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ABSTRACT  

PINKSTON, NELL     Flow Cytometry and Biochemical Analysis of Apoptotic Mouse 
HT-2 T - Lymphocytes  

Department of Biological Sciences, June 2015. 
 
ADVISOR: Robert J. Lauzon, PhD. 
 

Apoptosis is a highly organized intracellular death program in multicellular 

animals. In the vertebrate immune system, apoptosis plays a central role in preventing the 

emergence of autoreactive lymphocytes.  In this study, we used multiple stimuli 

(staurosporine, camptothecin, and cytokine deprivation - interleukin-2  or IL-2) to initiate 

apoptosis in IL-2 dependent, mouse HT-2 T-lymphocytes. All three inducers triggered 

DNA laddering and phosphatidylserine externalization. Propidium iodide staining and 

flow cytometry were also used to determine whether apoptotic cells accumulated in a 

specific stage of the cell cycle, and whether the mode of induction affected cell cycle 

distribution. Our findings indicate that IL-2 deprivation induces HT-2 cells to accumulate 

in G1, while cells treated with staurosporine and camptothecin accumulated in G2/M and 

S phase, respectively.  We also used immunopblotting detection to investigate P27Kip1 

protein expression for each condition. P27Kip1 is a member of the Cip/Kip family of 

cyclin-dependent kinase inhibitors whose function is to enforce the G1 restriction point. 

We found that P27Kip1 levels were significantly increased within 12 hrs and 6 hrs 

following both IL-2 deprivation and campthotecin exposure, respectively. Across all time 

points in the staurosporine experiments, P27Kip1 steady state levels were decreased. These 

results suggest that the mode by which apoptosis is induced differentially affects cell 

cycle distribution. 
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Introduction 

Apoptosis is a highly regulated biological process in which specific 

morphological and biochemical processes trigger controlled cell destruction. It is a vital 

contributory process to multicellular organismal development and homeostasis (Vaux, 

1993).  This active process is necessary for closely monitoring the disposal and recycling 

of contents in aged, diseased, and dying cells.  Apoptosis can be characterized by three 

distinct phases: initiation, commitment, and execution. Initiation is marked by 

physiological, biological, chemical, and physical stimuli that activate the death pathway, 

such as phosphatidylserine externalization. The cell then undergoes physical changes, 

such as permeabilization of the mitochondrial outer membrane, that irreversibly commit 

it to death (Keeble & Gilmore, 2007). The commencement of execution is marked by 

phenotypic changes in the cell, including cell shrinkage, chromatin condensation, and 

compression of organelles without loss of ultrastructure, in the dense cytoplasm (Kerr et 

al., 1972).  This final execution ends as the cell blebs, or pinches its contents off in small 

vesicles called apoptotic bodies that can be digested by neighboring or circulating 

phagocytes (Walsh, 2014). Highly organized and specific, this mechanism for cellular 

suicide removes cells with minimal accidental damage to the host organism.  

Cells also undergo other, more harmful forms of cell death, the most common 

being necrosis. While apoptosis targets cellular destruction in individual or specific 

clusters of cells, necrosis distinctly affects large areas of cells (Jain et al., 2014).  In 

contrast with apoptosis, necrotic cell death is associated with cellular swelling, loss of 

membrane integrity, and a severe, host inflammatory response, as necrotic cells release 

their contents into the surrounding tissue (Elmore, 2007). This degradative process was 
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once thought to be passive and energy-independent, but recent studies suggest that it may 

be more regulated than initially thought (Bell et al., 2008; Ch’en et al., 2008; Bell & 

Walsh, 2009). Similarly to apoptosis, the process is preceded by mitochondrial 

permeability transition: this is a genetically driven process where pores in the 

mitochondrial outer membrane open, disrupting salt and proton gradients and irreversibly 

inhibiting the organelle’s function (Kroemer, 2014). Both cell death pathways can occur 

simultaneously, and they require close monitoring to maintain health and viability in 

multicellular organisms. Specifically, apoptotic deregulation can lead to terminal 

conditions, such as cancers, autoimmune diseases, metabolic disorders, neurogenerative 

diseases, and stroke (Hanahan & Weinberg, 2000; Prasad & Prabhakar, 2003; McKenzie 

et al., 2004; Rohn et al., 2001; Prunell et al., 2005).  It is therefore important to 

understand this mechanism for programmed cell death, as it holds a vast array of 

applications in the scientific and medical fields.  

Because apoptosis essentially avoids tissue inflammation, it plays an essential role 

in the resolution of the immune response at the organismal level (Kurosaka et al., 2003).  

More than simply a non-inflammatory reaction, apoptosis has been linked to promoting  

immunosuppressive effects of phagocytes during cell clearance (Savill & Fadok, 2000; 

Albert et al. 1998). The activity of phagocytes that bind and ingest apoptotic cells is a 

critical homeostatic mechanism that controls effector lymphocyte populations (Savill et 

al., 2002). Regulation of these effector immune cells have shown that apoptosis inhibits 

inflammation by simultaneously increasing secretion of anti-inflammatory and 

immunoregulatory cytokines and decreasing secretion of the pro-inflammatory cytokines 

(Voll et al. 1997).  Lymphocytes are fast replicating, non-cancerous, and karotypically 
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normal cells that can regulate immune response through apoptosis. Because of their 

indispensable role multicellular organismal immunity, these cells are the focus of our 

research. The current study sought to evaluate apoptosis induction in cultured HT-2 

mouse T-lymphocytes by investigating the effectiveness of various known apoptosis 

triggering agents.  

Stimulation of apoptosis in mammalian cells can occur both intra- and 

extracellularly. The intrinsic pathway propagates via non-receptor mediated intracellular 

signals, specifically through mitochondrial release of pro-apoptotic members of the Bcl-2 

protein family into the cytoplasm (Schleich & Lavrik, 2013).  This pathway is often 

selected when a cell’s DNA content is damaged or has been exposed to toxins or 

radiation. The extrinsic pathway requires extrinsic ligands to bind trans-membrane death 

receptors on the cell’s membrane surface.  These signaling molecules transduce the death 

signal to intracellular caspases that initiate the apoptotic response. Surface expression of 

the death receptors can vary significantly between cell types. Specifically, these receptors 

are often down-regulated or absent in drug-resistant cancer cell lines (Fulda, 2006). In 

this study, we used three known apoptosis inducers to examine both pathways. 

