
Union College
Union | Digital Works

Honors Theses Student Work

6-2017

Elliptic Curve Cryptology
Francis Rocco
Union College - Schenectady, NY

Follow this and additional works at: https://digitalworks.union.edu/theses

Part of the Information Security Commons, Mathematics Commons, and the Special Functions
Commons

This Open Access is brought to you for free and open access by the Student Work at Union | Digital Works. It has been accepted for inclusion in Honors
Theses by an authorized administrator of Union | Digital Works. For more information, please contact digitalworks@union.edu.

Recommended Citation
Rocco, Francis, "Elliptic Curve Cryptology" (2017). Honors Theses. 74.
https://digitalworks.union.edu/theses/74

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Union College: Union | Digital Works

https://core.ac.uk/display/229590739?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalworks.union.edu?utm_source=digitalworks.union.edu%2Ftheses%2F74&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalworks.union.edu/theses?utm_source=digitalworks.union.edu%2Ftheses%2F74&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalworks.union.edu/studentwork?utm_source=digitalworks.union.edu%2Ftheses%2F74&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalworks.union.edu/theses?utm_source=digitalworks.union.edu%2Ftheses%2F74&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=digitalworks.union.edu%2Ftheses%2F74&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=digitalworks.union.edu%2Ftheses%2F74&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1368?utm_source=digitalworks.union.edu%2Ftheses%2F74&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1368?utm_source=digitalworks.union.edu%2Ftheses%2F74&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalworks.union.edu/theses/74?utm_source=digitalworks.union.edu%2Ftheses%2F74&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalworks@union.edu

Elliptic Curve Cryptology

By

Francis Rocco

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Submitted in partial fulfillment of the requirements for

Honors in the Department of Mathematics

Union College

March, 2017

ABSTRACT

ROCCO, FRANCIS Elliptic Curve Cryptology.

Department of Mathematics, March 2017.

ADVISOR: HATLEY, JEFFREY

In today’s digital age of conducting large portions of daily life over the

Internet, privacy in communication is challenged extremely frequently and

confidential information has become a valuable commodity. Even with the

use of commonly employed encryption practices, private information is often

revealed to attackers. This issue motivates the discussion of cryptology, the

study of confidential transmissions over insecure channels, which is divided

into two branches of cryptography and cryptanalysis. In this paper, we will

first develop a foundation to understand cryptography and send confidential

transmissions among mutual parties. Next, we will provide an expository

analysis of elliptic curves and then utilize them to strengthen our cryptographic

methods. Finally, we will discuss cryptanalytic attacks against our confidential

transmissions and ultimately detail how to best choose elliptic curves that are

cryptographically robust.

ii

ACKNOWLEDGEMENT

I am immensely grateful for my advisor, Professor Jeffrey Hatley, without

whom this thesis would not have been possible. His precise attention to detail

was unrivaled, his endless patience for my countless questions was greatly

appreciated, and he ensured that this thesis became exactly what I wanted it

to be.

iii

NOTATION

We shall use the following notation throughout this paper. We write N for

the set of natural numbers, Z for the set of integers, Q for the set of rational

numbers, R for the set of real numbers, p will always denote a prime, and

Z/pZ for the set of integers modulo p. Fp
∼= Z/pZ is a finite field with p

elements, and F×p = Fp \ {0} is the multiplicative group of units with p − 1

elements.

iv

Contents

ABSTRACT ii

ACKNOWLEDGEMENT iii

NOTATION iv

1. INTRODUCTION 1

1.1. An Introduction to Cryptography 1

2. KEY EXCHANGES 7

2.1. The Discrete Logarithm Problem 8

2.2. Diffie-Hellman Key Exchange 10

2.3. The Index Calculus Algorithm 12

3. ELLIPTIC CURVES 16

3.1. Introduction 16

3.2. Elliptic Curves and a Group Law 17

3.3. DHP and Elliptic Curves 30

4. CRYPTANALYSIS: ATTACKS AGAINST THE ECDLP 31

4.1. The Baby-Step, Giant-Step Algorithm 32

4.2. Pollard’s ρ Algorithm 34

4.3. Cryptographically Robust Elliptic Curves 37

APPENDIX: APPLICATIONS AND IMPLEMENTATION 38

References 40

v

1. INTRODUCTION

1.1. An Introduction to Cryptography. In recent times, cybersecurity

has become an increasingly popular issue among the general public. With

the exponential advancements of technology and the abundance of personal

data circulating the Internet, it is significantly more difficult to conceal per-

sonal information from prying eyes. Though security measures have grown

more complex, they are hindered by ongoing attacks aimed at stealing infor-

mation. How can we approach the issue of a proper level of security without

compromising either the efficiency of transmitting messages or the difficulty

in intercepting them, especially when there are new methods and efforts being

developed regularly? The problem presented motivates a deeper understand-

ing of cryptography - the study of transmitting confidential information over

unprotected channels - and how it can be implemented to restore a reasonable

level of security for all of the information.

In order to work through examples in cryptography, we will become familiar

with the typical nomenclature for hypothetical scenarios. First, we consider

two parties that wish to communicate and name them Alice and Bob; they

are a great distance from one another, and therefore, their only method of

communication is over an insecure channel. Alice wishes to transmit a secret

message to Bob without compromising the contents of her message to any

other third party. Alice begins with her message, the plaintext M , and then

uses an encryption key e to convert it into a ciphertext C. Ultimately Bob

must be able to convert C back to M with a decryption key d; however, in

order to preserve secrecy, he should be the only one with that capability. Thus,

1

we have described the components of a cryptosystem involving M , e, C, and

d. This system represents a method wherein the message can be sent with

only Alice and Bob able to read it. The following is an example to illustrate

how such a system operates:

Example 1. The Caesar Cipher: This cipher is perhaps the simplest cipher

that one could apply to transmit a secret message. We begin by assigning

numeric values to letters of the alphabet (namely, a = 1, b = 2, c = 3, . . . ,

z = 26). Now, consider an example plaintext M , “hellobobhowareyou”, and

convert it to a string of numerical values, obtaining the plaintext

M = 8− 5− 12− 12− 15− 2− 15− 2− 8− 15− 23− 1− 18− 5− 25− 15− 21.

We add dashes here solely to clarify different letters from one another. For

this example, we define e = 4 and add e to the current value of each letter,

yielding

12− 9− 16− 16− 19− 6− 19− 6− 16− 19− 27− 5− 22− 9− 29− 19− 25.

Since some of the values resulted in numbers greater than 26, we simply reduce

modulo 27 and treat 0 as a *. Thus, our final ciphertext is

C = 12− 9− 16− 16− 19− 6− 19− 6− 16− 19− 0− 5− 22− 9− 3− 19− 25.

