𝑟 𝑝

 =  

𝑠 𝑠 𝑠 𝑠 𝑟 𝑟 𝑟 𝑝
𝑞 𝑞 𝑝 𝑝 𝑞 𝑞 𝑞 𝑞
𝑝 𝑝 𝑟 𝑟 𝑝 𝑝 𝑝 𝑟
𝑟 𝑟 𝑞 𝑞 𝑠 𝑠 𝑠 𝑠

, 

which is just  

ℙ∗′ =  

𝟐 𝟐 𝟑 𝟏
𝑠 𝑠 𝑟 𝑝
𝑞 𝑝 𝑞 𝑞
𝑝 𝑟 𝑝 𝑟
𝑟 𝑞 𝑠 𝑠

. 

Now let ℙ1, ℙ2 be any two voting situations with score-rank matrices S1 and S2, 

respectively. Then we'll say ℙ1 and ℙ2 are of the same weight-type, or w-type, iff there 

exists a weight permutation matrix 𝑃𝜋𝑤∈ 𝕄m x m such that 𝑃𝜋𝑤 ∗  ℙ1 =  ℙ2.   

3.1e Connections between types 

 There are a couple of key observations that we can make now.  Surprisingly (at least 

to us at first), the set of all voting situations of the same a-type is not always equal to the set 

of all voting situations of the same w-type.  We have shown this in our most recent 

example, where ℙ* and ℙ*' are of the same w-type, but not the same a-type.  Furthermore, 

alternative permutations always preserve centrality (i.e., if one voting situation is central, 

then every other voting situation of the same a-type is also central).  In contrast, w-type 

permutations do not always preserve centrality, although we can easily show that the 

antipodal map is a special case where centrality is always preserved.  We also notice that 
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even though we cannot get from ℙ* to ℙ*' by permuting individual alternatives, we can get 

from ℙ* to ℙ*' by permuting entire rows of alternatives in the list form of the voting 

situation, specifically, with the row permutation   

𝜋𝑟 = �1 2 3 4
4 3 2 1�, 

which switches the first and fourth rows, and the second and third rows of the voting 

situation.  Furthermore, while we can get from ℙ* to ℙ*' by permuting individual weights, 

we cannot get from ℙ* to ℙ*' by permuting rows in the score-rank matrix.  Further 

inspection suggests that this contrast might be suggestive of a more general claim about 

weight permutations corresponding to permuting rows of a voting situation, and 

alternative permutations corresponding to permuting rows of a score-rank matrix.  

Presently, we have not been able to prove or disprove this connection.   

 All of this begs the question, when are two voting situations of the same rr-type - 

when can we be sure that one is simply a combination of reflections and rotations of the 

other?  At the moment, we conjecture that voting situations of the same alternative type are 

always generated by some form of rotation, which would then make them of the same rr-

type.  But we know from the ℙ*/ℙ*' example that these are not sufficient to produce all 

voting situations of the same rr-type.  If our conjecture about alternative permutations 

corresponding to rotations is true, then the reason for this is simple.  While specific sets of 

rank vectors (representing profiles/voting situations) can sometimes be mapped to their 

antipodal coordinates with a permutation of alternatives, every point on the entire 

permutahedron could only be rotated with an alternative permutation.  Since rotations are 

orientation preserving, alternative permutations do not result in reflections.  Thus, 
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obtaining all reflections would require the antipodal map.  While we conjecture that all 

profiles/voting situations generated by alternative permutations and the antipodal map 

are of the same rr-type, we do not know if these sets are in fact equivalent.  Are there some 

voting situations that are of the same w-type, but are not antipodal maps of each other and 

not of the same a-type, that nonetheless satisfy our general definition of rr-type?  We 

believe that future work directed at answering questions like these will not only aid us in 

counting ties with combinatorial methods, but will also contribute to the general study of 

profiles, voting situations, and the Borda count.  

3.2 Searching for elementary profiles with Python 

 Besides classifying elementary voting situations (and voting situations in general), 

we are also interested in counting elementary voting situations. With the help of Cornell 

physics graduate Neil Sexton, we have used the computer language Python to develop 

computer programs for counting elementary voting situations with different specified 

numbers of voters for 4-candidate elections.  We have attached a copy of the three versions 

(we will explain the reason 3 versions shortly) of the code for 8 voters in Appendix IV. 

