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Abstract

ADVISOR: John Rieffel

Creating effective designs for soft robots is extremely difficult due to the large number of

different possiblities for shape, material properties, and movement mechanisms. Due to the

lack of methods to design soft robots, previous research has used evolutionary algorithms

to tackle this problem of overwhelming options. A popular technique is to use generative

encodings to create designs using evolutionary algorithms because of their modularity and

ability to induce large scale coordinated change. The main drawback of generative encodings

is that it is difficult to know where along the ontogenic trajectory resides the phenotype

with the highest fitness. The two main approaches for addressing this issue are static and

scaled developmental timings. In order to compare the effectiveness of each of these two

approaches, I have implemented a framework capable of evolving soft robot designs that

utilize vibration as a movement mechanism.
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1 Introduction

Most people when asked to imagine a robot would conjure a vision of a traditonal rigid

body robot, however, now there are new types of robots that are composed of soft, elastic

materials. These new soft robots have many advantages over traditional robots due to their

flexible, deformable structures. One advantage is that a soft robot can squeeze and deform

its shape to access areas that would be impossible for any rigid body robot to reach. The

applications of this are endless. For example, these robots could be harnessed for search

and rescue missions to slip under piles of rubble and squeeze into small cracks to search for

survivors.

Another benefit of soft robots is that since they have no rigid parts, they have nearly

unlimited flexibility making them much more mobile than their rigid body counterparts.

However, this flexibility is one of the causes of the major drawback of soft robots: design

complexity. Researchers still struggle coordinating the limited degrees of freedom of a rigid

body robot due to the complexity of the task. So when faced with creating a design that

must coordinate the unlimited degrees of freedom of a soft robot in a way that leads to

locomotion, researchers have little to no analytical reasoning for choosing particular types

of designs over others.

Part of what makes this problem so difficult is that there are so many different options

available to generate movement in a soft robot. Just as traditional robots move by turning

wheels or moving legs, soft robots have methods of generating movement too such as the

oscillation of the materials of the robot [8]. However, the effectiveness of a movement

mechanism for a soft robot depends heavily on the shape of the robot. Robot shapes that

are effective with one movement mechanism might fail with others and vice versa. This

creates a chicken or egg problem of whether the body or the movement mechanism should

be designed first. This massive design space makes it very difficult to approach this problem

in an analytical fashion.
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2 Background and Related Work

Due to the complexity of the problem and without any analytical design approach, re-

searchers have harnessed evolutionary algorithms to generate soft robot designs optimized

for locomotion [5, 1, 14, 8].

2.1 Evolutionary Algorithms

Evolutionary algorithms are a method of slowly evolving effective solutions for problems

where little analytical inituition exists. An evolutionary algorithm begins with the creation

of an initial population of individuals. These individuals can be anything from the shape of

soft robot [5, 1, 14] to the design of a NASA satellite antenna sent into outer space [9]. This

initial population of individuals is the starting point for evolution in the algorithm. After

the initial population has been established, the main phase of the evolutionary algorithm

can begin. The first part of this main phase is to evaluate each individual in the population

and assign them a fitness level based on a set of pre-determined criteria. This process of

evaluation frequently occurs in simulation. For example, in the case of soft robot designs,

many researchers correlate the fitness of a soft robot with its locomotive prowess. To evaluate

locomotive prowess, these researchers create the soft robot designs of each individual in the

population inside physics engines, such as Bullet Physics [6] and NVidia PhysX [13], to

determine how well they are able to move. This technique of using physics engines was also

used to evolve tensegrity robots capable of locomotion [15]. The next part in the evolutionary

algorithm is to cull the individuals with the lowest fitnesses from the population. This helps

ensure that time is not wasted trying to evolve designs that are inferior to other designs. In

the final step, new individuals are created and added to the population to replace those that

have been culled. Afterwards, the main phase of the evolutionary algorithm is repeated.