Observe that if we converted the numbers back to letters, then it would read

“lippsfsfps*evicsy”. Certainly this new message does not resemble English,

rendering the true meaning unknown to anyone else.

2

Now, we’ll convert C back into M using the decryption key d. Since we

initially added one to each letter’s numeric value, we will use the decryption

key d = −4, namely, the the additive inverse of e, and reduce modulo 27 if

we receive negative numbers. Note here that by knowing e we were able to

determine d immediately, thus rendering the keys linked. Now, we subtract

four from each of the values, giving us

8− 5− 12− 12− 15− 2− 15− 2− 8− 15− 23− 1− 18− 5− 25− 15− 21,

which is our original M , as desired.

We now introduce a third party named Eve — she is looking to intercept the

message that Alice is transmitting to Bob. Though we just constructed a way

for Alice and Bob to transmit secret messages, there is an inherent problem

in that there are only 26 possible choices for keys. Eve could easily attempt

all 26 scenarios and ultimately decrypt the secret message. We now define the

type of cryptosystem used in our example.

Definition 1. A symmetric key cryptosystem is one in which the encryp-

tion key and decryption key are linked in the sense that as soon as either e or

d is revealed, the other is easily determined.

In contrast, there are also asymmetric key cryptosystems wherein e and d are

unlinked (entirely separate), but there is a large trade-off between speed and

security. A great benefit of symmetric key cryptosystems is that they are much

faster and ultimately more efficient to encrypt and decrypt messages when the

keys are linked; however, since knowing one immediately reveals the other, they

are not necessarily the most secure. Still, there are ways to use symmetric key

3

cryptosystems and maintain an appropriate level of security. Thus, for the

remainder of this paper, we will focus on symmetric key cryptosystems and

use the following principle as a guide:

Kerkhoff’s Principle (1888). The security of a cryptosystem must not de-

pend on the secrecy of the algorithms, but should rest entirely on the strength

of the keys.

Applying this principle to the cryptosystem that we constructed yields the

following: we assume that Eve knows the properties of the cryptosystem being

used and has the same computing power as Alice and Bob — however, we want

to ensure that it is extremely difficult or infeasible for her to figure out M from

C. We will now discuss another type of symmetric key cryptosystem that has

stronger overall security (that is, keys that are significantly more difficult to

determine).

Example 2. Matrix Multiplication: Bob wishes to transmit a message to

Alice. Consider the plaintext “helloaliceiamgreat”. Using the same method as

Example 1, we convert this string into numeric values,

8− 5− 12− 12− 15− 1− 12− 9− 3− 5− 9− 1− 13− 7− 18− 5− 1− 20.

Now, we break the string into substrings of n letters (in this case, we set n = 3)

and then assign each substring to column vectors M1,M2, ...,Mk. If n does

not divide the length of the string, then insert 0 entries to complete the last

matrix. For this example, this means that our string converts into:

4

M =

8

5

12

12

15

1

12

9

3

5

9

1

13

7

18

5

1

20

 .

Note that the matrices are simply juxtaposed next to one another, since

clearly they cannot be multiplied together. Recall that GLn(Z/27Z) is the

group of n × n invertible matrices with entries from Z/27Z. Then we choose

a matrix,

e = A ∈ GLn(Z/27Z).

Since e is in GLn(Z/27Z), we know that it has an inverse matrix

d = A−1 ∈ GLn(Z/27Z).

For this example, we choose

e =

1 0 2

1 3 0

2 2 1

 .

Now, we calculate

C = AM := AM1 AM2 . . . AMk mod 27.

The juxtaposition of the AMi yields:

5

C =

10

12

1

2

20

25

10

9

0

16

2

11

2

3

17

0

16

19

 .

Bob transmits C to Alice, and now she must recover M . Therefore, consider

the inverse of e, which is

d =

21 10 12

11 6 5

17 22 21

 .
We multiply

dC = A−1AM := A−1AM1 A−1AM2 . . . A−1AMk mod 27

which results in our original M as desired.

Ultimately, determining e from C is extremely difficult because there is no

immediate intuition on how to solve for e aside from guessing, and there are

approximately 27n2
possibilities. Thus, the security of this cryptosystem is

higher than that of the Caesar Cipher since the size of the key space – the set

of possible encryption keys – is much larger. It is still a symmetric key system,

elucidating the notion that it is possible to maintain a symmetric key system

and establish more security in the process.

6

2. KEY EXCHANGES

We will develop some tools that we need from Alice and Bob in order for

them to agree on a secure channel. To start, we let G be a finite cyclic group

of order n for the purposes of the following definitions:

Definition 2. The order of an element g ∈ G, denoted |g|, is the smallest

positive integer k for which gk = e, the identity element of G.

Definition 3. Suppose G = F×p , where p is a prime, and let b ∈ G. Then, b

is a primitive root modulo p if |b| = p− 1.

Using these definitions, we can now develop a proposition for our group G.

Proposition 1. Let G = F×p . If b is a primitive root modulo p, then for every

g ∈ G, there exists some k ∈ N such that g ≡ bk mod p.

Proof. Let b be a primitive root mod p. Then, |b| = p − 1 by Definition 3.

We claim that bi 6≡ bj mod p for any 1 ≤ i < j ≤ p− 2. To prove our claim,

suppose that bx ≡ by mod p for some 1 ≤ x ≤ y ≤ p− 2, which implies that

by−x ≡ 1 mod p. We see that 0 ≤ y − x ≤ p − 2, and since |b| = p − 1 we

conclude that y − x = 0 which implies that y = x. Thus our claim is true,

which implies that each of b, b2 . . . , bp−2 is distinct. Then, as |b| = p − 1, we

conclude that |{b, b2, . . . , bp−2}| = p − 1. Since G = {1, 2, . . . , p − 2} also has

p − 1 elements, we further conclude that {b, b2, . . . , bp−2} = {1, 2, . . . , p − 2}.

Therefore for all g ∈ G, g ≡ bk mod p for some k ∈ N, as desired. �

Remark 1. This proposition is equivalent to stating that a primitive root mod-

ulo p is a generator of its respective group.

7

2.1. The Discrete Logarithm Problem. As a motivating example, let us

consider the following problem: find the x ∈ R with 10x = 700, that is, find

the logarithm log10(700). We know that 102 = 100 and 103 = 1000, and thus

we conclude that the value of x is somewhere between 2 and 3. Further in-

vestigation by testing values such as 2.1 and 2.9 will yield more information

regarding the true value of x, and ultimately we will be able to narrow down

the result (which is approximately 2.845). We are able to hone in on this so-

lution given the strictly increasing nature of exponential functions. However,

this is not the case when working with our group G. We will now generalize

this method to our group G and introduce the formal terminology for the Dis-

crete Logarithm Problem (“DLP”) that arises. We define the DLP as follows:

The Discrete Logarithm Problem: Let G be a finite cyclic group of

order n. Let b be a generator of G and g ∈ G. Then, calculate the unique

integer x, 0 ≤ x ≤ n − 1, such that bx = g; that is, calculate the discrete

logarithm logb(g).