Interleukin (IL)-2 deprivation, camptothecin, and staurosporine treatments were 

used to initiate the apoptotic response.  IL-2 is a cytokine that binds cell surface receptors 

that transduce this signal via protein kinases, which in turn, are responsible for T-cell 

growth and survival. It is the quintessential growth factor involved in the production of 

T-lymphocytes (Huleatt et al., 2003).  Cells incubated with this growth factor enter the 

cell cycle and divide. Without this growth and regulatory signaling molecule, the cell 

ceases to proliferate and an extrinsic apoptotic response is initiated (Tsai et al., 2013). 
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Camptothecin also sets off an extrinsic, death-receptor pathway, and does so by inhibiting 

DNA topoisomerase I (Jacobs et al., 2007). When DNA is replicated, the strands can 

become tightly coiled. DNA topoisomerase I functions to alleviate supercoiled DNA by 

clipping one of the strands, unwinding it, and rejoining the ends. Camptothecin 

deactivates the enzyme by binding an intermediate involved in DNA unwinding, 

subsequently increasing DNA cleavage without repair (Hertzberg, 1989). Initially 

isolated from the bark of a Chinese tree, Camptotheca acuminata, camptothecin was used 

in clinical testing in the 1970s for cancer treatment (Pommier, 2006). The drug was 

suspended due to associated side effects, but subsequent derivatives have continued to 

treat a variety of cancers, causing these cells to shrink and die (Kyle et al., 2014; Zeng et 

al. 2014). The final inducer used was staurosporine, an initiator of intrinsic-pathway 

apoptosis through kinase c inhibition (Li et al., 2009).  It is known be nearly universal in 

its ability to induce apoptosis in nucleated cells (Bertrand et al., 1994). Staurosporine 

typically induces the mitochondrion-dependent pathway of apoptosis; however, provided 

the cell is able activate specific caspases, the pathway divides again between caspase-

dependent and independent mechanisms (Castro et al., 2010; Belmokhtar et al., 2001). 

Given their known mechanisms for induction, the three treatments were used to disrupt 

normal cell division at various stages of the cell cycle. We hypothesized that IL-2 

deprivation would target the G1 phase, camptothecin, S phase, and staurosporine, G2/M 

phase.  

The initial intention of the study was to determine if the three known inducing 

agents also provoke changes in cell cycle distribution using flow cytometry. We also 

sought to correlate any of these observed changes in distribution prior to cell death with 
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early markers for apoptosis using annexin V staining to detect and quantify 

phosphatidylserine externalization via flow cytometry. We finally wished to characterize 

expression of critical regulatory proteins of the cell cycle. We hoped to connect their 

regulation and steady state levels with the time points that marked distribution changes 

and early apoptotic changes.  

P27Kip1 is a G1/S phase cyclin-dependent kinase (cdk) inhibitor that stops cells at 

the G1/S phase boundary (Levkau et al., 1998). Movement of cells from G1 into S phase 

is regulated specifically by cdk2, a cyclin-dependent kinase enzyme that forms a complex 

with cyclin A and E, and facilitates progression through the cell cycle.  Cell cycle arrest 

at the G1/S phase boundary by P27Kip1 has been found to cause apoptosis in both 

cancerous and non-cancerous cell lines, including mesangial cells, fibroblasts, endothelial 

cells, small cell lung cancers, erythroleukemia cells, and T-lymphocytes (Hiromura et al., 

1999; Lavkau et al., 1998; Masuda et al., 2001;  Drexler & Pebler, 2003; Huleatt et al., 

2003).  While the significance of this G1/S phase check point and importance of P27Kip1 

is agreed upon in the field, debate over how exactly P27Kip1 regulates apoptotic pathways 

continues.  

Excess levels of the protein have been found to both promote and discourage 

entrance of cells into apoptosis. Some studies suggest that P27Kip1 inhibitor can serve to 

protect cells from apoptosis by constraining cdk2 activity (Hiromura et al., 1999). In the 

absence of specific growth factors, CDK2 activity leads to apoptosis.  Further studies 

attribute cell enhanced survival rate to proteasome inhibitor protection caused by the 

expression of p27Kip1 (Drexler & Pebler, 2003). Other investigators have found that 

upregulation of p27Kip1 levels protect cells from apoptosis in unfavorable 
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microenvironments, such as hypoxic or low nutrient conditions (Masuda et al., 2001). In 

contrast, other studies have uncovered that cell proliferation and differentiation require 

low levels of P27Kip1 (Hiromura et al., 1999).  Steady state levels of the cdk inhibitor may 

not be the sole determining factor of cellular demise, but rather work in conjunction with 

environmental or molecular factors. In contrast to the upregulation of p27Kip1 in cells that 

were grown in low nutrient conditions, cells grown in complete medium had very few 

apoptotic cells (Masuda et al., 2001). While high levels of p27Kip1 may delay the cell 

from transitioning to S-phase, reducing its concentration will not guarantee proliferation 

if cdk2 activity is compromised and all necessary growth factors are not present 

(Bruggeman et al., 2010). It is clear that P27Kip1 plays an essential role in monitoring the 

fate of cells as they progress through the cell cycle, however the inhibitor’s interplay with 

surrounding growth factors, environmental conditions, and enzyme interaction is not yet 

fully understood. 

It is important to recognize that p27Kip1‘s role in proliferation is not dichotomous 

with its participation in apoptosis. In some instances, its upreguation has been found to 

retard proliferation, but not necessarily induce apoptosis (Drexler & Pebler, 2003). This 

characteristic is important when developing cancer treatments or connecting protein 

steady state levels to gene expression. Therapy for non-small cell lung cancers has been 

specialized to target p27Kip1 to inhibit growth by reducing viability (Eymin & Brambilla, 

2004).  Other cancers respond better with reintroduced p27Kip1 that induces apoptosis. 

