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Abstract
The aims of the present studies are to assess the sensory nature hypothesis of knowledge
through a series of experimental results. Especially, we investigated the links between
memory and perception using a short-term priming paradigm based on a previous learn-
ing phase consisting of the association between a geometrical shape and a white noise.
Consequently, the priming phase examined the eUect of a geometrical shape, seen in
the learning phase, on the processing of a target (tones or picture). Our main results
demonstrate that memory and perception share some mechanisms and at least com-
ponents. These ones are involved for the processing of each form of knowledge (i. e.,
episodic and semantic). At last, reWections about the implication of this work to study
perceptual learning and memory are presented.
Keywords: Perception, Integration, Multisensory Memory

1 Introduction

How do people represent information in memory? What is the nature of the informa-

tion stored in memory? We can consider that learning representations or concepts de-

pends on upon perceptual experiences. In that view, the comprehension of the relation

between memory (i. e., concepts) and perception (i. e., percepts) is critical. Classicaly,

perception and memory are vertically describded. In that case, perception extracts per-

ceptual units from the environment thanks to bottom-up processes. These units are then

converted into representations and are stored into memory. In return, the activation of

these representations can inWuence the perception thanks to top-down processes. In

that conception, the diUerences between memory and perception are both structural

and functional (e. g., Humphreys & Riddoch, 1987). Regarding the structural distinction,
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recent neuroimaging studies suggest that both memory and perception share common

brain areas (for a review, see Versace, Labeye, Badard & Rose, 2009). For instance, Mar-

tin and collaborators (2000) showed that conceptual processes (i. e., word-object nam-

ing) and perceptual processes (i. e., picture-object naming) involve the same brain area,

depending on the perceptual (i. e., color) and motor properties of the objects. Regard-

ing the functional distinction, recent neuroimagering researches also suggest that the

neural structures of long-term memory are involved during the perception of objects

or events (see Murray & Bussey, 2007). In particular, the medial temporal lobe cortex

ensures the integration of the diUerent components of objects by means of a hierar-

chical integration mechanism. Recently, Shimamura and Wickens (2009) have provided

evidence in support of the idea that memory activities (e. g., single item recognition)

might be underpinned by this integration mechanism

In this paper, we aim at developing a conception in which perception and memory

are at the same functional level in cognitive architecture. In other words we want to

bring experimental evidence that perception and memory act simultaneously on the

same processing units. The only diUerence is that perception involves perceptually

present units whereas memory involves reactivation or simulation of these units. Seek-

ing this purpose, we have to provide evidence that 1) memory is able to keep traces

from perceptual events; 2) memory and perception use the same processing units.

2 The perception leaves memory traces

In the daily life, the organism treats essentially multisensory signals. The uniVed per-

ception of a multisensory environment requires not only multiple activations in the

sensory areas but also the synchronization and the integration of these activations (e. g.,
King, 2005). The existence of multisensory integration is particularly well illustrated by

the McGurk eUect (McGurk & Mac Donald, 1976). This eUect reveals that subjects tend

to perceive /da/ when they see the syllable /ga/ and hear the sound /ba/. This demon-

strates the ability of a sensory system to modify the processing of another sensory

system. Integration could be described as the capacity of the perceptual system to pro-

cess more eXciently (or diUerently in case of McGurk eUect) a multisensory stimulus

than the sum of these two parts. Number of neurosciences studies was dedicated to the

study of the multisensory integration between vision and audition. For example, King

and Calvert (2001) have shown that some neurons in the superior colliculus are more

highly activated by multisensory than by unisensory stimuli. Similarly, electrophysi-
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ological studies have provided some evidences of audiovisual integrations (between a

shape and a tone) that occur in the visual cortex after a period of just 40 ms (Giard &

Perronet, 1999). In the same vein, authors have shown that spatial congruity enhances

audio-visual integration (Teder-Sälejärvi, Di Russo, McDonald, & Hillyard, 2001). At

last, the role of attention during perception of a multisensory event and its consecutive

integration is not well established (see Fort & Giard, 2002).