For example, suppose G = F×p , where for cryptographic purposes p is a

large prime on the order of several hundred digits. The inherent complexity of

this problem arises from the inefficiency in attempting a brute force method

to find x. Due to the group’s cyclic nature, finding x does not become easier

when computing consecutive powers of b in contrast to our motivating exam-

ple. There are even records for developing a more efficient method to solve

this problem. In fact, according to [8], the standing record for a finite field of

characteristic two was set by Granger, Kleinjung, and Zumbrägel on January

8

31, 2014 which required 400,000 core hours of processing. Clearly, given its

complexity, the DLP provides a level of security to many different cryptosys-

tems.

We now proceed through an example of the DLP.

Example 3. Let p = 2017, b = 423 which is a primitive root of 2017. Find

an x ∈ Z with 423x ≡ 709 mod 2017; that is, find log423(709) mod 2017,

the discrete logarithm. By Proposition 1, we know that 1 ≤ x ≤ 2015. We

compute several powers of 423 mod 2017 as follows:

x 423x Result mod 2017

1 4231 423

2 4232 1433

3 4233 1059

4 4234 183

5 4235 763

6 4236 29

...
...

...

2014 4232014 1606

2015 4232015 1626

It is evident that in contrast to the exponential function in real numbers,

the exponential function mod p is not strictly increasing or decreasing. Hence,

none of these attempts give any more information about the true nature of x

9

(which is, in fact, 1001). For much larger primes, it is infeasible to test every

possible value of x, thus increasing the security of the cryptosystem.

2.2. Diffie-Hellman Key Exchange. It would not be useful to utilize these

symmetric key cryptosystems without having a way to communicate the keys

over insecure channels as well. We will now discuss methods to generate keys

over those channels and focus specifically on the Diffie-Hellman Key Exchange.

Alice and Bob agree on a prime number p (on the order of several hundred

digits) and b, a primitive root mod p. Next, Alice and Bob each choose random

integers x mod p and y mod p, respectively. At this point, any third party

intercepting the insecure channel is aware of p and b, but only Alice knows x

and only Bob knows y.

Now, Alice and Bob calculate A = bx mod p and B = by mod p, respec-

tively, and then they transmit A and B to each other. Using A and B, they

will separately create a shared symmetric key, which will ultimately be the

same for both of them. Alice calculates Bx mod p, and in a similar fashion,

Bob calculates Ay mod p. The chart below details the each of these steps,

demonstrating the calculations and the final result.

Choose Compute Transmit Receive Compute
Alice x A = bx A B Bx

Bob y B = by B A Ay

Alice has computed

Bx = (by)x ≡ bxy mod p,

10

and Bob has computed

Ay = (bx)y ≡ bxy mod p.

In summary, Alice and Bob calculated the same number k = bxy mod p, which

they will use as their shared symmetric key.

It is worth noting that Eve can watch these transmissions take place, learn-

ing p, b, A, and B, but in order to use those to determine k, she also needs x

or y. To solve for x or y, she would need to calculate either logb(A) mod p or

logb(B) mod p which would in turn solve a new, more general version of the

DLP defined as follows:

The Diffie-Hellman Problem (“DHP”): Let G be a finite cyclic group

of order n. Let b be a generator of G, and let bx, by, and g ∈ G be given to the

attacker. Then, the attacker must calculate the unique integer xy, 0 ≤ xy ≤

n− 1, such that bxy = g; that is, calculate the discrete logarithm logb(g).

As we discussed in Section 2.1, calculating these logarithms mod p is gener-

ally not thought to be feasible within a reasonable amount of time. Therefore,

as long as p was chosen well, Alice and Bob have securely agreed on a key over

an insecure channel. However, as we pointed out there are some attacks such

as the Index Calculus Algorithm which sometimes make it possible to solve

the DLP in an efficient amount of time.

The professional consensus regarding the difficulty of the DHP is that it

is about as difficult as the DLP given their similar setup; however, one more

11

piece of information is present. Though that may seem to imply that the DHP

is easier, it is still expected to be just as hard.

2.3. The Index Calculus Algorithm. As example 3 demonstrates, brute

force is not very efficient against the DLP, but there are slightly better ways

to attack this problem. There exist several algorithms that can be used to

attempt to compute the discrete logarithms. Some of the notable ones are the

Baby-step, Giant-step algorithm, Pollard’s ρ algorithm, the Pohlig-Hellman

algorithm, and the Index Calculus algorithm. We focus on some of the de-

tails of the last one, the Index Calculus algorithm, to motivate our further

discussion. In order to execute the algorithm, we require two definitions and

a corollary.

Definition 4. Let B ∈ Z+. We call m ∈ Z+ B-smooth if no prime factor of

m exceeds B.

Example 4. To demonstrate definition 4, consider m = 130. The prime factors

of 130 are 2, 5, and 13. 130 is 13-smooth since no prime factor of 130 exceeds

13, but it is not 7-smooth since 13 is greater than 7.

Definition 5. Let p1, p2, . . . , pn be small prime numbers. Then, a factor base

is a set F = {p1, p2, . . . , pn}.

Example 5. Let n = 5. Then, a factor base F = {2, 5, 29, 11, 997}.

Next, recall that for p, a prime and b, a primitive root mod p,

• logb(y) ≡ x mod p− 1 if and only if bx ≡ y mod p,

• logb(a1a2) ≡ logb(a1) + logb(a2) mod p− 1, and

12

• logb(a
k) ≡ k logb(a) mod p− 1.

Corollary 1. If y has the prime factorization y = pe11 p
e2
2 . . . pett , then

logb(y) ≡ e1 logb(p1) + e2 logb(p2) + . . .+ et logb(pt) mod p− 1.

The proof of Corollary 1 is direct from what we recalled prior to stating

it. The general process of Index Calculus algorithm is that if we can compute

logb(pi) for i = 1, . . . , t in a factor base, then we can assemble each individual

logarithm to calculate the discrete logarithm of y. There are two phases to the

algorithm: in Phase 1 we find the discrete logarithms for a list of small primes,

and then in Phase 2 we assemble the discrete logarithms to obtain logb(y).