Over the course of many repetitions, the designs in the population will hopefully evolve to

have higher levels of fitness.
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2.1.1 Coevolution

An interesting form of evolutionary algorithms allows for the coevolution of two different

features. In a standard evolutionary algorithm, such as the one described above, only one

feature of an individual is evolved. For example, a standard evolutionary algorithm could

evolve either the shape or the movement mechanism of a soft robot. This limits the number

of possible designs since evolution of either the shape or the movement mechanism means

that the other feature has been predetermined. For this reason, researchers have leveraged

coevolution in an attempt to overcome the chicken or egg problem of whether to create

the morphology or the movement mechanism of a soft robot first. Using coevolution, the

morphology and the control mechanism can be evolved together. Pollack et al. [11], used

the technique of coevolution to develop the controller software of traditional rigid robots

simultaneously with the morphology. Joachimczak and Wrbel [6] utilized coevolution to

to design the shape and control of a swimming soft robot. Knox and Rieffel [8] coevolved

the material properties of a soft robot design with the movement mechanism of the robot.

The researchers accomplished this by periodically switching the feature being evolved in

the simulation after a certain number of evolution iterations. For example, the evolution

would focus on adapting the material properties and then switch to adapting the movement

mechanism. Figure 1 illustrates the effect that different material properties can have on

the shape of the robot. This figure demonstrates why coevolution is necessary since the

movement mechanism for a design with high material stretching stiffness will be different

than one with low stretching stiffness. The coevolution used in this paper allows for the

movement mechanism to take into account the material properties and vice versa.

2.2 Types of Encodings

In an evolutionary algorithm, each individual corresponds to a physical representation that

is evaluated based on the pre-determined fitness criteria. This physical representation is

known as the phenotype of the individual. The actual design of the individual that is used

to create its physical representation is known as the genotype of the individual. Encodings
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Figure 1: Illustration of the effect that material properties can have on a soft robot. The
left design has high material stretching stiffness while the right design has low stretching
stiffness [8].

are ways to specify the genotypes of the individuals in the population. Two main types of

encodings are direct encodings and generative encodings.

2.2.1 Direct Encodings

In a direct encoding, the genotype is the same as the phenotype. In other words, the

genotype would be the actual physical representation of the individual. For example, Plavcin

and Petrovic [10] created a direct representation for the creation of wind turbines. In their

representation, the genotype contains the vertices of a triangle mesh that forms the wind

turbine. This genotype is a direct mapping to what the actual wind turbine design will be.

The benefits of an approach such as this are that it is simple and can deliver promising

results. However, the main drawback of direct encodings is that it is difficult to create

widespread coordinated change. For example, to represent a four-legged table in a direct

encoding, each of the four legs would need to be represented seperately. This would make

it difficult to increase the length of all the legs of a table since it would require changes to

each of the legs in the representation.
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Figure 2: Objects evolved using a generative encoding from [2].

2.2.2 Generative Encodings

In a generative encoding, the genotype is a set of the design changes or rules that can be

applied repeatedly to create a phenotype for the individual. When used in an evolutionary

algorithm, the design rules that can build the phenotype evolve and produce entirely new

families of designs that all have common features. Clune and Lipson [2] used generative

encodings to create interesting three dimensional objects. The objects seen in Figure 2

were created using a type of generative encoding called a Compositional Pattern Producing

Network (CPPN). A CPPN is a directed graph where each node contains a mathematical

function. Different mathematical functions have different effects on the evolved design. For

example, a sine function produces repetition and a gaussian function produces symmetry.

This example highlights some of the key strengths of generative encodings: repeatability

and symmetry. Since the genotype is a set of rules for creating the phenotype it is possible

to manipulate the rules to form repeated characteristics and symmetry in the physical

representation of an individual.

Lohn et al. [9] used a generative encoding to evolve the design of an antenna, shown in

Figure 3, that went on to be used on a NASA satellite. Their encoding consisted of a list

of actions that could be used to evolve an antenna. These actions included the ability to
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Figure 3: Evolved antenna used on NASA satellite from [9].

increase the length of the antenna in the current direction and actions to rotate the current

direction of the antenna around the x, y, and z plane. A ruleset can be created from this

encoding that when iterated over yields an antenna design. An important aspect of this

example is that while the created satellite has four antenna, the generative encoding used

to create the design only encoded one antenna and simply repeated the same design four

times. This reinforces the benefits of repeatability when designing objects.

