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ABSTRACT 

FORTI, ADAM: Triboelectric Turbines: Design and Construction of a Multi-Rotor, 

Counter-Rotating Wind Turbine Utilizing Direct-Current Triboelectric 

Nanogenerators. Deparment of Mechanical Engineering, March 2017. 

ADVISOR: Rebecca Cortez, Ph.D. 

 Direct-current triboelectric nanogenerators (DC-TENG) harness the friction generated 

between dissimilar rotating materials and convert it to useable electrical power. One of the many 

potential applications of this technology is in small scale renewable energy. A wind turbine was 

designed in which multiple DC-TENG generators would be attached to turbine blades of varying 

dimensions. This project involved the design and construction of several rotating DC-TENG 

prototypes, followed by measuring the electrical output of each nanogenerator at various 

rotational speeds. 
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Introduction 

Triboelectric Nanogenerators  

 Recently, the development of triboelectric nanogenerators (TENG) has enabled an 

alternative method of harvesting mechanical energy from the environment [1]. These devices 

make use of the triboelectric effect, the tendency of a material to gain or lose electrons when it 

is forced against another material. Materials which are more positive on the triboelectric scale 

have a tendency to lose electrons when in contact with other materials, and those which gain 

electrons are more negative on the triboelectric scale. This tendency is quantified as the charge 

affinity (nC/J), which corresponds to one nanoampsec/wattsec of friction [2]. Two insulators from 

opposite ends of the triboelectric series produce the largest charge distribution when they are 

pressed together and separated. A few selected materials are shown in Table 1, with the full table 

included in Appendix A. 

Table 1 – Selected materials and triboelectric charge affinity. The metal effect indicates the charge acquired by the 

material if rubbed with metal, relative to the normal affinity. In this column, N indicates Normal (or consistent with the 

standard affinity) and W indicates a weak resulting charge affinity. Tests were performed by Bill Lee (Ph.D., physics). 

©2009 by AlphaLab, Inc. (TriField.com), which also manufactured the test equipment used [2]. Full table included in 

Appendix A. 

Insulator Name Affinity (nC/J) Metal Effect 

Polyurethane foam +60 +N 

Box sealing tape (BOPP) +55 +W 

Hair, oily skin +45 +N 

Solid polyurethane, filled +40 +N 

Glass (soda) +25 +N 

Cotton +5 +N 

Nitrile rubber +3 -W 

Wool 0 -W 

Polycarbonate -5 -W 

ABS -5 -N 

Polystyrene -70 -N 

PVC (rigid vinyl) -100 -N 

Butyl rubber, filled -135 -N 

Teflon -190 -N 
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 Triboelectric materials have been tested for functionality in various configurations, the 

fundamental difference being the mode of separation of two dissimilar materials [1]. Typically, 

one is an insulator near one extreme of the triboelectric series, and the other material is a 

conductor. Periodic vertical displacement has produced a peak AC current density of 16 mA/m2, 

which relies on the pressing and lifting of an external force to generate electricity [3, 4]. 

Alternative designs make use of single-electrode, freestanding triboelectric-layer, and contact-

sliding modes of TENG [3]. All of these designs lead to an alternating current (AC) output, as the 

triboelectric materials are repeatedly contacted and separated. Although this can be measured 

and used to sporadically illuminate arrays of lights, the practical use of these technologies for 

energy storage is limited by their dependence on including a voltage rectifier to produce a direct 

current (DC) output, which leads to considerable energy waste [1]. 

Direct-Current Triboelectric Nanogenerators 

 Further refinements within contact-sliding modes of triboelectronics by Zhang et al. have 

led to rotating configurations which allow the TENG to produce a DC current, leading to the 

designation DC TENG [1]. Multiple layers of aluminum and polyvinyl chloride (PVC) are cut into 

specific, radially symmetric patterns containing either one or multiple segments. When arranged 

in the configuration shown in Figure 1, and spun by an external power source, they can produce 

power because, when in contact, the PVC attracts electrons from the aluminum. The arrangement 

of the carbon fiber brushes and layers of materials enables a DC output, as the aluminum 

electrode rotates relative to the polyvinyl chloride (PVC) insulator. This cycle can be summarized 

as shown in Figure 2. 
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Figure 1: Operation of the semi-circle DC TENG. Image courtesy of Zhang et al [1]. 