 Each program works by first listing all 24 permutations of standard Borda scoring 

weights 3, 2, 1, and 0 as rank vectors.  For a pre-determined n (number of voters), the 

program checks which n sums of rank vectors yield the constant entries given by 

Proposition 1. 4. 1.  As an example for 8 voters, the program checks what combinations of 8 

rank vectors sum to the vector (12, 12, 12, 12).  The program then eliminates combinations 

that contain smaller central voting situations in the reference ordering described in Section 

3.0.  When we actually run the program, it first prints the list of all m! possible rank vectors, 
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followed by tuples containing the numbers on the list between 0 and m! - 1 which 

correspond to rank vectors in an elementary voting situation.  Finally, the program prints a 

final count for the number of elementary voting situations.  For instance, the output for 2 

voters looks like 

0 (0, 1, 2, 3) 
1 (0, 1, 3, 2) 
2 (0, 2, 1, 3) 
3 (0, 2, 3, 1) 
4 (0, 3, 1, 2) 
5 (0, 3, 2, 1) 
6 (1, 0, 2, 3) 
7 (1, 0, 3, 2) 
8 (1, 2, 0, 3) 
9 (1, 2, 3, 0) 

10 (1, 3, 0, 2) 
11 (1, 3, 2, 0) 
12 (2, 0, 1, 3) 
13 (2, 0, 3, 1) 
14 (2, 1, 0, 3) 
15 (2, 1, 3, 0) 
16 (2, 3, 0, 1) 
17 (2, 3, 1, 0) 
18 (3, 0, 1, 2) 
19 (3, 0, 2, 1) 
20 (3, 1, 0, 2) 
21 (3, 1, 2, 0) 
22 (3, 2, 0, 1) 
23 (3, 2, 1, 0) 

 
{(1, 22), (4, 19), (5, 18), (2, 21), (3, 20), (7, 16), (8, 15), (9, 14), (6, 17), (11, 12), (10, 13), (0, 23)} 

The number of elementary voting situations for 2 voters is 12 

 

 In this way, we counted the number of elementary voting situations for m = 4 and n 

≤ 12.  By adding an extra condition into the code, we also counted the number of 

elementary voting situations with no repeated ballots for m = 4 and n ≤ 12.  Finally, by 

taking out the conditions that eliminate smaller central voting situations in the ordering, 
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we counted the total number of central voting situations for m = 4 and n ≤ 12.  Our results 

are shown below in Table 3.2. 

 

n 2 4 6 8 10 12 
all central voting 

situations 12 114 1328 12981 100476 
 

638126 
all elementary 

voting situations 12 36 532 2076 5664 
 

5720 
elementary voting 

situations with non-
repeating ballots 12 36 220 96 0 

 
 

0 
Table 2.  Number of central voting situations, and number of elementary 
voting situations with and without repeated ballots for m = 4 and n ≤ 12. 

 

 As seen in the table, there are no elementary voting situations with repeated ballots 

for 2 voters and 4 voters.  The number of voting situations with no ballot cast more than 

once peaks at 220 for 6 voters, before dropping to 96 for 8 voters and 0 for 10 or more 

voters.  Meanwhile, the number of central voting situations appears to increase by roughly 

an order of magnitude per two voters (at least until n = 10).  While we do not present it 

here, Zwicker has used Ramsey theory to show that there is an upper bound on the number 

of elementary voting situations for a given number of alternatives.  

 In the future, when we fully describe voting situations of the same rr-type in the 

context of alternative and weight permutations, we hope to count the number of different 

rr-types for a given number of voters by building these conditions into the program.  We 

already know by inspection that there is only 1 rr-type for 2-voter elementary voting 

situations (reversals, Figure 18 in Section 3.1), and there are 3 rr-types for 4-voter 

elementary voting situations, all of which are shown in Appendix II. 

75 
 



 We also note that the utility and efficiency of our program is limited by the skill of 

the programmer (the author) and time.  In the future, a skilled programmer can likely 

merge separate codes for different numbers of voters, so that a user-friendly command can 

determine which n the user is interested in at the moment of running the code.   

3.3 Conclusions and future work 

 The shift from 3-candidate to 4-candidate elections corresponds an enormous increase in 

the complexity of the problem of determining the probability of getting an all-way tie in the 

Borda count.  The complexity of this problem has so far hindered four different approaches at 

solving it: one aimed at getting an exact IC-probability function, one trying to derive an 

approximate IC-probability function, and two different methods meant to obtain a quasi-

polynomial expression for counting ties under IAC assumptions.   