Phase 1 - Step 1: For random e ∈ Z with 1 ≤ e < p − 1, compute y = be

mod p and then factor y completely. Check if y has any prime factors other

than those in F = {p1, . . . , pt}; if so, they might not be y-smooth, so discard

them. Then, find e1, . . . , et such that y = pe11 p
e2
2 . . . pett . Note that logb(b

e) ≡ e

mod p− 1, and then calculate the base b logarithm of both sides. Then, since

y = be, we obtain e ≡ e1 logb(p1) + e2 logb(p2) . . .+ et logb(pt) mod p− 1. Re-

peat this process until at least t congruences involving logb(p1), . . . , logb(pt)

are obtained.

Phase 1 - Step 2: Simultaneously solve all of the congruences. Then, we

know the values of logb(p1), . . . , logb(pt).

Phase 2: Recall our friends Alice, Bob, and Eve from earlier. Eve intercepts

X, a transmission from Alice to Bob during the Diffie-Hellman Key Exchange.

13

Eve also possesses their values of p and b. Eve will now compute x = logb(X)

mod p − 1. If X factors over p1, . . . , pt, then Eve can decipher the message.

If not, she can attempt multiplying X by various be mod p until Xbe mod p

factors over p1, . . . , pt as follows:

Step 1: For random f ∈ Z with 1 ≤ f ≤ p − 2, compute z = bfX mod p

until an f satisfies z = pf11 p
f2
2 . . . pftt .

Step 2: Calculate the base b logarithm of both sides, i.e.,

logb(b
fX) = logb(b

f) + logb(X) ≡ f + logb(X) mod p− 1.

Also,

logb(b
fX) = f1 logb(p1) + . . .+ ft logb(pt),

and thus,

logb(X) ≡ f1 logb(p1) + . . .+ ft logb(pt)− f mod p− 1.

We proceed through an example that demonstrates the use of the Index

Calculus Algorithm:

Example 6. Let p = 131, b = 2, and let the factor base be {2, 3, 5, 7}. Eve

would like to compute log2(37). We begin with Phase 1 in which we must cal-

culate log2(2), log2(3), log2(5), and log2(7).

Step 1: We want to find values of e ∈ Z such that 2e mod 131 factors over

{2, 3, 5, 7}. We choose values of e randomly and find that 21 ≡ 2, 28 ≡ 53,

212 ≡ (5)(7), 214 ≡ 32, and 234 ≡ (3)(52). We take the logarithms of these

14

values mod 130 and find five initial congruences: 1 ≡ log2(2), 8 ≡ 3 log2(5),

12 ≡ log2(5) + log2(7), 14 ≡ 2 log2(3), and 34 ≡ log2(3) + log2(5).

We note that log2(2) ≡ 1 is obvious. Then, for 8 ≡ 3 log2(5) mod 130,

we compute 3−1 mod 130 = −43. So (−43)(8) ≡ (−43)(3) log2(5) mod 130,

(−43)(8) ≡ log2(5) mod 130, −344 ≡ log2(5) mod 130, and therefore

46 ≡ log2(5) mod 130.

Next, 12 ≡ log2(5) + log2(7) mod 130. By the second initial congruence,

12 ≡ 46+log2(7) mod 130. So −34 ≡ log2(7) mod 130 and thus 96 ≡ log2(7)

mod 130.

Next, 14 ≡ 2 log2(3) mod 130. Note: at an initial glance, it may appear

that log2(3) ≡ 7 mod 130, but this is not true. The reason is due to the fact

that b ≡ ax mod n has gcd(a, n) solutions, and here, gcd(2, 130) = 2.

Lastly, we have 34 ≡ log2(3) + log2(5) mod 130, which is congruent to

log2(3) + (2)(46) mod 130 ≡ log2(3) + 92 mod 130. Thus, log2(3) ≡ 72

mod 130. We verify that (2)(72) ≡ 144 ≡ 14 mod 130, which is the same

as our result from the fourth initial congruence. Therefore, log2(2) ≡ 1,

log2(3) ≡ 72, log2(5) ≡ 46, and log2(7) ≡ 96.

We proceed to Phase 2: Eve wishes to calculate log2(37) mod 130. She

attempts to calculate bf (37) mod 131 until the resulting number factors are

{2, 3, 5, 7}. She ultimately finds that 243(37) ≡ 105 ≡ (3)(5)(7) mod 131.

15

Then, 43 + log2(37) ≡ log2(3) + log2(5) + log2(7) mod 130, which implies

that log2(37) ≡ 72 + 46 + 96 − 43 mod 130. Therefore, we conclude that

log2(37) ≡ 41 mod 130. We verify this by computing 241 mod 131, which is

equal to 37, as desired.

Though this method works in this setting, there are limitations in that the

factor base needs to have enough primes so that many numbers factor over it.

However, that causes a direct increase in the required number of congruences.

Additionally, solving congruences simultaneously is difficult, which can cause

the algorithm to take longer. Most importantly, difficulties arise with the

Index Calculus algorithm when working with certain objects called elliptic

curves over finite fields. The concept of smoothness fails to apply because

their structure does not allow for decomposition into prime divisors, and thus

the algorithm fails as well. Therefore, we wish to use elliptic curves for more

secure cryptographic purposes, but we require a generalization of the DLP in

order to do so.

3. ELLIPTIC CURVES

3.1. Introduction. As a brief overview, there are other environments in which

we can simultaneously increase the security of our cryptosystem and the ef-

ficiency of the encryption and decryption processes [5]. Specifically, we will

apply the concept of the Diffie-Hellman Key Exchange to a setting that em-

ploys elliptic curves. Formally, an elliptic curve over a field K is defined as a

smooth, genus one projective curve of the form

E : y2 = x3 + ax+ b, a, b ∈ K.

16

We will delve further into the details of this definition and establish a foun-

dation upon which we can apply the Diffie-Hellman Key Exchange. As a

precursor, we note that Silverman and Tate’s text [4] is the primary source

referenced for this material.

3.2. Elliptic Curves and a Group Law. We begin by defining the Eu-

clidean (or affine) plane for a field K as

An(K) = {(x1, . . . , xn) : xi ∈ K}.

Then, we define an equivalence relation on An(K) as follows:

Definition 6. Two points of An(K) are projectively equivalent, denoted

[x1, . . . , xn] ∼ [y1, . . . , yn], if there exists a λ 6= 0, λ ∈ K, with xi = λyi for

i = 1, . . . , n.

We now use this concept to define the space in which elliptic curves exist.

Definition 7. We define projective space as

Pn(K) =
An+1(K) \ {0}

∼
.

Specifically, we work within P2(K) for the remainder of this paper. Consider

the points in P2(K) which satisfy the following equation:

Y 2Z = X3 + aXZ2 + bZ3, where a, b ∈ Q and 4a3 + 27b2 6= 0.