More than simply regulating this protein’s steady state levels, it is important to recognize 

the critical role that gene expression, post-translational modification, and intracellular 

localization play in the inhibitory function of p27Kip1 in the cell. Ishii et al. (2004) studied 
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P27Kip1 in human lung adenocarcinoma, and found that the extent of phosphorylation 

effected localization of the inhibitory protein in the cell. More complete phosphorylation 

status lead to greater localization to the cytoplasm, where the protein is functional. This 

specific localization pattern was associated with the cytoprotective function of P27Kip1. 

Cytoplasmic localization of P27Kip1 has also been associated with an anti- apoptotic 

function in breast cancer cells, leading to poor prognosis in these afflicted patients (Lian 

et al., 2002). Elucidating the many pathways involved in P27Kip1 function and regulation 

may provide the answer to cell survival and fate.  

The aim of this study was to further examine the role of three inducers 

(interleukin-2 deprivation, camptothecin and staurosporine) in initiating apoptosis and 

how each affected cell cycle distribution in IL-2 dependent, mouse HT-2, T-lymphocytes 

via flow cytometry. We hypothesized that interleukin-2 deprived cells would accumulate 

in G1 prior to initiating DNA fragmentation, whereas camptothecin and staurosporine 

exposure would induce S and G2/M phase arrest, respectively. The timeframe required 

for complete cellular fragmentation was also determined with each apoptosis inducer. 

Our findings indicate that apoptosis in IL-2 deprived and camptothecin treated cells 

correlated temporally with an early increase in P27Kip1 steady state levels, and decreased 

expression following staurosporine treatment. Collectively, these results suggest an 

important interplay between the inducer’s role and the cell’s response to life or death in 

cultured mouse T-lymphocytes.   
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Methods 

Culturing from frozen stock 

 HT-2 cell stocks were thawed quickly from storage in a -80oC liquid nitrogen 

container and rested for 10 minutes at room temperature. These cells were then 

transferred into a sterile 15mL centrifuge tube. 10mL of growth medium made with 

Dulbecco’s Modified Eagle’s Medium (containing 5 mM D-glucose), 5 x 10-5 M beta-

mercaptoethanol,  2m M L-glutamine, 50 µg/mL gentamycin, 10 mM Hepes buffer pH = 

7.2, 10% interleukin-2 (Roche, Indianapolis, IN), and 10% fetal bovine serum (Atlanta 

Biologicals, Flowery Branch, GA) was added slowly to the cells over 5 minutes. The 

cell/media mixture was then centrifuged at 8000rpms, 12oC for 8 minutes, decanted, and 

resuspended in 10 mL of growth media. The cells were transferred to a culture flask 

(Sigma-Adlrich, St. Louis, MS) and incubated at 5% CO2 at 37oC.  

 

Cell line maintenance 

 The cells were maintained at the indicated cell concentrations shown in Table 1.  

Table 1. Cell concentration maintenance. 

Media Volume (mL) 10 20 30 40 

Maximum Number of Cells (million cells) 4 8 12 16 

 

Cells were passaged every 4-5 days and seeded at a density of 104 cells/mL.  
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Determining optimal cell concentration for DNA extraction from IL-2 deprived cells 

 HT-2 cells were grown to a density of 8 million in a final volume of 20 mL IL-2 

(+) medium, transferred to two 15 mL tubes, and centrifuged at 1200 rpms, 12oC for 8 

minutes. The cells were washed twice in 10 mL IL-2 (–) media and seeded into four, 10 

mL flasks. Two flasks containing 10 mL IL-2 (+) media served as controls and grown to 

a density of 200,000 and 100,000 cells/mL, respectively. Since the cells would undergo 

two cell cycles in 24hr incubation period (each cell cycle was previously determined to 

be approximately 12 hours), one control flask was seeded with 250,000 and the other 

with 500,000 cells to obtain the target concentrations. The remaining two flasks 

contained 10 mL of IL-2 (–) media, and the cells were grown to the same density. Their 

volumes were selected assuming that these cells would finish their current cycle before 

arresting, and so one was seeded with 500,000 cells, and the other, 1,000,000 cells.  Cells 

were grown in a humidified incubator at 37oC and 5% carbon dioxide.  

 

Empirical determination of optimal cell and inducer concentrations for genomic DNA 

isolation from camptothecin-treated cells  

Preparation for the campthothecin experiment was similar to IL-2 deprivation, 

however HT-2 cells were not washed, but instead, maintained in IL-2 (+) media. Cells 

were incubated at 24hrs and grown to 200,000 cells/mL in all flasks. IL2 controls were 

prepared as described above, but experimental flasks were seeded at their final cell 

concentration, 200,000 cells/mL, assuming immediate arrest following toxin exposure. 30 

and 60 µL volumes (6 and 12 µM respectively) of a camptothecin stock previously 
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dissolved in dimethysulfoxide (DMSO) and DMSO alone were added to each of the two 

experimental flasks and control flasks, respectively. 

 

Determining optimal cell concentration for genomic DNA isolation from staurosporine-

treated cells 

 Preparation for the staurosporine experiment was identical to camptothecin, 

except for the following: a) concentration was varied between 100,000 and 200,000 

cells/mL b) 5 µL (1µM) stock staurosporine was added to each experimental c) 5 µL 

DMSO was added to each control d) cells were incubated for 12 hrs. Low concentrations 

of staurosporine had previously been observed by us and others to induce cell cycle arrest 

(Zong, 1999, Lauzon, unpublished observations). Because of its high potency to induce 

apoptosis at 1µM concentration, the incubation period for this experiment was shortened 

and concentration fixed to determine optimal cell concentration. 

 

Genomic DNA isolation 

Genomic DNA was isolated according to the manufacturer’s specifications 

(Roche).  Briefly, cells were transferred from their flasks to 15 mL tubes and centrifuged 

at 8000 rpm, 12oC for 8 minutes. They were then washed in phosphate buffered saline 

(PBS) pH=7.4 and transferred into microfuge tubes. The cells were spun at 3000 rpms for 

1 min and the cell pellet resuspended with 200 µL of PBS and 200 µL of lysis buffer. The 

solution was incubated at 72oC for 10 minutes. After incubation, 100 µL isopropanol was 

added, and the lysate was transferred to a filter tube. The contents were spun through the 

filter tube at 8000 rpms for 1 minute and the flow-through, discarded. The cells were 
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washed twice in 500 µL wash buffer and spun at 8000 rpms/1min. An additional spin was 

carried out at 13,000 rpms for 30 seconds to remove any excess wash buffer. The filter 

tube was finally transferred to a clean microfuge tube and genomic DNA was eluted with 

40 µL of pre-warmed elution buffer.  