If a visual stimulus and an auditory stimulus tend to be integrated during a per-

ceptual activity (e. g., perceptual categorization or discrimination), is it possible that

memory could capture this integration? Once perceived, the perceptual properties of

a multisensory object can be preserved in memory in the form of a memory trace.

This is due to an integration mechanism that allows for the creation of durable links

between perceptual properties within the same memory representation (see Brunel,

Labeye, Lesourd & Versace, 2009; Hommel, 1998; Labeye, Oker, Badard, & Versace,

2008). Contrary to simple associative learning (see Hall, 1991), once features are inte-

grated within an exemplar, it is diXcult to access the individual features (see Labeye

et al., 2008; Richter & Zwaan, 2010). This new unit, once acquired, becomes a func-

tional “building block” for subsequent processing and learning (in language, Richter &

Zwaan, 2010; in memory, Labeye et al., 2008; or attention, Delvenne, Cleeremans, &

Laloyaux, 2009). In this view, the integration mechanism is a fundamental mechanism

of perceptual learning (see the unitization mechanism, Goldstone, 2000) or contingency

learning (see Schmidt & De Houwer, 2012; Schmidt, De Houwer, & Besner, 2010). From

this idea we can make the prediction that once two features have become integrated,

the presence of one feature automatically suggests the presence of the other. Thus, if

the simultaneously presentation of an auditory information (a sound) and a visual in-

formation (a shape) leads to the creation of a multisensory memory trace, then we can

easily predict that the visual component presented alone, as a prime, should inWuence

the perception of a sound targets. We examined this prediction through an original

paradigm divided in two phases. First, a learning phase (consisting in a shape cate-

gorization task) in which we manipulated the association between a given geometrical

shape and a white noise1. As a consequence, participants simply had to categorize a

shape as a square or a circle (each shape was presented in diUerents shades of gray).

It is important to stress that each shape was presented during 500 ms. One of this

shape was systematically associated with a white noise (presented simultaneously dur-

1 A white noise is a random signal with a Wat power spectral density. White noise is considered analogous to
white light which contains all frequencies.
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ing 500 ms), the other not. Then, a priming phase (see Figure 1) in which participants

watched the geometrical shapes from the learning (as prime) and listened pure tones

(as target). In this phase, participants had to discriminate the target into high-pitched

or low-pitched. Our Vrst result was a selective priming eUect of the geometrical shape

seen in the learning phase with a sound on the processing of targets tones.

Figure 1: Organization of the priming phase. A prime shape (seen in learning phase), presented at different level
SOA (100 ms or 500 ms), is immediately followed by a target tones that participants had to categorize
in low or high-pitched sounds. Notes. SOA: stimulus-onset-asynchrony; ISI: Interval-Inter-Stimuli

This priming eUect could be interpreted as an evidence of multisensory memory inte-

gration during perceptual learning. Indeed, when participants saw a shape that was

previously presented with sound, it automatically reactivated the auditory memory

component associated (see also Meyer, Baumann, Marchina & Jancke, 2007) that is

able to inWuence the processing of targets tones. However considering only this re-

sult gave us any hint about the nature of the auditory memory component. Indeed,

if memory and perception share the same processing units, then each component of

the memory trace should be perceptual in nature even when they are reactivated. In

order to test this assumption we manipulated the SOA during the priming phase. More

speciVcally we predicted that reactivation of the sound should interfere with tone target

processing if only if the SOA between the visual prime and the tone target is shorter

than the duration of the sound associated with the shape during the learning phase.

In this case, the interference eUect would follow from temporal overlapping between

previously associated sound reactivation and tone processing. A second and quite op-

posite prediction followed from diUerent temporal constraints. Indeed, reactivation of

the sound (by the visual prime) was expected to facilitate tone processing but only for
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SOAs equal or longer than the duration of the sound associated with the shape during

the learning phase. In this later case, not any temporal overlap occurred between sim-

ulation of the learned associated sound and target-tone processing so that target-tone

processing should take advantage from the auditory preactivation induced by the prime.