Later attempts have been made to utilize generative encodings to develop soft robot

designs. Rieffel and Smith [14] created a generative encoding based around operations on

tetrahedral meshes to evolve soft robot designs. Cheney et al. [1] utilized the CPPN-NEAT

generative encoding to evolve multi-material soft robots. All of these examples help to

highlight the benefits of generative encodings.

However, the one major drawback of generative encodings stems from the fact that it is

only evolving a set of rules for producing a design and not the actual design itself. Since

the phenotype is determined from repeatedly applying the design rules, it is possible to end

up with many different designs with different levels of fitness from a single genotype. This

landscape of possible phenotypes for a genotype is referred to as the ontogenic trajectory

[4]. Therefore, the main drawback of generative encodings is that is difficult to determine

where to stop along the ontogenic trajectory in order to produce the phenotype with the

best possible fitness. This problem has been dubbed the halting problem [3].
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2.3 The Halting Problem

The halting problem is a major problem for generative encodings. It means that the final

phenotype produced from the genotype could have a level of fitness that is far below the

maximum possible level of fitness for that particular genotype. This problem stems from

the fact that traditional generative encodings use static developmental timings. A static

developmental timing is when the number of times that design rules will be repeated to

produce a phenotype is fixed in advance [12]. This opens the door for problems such as

those illustrated in Figure 4. The top and the middle graph in the figure, show what

happens when the static developmental timings perform well. The last repetition in each

case seems to pinpoint the phenotype with the highest possible fitness along the ontogenic

trajectory. However, the bottom graph shows the major problem with static developmental

timings. In the graph, the last repetition of the generative encoding created a phenotype

that had much lower fitness than was possible along the ontogenic trajectory. This means

that the phenotype for that genotype has much lower fitness than a phenotype that could

be chosen with a shorter or longer static developmental timing.

One alternative to static developmental timings that could help address the halting

problem is scaled developmental timings. With scaled developmental timings, the number

of repetitions to perform on the design rules is no longer a fixed value. Instead, now the

number of repetitions to perform steadily ”rachet” up to higher levels [12]. However, an

increase in the number of repetitions is only allowed after the best phenotype, in terms of

fitness, prior to the last increase is surpassed by the best phenotype after the last increase.

This is extremely useful because as the number of repetitions increase, the phenotypes could

become worse. This prevents useless increases in the number of repetitions. Scaled devel-

opmental timings offer many benefits over static developmental timings such as increased

computational efficiency and reduced design complexity of the final phenotypes. However,

they have not yet been shown to eclipse static developmental timings in terms of final

phenotype fitness.
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Figure 4: The black line in each graph represents the fitnesses of all phenotypes along the
ontogenic tragectory. The red line represents the last iteration of the generative encoding.
The intersection of the black and red lines is the fitness of the final phenotype. From [12].
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3 Experiment Design

My main research goal is to evaluate how much better scaled developmental timings are

at addressing this halting problem than static developmental timings. To accomplish this

goal, I planned to evolve soft robots optimized for locomotion from a generative encoding

using both static and scaled developmental timings and comparing the results. In order to

be able to perform this evaluation, I first had to create a framework that was capable of

evolving soft robot designs. However, creating such a framework is a major task that has

was riddled with many challenges.

3.1 Choosing a Generative Encoding

The first challenge that I had to address was creating a generative encoding that was capable

of evolving a soft robot. Instead of building a completely new generative encoding from

scratch, I decided to utilized the generative encoding developed by Rieffel and Smith [14]. I

chose to use this grammar because it has proven effective at evolving soft robot designs and

I did not want to waste precious time redoing what has already been done. The principles

of this generative encoding are illustrated in Figure 5. The encoding relies on performing

operations that correspond to the label of an unblocked face. The three operations, which

are detailed in the figure, include subdividing a face (and the underlying tetrahedron),

relabeling a face, or growing new a tetrahedron onto the face. This encoding produces the

genotypes for soft robot designs composed of tetrahedra meshes by evolving a series of rules

based on these operations. Then by iterating over the ruleset, a phenotype for the design

can be created. An example ruleset is shown in Figure 6. In this example ruleset, in every

repetition of the encoding, the next unblocked face would apply the rule that corresponds

to its label. For example, a face labeled A would apply the grow rule resulting in a new

tetrahedron with the label D, B, and F being placed on top of the face. Figure 7 shows the

process in action as a small tetrahedral mesh evolves into an increasingly complex design.