Forti, 4 
 

 

Figure 2: Summary of events which occur during a single cycle of a DC TENG, as shown in Figure 1. 

 This outline is based on the assumption that the PVC and the bottom electrode are 

electrically the same the entire time, which is a weak assumption. In reality, the bottom electrode 

would always be more positive than the PVC (due to triboelectric effect). In essence, this may 

indicate that the PVC-bottom electrode junction acts somewhat like a one-way electron gate, 

similar to the concept of a PNP bipolar junction transistor. This possibility is conjecture, and not 

explored further in this report. 

 The success of these designs introduces a variety of options for triboelectric energy 

harvesting applications wherever rotational mechanical energy exists. The simplest of these DC-

TENG designs is the semi-circle, shown in Figure 1, above. It has a single segment of aluminum, 

and will be alternatively referred to as an s1 DC TENG. This device was found to produce a power 

density of 25 mW/m2 while operating at 750 RPM, where the area of interest is the contact area 

between the top electrode and polyvinyl chloride in Figure 1 [1]. 

Stage 1

•Maximum Potential Energy

•Triboelectric effect has already forced electrons from aluminum into PVC.

Stage 2

•Power Output

•Rotation reduces contact area, allowing electrons to flow through Joint A (due to 
voltage difference). This causes a current from Joint A through the load to Joint B.

Stage 3

•Minimum Potential Energy

•Connections to Joints A and B switch.

Stage 4

•Triboelectric Charging

•Rotation increases contact area, forcing electrons to move from the aluminum to PVC 
(due to triboelectric effect).

Stage 1

•Maximum Potential Energy

•Connections to Joints A and B switch. 
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 The equivalent circuit diagrams for the various stages are shown in Figure 3a. 

Modifications on the semi-circle design are shown in Figure 3b, increasing the number of 

electrode segments while maintaining the same total surface area of electrodes. Figure 3c shows 

an eighth-circle DC-TENG assembly (an s4 DC TENG) with a diameter of 2.4 inches, to provide a 

sense of scale.  

 

Figure 3: (a) The equivalent circuits during one full rotation of the semi-circle DC-TENG. (b) CAD model of various 

alternative designs. (c) Actual eighth-circle DC-TENG, including the carbon brushes. The outer diameter of the aluminum 

circle is 2.4 inches. Image courtesy of Zhang et al [1]. 

 When tested over a range of rotational speeds from 150 to 1350 RPM, the designs with 

the higher number of segments had significantly faster increases in short circuit current density. 
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Similarly, an increase in rotational speed led to an increase in the short circuit current density [1]. 

From these analyses, the optimal design of DC-TENG rotates rapidly and consists of as many 

electrode segments as possible.  

Anticipated Generator Output  

 Predictions for the output current of DC TENG were made based on the reported results 

in the literature. Zhang et al. determined linear relationships between short circuit current density 

(Jsc, in mA/m2) and rotating speed (RPM), with an increase in number of segments corresponding 

to an increase in the slope of that curve [1]. They include data from s1, s2, s3, and s4 DC TENG 

(referred to as Semi, Quarter, Sixth, and Eighth, respectively, in their publication). The data is 

reproduced in Figure 4, which also includes the extrapolated prediction for short circuit current 

density for the s20 DC TENG (which would be labelled Fortieth by Zhang et al.). 

 

Figure 4: Reproduced data from Zhang et al. and extrapolated prediction (shown with dashed line) for the short circuit 

current density of a DC TENG at various rotational speeds [1]. 

