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Abstract
While the symbol grounding problem of agreeing on a mapping between symbols and
sensory or even sensorimotor grounded concepts has been solved to a large extent,
one possibly even deeper open problem remains: How do concepts and compositional
concept structures develop in the Vrst place? Concepts may be described as integrative
mental representations that encode certain sensory, motor, or sensorimotor states or
events. Compositionality, on the other hand, determines how concepts are associated
with each other in a semantically meaningful and highly Wexible manner. We argue that
progressively complex concepts and compositional structures can be developed starting
from very basic perceptual and motor control mechanisms. An experiment with a simple
simulated robot gives hints about highly relevant structural ontogenetic prerequisites
for their development. In the outlook, we conclude by sketching out the current most
pressing challenges ahead.
Keywords: concepts, compositionality, development, symbol grounding, language, neu-
ral networks, manifolds, anticipation

1 Introduction

Symbols are “placeholders” standing for other entities. In a dictionary, and often in

conversation, symbols are explained through other symbols. This is a potentially end-

less process called “semiosis” by the philosopher Charles Sanders Peirce: Symbols are

described by symbols, which are described by symbols – and so on. But how can this

endless process be ultimately grounded, how “is symbol meaning to be grounded in

something other than just more meaningless symbols?” (Harnad 1990, p. 340). This is

what Harnad (1990) calls the “symbol grounding problem”.
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While Steels (2008) states that the basic symbol grounding problem has been solved,

it was also pointed out that yet a deeper symbol grounding problem needs to be ad-

dressed (cf. Barsalou 2009, Harnard 1990, Sugita & Butz 2011). The robotic agents in

Steels’ works are able to come to an agreement about a symbol convention for par-

ticular communication realms (such as gestures, colors, etc.). That is, a common lan-

guage is developed where particular symbols or utterances are associated with partic-

ular perceptions or perception-action complexes. The challenge of the deeper symbol

grounding problem lies in the development (a) of compositional concept structures from

sensorimotor control capabilities and (b) of associations between those structures and

grammatical, symbolic, i. e. linguistic structures. Only when these two challenges are

accomplished, formal semantics may be actually grounded in sensorimotor codes.

The study of both the developmental progression that led to the grounding of compo-

sitional concepts and the nature of the involved structures and associations is expected

to provide insights on how “Cognitive Semantics” (Johnson 1987, LakoU 1987, LakoU

& Johnson 1980) actually pre-determine formal semantics and most likely even struc-

tural properties of the universal grammar (Chomsky 1965). Most recently, the idea

of cognitive semantics led to the proposition of a Minimalist Action Grammar (Pastra

& Aloimonos 2012), which was directly related to the Minimalist Program by Noam

Chomsky (1995). The Minimalist Action Grammar is a generative grammar that en-

ables both proper generation and parsing of sentences about physical interactions. It

binds an interaction by its Vnal goal, combining tool complements, which are about the

acting force, with object complements, which are about the aUected object, context- and

goal-dependently.

We are particularly interested in how such a Minimalist Action Grammar may de-

velop starting purely from embodied, sensorimotor interactions – in the hope to con-

tribute to the deeper symbol grounding problem sketched-out above. The aim is to

develop a self-motivated system that solely perceives its environment via sensory stim-

ulations and that probes its environment by motor activities, where sensors and motors

are coupled by the bodily morphology. Ultimately, such a model may show that many

structures present in the Universal Grammar are grounded in sensorimotor interactions

with the environment that are realized by an embodied agent. Meanwhile, such a line

of research is expected to also shed light on why and how grammatical structures in

language are structured in the way they are – hints of which can also be found in the

Minimalist Action Grammar.
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Various researchers now strongly believe that sensorimotor structures and the selec-

tive simulation of particular sub-structures set the stage for the development of com-

positional concept structures (Barsalou 2008, Grush 2004, Pastra & Aloimonos 2012,

Pezzulo 2011). How such structures are developed and how these structures may then

be coupled with higher level cognitive, symbolic encodings is still an open question,

though. While the claim that the compositionality of language may be grounded in the

compositionality inherent in interaction competencies is not new (Johnson 1987, LakoU

1987), how such grounding may be learned and how compositionality may be repre-

sented by means of sub-symbolic structures remains an open question. Arbib (2005)

proposed a developmental pathway that leads from interactions, the mirror neuron sys-

tem, and imitation capabilities over several further stages to linguistic competence. We

believe that these stages are important components in the development of concepts and

compositional concept structures. However, several other prerequisites appear manda-

tory.

