Developing Scientific Software: The Role of the
Internet

Aleksandra Pawlik, Judith Segal, Helen Sharp, and Marian
Petre

The Computing Department, The Open University

In this article, we describe how scientists use the Internet when
they develop scientific software. We present the findings from
27 interviews with scientists-developers and professional soft-
ware developers who develop scientific software. Based on the
analysis of the empirical data, we discuss three aspects of the
role of the Internet in scientific software development practice:
1) the use of the Internet in addressing the gaps in scientists’
software development knowledge, 2) the use of network-based
tools and methods to manage the sofiware development pro-
cess, and 3) communication between scientists-developers via
the Internet.

Introduction

Software development is an inseparable part of research in many scientific
domains. As research progresses, it raises new questions and challenges that
the existing software may not be able to address. At the same time, advanced
domain knowledge is necessary to understand what the software is supposed
to do. For these two reasons, in many cases scientists develop scientific soft-
ware themselves. The software that they develop is not their primary goal but
rather the means to an end (Basili et al., 2008; Kelly, 2007; Segal, 2009).

Tokar, A., Beurskens, M., Keuneke, S., Mahrt, M., Peters, 1., Puschmann, C., van Treeck, T., &
Weller, K. (Eds.). (2012). Science and the Internet (pp. 263-273). Diisseldorf: Diisseldorf Uni-
versity Press

https://core.ac.uk/display/229590921?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

264 Aleksandra Pawlik, Judith Segal, Helen Sharp, and Marian Petre

That ultimate end is to progress scientists’ own research (Segal, 2007). Typi-
cally, these scientists do not have the same background in software develop-
ment that professional software developers would have (Sanders & Kelly,
2008; Segal, 2008). Understanding the software development practices of
scientists may reveal ways in which software engineers and scientists them-
selves can better support development of scientific software. As the Internet
is more and more present in the research world, the focus of this paper is on
the role of the Internet in scientists’ software development practice. Since the
study had an exploratory character, we did not design it on the basis of any
pre-existing theoretical assumptions. The aim was to provide a broad under-
standing of how the Internet fits into scientific software development.

A brief scan of related publications reveals that there is very little litera-
ture that discusses the role of the Internet in the software development prac-
tices of scientists. Research about the Internet and science mainly discusses
the ways the Internet facilitates collaboration between scientists and scientific
institutions (e.g., Olson et al., 2008). When it comes to software development
practices, it has been noted that scientists advance their knowledge about
software development in various ways, including self-study resources availa-
ble on the Internet (Sanders & Kelly, 2008). In 2006, Wilson noted that sci-
entists shared and discussed their source code primarily via e-mails. Howev-
er, more recent studies (Hannay et al., 2009; Nguyen-Hoan et al., 2010) indi-
cate that other tools dedicated to supporting software development, such as
version control systems, are in use by scientists.

Our study provides insight into and information about the role of the In-
ternet in scientific software development practice. We believe that our work
will address the dearth of literature on scientific development practices and
the Internet.

Methodology

Since the aim of our study was to explore and understand real-life practices
of scientists developing software, we used a qualitative approach (Robson,
2002). The methodology of our study follows the guidance for using inter-
views in software engineering research as described by Seaman (1999). We
used semi-structured interviews to obtain the data that would answer our
research questions and to explore the research area, allowing the information
to emerge from the data. The interviewer always had an interview guide to
make sure that no topic that we wanted to cover was omitted. All interviews
were recorded and transcribed. We interviewed 27 participants, out of whom:

Developing Scientific Software: The Role of the Internet 265

e 20 were scientists who were developing software that was also used by
other scientists,

e two were scientists who developed software for their own use (however
they were happy to share their code if they were asked),

e two were scientists with a degree in computer science developing soft-
ware used by other scientists,

e one was a professional software developer engaged in a scientific soft-
ware development project,

e two were scientists who mainly used scientific software developed by
other scientists.

The last two participants’ views and opinions were informative in our
study as these scientists-users often had to refer to the same resources as the
scientists who developed the software. The opinions of these two participants
helped us to form a better overview of the role of the Internet in scientific
software development.