Our results (see Figure 2) were totally in line with these predictions.

Figure 2: Interaction SOA*Prime type F(1, 30) = 14.64; p<.001. (a) For 100 ms SOA, significant principal effect
of Prime type, F(1, 15) = 5.25; p<.05. (b) For 500 ms SOA, significant principal effect of Prime type,
F(1, 15) = 9.78; p<.01. Results reproduced from Experiment 1 Brunel, Labeye et al., 2009. Notes. Sd
Prime: prime shapes that were presented with sound during learning phase; NSd Prime: prime shapes
that were presented without sound. Errors bars represent standard errors.

We demonstrated that memory keep traces from perception thanks to an integration

mechanism shared by perception and memory. As a consequence, the presentation of

one component of a memory trace is able to reactivate the other components (which

kept all of their encoded characteristics). Once reactivated, a compotenent is able to

inWuence the ongoing process (see also Riou, Lesourd, Brunel & Versace, 2011). How-

ever, according to Nyberg et al. (2000), this kind of eUect is limited to the processing

of episodic knowledge and should not be observed when conceptual knowledge are at

stake. Indeed, only episodic knowledge should keep some perceptual properties of for-

mer perceptual events. Such claim suggests the existence of modal and amodal forms of

knowledge. The next section will be dedicated to this speciVc issue.
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3 The Sensory Nature of Knowledge

What is the nature of our knowledge? Bring an answer to that question is not easy and

suggests at least two diUerents perspectives. First, we could consider that each form of

knowledge is qualitively diUerent and as a consequence diUers into their nature (i. e.,

modal vs. amodal). According to Tulving (1995), our knowledge could be viewed as

semantic or episodic. These two sorts of knowledge depend on the existence of two

independent memory systems. The semantic memory system is more likely to be in-

volved in the processing of general amodal knowledge whereas the episodic memory

system is involved in the processing of speciVc modal knowledge. Whereas Tulving

argued that these two kinds of memory are dissociated and diUer in the abstractness

of the information they retain, increasing numbers of studies have demonstrated the

existence of conceptual representations which nevertheless continue to possess a per-

ceptual nature (Barsalou, 2005; Barsalou, 2008; Barsalou, Simmons, Barbey, & Wilson,

2003). Indeed, there is experimental evidence showing that the reactivation of percep-

tual or body states facilitates later conceptual processing for those concepts that share

the same perceptual characteristics as the reactivated ones (see Pecher et al., 2004; Van

dantzig et al., 2008). In that view, memory processes are deeply rooted in perceptual

and action systems (see Barsalou, 2008) and, as consequence, access to all forms of

knowledge is linked with automatic reactivation of perceptual or body states. In that

context we can predict that conceptual processing involve automatic reactivation which

is not limited to a given sensory memory component but should be observed for each

diagnostic sensory component associated with a particular concept.

In order to test that prediction, we designed an experiment based on the same

paradigm we described in the previous section. The learning phase is still consist-

ing in learning an incident association between a geometrical shape and a white noise.

The second phase consisted of a short-term priming paradigm (see Figure 4) in which

a shape, either associated or not with a sound in the Vrst phase, preceded an object-

picture. The participants had to categorize this picture as representing either a large

or a small object (more or less than 50 cm high). We manipulated the SOA as well

as the nature of the object so that half of the objects were typically “noisy” objects

(e. g., a blender) whereas the others were typically silent (e. g., a screwdriver). In order

to perform the task, participants had to recognize the object and reactivate the actual

size of the object. However, if this reactivation is not limited to the visual component

and can spread to others diagnostic components (here auditory), we should observe the
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same pattern of priming eUect as described in the previous section but limited to the

typically “noisy” targets.