The aim of this paper is to sketch out a path by means of which complex, compo-

sitional concept structures are action-grounded. We propose that in order to explain

the human capacity to generalize, to draw inductions, and to develop compositionality,

it is not necessary to resort to innate structures. Rather, as increasingly many robotic

architectures and even more so simulations with neural networks imply, compositional

concept structures can be developed by a brain “from scratch”, departing from sen-

sorimotor contingencies. Endorsing the “Cognitive Semantics” of LakoU and Johnson

(1980), we propose to make the next step to conVrm this theory by identifying the on-

togenetic ingredients that appear necessary to develop such semantics. Thus, we are

interested in the architectural constraints and learning biases necessary for developing

compositionality based on sensorimotor interactions.

In this way, the paper also takes a stand in the nature/nurture-debate about concepts.

In particular we propose that structures, which rationalists tend to regard as purely

innate, are actually derivatives of sensorimotor experiences and developmental con-

straints. Thus, we propose a nature-constraint “nurture” process, in which genetically

determined bodily and brain developmental constraints stream cognitive development

towards the acquisition of compositional concept structures and language readiness.

However, only with the additionally necessary environmental interactions including

linguistic communication can the language capacity develop. Consequently, concepts

are grounded in the experienced interactions, but genetic predispositions bias the cog-

nitive developmental process towards concept acquisitions.
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We argue that purely innate structures leave no Wexibility and are generally ex-

tremely questionable due to the immense depth of the necessary structures and due

to the fact that even innateness needs to be somehow couple such structures to percep-

tions and actions. Thus, a core claim of this paper is that the Symbol Grounding Problem

(Harnad 1990) can only be solved by an empiricist approach to concept acquisition. In

contrast to Fodor’s (1975, 2008) radical claim that concepts cannot be learned, we sug-

gest that a theory of concept learning is essential for a complete theory of cognition

and the mind.

In the following, we Vrst detail a neural network architecture with which it has

recently been shown that representational separations and multiplicative interactions

between modules are essential ingredients for the development of compositional con-

cept structures. We detail the type of compositional structures that were developed and

how thus compositionality was grounded in embodied sensorimotor interactions. We

discuss the implications of this study, but also its limitations and current most pressing

challenges. Finally, we put the insights gained into the broader perspective on how

concepts and compositionality may develop.

2 An Experiment with a Simulated Robot Platform

In a neural network simulation setup, it was shown that a second-order neural network

with parametric bias neurons (sNNPB) is able to develop generalized behavioral con-

trol routines, presenting the system solely with typical sensory-motor time series data

(Sugita, Tani, & Butz 2011). This study essentially oUers tentative answers to the ques-

tion: How can compositional concept structures self-organize based on experienced

sensorimotor interactions? Additional ingredients will be necessary to scale this ap-

proach to more complex environments and interaction capabilities.

In the experiment, a simulated robot interacted with colored objects. The robot was

equipped with two wheels for controlling motion and a camera that scanned the sur-

rounding in front of the robot. In particular, the camera reported the perceived dom-

inant hue and color intensity values covering an area of 120° in front of the robot. The

covered areas were partitioned into nine equally spaced sectors. The robot learned two

types of interactions: move-to and orient-towards a particularly colored object. In the

move-to interaction, the robot had to move to the object and stop in front of it. In the

orient-towards interaction, the robot had to simply orient itself towards an object at

a speciVc angular oUset; Vve oUsets were trained. One or two colored objects were
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Figure 1: Robot-Environment-sNNPB interaction

present during each interaction trial with the environment. During learning, the ac-

tions of the robot were controlled remotely by a hard-coded control program. Figure

1 illustrates the robot, environment, sNNPB interaction.

In the following, we will refer to the two types of interactions as the “verbs” that

were trained, to the diUerent colored objects as the “objects” that were addressed in

the interactions, and to the oUsets in the orient-towards interactions as the involved

“modiVers”. Note however that the learning system was not provided with any explicit

indicators – neither about the “verbs” nor about the “objects” or the “modiVers” –

that may have given clues or induced learning biases towards distinguishing “verb”,

“object”, and “modiVer” concepts. The only information given to the learning system

was the sensorimotor time series data the robot was trained on and the information that

particular sets of sensorimotor time series data belonged to the same type of interaction.