The data collected during the interviews were then analyzed using the-
matic analysis (Boyatzis, 1998); that is, the data were coded using codes
formed during a bottom-up analysis, and then these codes were grouped to
form themes. The themes then helped to articulate the findings of this study.

Findings

In this section, we will present the findings from our study. First, we will
discuss the role of the Internet in progressing software development skills
among the scientists. Then we present the findings on how the Internet facili-
tates a scientific software development process and how it supports commu-
nication between scientists-developers.

Addressing Gaps in Software Development Knowledge

Our study showed that the Internet was one of the main resources used for
addressing gaps in the scientists’ software development knowledge. Out of
27 interviewed scientists, 24 were either almost exclusively self-taught when
it comes to software development skills or combined self-teaching with a
one- or two-semester course in programming. These courses were usually a
part of their undergraduate degree. The self-teaching was based on multiple
materials, and among these materials, the Internet appeared to be one of the
main sources of information. The way these online resources were used var-
ied. It could be regular checking up on whether there are any new solutions in

266 Aleksandra Pawlik, Judith Segal, Helen Sharp, and Marian Petre

the existing technologies that the scientists used. As one of the participants
reported:

Every now and then I go through it [Python doc] and I go, “Hey, there’s a new
trick [that] has [been] developed in Python that I want to be using”—mainly the
online resources.

Another strategy to progress one’s knowledge related to software devel-
opment is to go straight to a search engine when, for example, an issue with
source code appears. Google seems to serve well as the first reference point
that can be used to find the answer. In fact, as one of the participants report-
ed, Google was probably the only place he could seek support:

What I would do, I would write some code, run it, [and] when I get an error I
would then take the error and put that error into Google and then see what the er-
ror was. Then if I got anything that was reasonable as an answer back, I would try
to figure that out. Try the solutions that were on the Internet. Other than that, there
wasn’t really much more I could do or many more resources I could use.

This strategy of pasting in the code of the error or the error message itself
(whether it was an output from a compiler or a runtime error) was common
for scientists-developers with varying levels of experience in software devel-
opment. Two participants said that they would rather check the details of
programming language syntax or a particular compiler output on Google than
use a textbook on their desk.

The participants did not explicitly discuss the ways they evaluate the reli-
ability of the sources they use. Only two interviewees explained to us their
methods for assessing the correctness of the implementation solution or par-
ticular syntax details that they found online. As one of them put it:

If it comes down to coding, resources for C++ or something like that, either it
works or it doesn’t. Whether it’s trustworthy or not doesn’t matter to me because I
will run a test that will test the program and check a bit and get some output addi-
tional information to check if the command works as they claim probably double
check against other sites [the interviewee means other online resources], if it
agrees and gives the same information.

Our findings show that the Internet is used on a regular basis by scientists
in order to address the gaps in their software development knowledge. The
scientists appear to simply choose solutions that are “good enough” to ad-
dress an issue with which they are dealing at a given moment. This finding is
consistent with the model of scientific software development proposed by
Segal (2008).

Developing Scientific Software: The Role of the Internet 267

Use of Network-Based Tools and Methods Facilitating the
Software Development Process

The Internet provides a number of tools and methods to help manage scien-
tific software development projects as well as to support the work coordina-
tion within the development team. Sixteen of our participants explicitly dis-
cussed how they use the Internet in coordinating their work. The ability of
managing tasks via the Internet seems to be an ideal fit for scientific software
development projects, which often represent collaborations between groups
or individuals at different physical locations. Twenty-four of our participants
were involved in projects in which the development team was distributed.
Even if the core development team was co-located and the developers could
discuss everything in person, there were usually external source code con-
tributors or people writing documentation who did not even work in the same
country.

The approaches to Internet-supported management ranged from using ad-
vanced tools dedicated to managing projects to less formal management via
e-mails. One of the participants described in detail how Trac (i.e., a project
management system) was adapted for one of the software development pro-
jects in which he was engaged:

We described what the project was trying to achieve. We divided that into tasks
for each task. We put the name of the person who was by principle the leader of
the task. They could nominate other people to actually share the work and then as-
sociate tickets with tasks. And we had milestones, so for a demonstration or deliv-
erable we had a milestone. The milestone then was based on completing the tick-
ets.