 Fifteen years ago, Marchant [4, 5] used the theory of random walks - relevant to the study 

of magnetic properties of crystals - to obtain an expression for the IC-probability of an election 

resulting in a 3-way Borda tie between 3 candidates as a function of n, the number of voters.  He 

then use Fourier transforms and lattice Green's functions to derive a formula that approximated 

the IC-probability of a 3-way Borda tie between 3 candidates, and found that the results from his 

two formulas were similar for n ≥ 10.  However, due to the complexity of the problem, Marchant 

was neither able to find an exact formula using random walks, nor an approximate formula using 

lattice Green's functions, for 4-way Borda ties between 4 voters. 

 In 2008, Dai and Zwicker [2, 9] used two approaches, Ehrhart theory and 'brute force' 

combinatorial methods, to get a quasi-polynomial expression counting the total number of voting 

situations, assuming IAC, which produce 3-way Borda ties between 3-candidates as a function of 
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n.  For the Ehrhart theory approach, they modeled the conditions for a 3-way Borda tie as a 

system of linear constraints, and used computer software to enumerate the total number of 

integer points within the polytope bounded by these constraints.  For their combinatorial 

approach, they counted the total number of central voting situations for m = 3 as special linear 

combinations of elementary voting situations.  However, the limits of computing power meant 

that they could not extend the Ehrhart theory approach to 4-way Borda ties between 4 candidates. 

 In the spirit of our predecessors, our research has been both theoretical and 

computational.  On the theoretical side, we have classified different versions of 'type' based on 

different kinds of permutations.  While we were unsuccessful in extending Dai's combinatorial 

approach to 4 candidates, we found some interesting connections between rank vector 

representations of profiles/voting situations on the 4-permutahedron.  We believe that an 

understanding of the connections between different types of profiles/voting situations may point 

future 'brute force' combinatorial efforts in the right direction.  On the computational side, we 

have written computer programs that count the number of central and elementary voting 

situations for m = 4 and n ≤ 12.  As computing power (and programming aptitude!) increases, 

these programs have the potential to extend our understanding of type even beyond m = 4.   

 The ultimate prize in this field would be finding a general theorem that gives the total 

number of all-way Borda ties as a function of both m, the number of candidates, and n, the 

number of voters (we're interested in IAC assumptions, but the utility of such an expression for 

an IC probability distribution would be equally profound).  Whether such an all-encompassing 

formula even exists is unknown.  What is known, however, is that there is still much work to be 

done on the problem of counting all-way Borda ties.  We hope that our review and research will 

aid and inspire future efforts.  
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Appendix I:  

Marchant's Monte Carlo approximations of IC-probabilities for all-way Borda ties [4]. 
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Appendix II: Color-coded elementary voting situations on the 4-Permutahedron for n = 4. 

Appendix IIa 
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Appendix IIb 
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Appendix IIc 
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Appendix III: Voter permutations, voter permutation matrices, and voter type 

 

 We can use matrices to formally define the relationship between profiles and voting 

situations.  For a set of alternatives A = {a1, a2, …, am} and a set of voters V = {v1, v2, …, vn}, 

we'll define a voter permutation πv: V V, written  

𝜋𝑣 = �
𝑣1 𝑣2 … 𝑣𝑛

𝜋(𝑣1) 𝜋(𝑣2) … 𝜋(𝑣𝑛)�, 

as a permutation on the set of voters.  Then a voter permutation matrix 𝑃𝜋𝑣is the n x n 

square matrix  

𝑃𝜋𝑣 =  

⎣
⎢
⎢
⎡
𝑝1,1 𝑝1,2 … 𝑝1,𝑛

𝑝2,1 ⋱
⋮ ⋱

𝑝𝑛,1 𝑝𝑛,𝑛⎦
⎥
⎥
⎤

 

where 𝑝ℎ,𝑘 = �1 𝑖𝑓 𝑣ℎ = 𝜋(𝑣𝑘)
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

�.  We can now state the following definition: 

 Let ℙ1, ℙ2 be any two profiles with score-rank matrices S1 and S2, respectively. Then 

we'll say ℙ1 and ℙ2 are the same voting situation iff there exists a voter permutation matrix 

𝑃𝜋𝑣∈ 𝕄n x n such that S1𝑃𝜋𝑣 =  S2.  For instance, consider the profile ℙ from example in 