The resulting sensorimotor time series data was used to train an sNNPB. An sNN is

a traditional neural network, which is trained with backpropagation, which, however,
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includes some “second-order” neural connections. Second order neural connections es-

sentially are connections whose current weight values are determined by other neural

activities. In the conducted simulations, one sub-NN mapped the visual information

provided by the camera onto motor output transferring the information over two hid-

den layers. The connection weights of the connections from the second hidden layer

to the motor output, however, were determined by second-order connections. The as-

sociated neurons were activated by a second sub-NN with one hidden layer. Input to

this network was generated by “parametric bias neurons” (Tani 2003). Error backpropa-

gation was used to adjust the weights of the sNNPB as well as the activities of the

parametric bias neurons. The latter were adjusted interaction-speciVc, thus maintain-

ing a vector for each type of verb-object-modiVer interaction the system was trained

on.

After learning, the sNNPB was tested on other object constellations and on other,

untrained verb-object-modiVer interactions. For example, the sNNPB may have never

been trained on “move-to the blue object”. Nonetheless, after learning the system was

tested if it can generate such interactions. To do so, the activity of the parametric bias

neurons was set to activity values that matched a small set of generated interactions

best. After that, other constellations were tested applying these PB activities.

The results conVrmed that the sNNPB generalized over the provided sensorimotor

time series data. It was not only able to generate similar interactions in other environ-

mental constellations, but also to generate interactions that were only compositionally

related to those trained on. For example, it was able to orient itself towards a particular

colored object at a particular angle, while it only had been trained to move to such a

colored object. Thus, behaviorally the network exhibited generalization capabilities that

were of a compositional nature. Interactions that corresponded to verb-object-modiVer

constellations could be generated that were not trained – as long as a suXciently large

and distributed subset of other interactions was trained.

Moreover, analyses of the developed sNNPB showed that a self-organized geometric-

ally-arranged manifold structure had developed, which reWected the behaviorally exhib-

ited compositionality. In particular, the activity vectors of the parametric bias neurons

were considered for further analysis. A principal component analysis showed that the

Vrst principal component diUerentiated the interactions with respect to the modiVer.

The second principal component diUerentiated move-to from orient-towards. The third

and fourth principal component revealed a color ring encoding, akin to the one found

in the hue-based color encoding provided to the sensory input layer. Thus, activities
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in the parametric bias neurons self-organized via backpropagation learning into a com-

positional manifold structure, where the individual dimensions in the manifold corre-

sponded to the verb, object, and modiVer components of the individual interactions.

The manifold structure enables the sNNPB to Wexibly activate any meaningful verb-

object-modiVer interaction type and also allows generalizing to untrained interaction

types. The geometric, orthogonal arrangement was akin to a compositional concept

structure because the orthogonality enables Wexible interaction concept combinations

and the deducible geometric distances can be viewed as indicating concept similarities.

Interestingly, also the structure of the second hidden layer – the one that maps to mo-

tor output via the second-order neural connections – was analyzed. Strongly behavior-

oriented sensory encodings were found. For example, one neuron switched its behavior

from oU to on when an object is in the center and very close – resulting in breaking be-

havior when the move-to interaction is activated in the parametric bias neurons. Other

neural activities revealed activities that may be compared to gain Velds in neurons (Sali-

nas & Sejnowski 2001, Graziano 2006): neurons responded, for example, in a sinusoidal

fashion with respect to color but that response was linearly modulated by the direc-

tion where the color was perceived from. In eUect, this encoding allowed the Wexible

activation of particular color-respective encodings for approaching and orienting the

robot towards particular colors, dependent on the activated mapping given particular

parametric bias activity. From a broader perspective it can be said that object-relative

encodings developed that encoded “object aUordances” (according to Gibson 1979), in

the sense that the encodings aUorded to reach a particular orientation towards a partic-

ular object or to stop moving when coming close to an object. Providing yet another

interpretation, spatial, object-relative encodings were developed that could be directly

mapped towards motor activities, yielding a Wexible Braitenberg vehicle (Braitenberg

1984).

The network succeeded in developing these compositional concept structures with-

out the provision of any semantic cues besides the ones that were inherent in the senso-

rimotor time series data. Seeing that various other neural network architectures could

not yield similar generalizations, it was concluded that (a) goal-oriented encodings need

to be separated from sensorimotor, control-oriented encodings and (b) a multiplica-

tive approach is best-suited to project the goal-oriented encodings onto the sensorimo-

tor encodings for realizing Wexible and compositional goal-oriented behavioral control.