Another participant described how his team tried out different tools to ad-
dress the needs of their project. These systems were used both for managing
the project and also for managing the project Web site content.

We started off using media-wiki. [...] for the project website we used the system
[the user could not remember the exact name], which is fine, but it’s more for
managing small projects and labs. It’s great for secretaries to use. But to interact
with it problematically is a little bit more tricky, and its authentication realm is
different. This was OK, but we wanted something better. We tried media-wiki and
then went to Google-wiki. I think now we’re going to change to the system called
Drupal [www.drupal.org].

Summarizing, the scientists use a variety of network-based tools and
methods to facilitate the software development process. These tools and
methods seem to be suitable for scientific software development projects in
which scientists-developers are often not co-located. Additionally, these tools

268 Aleksandra Pawlik, Judith Segal, Helen Sharp, and Marian Petre

and methods encourage scientists-developers to prioritize their tasks, assign
roles and responsibilities, and set up goals and milestones.

Communication via the Internet between Scientists-Developers

Out of 25 of our participants who were developing scientific software, only
one was exclusively a solo developer at the time of the interview. All others
were engaged in projects that included other developers. In all cases, com-
munication among the developers of scientific software was carried out via
the Internet.

E-mails were the most commonly used means of communication. All par-
ticipants who were developers either explicitly mentioned using e-mails
while working on the software, or we found implicit evidence for that (for
example, during the interview, the scientists showed us an example of a de-
sign document circulated via e-mail).

E-mails were used for a number of purposes: for sending bits of source
code, for circulating minutes of meetings, for discussing details of implemen-
tation, and so on. If a given project had other tools supporting development
management and collaboration, these tools and e-mails tended to be used for
different purposes. As one of the participants described it:

When something needs to be acted upon, we all have an e-mail dialog if it’s not
supposed to be permanent, if it’s just the decisions required. But if it’s more per-
manent, then it will all go on a Web site and we like these content management
systems.

Apart from exchanging e-mails, the scientists also intensively used other
tools such as Skype, Internet messengers, mailing lists, or even a forum to
communicate with others engaged in the same project. For projects in which
scientists-developers were not co-located, communication via the Internet
was very frequent. In cases when the core development team was co-located,
communicating via the Internet was not that often; however, it did take place,
such as when one of the core developers was temporarily at a different loca-
tion or an “occasional” developer needed to consult the main team.

Discussion

In this section, we will discuss the benefits and challenges of the use of the
Internet in scientists’ software development practices. We will also provide
some suggestions on the ways some of these challenges could be addressed.

Developing Scientific Software: The Role of the Internet 269

Addressing Gaps in Software Development Knowledge

The immediate availability of information on the Internet addressing the gaps
in scientists’ software development knowledge may be very useful for them.
There may be two potential reasons for this usefulness. First, for scientists-
developers, software is usually only a means to an end rather than the main
goal itself (Segal, 2007). This means that as soon as they find a solution for
their software development problem, they can get back to their main task,
which is advancing their research. Hence, scientists prefer a solution that is
simply “good enough” over a more sophisticated and flexible one. Second,
scientists typically lack formal education and experience in software devel-
opment that professional software developers have. The Internet may possi-
bly help them to find a solution, even if they are not sure what type of solu-
tion they want and where to look for it. When they get stuck with a compiler
or runtime error, they can search for a solution via an Internet search engine
(most often using Google); instead of spending hours trying different fixes
and consulting textbooks or colleagues, a scientist may go online to find a
solution to a bug.