 

Agarose gel electrophoresis  

 Genomic DNA was size-fractionated via agarose gel electrophoresis in 50 mM 

Tris Acetate EDTA (TAE) buffer solution (pH = 8.0) for 60 minutes at 70 volts. DNA 

samples were prepared using 8 µL of isolated DNA and 2 µL EZ-vision loading dye 

(Amresco, Solon, OH) and electrophoresed in 2% agarose gels.  Digital images were 

obtained using a G box gel documentation system (Syngene, Frederick, MD). 

 

Cell cycle analysis  

 Given the results obtained from gel electrophoresis testing, cells were grown to 

200,000 cells/mL concentrations in 10 mL flasks for all inducer experiments. Time 

course experiments were developed based on previous experiments, literature, and 

inducer behavior. IL-2 deprived cells were harvested at 12, 24, and 36 hours, and 

camptothecin and staurosporine at 3, 6, 12, and 24 hours. These cells were prepared for 

flow cytometry cell cycle analysis according to the Guava® Cell Cycle Reagent protocol 

(EMD Millipore, Billerica, MA).  

Prior to adding the reagent, the cells were fixed in 70% ethanol. At their 

respective time points, incubated cells were spun at 450 x g for 5 minutes in 50 mL 

centrifuge tubes. Once the supernatant was removed, 25 mL of 1x PBS was added to the 
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tube. The cells were spun under the same conditions, and the supernatant was again 

removed leaving approximately 500µL in the tube. Cells were resuspended and added 

dropwise to a 50 mL tube containing 30 mL of ice-cold 70% ethanol while vortexing at 

medium speed. They were stored at 4oC until flow cytometry analysis.  

The alcohol-fixed cells were isolated by centrifugation and washed in 1 mL PBS. 

They were then transferred to a 15 mL centrifuge tube and the cell concentration was 

adjusted to 200,000 cells/sample. They were spun at 450 x g for 5 minutes, and the PBS 

supernatant was removed. 200 µL of Guava Cycle Reagent (EMD Millipore) was added 

to the cells. The samples were incubated for 30 minutes at room temperature in the dark 

prior to acquiring the data on a guava Flow Cytometry easyCyte System (EMD 

Millipore). 

 

Lysate preparation 

 5 million HT-2 cells were incubated with 400 µl of hot lysis buffer (125 mM Tris-

HCl, pH = 6.8, 2%SDS, 5% glycerol, 0.003% bromophenol blue, 1% β-mercaptethanol 

previously heated for three minutes at 100°C).  Genomic DNA was sheared using a 26-

gauge needle and syringe, and lysates were aliquoted and stored at -70°C until needed for 

protein quantification and sodium dodecyl sulfate polyacrylamide gel electrophoresis 

(SDS-PAGE). 

 

Protein quantification 

 HT-2 T lymphocyte lysates were diluted 1/25 in ultrapure water. Protein standards 

were prepared using Bovine Serum Albumin (Thermo Scientific, Waltham, MA) in a 



 13  

series of concentrations of 0 0.1, 0.2, 0.4, and 0.6 mg/mL in 4% lysis buffer previously 

mixed with ultrapure water. 50 µL of each lysate or BSA protein standard was mixed 

with 1.5 mL of Coomassie Plus Protein Assay Reagent (Thermo Scientific) and added to 

plastic cuvettes. Absorbances were determined using a Genesys 20 spectrophotometer 

(Thermo Spectronic, Waltham, MA) at 595 nm. Unknown concentrations were 

determined using regression analysis in Microsoft Excel. 

 

SDS-PAGE and western blotting 

 20 µg of HT-2 cell lysates were used for SDS-PAGE.  The lysates and 10 µl of 

Kaleidoscope pre-stained molecular weight standards (Bio-Rad, Hercules, CA) were 

boiled for three minutes at 95°C in a block heater.  Samples were briefly centrifuged, 

placed on ice and subsequently loaded into a 4-15% Tris-HCl precast, gradient gel (Bio-

Rad) placed in a mini-protean II electrophoresis apparatus (Bio-Rad).  Duplicate sets of 

each sample were size-fractionated in 1x running buffer (5 mM Tris, 192 mM glycine, 

0.1% SDS) along with 10 µl of Kaleidoscope protein standards at 120V for 

approximately 50 minutes or until the tracking dye reached the bottom of the gel. 

 The gel and a piece of Optitran Nitrocellulose membrane (Schleicher & Schuell, 

Keene, NH) pre-cut to the gel’s dimensions were soaked for 20 minutes in transfer buffer 

(50 mM Tris Base, 384 mM glycine, 20% methanol, 0.01% SDS). Four pieces of 

Whatman filter gel blot paper (Schleicher & Schuell) cut to the same dimensions as the 

membrane and gel were also soaked for 20 minutes in transfer buffer, and the gel was 

placed atop two pieces of filter paper. The nitrocellulose paper was placed over the gel, 

and the remaining pieces of filter paper were placed on top of the membrane. The gel-
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nitrocellulose sandwich was placed face down on a WD Trans-Blot apparatus (Bio-Rad) 

and blotted for 20 minutes at 15 volts. The nitrocellulose membrane was removed, 

allowed to dry and cut to size. 

 

Immunostaining and analysis 

 The two membranes were placed in separate Nalgene wash containers (Thermo 

Scientific) for 60 minutes on a bench top circular shaker containing 10 mL of blocking 

buffer (5% non-fat dry milk, 10 mM Tris-HCl ph=7.5, 100 mM NaCl, 0.1% Tween 20). 