In the emergent, interaction-speciVc, goal-oriented encodings the mentioned composi-

tional concept structures could be found, whereas in the processed sensory encodings
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behavior-oriented signals could be found. Both were shown to be mutually dependent

on each other – the former selecting the actual interaction that should be executed; the

latter providing potential interaction options.

Seeing that various other neural network architectures were not able to generate

comparable compositional behavioral generalization capabilities – let alone actual iden-

tiVable compositional structures as the one characterized above – the results suggests

that sensory-to-motor mappings should be separated from interaction selection encod-

ings to enable the development of compositional concept structures. Essentially, the

interaction selection corresponds to the goal that is to be achieved, with considera-

tions of the component that bring each particular goal about – such as moving to a

particularly colored object. While various researchers have suggested that such separa-

tions are behaviorally necessary (Cisek 2007), we believe they have not been suXciently

considered in research on the development and structure of language and cognition.

3 Insights and Open Challenges Deducible
from the Robot Experiment

The results of the simulated robot experiment have shown that compositional concept

structures could only develop in this setup when the sensory-to-motor mapping was

separated from the goal encoding, that is, from the code that determines which sensory-

to-motor interaction should actually unfold. Also, the time dynamics had to be diUerent

in the two encodings in that one goal activity had to be maintained while one full senso-

rimotor object interaction unfolded. Moreover, it was necessary that the inWuence from

the goal encoding onto the sensory-to-motor mapping was multiplicative. Finally, the

generated sensorimotor time series data had to be separated into distinct sets with re-

spect to particular verb-object-modiVer combinations. However, no information about

the semantics or symbolic characterizations of these particular combinations had to be

provided.

In consequence sensorimotor grounded compositional concept structures and behav-

ior-oriented “Braitenberg encodings” co-developed, that is, encodings which are per-

fectly suited to be directly mapped onto motor output activities, yielding seemingly

goal-directed behavior (Braitenberg 1984). Braitenberg encodings are thus goal-orien-

ted encodings, which can be selectively mapped onto actions for pursuing particular

object interactions. Indeed, the compositional concept structures had structural simi-

larities with the emerging Braitenberg encodings, thus enabling the selective activation
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of particular Braitenberg codes for realizing particular object interactions. Composi-

tionality was achieved by embedding a manifold structure into a higher-dimensional

neural representation. The individual dimensions of the lower-dimensional (in the ex-

periment four dimensional) manifold corresponded to the compositional verb-object-

modiVer structure. The developed “object” concept was encoded on a two-dimensional

manifold (actually a circular manifold), mimicking the hue-based color encoding in the

simulated sensors. Due to the emerging orthogonal arrangement of the distinct concept

structures, the sNNPB was able to Wexibly compose any verb-object-modiVer interac-

tion, even if it had not been trained. The developed compositional concept structure

appeared to be perfectly suited to be associated with a corresponding action grammar.

However, at this point language structures have not been successfully associated

with developing compositional structures, yet. Sugita & Tani (2005) managed to as-

sociate symbolic structures with similar sensorimotor time series data. However, in

this case only a more rudimentary action grammar consisting of three possible verbs

and six possible colors was learned. Nonetheless, Sugita and Tani (2005) succeeded in

mutually shaping both the symbol-based linguistic encoding and the sensory-to-motor

mapping. Thus, associating symbolic, linguistic input with developing, self-organizing,

more complex action grammars is still a very hard challenge.

Even when focusing only on the challenge of developing pre-linguistic compositional

concept structures – without associating symbolic language components – however,

additional learning biases and developmental constraints seem mandatory for scala-

bility reasons. At the moment, the sNNPB architecture is still an extremely Wexible

learning architecture. For developing more complex compositional structures, it seems

necessary that the learning processes are further guided by additional learning biases.

However, overly constraint learning may not give enough room for the emergence of

compositional concept structures, such as the manifold structure identiVed in the robot

experiment. Thus, complex compositionality is likely to emerge only if a good balance

between learning biases on the one hand and self-organization on the other hand is

maintained.

Another challenge lies in the fact that sets of sensorimotor time series data had

to be explicitly distinguished when training the sNNPB, while the more autonomous

separation of diUerent types of interactions is desirable. While similarity thresholds

may distinguish the sensorimotor time series data, it is very hard to Vnd the right

distance metric that could suitably distinguish diUerent time series in a semantically

meaningful way. The self-organized topology in the PB neurons of the sNNPB is likely
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to be the best candidate, but the development of it relied on the distinctness information

in the Vrst place.