Section 3.1b, 

ℙ =  

𝑣1 𝑣2 𝑣3 𝑣4
𝑎1 𝑎2 𝑎3 𝑎4
𝑎2 𝑎1 𝑎4 𝑎3
𝑎3 𝑎4 𝑎2 𝑎1
𝑎4 𝑎3 𝑎1 𝑎2

, 
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with the voter permutation 𝜋𝑣 = �
𝑣1 𝑣2 𝑣3 𝑣4
𝑣4 𝑣2 𝑣1 𝑣3

�.  So for the voter permutation matrix, 

we see that p1,3 = 1, p2,2 = 1, p3,4 = 1, p4,1 =1, and all other entries are 0.  Thus we compute  

S1𝑃𝜋𝑣 = �

3 2 0 1
2 3 1 0
1 0 3 2
0 1 2 3

� �

0 0 1 0
0 1 0 0
0 0 0 1
1 0 0 0

� = �

1 2 3 0
0 3 2 1
2 0 1 3
3 1 0 2

�. 

This corresponds to the new profile, 

ℙ′ =

𝑣1 𝑣2 𝑣3 𝑣4
𝑎4 𝑎2 𝑎1 𝑎3
𝑎3 𝑎1 𝑎2 𝑎4
𝑎1 𝑎4 𝑎3 𝑎2
𝑎2 𝑎3 𝑎4 𝑎1

, 

and it is easy to show that ℙ and ℙ' are the same voting situation in tuple form. 
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Appendix IV: the Computer Code 

 For purposes of brevity, we will only present three versions of the code: one which 

counts elementary voting situations for n = 8 (Appendix IVa), one which counts elementary 

voting situations with no repeated ballots for n = 8 (Appendix IVb), and one which counts 

central voting situations for n = 8 (Appendix IVc).  Equivalent versions of the code for other 

values of n may be obtained by modifying the conditions. 
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Appendix IVa: All elementary voting situations for n = 8. 

#This program counts the total number of elementary voting situations for 8 voters. 
 
import itertools 
import operator 
 
elementary = [] 
k = list(itertools.permutations(range(4))) 
for index, x in enumerate(k): 
    print(index, x) 
 
def tuple_sum(k,*args): 
    t_sum = (0,)*len(k[0]) 
    for a in args: 
        t_sum = tuple(map(operator.add, t_sum, k[a]))   
    return t_sum 
 
def idx_sum_not(not_val, *args): 
     
    for a in range(len(args)-1): 
        for b in range(a+1, len(args)): 
            if args[a]+args[b] == not_val: 
                return False 
     
    return True 
 
for i in range(len(k)): 
    for j in range(i,len(k)): 
        for l in range(j,len(k)): 
            for m in range(l,len(k)): 
                for n in range (m,len(k)): 
                    for o in range (n,len(k)): 
                        for p in range (o,len(k)): 
                            for q in range (p,len(k)): 
                                if tuple_sum(k,i,j,l,m,n,o,p,q) == (12, 12, 12, 12)\ 
                   and idx_sum_not(23, i,j,l,m,n,o,p,q)\ #do not count voting situations that contain reversals 
                   and set(tuple(itertools.permutations([i,j,l,m,n,o,p,q], 4))).isdisjoint(set(((5, 7, 14, 23),\ 
#do not count voting situations that countain 4-voter elementary voting situations 
(4, 8, 13, 21),(4, 12, 13, 17),(0, 7, 17, 22),(1, 4, 18, 23),(0, 11, 14, 21),(4, 7, 17, 18),(3, 8, 13, 22),\ 
(3, 10, 12, 21),(2, 11, 13, 20),(7, 8, 9, 22),(7, 10, 11, 18),(2, 3, 18, 23),(1, 10, 15, 20),(5, 6, 16, 19),\ 
(1, 4, 20, 21),(2, 9, 12, 23),(1, 8, 17, 19),(6, 8, 11, 21),(2, 3, 19, 22),(0, 9, 16, 18),(0, 14, 15, 17),\ 
(0, 5, 19, 22),(1, 6, 16, 23),(5, 9, 12, 20),(2, 12, 15, 17),(4, 6, 15, 22),(3, 11, 14, 18),(7, 9, 10, 20),\ 
(0, 5, 20, 21),(6, 8, 9, 23),(2, 10, 15, 19),(3, 13, 14, 16),(5, 12, 13, 16),(1, 14, 15, 16),(6, 10, 11, 19)))): 
                                            elementary.append((i,j,l,m,n,o,p,q)) 
elementary_unique = set(tuple(sorted(t)) for t in elementary) 
print(elementary_unique) 
print("The #of elementary voting situations for n = 8 is", len(elementary_unique))      
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Appendix IVb: All elementary voting situations with no repeated ballots for n = 8. 