(We note here that since we have placed this constraint on the coefficients,

we have guaranteed that the curve is nonsingular.) Since there is always a

nonzero coordinate by definition, it is always possible to divide each of the

17

coordinates by that nonzero coordinate. More precisely, we have a projective

equivalence between the points [x, y, z] ∈ P2(K) and [x
z
, y
z
, 1]. It is then simple

to show that we can identify the set of projective points with a one in a single

coordinate to the affine n-space.

Given these facts, observe that if we substitute Z = 0 into this equation,

then the equation becomes 0 = X3 and we obtain exactly one projective point

[0, Y, 0] ∼ [0, 1, 0]. This point is called the point at infinity, denoted O, and we

will soon discover its significance for our discussion. This conclusion exhausts

the case where Z = 0.

Next, consider the case where Z 6= 0, or equivalently, Z = 1. We also set

X
Z

= x and Y
Z

= y in our equation, yielding

y2 = x3 + ax+ b.

Cubics of this form are identified as being in Weierstrass normal form, and we

work exclusively with these kinds of cubics for the remainder of this paper. We

have exhausted the possible values of Z, and finally, we can define a general

elliptic curve E as follows:

Definition 8. An elliptic curve E over Q is the curve defined by an equation

of the form

E : Y 2Z = X3 + aXZ2 + bZ3, where a, b ∈ Q and 4a3 + 27b2 6= 0.

The K-rational points on E, denoted E(K), are therefore O and the points

in A2(K) satisfying y2 = x3 + ax+ b.

18

Now we are ready to visualize an elliptic curve (all of the following figures

were produced manually using [1]). Figure 3.1 is an example of the real points

on an elliptic curve, denoted E(R), and we think of O as living infinitely far

up the y-axis (depicted by the arrow).

Figure 3.1. E(R)

Next, assume that we have an elliptic curve E and two rational points P

and Q. How can we generate more rational points other than the two that

we already know? The answer is surprisingly geometric in nature. Consider

Figure 3.2 that depicts the location of these two points.

First, we construct a line through P and Q, extending through the graph at

a third point of intersection.1 We name this intersection P ∗Q, which is shown

in Figure 3.3. Next, we construct a line through P ∗Q and O, which is actually

1It is simple to show that we can always locate a third point of intersection, but we will
discuss more details in the next proof.

19

Figure 3.2. E(R) with Points P and Q

Figure 3.3. The Line Joining P and Q

the vertical line through P ∗Q since we view O as being infinitely far up the

y-axis. In fact, this vertical line passes through P ∗Q, O, and the elliptic curve

20

in the third point. Since cubics in Weierstrass form are symmetric about the

x-axis, we can reflect P ∗Q over the x-axis, resulting in a fourth point that we

name P +Q. Lastly, we define the negative of an arbitrary point P to be the

Figure 3.4. The Reflection for P +Q

point obtained P is reflected over the x-axis. Observe that if we add P and

−P , we obtain O as depicted in Figure 3.5.

The third point of intersection between P and O is actually −P , and in fact,

it is in Figure 3.5. To add P and −P , we construct the line between them,

which is vertical. The line’s third point of intersection is O, and connecting

O with itself yields O again. Thus, we have that P +−P = O, and therefore,

P ’s negation is −P . This definition may cause suspicion of a group structure,

so we continue with the following theorem that relates E and +.

21

Figure 3.5. P and −P

Theorem 1. Let E be an elliptic curve and + be the operation defined above.

Then, for all P, Q, R in E(K),

i. P +Q = Q+ P

ii. P +O = O + P = P

iii. P +−P = O

iv. (P +Q) +R = P + (Q+R)

Thus, (E,+) forms an abelian group.

Proof. We proceed through the proof geometrically.

i. We determined our points of intersection by constructing a line through P

and Q and there is only one such line; therefore it is immediate that P +Q =

Q+ P .

ii. To add P and O, we construct a line from P to O and obtain P ∗ O.

However, the line connecting P and O is simply a vertical line through P , and

22

thus we obtain P again, so P ∗ O = P . Connecting it again yields the same

result, so it follows that P +O = O + P = P .

iii. This is immediate when considering the definition of P and −P .

iv. In order to prove associativity, we require a definition, a significant theorem,

and a corresponding lemma. We develop these separately from this proof since

they will be lengthy.

�

Definition 9. A projective curve C is the set of solutions to a projective

equation

C : F (X, Y, Z) = 0

where F is a non-constant polynomial, each of whose monomials is of the same

degree, d. We call d the degree of C. For example, if C : Y 2 + X2 + XZ3,

then the degree of C is 3.

Theorem 2. Bézout’s Theorem: Let C and D be two projective curves

of degrees m and n, respectively. Assume that C and D do not intersect at

infinitely many points. Then, C and D intersect at mn points.

We accept this theorem without proof. Since the elliptic curves that we

are working with have degree three, Bézout’s Theorem implies that any two

of them will intersect at nine distinct points. We also highlight that some of

the points can have a multiplicity greater than one, so some may be counted

multiple times, and O is one of these points since all of the curves include it.

Now, we can apply Bézout’s Theorem to develop a lemma (which is actually

the Cayley-Bacharach Theorem2) that will aid us in proving associativity.

2 For more information, refer to [4, pg 240].

23

Lemma 1 (The Cayley-Bacharach Theorem). Let C, D, and E be three

elliptic curves in projective space that do not intersect at infinitely many points.

Then, if E shares eight of the nine points of intersection between C and D,

then E also shares the ninth point of intersection.

Now, we are ready to return to the last part of Theorem 1 and prove asso-

ciativity of points on elliptic curves.

Proof of iv. First, let P, Q, and R be three arbitrary points on an elliptic

curve E. We want to show P + (Q + R) = (P + Q) + R, but that can also

be achieved by showing P ∗ (Q + R) = (P + Q) ∗ R because the final step

is simply reflecting both points over the x-axis. Now, let L1 be the line that

connects P , Q, and P ∗Q; let L′1 be the line that connects Q, R, and Q ∗ R;

let L2 be the vertical line that connects O, Q ∗ R and Q + R; let L′2 be the

vertical line that connects O, P ∗ Q, and P + Q; let L3 be the line that con-

nects P + Q and R; lastly, let L′3 be the line that connects P and Q + R.

Since E is in projective space, L3 and L′3 intersect at exactly one point, which

we name X. Then, since L3 and L′3 are lines that connect two points on E,

by Bézout’s Theorem, they intersect E at a third point as well. Therefore, if

we can show X is on E, then we have X = P ∗(Q+R) = (P+Q)∗R as desired.