Blocking buffer was removed and replaced with primary antibodies in 10 mL of blocking 

buffer. The membrane was incubated with either a mouse monoclonal anti-alpha tubulin 

antibody (Sigma-Aldrich) or a rabbit polyclonal anti Kip 1 (p27) antibody (Cell Signaling 

Technology, Danvers, MA) at dilutions of 1:10,000 and 1:1000, respectively.  

Incubations with the primary antibody were carried out overnight at 4oC on an orbital 

shaker at low speed. The nitrocellulose membrane was washed four times, ten-minutes 

each in wash buffer (10 mM Tris pH=7.5, 100 mM NaCl, 0.1% Tween 20). Tubulin 

samples were subsequently incubated with a secondary, alkaline phosphatase conjugated 

goat anti-mouse IgG antibody (Jackson Immunoresearch, Bar Harbor, ME), while Kip 1 

(p27) samples were incubated with secondary, alkaline phosphatase conjugated goat anti-

rabbit IgG antibody (Jackson Immunoresearch). Both secondary antibodies were diluted 

1:1000 in blocking buffer.  Incubations were carried out at room temperature on a 

circular shaker for 2 hours. The membranes were washed four times for ten minutes each 

with wash buffer and briefly rinsed in 10 mM tris/HCl buffer pH = 7.2 or ultrapure water 

to remove excess Tween 20 detergent. They were subsequently incubated in the dark with 
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200 µl of nitro blue tetrazolium/ bromo chloro indolyl phosphate (NBT/BCIP) substrate 

(Roche Diagnostics, Indianapolis, IN) in 10 mL of alkaline phosphatase buffer (100 mM 

NaCl, 5 mM MgCl2, 100 mM Tris, pH=9.5) on a shaker, until color developed. 

 

Annexin staining for early apoptosis 

 HT-2 cells were grown to a concentration of 200,000 cells/mL, and harvested at 

12 and 24 hours for IL-2 deprivation and 3, 6, 12, and 24 hours for camptothecin and 

staurosporine experiments, respectively. The cells were subsequently prepared for flow 

cytometry analysis using the Guava® Nexin Reagent protocol (EMD Millipore). Cells 

were spun and resuspended in PBS with 1% fetal bovine serum (FBS) (Atlanta 

Biologicals). Their concentration was maintained at 200,000 cells/mL and 100µL was 

added to an equal volume Guava Nexin Reagent (EMD Millipore). Samples were 

incubated for 20 minutes at room temperature in the dark prior to acquiring the data on a 

guava Flow Cytometry easyCyte System (EMD Millipore). 
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Results 

Optimizing cell and inducer concentrations through DNA fragmentation analysis 

Initial testing of IL-2 deprivation, camptothecin, and staurosporine treatments 

identified the ideal cell and inducer concentrations required to standardize subsequent 

experiments. Using agarose gel electrophoresis data, internucleosomal DNA 

fragmentation (DNA laddering) was observed in IL-2 deprived cells at both cell 

concentrations, 100,000 and 200,000 cells/mL (Fig. 1a). Greater intensity of DNA 

laddering was observed at the higher concentration.  The data showed similar intensity 

differences between the two cell concentrations in both the camptothecin and 

staurosporine experiments (Fig. 1b & 1c). Both camptothecin concentrations (6 and 12 

mM) induced DNA laddering at 24 hours post-induction (Fig. 1b).  To prevent 

concentration-induced necrosis, the lower camptothecin concentration (6 mM) was 

deemed sufficient for future experiments.  

 

Cell cycle using flow cytometry 

Accumulation of cells at various stages of the cell cycle was observed following 

the three treatments. Control HT2 cells maintained in interleukin 2 (IL-2) followed 

standard distribution pattern in all experiments (Fig. 2, 3, & 4 controls). IL-2 deprivation 

treatments characterized accumulation of cells in the G1 phase of the cell cycle (G1 DNA 

content) following 12 hours of withdrawal. Late stage apoptosis was observed in these 

cells after 24 hours, as depicted by the accumulation of cells with sub-G1 DNA content. 

Massive cell death followed at 36 hours of deprivation (Fig. 2). Cell behavior following 

camptothecin exposure was characterized by initial accumulation in the G1 phase of the 
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cell cycle at 3 hours post-induction that lead to later arrest in S-phase at 6 hours (Fig. 3). 

Apoptosis ensued at 12 hours as depicted by the accumulation of cells with sub-G1 DNA 

content, and all cells were dead at 24 hours.  Staurosporine treatment caused cell 

accumulation in S- and G2/M-stage at 3 hours post-induction, later shifting to the G2/M-

phase after 6 hours of exposure (Fig. 4). Significant accumulation in G2/M was visible at 

12 hours, and most cells were dead at 24 hours. 

 

Annexin V staining is an early marker of apoptotic HT-2 T lymphocytes: a flow cytometry 

analysis. 

Early stage apoptosis marked by phosphatidylserine (PS) externalization and 

annexin V was observed with all three apoptosis inducers. In IL-2 deprived cells, annexin 

V staining was observed prior to cell membrane permeabilization (determined by staining 

with the fluorescent DNA binding dye 7-aminoactinomycin D or 7-AAD) between 12 

and 24 hours of incubation (Fig. 5). In contrast, PS externalization was observed at 3 

hours following camptothecin exposure (Fig. 6). The majority of the HT-2 cells were 

found to enter late stages of apoptosis by 12 hours. Staurosporine treatment consistently 

induced PS externalization between 6 and 12 hours post-induction, and entered late-stage 

apoptosis by 24 hours (Fig. 7). 

 

 P27Kip1 protein levels are up-regulated in apoptotic HT-2 cells following induction with 

IL-2 deprivation and camptothecin. 

 Alpha-tubulin steady state protein levels were used as a housekeeping control.  

High levels of tubulin expression were observed across all time points and inducers (Fig. 
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8a, b, c). These experiments confirmed proper quantification (20 micrograms per lane) 

and loading of protein lysates on SDS-PAGE.  P27Kip1 steady state, protein levels 

increased within 12 hours of IL-2 withdrawal (Fig. 8d), and after 6 hours of camptothecin 

exposure relative to control samples (Fig. 8e). No significant changes in Kip1 expression 

were observed following staurosporine treatment, except at 24 hours, in which protein 

levels were downregulated (Fig. 8f). 
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Discussion 

This research intended to better understand the role of three specific inducers in 

triggering apoptosis in normal, interleukin-2 dependent mouse HT-2 T-lymphocytes. 