9



Figure 5: Tetrahedral face encoding grammar to design soft robots. Picture from [14].

Figure 6: Example ruleset. Picture from [12].
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Figure 7: Demonstration of evolution. Picture from [14].

3.2 Implementation In Bullet Physics Engine

Another challenge that I had to overcome was the decision of which physics engine to use.

The physics engine plays an integral role in the evolutionary algorithm as it is required to

simulate the phenotypes constructed from the generative encodings. This is the most critical

part of the entire evolutionary algorithm because this is where the phenotypes are assigned

their fitness. Due to its importance to the entire project, the selection of which physics

engine to use was the first decisions I made. There are quite a few physics engines available,

however, the two main ones are NVidia PhysX and the Bullet physics engine. I ended up

choosing the Bullet physics engine primarily due to its vastly better support of soft body

dynamics. This is important since my plan requires physics simulations that test the fitness

of the evolved soft robot designs. However, Bullet also has the added benefit of being open

source software with a plethora of documentation. This was important because I needed to

quickly learn how to use the physics engine in order to implement the framework. Figure 8

shows an example soft robot design I created using the generative encoding simulated inside

the Bullet physics engine.
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Figure 8: A sample of a tetrahedral mesh after numerous grammar iterations. The colors
of the exposed faces correspond to the label of the face. Green = A, Red = B, Blue = C,
and Orange = D.

3.3 Movement Mechanisms

The most difficult challenge that I faced was what kind of movement mechanism to use. The

movement mechanism is a crucial part of the design of soft robots. The chosen movement

mechanism will greatly impact the evolved design of the robot because the same evolutionary

adaptation that may positively impact fitness for one movement mechanism, may have zero

or even negative impact on fitness when a different movement mechanism is used. There

are many different options of features to use as the movement mechanism for soft robots.

For example, in [1], the movement mechanism was based on the differing properties of the

materials used to create the soft body robots. The resulting designs evolved to utilize the

materials to cause locomotion. When the experimenters added new materials, the increase

in options led to different designs and locomotion strategies as shown in Figure 9. In this

example, the different colors signify different materials that each have different properties.

The dark blue color represents a stiff material, the light blue is a soft material, and the

red and green materials each undergo periodic equal and opposite volume actuations. The
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Figure 9: Two examples of soft robots created with a material based movement mechanisms.
The top design uses an inching locomotion strategy while the bottom design uses a galloping
behavior [1].

Figure 10: A vibration motor that could be attached to a real life soft robot to generate
locomotion.

difference of behaviors caused by adding more materials demonstrate the importance of

choosing an appropriate control mechanism. This example demonstrates the effect that

different movement mechanisms have on the evolution of designs.

3.3.1 Selecting a Movement Mechanism

While there are many conceivable movement mechanisms that could be utilized for soft

robot design, in reality the possible movement mechanisms are limited to the capabilities

of the Bullet physics engine since the movement mechanism has to be simulated. After

exploring the capabilities of Bullet, I decided to use vibration as a movement mechanism.

The inspiration to use vibration came from recent research into the movement of tensegrity

robots via vibration [7]. The main benefit of using vibration as a movement mechanism is

that real life vibration motors exist, shown in figure 10 that could be used to produce a real

world soft robot capable of locomotion.
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3.3.2 Implementation

The next challenge that needed to be addressed was to implement vibration in Bullet. The

design is composed of two cylinders: one cylinder that is permanently attached between

two vertices of the original tetrahedron of the soft robot and another cylinder that rotates

around the first cylinder. For this design to work, the cylinders are set to ignore collisions

with the soft robot. This design is illustrated in figure 11. In the figure, the red cylinder is

attached to the original tetrahedron and the pink cylinder rotates around the red cylinder.

As detailed in bottom half of the figure, when the generative encoding expands the soft

robot design, the cylinder remain attached between the same two vertices.