Let S = {O, P, Q, R, P ∗ Q, Q ∗ R, P + Q, Q + R, X}. From our

definitions of each line, every point in S has two lines Li and L′i that intersect

it. Let C = L1 ∪ L2 ∪ L3 and D = L′1 ∪ L′2 ∪ L′3. Since each Li and L′i is a

degree one projective curve, C and D are projective curves of degree 3. By

their construction, C and D intersect every point in S. Since every point in S

24

aside from X was defined to be on E, we now have that E shares eight of the

nine points of intersection between C and D. Therefore, by Lemma 1, E also

shares the ninth point of intersection, X. Therefore, P ∗(Q+R) = (P+Q)∗R,

and we have proven associativity, as desired. Figure 3.6 depicts the entirety

of this proof.

�

Figure 3.6. E(R), S, the Li, and the L
′
i

Since we cannot produce exact values using only geometry, we will develop

formulas for computing the addition of these points. As Silverman and Tate

[4] explain, we let P1 = (x1, y1), P2 = (x2, y2), P1 ∗P2 = (x3, y3), and P1 +P2 =

(x3,−y3). Given P1 and P2, we would like to compute P1 +P2, so consider the

equation of the line connecting them. This line can be defined as having an

equation

25

y = λx+ ν, with λ =
y2 − y1
x2 − x1

and ν = y1 − λx1 = y2 − λx2.

We now substitute

y2 = (λx+ ν)2 = x3 + ax+ b,

and move all of the terms to the right side of the equation, yielding

0 = x3 − λ2x2 + (a− 2λν)x+ (b− ν2).

This equation is that of a cubic in x, and we can compute the coordinates of

the three intersections by computing the roots x1, x2, and x3. In doing so, we

obtain

x3 − λ2x2 + (a− 2λν)x+ (b− ν2) = (x− x1)(x− x2)(x− x3),

and by expanding the right side, we have

x3 − λ2x2 + (a− 2λν)x+ (b− ν2) = x3 − (x1 + x2 + x3)x
2 + . . . = 0.

We equate the coefficients of the x2 term on both sides, resulting in the equa-

tion λ2 = x1 + x2 + x3, and obtain

x3 = λ2 − x1 − x2. (1)

Then, we use Equation 1 in the point-slope form of the line to obtain

y3 − y1 = λ(x3 − x1)

26

and therefore, by subtraction,

y3 = λ(x3 − x1) + y1. (2)

Thus, we have Equation 1 and 2 for computing the sum of two arbitrary points

P1 and P2 on an elliptic curve. We proceed through an example to use these

formulae.

Example 7. Let E be given by y2 = x3 +17. Let P = (−2, 3) and Q = (−1, 4),

which are both on E. Find P +Q.

Solution: First, it is clear that E satisfies our general elliptic curve form.

Next, we calculate

λ =
y2 − y1
x2 − x1

=
4− 3

−1− (−2)
=

1

1
= 1.

Using Equation 1 and 2, respectively, we calculate

x3 = λ2 − x1 − x2 = 12 − (−2)− (−1) = 4;

y3 = λ(x3 − x1) + y1 = (1)(4− (−2)) + (3) = 9.

Thus, we have that P +Q = (−2, 3) + (−1, 4) = (4, 9), which satisfies

y2 = x3 + 17.

We should also consider the case of adding a point to itself; however, since

it involves the slope of a tangent line, we need to modify our equations. First,

let P = (x, y). We want to calculate P + P = 2P , so we construct the

line that connects P to itself which is simply the tangent line to the curve

at P . We express the curve in the relation y2 = f(x), and through implicit

27

differentiation, we obtain:

λ =
dy

dx
=
f ′(x)

2y
.

We can now substitute λ into Equation 1 and 2 to obtain the result of P +P =

2P . It is common to call the following formula for this process the duplication

formula:

The x value of 2P =
x4 − 2ax2 − 8bx+ a2

4x3 + 4ax+ 4b
. (3)

Now that we can add and double these points, we have enough tools to

generate the relevant groups of rational points.

Remark 2. It is essential to note that all of the computations we just completed

still hold when working algebraically mod an odd prime p. The differences,

however, are that we can no longer view the geometry of our curves and the

new constraint on the coefficients is

4a3 + 27b2 6≡ 0 mod p. (4)

We shall proceed through an example to demonstrate the use of these equa-

tions.

Example 8. Consider E : y2 = x3 + 2x+ 2 mod 17 and P = (5, 1). Compute

2P .

Here, we see that p = 17, a = b = 2, x = 5, and y = 1. First, we

verify that the curve is smooth using Equation (4). We evaluate 4a3 + 27b2 =

4(2)3 + 27(2)2 = 32 + 108 = 140, and 140 mod 17 ≡ 4 6≡ 0 as desired, so E is

smooth. Now we want to compute 2P = P + P = (5, 1) + (5, 1), so we apply

the duplication formula (Equation (3)) as follows:

28

x value of 2P =
54 − (2)(2)(5)2 − (8)(2)(5) + (2)2

(4)(5)3 + (4)(2)(5) + (4)(2)
mod 17

=
625− 100− 80 + 4

500 + 40 + 8
mod 17

=
7

4
mod 17

= 7(4−1) mod 17

= 7(−4) mod 17

= −28 mod 17

= 6.

Now that we have the x-value of 2P , we can simply use E to determine the

corresponding y-value. Using the slope of the tangent line, we evaluate E at

x = 6 and solve for y to obtain y = 3. Thus, we have that 2P = (5, 1)+(5, 1) =

(6, 3).

Now that we know how to add both distinct and non-distinct points, it

is worth mentioning that there is a process that can help us calculate large

multiples of P even more efficiently. The Square-and-Multiply Algorithm

essentially allows us to use the duplication formula repeatedly until we obtain

the multiple that we want.

For example, if we wish to calculate 9P , then we can also view this as a

sum of several iterations of the duplication formula and one addition, i.e.,

9P = P + 2(2(2P)). We already know how to duplicate a point, so we du-

plicate P to get 2P , 2P to get 2(2P) = 4P , and finally 2(2(2P)) to get

29

2(4P) = 8P . Then, simply add P and 8P and we obtain 9P as desired. The

advantage to using such an algorithm arises in that each multiple of any point

can be calculated by repeated duplications and one addition.

3.3. DHP and Elliptic Curves. We can now combine the DHP discussed

earlier with the elliptic curve setting. Consider the following definition:

The Elliptic Curve Discrete Logarithm Problem (“ECDLP”): Let

E : y2 = x3 + ax+ b, a, b ∈ Z

be an elliptic curve, and as before write E(Fp) = A2(Fp) ∪ {O} for the Fp-

rational points on E. Let P , Q ∈ E(Fp) where Q is some multiple of P . Then,

calculate the value of n ∈ Z such that nP = Q, i.e., calculate the n number of

times that P +P + . . .+P = Q, which is a discrete logarithm over E, denoted

k = logP Q.