Each treatment drove the cells to the same apoptotic fate, yet each led them there through 

very distinct pathways and different kinetics. The unique nature of each pathway is 

evidenced by cell cycle distribution and timing of early apoptotic markers. Each inducer 

provoked accumulation of cells in distinct phases of the cell cycle prior to the 

externalization of phosphatidylserine on their membrane surface, and subsequent DNA 

fragmentation and death. Further differences between the modes of apoptosis were 

observed through P27Kip1 protein quantification. This critical G1/S phase checkpoint 

inhibitor protein was found to be significantly up-regulated in two of the treatments, IL-2 

deprivation and camptothecin exposure, but down-regulated in the third (staurosporine). 

These data suggest that the type of inducer may also be fundamental to the role of P27Kip1 

role in either promoting or protecting from apoptosis. 

 

Effectiveness of the inhibitors 

IL-2 deprivation, camptothecin exposure, and staurosporine treatment are well 

known inducers of programmed cell death (Crispin et al., 2011; Zeng et al., 2012; Simenc 

& Lipnik-Stangeli, 2012). The current research has confirmed that each treatment is 

equally effective in triggering internucleosomal DNA fragmentation (DNA laddering) in 

HT-2 mouse T - lymphocytes.  Agarose gel electrophoresis revealed that DNA laddering 

was visible at both camptothecin concentrations following 24 hours, and the lower of the 

dosage was selected for subsequent experiments to avoid necrosis. High concentrations of 
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apoptosis inducers, such as camptothecin or staurosporine, used to treat some cancer cell 

lines have been found to induce necrosis instead of apoptosis (Zare-Mirakabadi et al., 

2012; Simenc & Lipnik-Stangeli, 2012). Any differences noted in band intensity here 

were likely due to inconsistent cell concentrations.  These experiments were carried out 

to ensure that apoptosis was indeed stimulated by the chosen treatments. In this study, we 

did not carry out a time course to determine the earliest onset of DNA laddering, but it is 

well documented that this feature is a late event in the apoptotic pathway (Elmore, 2007). 

 

The pre-apoptotic response 

Our findings indicate that disruption of the cell cycle of HT-2 mouse T-

lymphocytes is a precursor to apoptotic cell death. The cell cycle is a highly regulated 

process equipped with various checkpoints that assess the condition of the cell as it is 

replicated. Essential regulatory molecules at these checkpoints function to identify 

problems or errors in cell cycle progression. Depending on the severity of the defect, the 

cell’s progression will either be stalled as repairs are performed or redirected to 

programmed cell death pathways. The immediacy of the transition to cell death, such as 

apoptosis, is debated.  Some forms of apoptosis have found no effect on cell cycle 

distribution, indicated by immediate transition of the damaged cell out of the cell cycle 

and no accumulation in any particular phase (Ishii et al., 2004). Others have studied 

apoptosis inducers that promote alterations in cell cycle distribution, as cells accumulate 

at a checkpoint prior to their death (Mercier et al., 2013; Fan et al., 2014). The present 

study did find an effect on cell cycle distribution from the three inducers used. Induction 

of apoptosis resulting from IL-2 deprivation led to accumulation in the G1 phase of the 
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cell cycle, whereas camptothecin or staurosporine induction resulted in S and G2/M 

phase accumulation, respectively.  

The accumulation of cells in a specific phase of the cell cycle is typically referred 

to as “cell cycle arrest,” and this process has typically been analyzed by flow cytometry 

(Tong et al., 2014). There are two principal and distinct forms of cellular arrest, 

quiescence and senescence. Quiescence is a reversible form of cell cycle arrest usually 

caused by the withdrawal of growth factors or nutrients (Blagosklonny, 2011). In 

contrast, during senescence, the cell cycle becomes blocked by DNA damaging agents, 

radiation, tumor suppressors or cyclin-dependent kinase (CDK) inhibitors. However, no 

signals are sent to discontinue the growth-promoting pathways. This propagated growth 

signal results in an accumulation of cells in a given phase as the growth signals 

propagate. The treatments used in this study showed senescent behavior prior to entrance 

into apoptosis and cell fragmentation. 

Evidence that implied a senescence-type response existed prior to apoptosis was 

first observed through cell cycle analysis, and later confirmed with annexin V staining. 

IL-2 deprived cells began accumulating significantly following 12 hours of incubation in 

IL-2-deprived media. At that time, minimal genomic DNA fragmentation was noted (i.e.: 

absence of cells with sub-G1 DNA content), indicating that cells were not entering late 

stage apoptosis as they were beginning to accumulate in G1. Detection for early stage 

apoptosis also indicated no apoptotic activity until cells had been deprived of IL-2 for 24 

hours. Cellular arrest following camptothecin exposure occurred after 6 hours, 

overlapping slightly with apoptotic changes that began at 6 hours and more significantly, 
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at 12 hours. Finally, staurosporine experimental cells accumulated after 6 hours in G2/M 

phase prior to entering apoptosis at 12 hours. 

 

Early apoptotic changes and P27Kip1 expression 

P27Kip1 is a well-known inhibitor of the cyclin dependent kinase complex cdk2-

cyclin A/E, and it plays an important role in regulating G1/S cell cycle arrest (Levkau et 

al., 1998).  In the current study, P27Kip1 protein steady state levels increased within 12 

hours following IL-2 deprivation. This increase in inhibitor concentration occurred 

simultaneously with phosphatidylserine externalization (annexin staining) in the induced 

HT-2 cells. Previous studies have shown that IL-2 withdrawal in T-lymphocytes results 

in G1 cell cycle arrest and upregulation of the P27Kip1 inhibitor (Huleatt et al., 2003). 