We believe that several of the following ingredients will be mandatory to develop

learning systems that can autonomously produce emergent compositional concept struc-

tures in more complex environments. First, the incorporation of an anticipatory drive
(Butz 2008) that stresses the capability of predicting the future based on state, context,

and motor (force) activities seems necessary. Such an anticipatory drive may guide

learning Vrst towards identifying the most obvious sensorimotor contingencies in the

sensory and motor information available to the system. Further distinctions starting

from basic sensorimotor Wow may then lead to the desired progressively more distinct

compositional concept structures.

Once sensorimotor contingencies are identiVed, sensorimotor topologies can be de-

veloped within which particular interactions can unfold. In the simulated robot exper-

iment, a topology was implicitly developed in the deep sensory encodings, providing

Braitenberg codes. Similar, but further modularized encodings are necessary to enable

the even more Wexible and selective interaction with the environment using diUerent

means, diUerent pathways through the environment, etc.

Furthermore, active, information-seeking, curious behavior, caused by the anticipa-

tory drive, may enable the more direct identiVcation of relevant concept structures, that

is, of sensory and motor information necessary for predicting particular consequences

reliably. The consequent identiVcation of contextual “concepts” that separate states into

concepts that are relevant for particular behaviors – such as free versus occupied, heavy

versus light, etc. – will be the result.

Besides these learning biases derived from the anticipatory drive, the challenge of

removing the requirement of providing distinct sets of sensorimotor time series data

may be accomplished by introducing internal motivations. Such internal motivations

may serve as the distinctness indicators – identifying a distinct interaction by its dis-

tinct eUect on the internal motivational state. Thus, distinct positive and negative re-

inforcement may serve as a critical additional clue to distinguish interactions further

into meaningful concepts.

Finally, it seems somewhat unsatisfactory that the activity in the parametric bias

neurons cannot be internally self-activated. To do so, the activity of the parametric bias

neurons may be partially activated by sensory input as well – potentially enabling the

selective activation of those interaction codes that can actually unfold in the current

circumstances. For example, a potential interaction with a red object may only be
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activated if a red object is present. Furthermore, the mentioned internal motivations

may be associated with those parametric bias neuron activities that previously had

led to a corresponding change in the internal motivational state. Consequently, the

interaction choice may be co-determined by the internal motivations and the goals

currently possible in the environment.

4 Conclusions

The robot experiment described above contributes to the solution of the symbol ground-

ing problem, and also illuminates concept learning. One of the most vexing problems

regarding this topic is Fodor’s problem of concept acquisition. Fodor (1975, 2008) essen-

tially questions that fundamental concepts – those that cannot be further partitioned

into smaller conceptual entities – can be learned. And presuming that they cannot

be learned, he concludes that they must be innate. The details of Fodor’s argument

are beyond the scope of this article. It suXces to state that according to most recent

philosophical considerations, “it appears that Fodor’s problem of concept acquisition

remains a puzzle for philosophers and psychologists to solve” (McCaUrey & Machery

2012, p. 275).

We propose to overcome Fodor’s “radical concept nativism” (cf. Laurence & Margolis

2002) by a diUerent stance towards “innateness”. This very ambiguous term may gain

a more speciVc sense if it is related to embodiment. In short, we propose that the

innateness of concepts may not be directly genetically imprinted, but concepts and

compositional concept structures may be indirectly pre-determined to develop due to

(a) the ontogenetic path laid-out in the genes of the organism, (b) the morphological

constraints given by the body of the organism, and (c) the environmental reality with

which the organism interacts.

Fundamental concepts may indeed be innate – but actually innate in the sense of be-

ing behaviorally embodied and pre-destined to be developed. For example, basic reWexes

– such as the grasp reWex in infants – can foster the development of particular concepts

– such as a concept for grasping. Separating then successful from unsuccessful grasps,

a concept structure that speciVes the prerequisites for a successful grasp develops, in

contrast to contexts were grasps are unsuccessful. Co-developing with such a represen-

tation is a concept of graspable entities. Realizing the eUects of successful grasps, will

expand and diUerentiate the grasp concept further into entities that are moveable, light

versus heavy, spiky versus smooth, etc. The basic reWex may thus lead to the gener-
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ation of sensorimotor interactions that can be diUerentiated on the one hand side by

their perceptual diUerences but, and even more importantly so, by their distinct eUects.