3.4 Designing a Fitness Function

The last challenge that I had to address was how to create the fitness function for the

simulation. The fitness function is used by the simulation to assign the fitness of every

individual that gets simulated in the physics engine. This challenge is particularly important

to an evolutionary algorithm because the fitness function determines if a design is good and

should be kept or if a design is bad and needs to be discarded. As a result, the fitness

function needs to be created so that it assigns higher fitness to the individuals that are

more proficient at locomotion. The fitness function that I used in my framework is based

on the fitness function utilized in [14]. The fitness function I created simply assigns fitness

as the absolute value of the distance between the coordinate where the individual begins

and the coordinate where the individual ends up after a specified time period of utilizing

the movement mechanism. Since I am trying to generate designs that are optimized for

locomotion, using the distance that the simulated soft robot design is able to travel seemed

like an effective method to differentiate a good design from a bad design. One important

note to take into account is that distance was measured by how far the design was able to

move in the XZ plane. In other words, when measuring the distance between the start and

the end point, the y coordinates where set to zero. This was done because slight changes

in the y coordinate do not effect how far the design was able to locomote and, as a result,

14



Figure 11: Two examples of the simulated softbots with the vibration movement mechanism.
The design on top is the initial tetrahedron and the design on the bottom is a design after
several iterations.
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could have created some bias in the fitnesses of the individuals.

4 Evaluation

My main method for evaluating my simulation framework was to try to evolve effective soft

robot designs that are capable of locomotion. Figure 12 shows a some of the designs that

were evolved using my framework to move via vibration. Another method I used to evaluate

the framework was to produce the generated designs in real life using Union’s newly acquired

3D printer. Figure 13 displays the 3D printed design. This was a major accomplishment

since the overall goal of the simulation framework is to generate designs of soft robots. The

successful 3D printing of the designs ensures that the simulation is working properly and is

producing designs that can be translated from the simulation into the real world.

After running the simulation a number of times, it quickly became clear that it requires a

great amount of computational power. For example, to run the simulation with a population

of ten individuals for five generations required 43 minutes. This presents a problem because

evolutionary algorithms may run with a population of 400 individuals for 1000 generations.

Clearly, running using this simulation would take a massive amount of time so something

needs to be done to help speed up the process.

5 Future Work

There are still many more steps that I plan to take to further this research. For example,

since the process of simulating each of the different generations of an evolutionary algorithm

in a physics engine is so incredibly demanding on the resources of the computer running

the simulation, I hope to speed up the simulation process. To do this, I plan to run my

simulations on the Union College cluster computer. The plan is to have many different

simulations running all at once on the cluster to decrease the overall amount of time it

takes to create designs. The utilization of the computing resources of Union College should

greatly decrease the amount of time needed to run large numbers of simulations and as a
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Figure 12: Six different designs evolved using the simulation framework.
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Figure 13: A 3D printed robot designed using my simulation framework.

result will greatly increase the number of different simulations that can be run. This will

be extremely helpful because I will be able to generate a vast amount of designs and collect

huge quantities of data.

I plan to utilize this data to evaluate how much scaled development timings help to

address the halting problem compared with static developmental timings. This will involve

analyzing data collected on the phenotypes that each method chooses for many different

ontogenic trajectories. Also, data about which phenotype in the ontogenic trajectory had

the highest fitness could be analyzed as well. By comparing how much the fitness of the

phenotype selected by each method deviates from the best possible phenotype, it is possible

to gauge how much each method is limiting the halting problem. I also plan to compare

the final fitnesses that each method arrives at in an attempt to confirm the results shown in

[12]. If scaled developmental timings still perform worse than static developmental timings

in this experiment, in terms of the final fitness selected, I plan to attempt to tweak the scaled

developmental timings in an attempt to equal or surpass the prowess of static developmental

timings. This entire process will involve collecting a large amount of data by running many

simulations using the framework that I have developed.

Finally, I hope to utilize my simulation framework to produce many more designs for

soft robots that utilize vibration to move. It would be incredible to 3D print these soft

robot designs and use real world vibration motors to generate movement in the printed soft
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robots.
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