 
#This program counts the total number of elementary voting situations with no repeated ballots for 8 voters. 
 
import itertools 
import operator 
 
elementary = [] 
k = list(itertools.permutations(range(4))) 
for index, x in enumerate(k): 
    print(index, x) 
 
def tuple_sum(k,*args): 
    t_sum = (0,)*len(k[0]) 
    for a in args: 
        t_sum = tuple(map(operator.add, t_sum, k[a]))   
    return t_sum 
 
def idx_sum_not(not_val, *args): 
     
    for a in range(len(args)-1): 
        for b in range(a+1, len(args)): 
            if args[a]+args[b] == not_val: 
                return False 
     
    return True 
 
for i in range(len(k)): 
    for j in range(i+1,len(k)): 
        for l in range(j+1,len(k)): 
            for m in range(l+1,len(k)): 
                for n in range (m+1,len(k)): 
                    for o in range (n+1,len(k)): 
                        for p in range (o+1,len(k)): 
                            for q in range (p+1,len(k)): 
                                if tuple_sum(k,i,j,l,m,n,o,p,q)\ 
                   == (12, 12, 12, 12)\ 
                   and idx_sum_not(23, i,j,l,m,n,o,p,q)\ #do not count voting situations that contain reversals 
                   and set(tuple(itertools.permutations([i,j,l,m,n,o,p,q], 4))).isdisjoint(set(((5, 7, 14, 23),\  
#do not count voting situations that countain 4-voter elementary voting situations 
(4, 8, 13, 21),(4, 12, 13, 17),(0, 7, 17, 22),(1, 4, 18, 23),(0, 11, 14, 21),(4, 7, 17, 18),(3, 8, 13, 22),\ 
(3, 10, 12, 21),(2, 11, 13, 20),(7, 8, 9, 22),(7, 10, 11, 18),(2, 3, 18, 23),(1, 10, 15, 20),(5, 6, 16, 19),\ 
(1, 4, 20, 21),(2, 9, 12, 23),(1, 8, 17, 19),(6, 8, 11, 21),(2, 3, 19, 22),(0, 9, 16, 18),(0, 14, 15, 17),\ 
(0, 5, 19, 22),(1, 6, 16, 23),(5, 9, 12, 20),(2, 12, 15, 17),(4, 6, 15, 22),(3, 11, 14, 18),(7, 9, 10, 20),\ 
(0, 5, 20, 21),(6, 8, 9, 23),(2, 10, 15, 19),(3, 13, 14, 16),(5, 12, 13, 16),(1, 14, 15, 16),(6, 10, 11, 19))))\ 
                    and i != j != l != m != n != o != p != q: #do not include repeated ballots 
                                            elementary.append((i,j,l,m,n,o,p,q)) 
elementary_unique = set(tuple(sorted(t)) for t in elementary) 
print(elementary_unique) 
print("The # of elementary voting situations with no repeated ballots for n = 8 is", len(elementary_unique))         
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Appendix IVc: All central voting situations for n = 8. 

#This program counts the total number of central voting situations for 8 voters. 
 
import itertools 
import operator 
 
elementary = [] 
k = list(itertools.permutations(range(4))) 
for index, x in enumerate(k): 
    print(index, x) 
 
def tuple_sum(k,*args): 
    t_sum = (0,)*len(k[0]) 
    for a in args: 
        t_sum = tuple(map(operator.add, t_sum, k[a]))   
    return t_sum 
 
def idx_sum_not(not_val, *args): 
     
    for a in range(len(args)-1): 
        for b in range(a+1, len(args)): 
            if args[a]+args[b] == not_val: 
                return False 
     
    return True 
 
for i in range(len(k)): 
    for j in range(i,len(k)): 
        for l in range(j,len(k)): 
            for m in range(l,len(k)): 
                for n in range (m,len(k)): 
                    for o in range (n,len(k)): 
                        for p in range (o,len(k)): 
                            for q in range (p,len(k)): 
                                if tuple_sum(k,i,j,l,m,n,o,p,q) == (12, 12, 12, 12): 
                                            elementary.append((i,j,l,m,n,o,p,q)) 
elementary_unique = set(tuple(sorted(t)) for t in elementary) 
print(elementary_unique) 
print("The # of central voting situations for n = 8 is", len(elementary_unique))      
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