Figure 3: Organization of the priming phase. A prime shape (seen in learning phase), presented at different level
SOA (100 ms or 500 ms), is immediately followed by a target picture that participants had to categorize in
small or large target.

As depicted in Figure 4, we found a priming eUect due to the reactivation of a mem-

ory auditory component by the visual sound prime (i. e., the shape seen with sound

during the leraning phase) and limited to the “noisy” targets. As we expected, this ef-

fect was modulated by the SOA. Indeed, we found an interference eUect with a SOA of

100 ms (Panel A) and a facilitation eUect with a SOA of 500 ms (Panel B).

Panel A Panel B

Figure 4: Panel A: Interaction Prime type* Target type F F(1, 15) = 10.6 ;p<.01 (a) For Noisy target, significant
principal effect of Prime type, F(1, 15) = 10.6, p<.01. (b) For Silent Target, F<1. Panel B: Interaction
Prime type* Target type F Fs(1, 15) = 6.24 ; p<.05 (a) For Noisy target, significant principal effect of
Prime type, Fs(1,15) = 6.24, p<.05. (b) For Silent Target, F<1. Results reproduced from experiment
1 Brunel et al., 2010. Notes. Sd Prime: prime shapes that were presented with sound during learning
phase; NSd Prime: prime shapes that were presented without sound. Errors bars represent standard errors.
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We interpreted these results as evidence that the component reactivated by both the

prime and the target has the same nature (i. e., perceptual). Consequently, our results

provide a strong argument in favor of the idea that access to conceptual knowledge

is linked to the reactivation of the component dimension integrated within a concept

(see Barsalou, 2008; Vallet, Brunel & Versace, 2010) which is consistent with a grounded

view of cognition. In that case, we can consider that an opposition between modal

and amodal form of knowledge is not appropriate for understanding phenomenological

distinctions between forms of knowledge. This issue will be discussed in the next

section.

4 Discussion

The aim of this paper was to propose experimental evidences in a favor of a horizontal

view concerning the relation between memory and perception. In that view, percep-

tion and memory act simultaneously on the same processing units that are perceptual

in nature. Indeed, our studies clearly show that the activation of an auditory mem-

ory component (a component that is not perceptually present) is able to inWuence the

sensory processing of a sound or conceptual processing of a typically “sound” concept

presented later. In that case, we have to consider that memory knowledge are nec-

essarly sensory-based which is totally consistent with a grounded view of cognition

(see Barsalou, 2008). So far we can say that: 1) memory keeps episodic traces from

perceptual events; 2) memory traces integrate perceptual components; 3) the compo-

nents of a given memory trace keep their perceptual caracteritics; 4) once a component

is activated, this activation is able to spread to the others and inWuenced the ongoing

processing irrespective the cognitive activity.

However there are remaining issues that we don’t really address in that paper. The

Vrst concerns the type of processing units (i. e., exemplars vs. features). Indeed, in

the experiments reported here, participants have implicitly learned, through a simple

categorization task, that a given shape, which varied through a separable dimension

(i. e. brightness), is systematically presented with a sound and the other not. We inter-

preted the fact that only visual prime shapes (whatever the shape’s brightness), which

were presented with sound in the categorization task, inWuenced the target’s process-

ing (sound or picture of typical sound concepts) thanks to an “examplar based” memory

view (Nosofsky, 1991; Logan, 2002). Each exemplar, which was associated with sound,

reeactivate it previously encoded sound component. However, we can also interpret
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our results as an evidence of unitization (Goldstone, 1998) between a psychological fea-

ture, namely a geometrical shape (i. e. squares or circles) and an auditory feature (a

white-sound). According to the unitization mechanism, we can say that the perfect

co-occurrence of an auditory feature and visual psychological feature leads to the cre-

ation of a new functional feature combining these two features (Schyns, Goldstone &

Thibaut, 1998).