More so, Huleatt et al. found highest P27Kip1 levels were associated with activated (rather 

than deactivated) T-cells undergoing apoptosis resulting from cytokine withdrawal. These 

data are consistent with the behaviors of the mouse HT-2 cells.  Their time course for 

induction however, does not coincide with that determined by the current study, as they 

report accumulation as early as 4 hours, and increased P27Kip1 steady state levels after 6 

hours of incubation. Interestingly, they found restricting P27Kip1 levels by using gene 

deficient T-cells made the cells more susceptible to apoptosis, but inhibited their ability 

to arrest prior to death. The data suggest a very close link between P27Kip1’s role in 

proliferation and apoptosis in these cells. While its up-regulation appears to directly 

induce apoptosis, cytokine deprivation may not require P27Kip1 to induce apoptosis, but 

rather activates a phosphorylation-dependent death program (Janicke et al., 1996).  
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The camptothecin experiment also showed that phosphatidylserine externalization 

correlated temporally with increased P27Kip1 protein steady state levels after 6 hours of 

exposure. The evidence provided by the IL-2 deprivation and camptothecin experiments 

suggests that P27Kip1 is an integral initiator of the apoptotic response in mouse HT-2 

cells. Both inducers inhibit mechanisms in early stages of the cell cycle, providing a 

reasonable explanation for the up-regulation of P27Kip1 at the G1/S phase checkpoint.  A 

build up of cells in G1 resulting from cytokine withdrawal would promote P27Kip1 

activity to move cells out of the cycle by initiating apoptosis. Accumulation in S phase 

could slow the progression of cells from G1 to S, contributing to the hyperactivity of the 

apoptotic inhibitor. The third inducer, however, initiated a contrary response in P27Kip1 

regulation, as steady state levels decreased at 24 hours post-induction. Because 

staurosporine induced cell cycle arrest in G2/M phase prior to fragmentation, it blocked 

cells from dividing and reentering the initial growth phase. Cells beginning in S or G2/M 

phase for IL-2 deprivation and G2/M phase for camptothecin experiments could divide 

and reenter G1, increasing demand for P27Kip1 activity and stimulating inhibitor 

production. In future experiments, we propose to quantify P27Kip1 via chemiluminescence 

detection, to determine steady-state levels in IL-2 deprived cells, in which all cells reach 

the G1/S checkpoint prior to apoptosis. High levels of P27Kip1 will also likely be observed 

in camptothecin exposed cells, where all cells except those beginning the treatment in S-

phase will pass through this checkpoint. Finally, staurosporine-treated cells will likely 

have diminished P27Kip1 levels, as only those cells beginning in G1 will pass the 

checkpoint.  
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Future Work 

This study aimed to better understand the mechanisms that control programmed 

cell death in T-lymphocytes. We have identified appropriate cell and inducer 

concentrations to initiate apoptosis in this growth factor-dependent cell line. Early and 

late stage morphological changes have been identified in a time course fashion, and 

evidence presented in this study suggests that the mode of induction dictates cell cycle 

distribution and arrest prior to apoptosis. This body of work will serve as the primary 

foundation as we continue to investigate apoptosis regulation in HT2 cells. 

In addition to carrying out chemiluminescence detection in future work, we also 

plan to improve documentation of the time course associated with programmed cell death 

by quantifying late-stage apoptosis by flow cytometry using TUNEL assays. Finally, 

using siRNA-or morpholino-mediated gene silencing, we hope to functionally 

characterize the role of P27Kip1 during apoptosis in HT-2 cells. By inhibiting the 

production of RNA transcripts and/or protein synthesis, we aim to determine if P27Kip1 

promotes or discourages apoptosis, and how the inducer influences this inhibitor’s 

function. 

As our research continues, we also plan to explore the reversibility of the 

apoptotic response with these specific inducers. Previous unpublished studies have 

evaluated the reversibility of apoptosis with IL-2 withdrawal, and found that T-cells were 

able to re-enter the cell cycle, regain function and viability with the reintroduction of the 

cytokine 24 hours after deprivation (Lauzon, unpublished observations). Extensive work 

has been performed on cancer cells and their ability to regain function following transient 

apoptosis (Tang et al., 2009). These studies have found that even late state-apoptotic 
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cancer cells in several cell lines were able to recover, although some with permanent 

genetic alterations (Tang et al., 2012). We hope to investigate whether apoptosis induced 

in HT-2 T-lymphocytes with camptothecin or staurosporine is also reversible, and if so, 

what is the time course of reversibility.  Furthermore, we would like to address if the 

reversibility of apoptosis-mediated cell cycle arrest is phase-dependent..  Reversibility of 

apoptosis may contribute to our understanding of failed cancer treatments or recurrent 