We call on our old friends Alice and Bob to demonstrate the design of a

cryptosystem using the ECDLP. Alice and Bob mutually choose a prime p,

an elliptic curve E, and a point P ∈ E(Fp). Alice chooses a random integer

a, calculates Pa = aP , and sends Pa to Bob. Simultaneously, Bob chooses a

random integer b, calculates Pb = P , and sends Pb to Alice. Alice receives Pb

and then multiplies it by a to obtain abP , and Bob receives aP and multiplies

it by b to obtain abP as well since the group law on E is abelian. Thus, the

two have constructed a shared secret key. This scenario is depicted in the

following table:

30

Choose Compute Transmit Receive Compute Result
Alice a aP Pa Pb aPb abP
Bob b bP Pb Pa bPa abP

Now, our third party Eve cannot compute abP without being able to solve

the ECDHP. Accomplishing such a task is thought to be quite difficult and

is far more computationally demanding than the previous problems that we

have discussed.

An important strength to using elliptic curves for cryptographic purposes is

that the Index Calculus algorithm (previously described in section 2.3) is not

applicable for most elliptic curves. In addition, according to [5], it is commonly

thought that solving the discrete logarithm problem in E(Fp) is significantly

more difficult than in (Z/pZ)×. This fact promotes cryptosystems that employ

elliptic curves because the values that the two parties must use can be a lot

smaller. Rather than working with primes on the order of 300 digits and then

performing calculations with numbers of comparable size, it is feasible to use

numbers that are far smaller.

4. CRYPTANALYSIS: ATTACKS AGAINST THE ECDLP

Using elliptic curves for cryptographic purposes offers significant advantages,

and as we mentioned in Section 2.3, the Index Calculus algorithm fails to

work for them. We cannot develop an equivalent concept to smoothness for

all elliptic curves as we cannot satisfy the assumption of Corollary 1 (that is,

the capability of having a prime factorization). Still, though there are benefits

to using elliptic curves for cryptography, there are other cryptanalytic attacks

that can be executed to attempt to discern the value of n in the ECDLP. We

now focus on a few choices of these attacks to demonstrate their capabilities

31

and strengths in intercepting messages used by the cryptosystems that we have

discussed.

4.1. The Baby-Step, Giant-Step Algorithm. Before we begin, we require

one more definition regarding elliptic curves.

Definition 10. The number of Fp-rational points on an elliptic curve E is

denoted #E(Fp).
3

The Baby-Step, Giant-Step algorithm can be applied to any arbitrary group,

and we apply it to the elliptic curve environment.

Problem: Let kP = Q in E(Fp) and #E(Fp) = N . Calculate k.

The Baby-Step, Giant-Step algorithm proceeds as follows:

(1) Choose m ∈ Z such that m >
√
N .

(2) Calculate mP .

(3) For all 0 ≤ a ≤ m − 1, calculate and record aP into a list. Similarly,

for all 0 ≤ b ≤ m− 1, calculate and record Q− bmP into a second list.

(4) Compare both lists for the values of aP and Q− bmp until a match is

found.

(5) Once a match is found, calculate k ≡ a+ bm mod N .

Though this algorithm is generally regarded as one of the fastest, it is not

considered feasible to use for all elliptic curves (which we will discuss in Section

3 There is not an explicit formula to calculate this number, but it can be estimated — that
is outside the scope of this paper.

32

4.3). We proceed through an example from Washington [6] to demonstrate its

use.

Example 9. Consider E : y2 = x3 + 2x + 1 mod 41 and #E(F41) ≤ 54. We

have that P = (0, 1), Q = (30, 40), and kP = Q. We will now calculate k.

(1) We choose m = 8 because 8 >
√

54.

(2) We calculate 8P = 8(0, 2) = (10, 18).

(3) For all 0 ≤ a ≤ 7, we calculate and record aP into a list as follows:

a aP

1 (0, 1)

2 (1, 39)

3 (8, 23)

4 (38, 38)

5 (23, 23)

6 (20, 28)

7 (26, 9)

Similarly, for 0 ≤ b ≤ 7, we calculate and record Q−bmP into a second

list as follows:

b Q− bmP

0 (30, 40)

1 (9, 25)

2 (26, 9)

33

We stop at b = 2 because we see that a the third entry in the second

list matches the seventh entry in first list. Therefore, a = 7 and b = 2.

(4) We calculate

Q = (a+ bm)P

= (7 + 2(8))P

= 23P.

Thus, k = 23.

(5) Lastly, we verify that 23P = 23(0, 1) = (30, 40).

A great advantage to the Baby-Step, Giant-Step algorithm is its determin-

istic nature, that is, it is guaranteed to find a solution.

4.2. Pollard’s ρ Algorithm. We can apply Pollard’s ρ algorithm to any

cyclic group G, but we will focus specifically on the Fp-rational points on el-

liptic curves. We define our problem again for this specific situation:

Problem: Let E be an elliptic curve, let P , Q on E such that kP = Q,

and let #E(Fp) = N . Calculate the value of k.

We detail Pollard’s ρ algorithm as follows:

(1) Partition G into three separate sets of approximately the same size.

We name these sets S1, S2, S3, and we ensure that O 6∈ S2.

(2) Construct a random walk around E with the following function:

34

Ri+1 = f(Ri) =

Q+Ri, Ri ∈ S1

2Ri, Ri ∈ S2

P +Ri, Ri ∈ S3

.

(3) Let Ri = aiP + biQ. Then,

ai+1 =

ai, Ri ∈ S1

2ai mod n, Ri ∈ S2

ai + 1, Ri ∈ S3

and

bi+1 =

bi + 1, Ri ∈ S1

2ai mod n, Ri ∈ S2

bi, Ri ∈ S3

.

(4) Let R0 = P , a0 = 1, and b0 = 0.

(5) Calculate pairs of Ri, R2i and record them in a list.

(6) Look for a match between Rm = R2m for some value of m.

(7) When a match is found, stop. We then have Rm = amP + bmQ and

R2m = a2mP + b2mQ.

(8) Finally, compute k = a2m−am
bm−b2m mod N .

We proceed through a modified4 example from Seet [3] to demonstrate the

algorithm.

Example 10. Consider E(F47) : y2 = x3 + 34x + 10, with P = (30, 26),

Q = (35, 41), Q = kP , and #E(F47) = N = 41. Solve for k.

4 The modifications involve the numbering of the Ri and corrections of some points.

35

(1) First, we partition our group into into three sets of similar size:

S1 = {R = (x, y) ∈ E(F47) | 0 ≤ y < 15},

S2 = {R = (x, y) ∈ E(F47) | 15 ≤ y < 30},

S3 = {R = (x, y) ∈ E(F47) | 30 ≤ y < 47}.