Essentially we point-out that the combination of an anticipatory drive with an em-

bodied, sensing and acting agent can foster the development of pre-linguistic, composi-

tional concept structures. The anticipatory drive drives the organism to actively search

for and learn about predictable and controllable (sensorimotor) structures in the envi-

ronment (Butz 2008). Due to this self-controlled, embodied developmental process, the

developing concept structures are inherently meaningful because the structures deter-

mine predictability, controllability, and their relation to changes in internal motivational

states. Thus, the combination of the human body morphology with its ontogenetic

development of body and brain fosters the development of “innate” but behaviorally

acquired compositional concept structures.

Unitizations and diUerentiations in the sense of Landy & Goldstone (2005) (cf. also

Stöckle-Schobel 2012) are fundamental processes that foster the development of compo-

sitional concept structures. We propose that these processes are not purely perceptual

or sensorimotor, but are developed for predictability, controllability, and achievability

purposes. With this proposition we go one step beyond theorists of “neo-empiricism”

like Barsalou (2009), Jesse Prinz (2002), and others. We strongly acknowledge that their

accounts on perceptually grounded symbols and concepts are highly important in over-

coming unworkable accounts of innateness. However, we would like to further stress

that cognition and – more speciVcally, concept acquisition – is not solely shaped by

(and for) perception. Rather, it is most important for being able to interact Wexibly

goal-directedly with objects and other agents.

Moreover, the robot experiment has shown that spatial, object- and body-relative

representations should be separated from goal-oriented representations in order to fos-

ter the development of compositional structures. Given this separation, particularly

the goal-oriented representations appear well-suited for the development of composi-

tionality. Thus, the separation of dorsal and ventral pathway (Goodale & Milner 1992),

which is certainly highly behaviorally relevant and mandatory for realizing Wexible be-

havioral control (Cisek 2007, Milner & Goodale 2008), may have actually set the stage

for the development of compositional concept structures, that is, structures that allow

the development of language in the Vrst place.

Certainly other processes are still highly important as well. In particular, we believe

that the development of mirror capabilities and tool use are two fundamental additional

ingredients. The capability of mirror neurons, which was Vrst most likely beneVcial for
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improving mutually beneVcial interactions with other individuals, fosters the further

development of communication between individuals, by, for example, enabling the de-

velopment of verbal imitations from gestural imitations (Arbib 2005, Rizzolatti &Arbib

1998). The capability of handling tools led to the development of much more intense

interactions between the dorsal and ventral processing streams, thus being able to view

tools and objects as part of the subject and, in retrospect, also oneself as a tool (Iriki

2006).

However, we believe that the sketched-out processes will set the stage to be able

to ultimately solve the mystery of concept acquisition. By separating goals from spa-

tial topologies and events, Wexible goal-directed behavior can be selected and pursued.

Current internal goals can be Wexibly pursued dependent on the current spatial con-

straints. Moreover, the availability of potential goals in the environment as well as the

context-dependent estimated achievability of such potential goals can yield tremendous

behavioral Wexibility and eUectivity. While the development of such a separation was

thus initially most likely purely behavior-driven, it also enabled the development of

compositional concept structures. While potential goals and the involved concepts for

achieving these goals are detached from the here-and-now, the encodings can be Wexibly

projected onto the current state in the environment. Meanwhile, state representations

must have developed that enable the Wexible activation of goals and involved concepts

for pursuing particular goals. Object-referenced encodings found in in the parietal cor-

tex (Chafee, Averbeck, & Crowe 2007) support the pro-motor representations found in

integrative, multimodal cortical areas. The parietal-frontal interactions with which ac-

tion goals appear to be transferred into actual movement control support their strong

goal- and behavioral relevance (Graziano, Cooke 2008). Arguably, similar correspon-

dences were even proposed to exist between Wernicke’s and Broca’s areas (Graziano,

Cooke 2008). Finally, gain-modulations, which are found nearly ubiquitously in the

brain, suggest selective, multiplicative computations in individual neurons (Salinas &

Sejnowski 2001), supporting the Wexible, goal-oriented selection of maximally suitable

sensory-to-motor mappings.

In the minimalist Action Grammar as proposed by Pastra & Aloimonos (2012) goals

unify particular actions with objects and further modiVers. Our proposition in this pa-

per gives Vrst hints why goals are crucial both, for the development of grammatical

structures and for being able to Wexibly combine compositional concept structures to

achieve particular goals dependent on their current urgency and achievability. Nonethe-

less, much future research is necessary to sort the identiVed puzzle pieces, identify even
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further pieces, and arrange them in the way the ontogenesis of the brain manages to

do so beautifully.
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