However, there may be certain challenges related to using the Internet for
addressing the gaps in the scientists” knowledge about software development.
First, there is the question of the appropriateness of the solutions that the
scientists-developers find online. When it comes to fixing problems with
implementation, one of the reported strategies was to “see if it works and
(sometimes) compare the solution with other resources.” Assuming that this
strategy actually gives some confidence in the particular solution, there is still
uncertainty on how a quick fix may affect other parts of the software or how
it may affect further software development and maintenance. A quick fix that
deals with a given bug may generate problems in the future. Second, there is
the question of trustworthiness and reliability of the sources from which the
scientists learn about various aspects of software development. In our re-
search, the scientists did not discuss to any extent which sources were, ac-
cording to them, trustworthy and reliable. The participants generally did not
describe how they assess if the Internet resources that they use suit their
needs best. We cannot be sure whether this is due to the fact that the verifica-
tion process was so obvious for them that they did not even think about men-
tioning it or whether they simply accepted a solution that was “good enough”
(Segal, 2007). Summarizing, the Internet can certainly be a great help for
progressing one’s skills in scientific software development, but more research
about how to mitigate the risks discussed above is needed. The first step
could be finding ways to raise scientists’ awareness of these risks. Another

270 Aleksandra Pawlik, Judith Segal, Helen Sharp, and Marian Petre

approach could be finding an effective way of creating and running
“knowledge centers” that could gather information about reliable resources
useful for scientists developing software. Such knowledge centers could also
be platforms for exchanging ideas and experiences among scientists-
developers. Some actions to gather the information useful for scientists-
developers and to assist them in communication between each other have
been already taken by the Software Sustainability Institute (SSI) in the Unit-
ed Kingdom. This institute organizes workshops and trainings for scientists
developing software as well as for professional software developers who are
involved in scientific software projects. SSI also collects information about
sources used and recommended by the scientific software community. These
sources are entered into a freely available “knowledge base.”

Use of Network-Based Tools and Methods Facilitating the
Software Development Process

Many tools and methods that support the software development process may
help the scientists-developers to organize and coordinate their work in scien-
tific software projects. The participants in our research mentioned that they
were engaged in some projects in which the software development process
itself was not clearly laid out and organized. In our study, we observed that
introducing tools such as a version control or Trac imposes the assigning of
roles and responsibilities and requires setting up milestones and goals. These
changes, if they took place, were perceived as advantageous by our partici-
pants.

The challenge related to the use of network-based tools and methods fa-
cilitating software development process is that their variety may become
overwhelming. Setting up, for example, a version control, an issue tracker,
and a wiki will be meaningless if the developers involved in the project do
not use them. In fact, as one of our participants commented, if a scientist-
developer is involved in five projects at a time and all five of them have a
wiki or an issue tracker, it is highly likely that he will not contribute to any of
them. And scientists-developers may sometimes be involved in multiple
projects at the same time. We think that more research is needed to establish
a balance between using various tools that support the software development
process and the actual needs and character of a given scientific software de-
velopment project. Maybe it could be possible to create a kind of step-by-step
evaluation of project’s needs that could help scientists-developers to identify
which tools would be useful for them.

Developing Scientific Software: The Role of the Internet 271

Communication via the Internet among Scientists-Developers

The main benefit of communication via the Internet is the fact that it may
accommodate the distributed nature of most scientific software development
projects. Scientists who are physically based at different institutions in differ-
ent locations can communicate every day, not only verbally discussing vari-
ous matters (as it could be done over the phone) but also sharing source code,
demonstrating program behavior using a shared desktop, or having a team
teleconference.

The main deficit of communication via the Internet is that it cannot re-
place face-to-face communication. It may be tempting to assume that in the
Internet era, scientists-developers’ meetings in person are unnecessary and
since they are often time- and finance-consuming, such meetings should be
cancelled. But this assumption may be wrong. One of our participants who
worked in a project engaging scientists from not only different countries but
also different continents said that he found Internet communication only
effective with people whom he knew in person. Hence, as he reported, he
spent about half of his time traveling between different locations to discuss
the developed software and, what was equally important for him, to establish
working relationships with other developers.

From what the participant said, it was clear that these relationships could
be built and strengthened thanks to the informal interaction and the possibil-
ity to talk in person with other developers. This finding is consistent with
Olson and Olson (2000), who found that some elements that are very im-
portant in collaborative software projects such as “informal hall time before
and after [the formal meeting],” “implicit cues,” and “spatiality of reference”
are not and cannot be well supported by technology. The authors pointed out
that in projects in which the elements of this collaboration are present (that is,
in face-to-face interaction), there are fewer misunderstandings and productiv-
ity tends to be better. Improved data flow, whether it is sending a massive
piece of source code, raw data, or a team videoconference stream, cannot
entirely replace face-to-face communication. It is important to raise aware-
ness among scientists-developers that despite having more and more power-
ful collaboration and communication tools, they still need to plan for meet-
ings in person.