We note that |S1| = 13, |S2| = 16, and |S3| = 12, and thus the groups

are approximately the same size.

(2) Let R0 = (30, 26), a0 = 1, and b0 = 0.

(3) We construct the Ri as follows:

Ri ai mod N bi mod N aiP + biQ Resulting Point

R0 1 0 1P + 0Q (30, 26)

R1 2 0 2P + 0Q (14, 9)

R2 2 1 2P + 1Q (34, 12)

R3 2 2 2P + 2Q (20, 18)

R4 4 4 4P + 4Q (28, 42)

R5 5 4 5P + 4Q (6, 17)

R6 10 8 10P + 8Q (30, 21)

R7 20 16 20P + 16Q (14, 38)

R8 21 16 21P + 16Q (30, 21)

R9 1 32 1P + 32Q (14, 38)

R10 2 32 2P + 32Q (30, 21)

R11 4 23 4P + 23Q (14, 38)

R12 5 23 5P + 23Q (30, 21)

36

(4) We see that R12 = R6 = (30, 21) and that R12 = R(2)(6), and thus we

have a match. We note that R6 = 10P + 8Q, so am = 10 and bm = 8,

and also that R12 = 5P + 23Q, so a2m = 5 and b2m = 23.

(5) Lastly, we calculate

k =
a2m − am
bm − b2m

mod N

=
5− 10

8− 23
mod 41

=
−5

−15
mod 41

=
1

3
mod 41

= 1(3−1) mod 41

= 14.

Therefore, Q = 14P , which we verify to be true.

In contrast to the Baby-Step, Giant-Step algorithm that we discussed in

Section 4.1, Pollard’s ρ algorithm finishes with probabilistic measures rather

than guaranteed ones; thus, it is not certain that the algorithm will be able to

solve the ECDLP in a given situation, but it may become very likely.

4.3. Cryptographically Robust Elliptic Curves. Despite the strength of

the attacks that we have discussed, there is some methodology to choosing

certain elliptic curves that are less susceptible for varying reasons. We list a

few criterion from [7] here to exemplify these characteristics:

37

• The size of #E(Fp) used should be large. Ensuring a large group size

provides more complexity since there are significantly more points that

any of the attacks would proceed through. In the case of the Baby

Steps, Giant Steps algorithm, it requires approximately
√
N steps, so

an increase in this group size is a significant increase in the number of

computations.

• There should be a large prime factor q of #E(Fp) which is compara-

ble to the size of #E(Fp). When choosing a starting point P0 for the

algorithm, it should have order q. Ensuring these constraints causes

the Pollard ρ method to take essentially the same amount of work as

searching for the keys individually, and typically N > 2160.

• #E(Fp)) should not equal p or p + 1. If it equals p, then the elliptic

curve is known as anomalous, which renders it highly susceptible to

Smart’s Attack. If it equals p + 1, then the elliptic curve is known

as supersingular, rendering it susceptible to other attacks. We will not

discuss them here, but they are other types of cryptanalytic attacks.

APPENDIX: APPLICATIONS AND IMPLEMENTATION

Now that we have sufficiently discussed cryptology and the foundation for

its mechanisms, we can briefly highlight some direct applications to the cur-

rent world.

38

Bitcoin is a virtual currency that has become increasingly popular in recent

times. The following information about Bitcoin was gathered from [2]. Since

bitcoins are not physical objects and exist solely online, they are accessed by

public and private keys. The “ECDSA”, known as the “Elliptic Curve

Digital Signature Algorithm”, is used to transfer ownership of bitcoins.

This algorithm uses elliptic curve cryptography to generate a private key to

sign each transaction and a public key to verify each transaction. By using

the ECDSA, the signature of the user sending the funds can be verified for

authenticity, and the user maintains the sole capability of uniquely creating

the signature. In this way, rather than traditional currencies that may be

backed by precious metals, Bitcoin boasts that it is backed by mathematics.

Apple’s extremely popular messaging system iMessage employs the ECDSA

as well. In essence, each individual Apple device has a unique set of private

and public keys, and the ECDSA works in a manner similar to that of Bitcoin.

There are many other well-known platforms that have used or are currently

using the ECDSA, and therefore it is essential to continue studying how to

best choose cryptographically robust elliptic curves to ensure the privacy of

these systems.

39

References

[1] ”Desmos Graphing Calculator”. Desmos Graphing Calculator. N.p., 2015. Web. 24 Jan.

2017.

[2] E. Rykwalder, ”The Math Behind Bitcoin.” CoinDesk. N.p., 19 Oct. 2014. Web. 9 Mar.

2017.

[3] M. Seet, “Improving the Pollard-Rho Algorithm”, (2007).

[4] J. H. Silverman and J. Tate, Rational Points on Elliptic Curves, Springer-Verlag, New

York, 1992.

[5] W. Stein, Elementary Number Theory: primes, congruences, and secrets: a

computational approach. Springer Science and Business Media, 2008.

[6] L. C. Washington, Elliptic Curves: Number Theory and Cryptography. CRC Press,

2003.

[7] E. Yin, “Curve Selection in Elliptic Curve Cryptography.” (2005).

[8] J. Zumbrägel, ”LISTSERV 16.0 - NMBRTHRY Archives.” LISTSERV 16.0 - NM-

BRTHRY Archives. N.p., 31 Jan. 2014. Web. https://listserv.nodak.edu/cgi-bin/

wa.exe?A2=NMBRTHRY;9aa2b043.1401

40

https://listserv.nodak.edu/cgi-bin/wa.exe?A2=NMBRTHRY;9aa2b043.1401
https://listserv.nodak.edu/cgi-bin/wa.exe?A2=NMBRTHRY;9aa2b043.1401

	Union College
	Union | Digital Works
	6-2017

	Elliptic Curve Cryptology
	Francis Rocco
	Recommended Citation

	ABSTRACT
	ACKNOWLEDGEMENT
	NOTATION
	1. INTRODUCTION
	1.1. An Introduction to Cryptography

	2. KEY EXCHANGES
	2.1. The Discrete Logarithm Problem
	2.2. Diffie-Hellman Key Exchange
	2.3. The Index Calculus Algorithm

	3. ELLIPTIC CURVES
	3.1. Introduction
	3.2. Elliptic Curves and a Group Law
	3.3. DHP and Elliptic Curves

	4. CRYPTANALYSIS: ATTACKS AGAINST THE ECDLP
	4.1. The Baby-Step, Giant-Step Algorithm
	4.2. Pollard's Algorithm
	4.3. Cryptographically Robust Elliptic Curves

	APPENDIX: APPLICATIONS AND IMPLEMENTATION
	References