cancers. 
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Figure 1.  Electrophoresis gel DNA fragmentation after 24-hour incubation. The gels 
were used to determine optimal cell and/or toxin concentrations for each apoptosis 
inducer. A) IL-2 deprivation experiment, lanes 1-5 (from left to right): MW markers, IL-
2(+) 100,000 cells/mL, IL-2(+) 200,000 cells/mL, IL-2(-)  100,000 cells/mL, IL-2(-) 
200,000 cells/mL. B) Camptothecin (6mM) experiment, lanes 1-5 (from left to right): 
MW markers, Campto(-) 100,000 cells/mL, Campto(-) 200,000 cells/mL, Campto(+)  
100,000 cells/mL, Campto(+) 200,000 cells/mL C) Staurosporine (1uM) experiment, 
lanes 1-5 (from left to right): MW markers, Stauro(-) 100,000 cells/mL, Stauro(-) 
200,000 cells/mL, Stauro(+)  100,000 cells/mL, Stauro(+) 200,000 cells/mL. The optimal 
cell concentration for all experiments was found to be 200,000 cells/mL. A camptothecin 
concentration of 6 mM was sufficient to demonstrate apoptotic DNA laddering, while 
staurosporine induced laddering at a concentration of 1uM.  
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Figure 2.  Flow cytometry cell cycle analysis following a 36-hour time course IL-2 
deprivation treatment.  HT-2 cells were incubated with 7-aminoactinomycin D (7-
AAD) to determine changes in cell cycle distribution following apoptosis induction 
following IL-2 deprivation. Control HT-2 cells grown in IL-2 (+) media demonstrate 
typical cell cycle distribution patterning with brown representing sub-G1 DNA content, 
pink representing cells with G1 DNA content, green representing cells in S phase, and 
blue representing cells in G2/Mitosis. Cells begin to accumulate in G1 at 12 hours 
following IL-2 deprivation, and subsequently begin to fragment (sub-G1 peak) at 24 
hours. By 36 hours, the majority of cells have died.  Percent values for each phase of the 
cell cycle (DNA content) are indicated in each histogram. 
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Figure 3.  Flow cytometry cell cycle analysis following a 24-hour time course with 6 
mM camptothecin treatment. HT-2 cells were incubated with 7-aminoactinomycin D 
(7-AAD) to determine changes in cell cycle distribution following apoptosis induction 
with camptothecin. Control cells grown in IL-2 (+) media demonstrate typical cell cycle 
distribution patterning with brown representing sub-G1 DNA content, pink representing 
cells with G1 DNA content, green representing cells in S phase, and blue representing 
cells in G2/Mitosis. Initial accumulation of cells in G1-phase occurs at 3 hours following 
camptothecin exposure and the majority of cells accumulate in S-phase by 6 hours of 
incubation. Notable death is observed after 12 hours of exposure (sub-G1 DNA peak) and 
nearly all cells have died at 24 hours. 
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Figure 4.  Flow cytometry cell cycle analysis following a 24-hour time course with 1 
uM staurosporine treatment. HT-2 cells were incubated with 7-aminoactinomycin D 
(7-AAD) to determine changes in cell cycle distribution following apoptosis induction 
with staurosporine. Control cells grown in IL-2 (+) media demonstrate a typical cell cycle 
distribution pattern with brown representing cells with sub-G1 DNA content, pink 
representing cells with G1 DNA content, green representing cells in S phase, and blue 
representing cells in G2/Mitosis. Accumulation of cells in S and G2/M phases of the cell 
cycle occurs 3 hours following staurosporine exposure. This accumulation shifts toward 
the G2/M phase after 6 hours, and most cells have accumulated in G2/M phase by 12 
hours. By 24 hours, the majority of cells have died. 
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Figure 5.  Flow cytometry analysis of Annexin V staining following a 24 hour IL-2 
deprivation time course. Since phosphatidylserine externalization is an early event 
during apoptosis, Annexin V staining was used to identify the time required to initiate 
apoptosis following deprivation. Healthy, non-apoptotic cells are shown in the lower left-
hand quadrant (7-AAD and Annexin V-PE negative). Early stage apoptosis marked by 
phosphatidylserine externalization and Annexin V binding is observed in the lower right-
hand quadrant (7-AAD negative, annexin V positive). Late stage apoptosis marked by 
plasma membrane degradation and 7-AAD staining is observed in the upper right-hand 
quadrant (7-AAD and annexin V positive). Early stages of apoptosis in IL-2 deprived 
cells are observed to occur between 12 and 24 hours following IL-2 deprivation. 
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Figure 6.  Flow cytometry analysis of Annexin V staining following a 24-hour time 
course with 6 mM camptothecin. Since phosphatidylserine externalization is an early 
event during apoptosis, Annexin V staining was used to identify the time required to 
initiate apoptosis following induction with camptothecin.   Healthy, non-apoptotic cells 
are shown in the lower left-hand quadrant (7-AAD and Annexin V-PE negative). Early 
stage apoptosis marked by phosphatidylserine externalization and Annexin binding is 
observed in the lower right-hand quadrant (7-AAD negative, annexin V positive). Late 
stage apoptosis marked by plasma membrane degradation and 7-AAD staining is 
observed in the upper right-hand quadrant (7-AAD and annexin V positive). Significant 
induction of apoptosis commences after 3 hours of incubation, and the majority of cells 
enter late stages of apoptosis by 12 hours.  
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Figure 7.  Flow cytometry analysis of Annexin V staining following a 24-hour time 
course with 1 uM staurosporine. Since phosphatidylserine externalization is an early 
event during apoptosis, Annexin V staining was used to identify the time required to 
initiate apoptosis following induction with camptothecin. Healthy, non-apoptotic cells are 
shown in the lower left-hand quadrant (7-AAD and Annexin V-PE negative). Early stage 
apoptosis marked by phosphatidylserine externalization and Annexin V binding is 
observed in the lower right-hand quadrant (7-AAD negative, annexin V positive). Late 
stage apoptosis marked by plasma membrane degradation and 7-AAD staining is 
observed in the upper right-hand quadrant (7-AAD and annexin V positive). Early 
apoptosis is observed between 6 and 12 hours of incubation and the majority of cells have 
entered late-stage apoptosis by 24 hours. 
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Figure 8. SDS-PAGE and immunoblotting with anti-tubulin and P27Kip1 specific 
antibodies. Alpha-tubulin was used as a housekeeping control. A) IL-2 deprivation with 
anti-tubulin staining: lanes 1-3 (from left to right) depict 12hr IL-2(-),  24hr IL-2(-), 24hr 
IL-2(+). B) 6 mM camptothecin with anti-tubulin staining: lanes 1-5 (from left to right) 
depict 3hr Campto(+), 6hr Campto(+), 12hr Campto(+), 24hr Campto(+), 24hr Campto(-
). C) 1 µM staurosporine with anti-tubulin staining: lanes 1-5 (from left to right) depict 
3hr Stauro(+), 6hr Stauro(+), 12hr Stauro(+), 24hr Stauro(+), 24hr Stauro(-). D) IL-2 
deprivation with anti-P27Kip1 staining: lanes 1-3 (from left to right) depict 12hr IL-2(-),  
24hr IL-2(-), 24hr IL-2(+). E) 6 mM Camptothecin with anti-P27Kip1 staining: lanes 1-5 
(from left to right) depict 3hr Campto(+), 6hr Campto(+), 12hr Campto(+), 24hr 
Campto(+), 24hr Campto(-). F) 1 µM staurosporine with anti-P27Kip1 staining: lanes 1-5 
(from left to right) depict 3hr Stauro(+), 6hr Stauro(+), 12hr Stauro(+), 24hr Stauro(+), 
24hr Stauro(-). P27Kip1 protein steady state levels increase within 12 and 6 hours 
following IL-2 and camptothecin treatments, respectively.  
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