Conclusion

Our study provides evidence that the Internet can bring many benefits to
scientific software development practices. It may help scientists-developers

272 Aleksandra Pawlik, Judith Segal, Helen Sharp, and Marian Petre

to keep focus on their main aim, which is advancing their research by easing
the process of software development. The Internet is a vast source of knowl-
edge that is easily accessible. This may help scientists to speed up the pro-
gress with software development, and the saved time may be allocated to
advancing their research. The Internet supports collaboration and communi-
cation in scientific software development projects that tend to be of distrib-
uted nature. At the same time, our findings indicate that there are some risks
involved when it comes to using the Internet in scientific software develop-
ment. These risks may not seem very apparent and obvious at first glance, but
they may in fact have a negative long-term impact on scientific software.

References

BASILI, V. R., CARVER, J. C., CRUZES, D., HOCHSTEIN, L. M., HOLLINGSWORTH, J. K.,
SHULL, F., & ZeLkowiTz, M. V. (2008). Understanding the high-performance-
computing community: A software engineer’s perspective. [EEE Software, 25(4),
29-36.

Bovartzis, R. E. (1998). Thematic analysis: Coding as a process for transforming
qualitative information. Thousand Oaks, California: Sage Publications.

HANNAY, J. E., MACLEOD, C., SINGER, J., LANGTANGEN, H. P., PFAHL, D., & WILSON,
G. (2009). How do scientists develop and use scientific software? In Proceedings
of the 2009 ICSE Workshop on Software Engineering for Computational Science,
Vancouver (pp. 1-8). Washington, DC: IEEE Computer Society. Retrieved No-
vember 11, 2012 from http://tinyurl.com/atqnr51

KELLY, D. (2007). A software chasm: Software engineering and scientific computing.
IEEE Software, 24(6), 120-119.

NGUYEN-HOAN, L., FLINT, S., & SANKARANARAYANA, R. (2010). A survey of scien-
tific software development. In Proceedings of the 2010 ACM-IEEE International
Symposium on Empirical Software Engineering and Measurement (Art. 10). New
York: ACM Press.

OLSON, G. M., & OLSON, J. S. (2000). Distance matters. Human-Computer Interac-
tions, 15(2), 139-178.

OLSON, G. M., ZIMMERMAN, A., & Bos, N. (Eds.). (2008). Scientific collaboration on
the Internet. Cambridge, MA: MIT Press.

ROBSON, C. (2002). Real world research: A resource for social scientists and practi-
tioner-researchers. Malden: Blackwell.

SANDERS, R., & KELLY, D. (2008). Dealing with risk in scientific software develop-
ment. [EEE Sofiware, 25(4), 21-28.

Developing Scientific Software: The Role of the Internet 273

SEAMAN, C. (1999). Qualitative methods in empirical studies of software engineering.
IEEE Transactions on Software Engineering, 25(4), 557-572.

SEGAL, J. (2007, September 23-27). Some problems of professional end user develop-
ers. Paper presented at IEEE Symposium on Visual Languages and Human-
Centric Computing, Idaho. Retrieved October 3, 2012 from
http://oro.open.ac.uk/17674/1/segal-ProfessionalEndUserDevelopers.pdf

SEGAL, J. (2008, May 13). Models of scientific software development. Paper present-
ed at First International Workshop on Software Engineering in Computational
Science and Engineering, Leipzig. Retrieved October 3, 2012 from
http://oro.open.ac.uk/17673/1/SegalICSEO8R.pdf

SEGAL, J. (2009). Software development cultures and cooperation problems: A field
study of the early stages of development of software for a scientific community.
Computer Supported Cooperative Work (CSCW), 18(5-6), 581-606.

WILSON, G. (2006). Where’s the real bottleneck in scientific computing? Scientists
would do well to pick up some tools widely used in the software industry. Ameri-
can Scientist, 94(1), 5.