In a recent works (Brunel, Vallet, Riou, & Versace, 2009; see also, Brunel, Goldstone,

Vallet, Riou & Versace, 2013), we tried to experimentally settle between these concep-

tions of memory storage2. Basically, we used the same experimental design (learning

phase followed by a priming phase with target tones) as Brunel, Labeye and collabora-

tors (2009) experiment. Yet, we manipulated two imperfect rules of category learning

sound-shape frequency association (High vs. Low) in learning phase (see Figure 5).

Figure 5: Stimuli used in Brunel, Vallet, Riou & Versace (2009) shape categorization task (learning phase). In this
example, for the high frequency condition, three squares (“non-isolated”) were presented simultaneously
with a white noise, whereas one (“isolated”) was presented without sound. Following the same example,
in the low frequency condition, one circle (“isolated”) was presented simultaneously with a white noise
whereas the other three ones were presented alone ("non-isolated"). All the experimental conditions were
counterbalanced between-subjects.

For the exemplars seen in High Frequency condition of learning, we observed a gen-

eralization eUect in the priming phase. The isolated exemplar (which was presented

without sound during learning phase) yields same priming eUect than exemplars seen

with sound in learning phase. So, generalization eUect that we observed could be inter-

preted as a consequence of a multisensory unitization between a visual feature (shape)

2 According to Goldstone (1998) we refer here at « whole imprinting » and « feature imprinting ».

171



Lionel Brunel, Denis Brouillet and Rémy Versace

and an auditory feature (white-noise) that is an argument in favor of “feature imprint-

ing” view of memory. Nevertheless, for the exemplars seen in low frequency condition

of learning, we observed a discrimination eUect in priming phase. The isolated exemplar

presented with sound enhanced the processing of targets tones compared to the exem-

plars seen without sound during the learning phase. So, discrimination eUect that we

observed could be interpreted as a consequence of a multisensory integration between

visual features (shape and level of brightness) and an auditory feature (white-noise) that

is an argument in favor of “whole imprinting” view of memory. Taking together, these

results suggest existence of multiple levels of representation (i. e., feature and exem-

plar, see Navarro & Lee, 2002), or multiple levels of processing (i. e., dimensional and

featural), or both, during retrieval.

The second issue is related to the Vrst one but concern the ability of the memory

to produce qualitative and distinct forms of knowledge. We proposed that each form

of knowledge emerges from the activation and the integration, and the synchroniza-

tion of multiple memory traces (see also Versace et al., 2009). The diUerence between

episodic and semantic is thus no more qualitative but rather quantitative, i. e. in term

of number of episodes or traces, which are reactivated. We suggest that information is

maintained in memory through a hierarchical multimodal memory integration mech-

anism. We consider that this mechanism, as presented in Figure 6, may be of relevance

for the expression of the diUerent forms of knowledge (e. g., semantic and episodic)

and the various types of memory processing (i. e., categorization, recognition, memory

retrieval).

In this model, an object is assumed to be perceived as a uniVed object because all its

features are gradually integrated with one another. However, contrary to the exemplar-

based approach, we suggest that what is stored in memory is the result of each inte-

gration at each level of LTM. We argue that a competition is involved during feature

integration. This competition depends on both the distance between exemplar features

within and between categories, and on the frequency of the presentation of the com-

binations of the diUerent features.

In addition, we suggest that all the levels are not necessarily accessed for the pro-

cessing of an exemplar in a given task: 1) to categorize an exemplar, it is suXcient to

activate the unitized dimension which is relevant for the category; 2) to recognize an

item, it is necessary to activate each unitized feature that is relevant for the exemplar.

In conclusion, we propose that each form of knowledge emerge from the dynam-

ics interactions between multisensory units, which are both perceptual and mnesic in
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Figure 6: Illustration of multimodal hierarchical integration between features in long-term memory (adapted from
Murray & Bussey, 2007).

nature. As a consequence, the distinction between memory and perception might be

only at phenomenological level. In other words, it is the subjective attribution (wether

to a component perceptually present or absent) to the cognitive activity that would

determine the nature of this activity.
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