0

5

10

15

20

25

-100 100 300 500 700 900 1100 1300 1500

I s
c

(m
A

/m
2
)

RPM

Semi (1)

Quarter (2)

Sixth (3)

Eighth (4)

Fortieth (20)



Forti, 7 
 

 The extrapolation was obtained by first dividing the short circuit current density of each 

of the data sets from Zhang by the corresponding number of segments, producing the dataset 

shown in Figure 5. This data was found to fit a linear best fit line, shown as Equation 1. The 

resulting R2 value of 0.94 is sufficiently accurate for this approximation. The speed in revolutions 

per minute (RPM) was substituted into this equation, and the result multiplied by the number of 

segments (20 for the s20 design). This product is the extrapolated data shown in Figure 4. 

 

Figure 5: Short circuit current from Zhang et al. DC TENG divided by the number of segments within each generator at 

various rotational speeds [1]. The linear best fit line is as Equation 1. 

  (
𝐼𝑆𝐶

𝑆𝑒𝑔.
) =  0.0007 ∗ (𝑅𝑃𝑀) +  0.012 1 

 The slope of Equation 1 is likely to be somehow indicative of some property inherent to 

either a particular triboelectric material, friction between triboelectric layers, DC TENG in general, 

or some other aspect of these nanogenerators. It is also possible that the assumed linear fit is 

inaccurate, or only applies to a limited range of rotational speeds. These unknown aspects of this 

curve are not explored further in this report, but may be well worth further investigation.  
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Turbines 

 The design of wind turbines has been a focus of environmental engineers for many years, 

and there are many designs which can easily translate the energy of incoming wind into rotational 

energy though both vertical axis wind turbines (VAWT) and horizontal axis wind turbines (HAWT) 

[5].  Traditional turbines utilize a single rotor that spins perpendicular to incoming wind, and this 

rotation spins a generator, producing electricity. This is where it is necessary to consider the Betz 

limit, which states that up to 59% of wind power can ever be harnessed by a turbine [5]. To 

produce large amounts of power despite this limitation, these designs benefit from massive 

turbines moving at high speeds. 

 Rotating DC-TENG technology could be fastened to the rotor of a traditional windmill, 

with one layer fixed to the axle, producing electricity through the triboelectric effect. However, 

this technology becomes more effective with increased speed, suggesting the use of smaller 

turbines. These would produce less torque than a massive HAWT, but can still operate quickly. In 

addition, placing a second rotor on the same axis and reversing the blade orientation will allow 

the adjacent rotors to spin in opposite directions. A DC TENG placed with one layer on each rotor 

would experience much greater relative rotational speed from the same incident wind due to this 

counter-rotation. If the rotors can be designed to be sufficiently light, a series of rotors of 

increasing size can be placed on a single axis. The resulting turbine has the potential to generate 

a substantial amount of electricity, depending primarily on the efficiency of the DC TENG and the 

efficiency of the blade airfoils.  

 The state of California conducted a study of a counter-rotating wind turbine system, 

which utilizes two rotors spinning opposite directions on the same turbine tower. Each turbine 

spins a separate portion of the generator, leading to an increased efficiency of up to 40% at low 
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wind speeds. In addition to the resulting power increase, this moment-balancing design reduced 

the bending stress on the supporting tower compared to a single rotor system [6]. Such counter-

rotating turbines cannot utilize more than two rotors, as there are only two elements of a 

traditional generator that rotate opposite one another. Other multi-rotor designs make use of a 

backup rotor to “catch” the air flow deflected from a front rotor, leading to increased overall 

efficiencies [7]. However, at this time, there have been no attempts to functionalize the rotational 

DC-TENG for energy harvesting using a turbine of any kind, let alone a turbine with multiple rotors.  

Materials and Methods 

Materials 

 This senior design project is intended to result in the production of a direct-current 

triboelectric nanogenerator which can be used by an ongoing Green Fee project to produce 

electric power from low speed winds on campus at Union College [8]. The majority of the 

structural components were laser cut from 0.25-inch thick acrylic sheets purchased from 

McMaster Carr. Electronic slip rings and motors were purchased from Pololu. PVC, polycarbonate, 

and aluminum sheet were purchased from McMaster-Carr, and machined using a water jet in the 

Union College machine shop. Short sections of pipe and bushings were precision machined by 

technicians in this shop as well. Acetyl butyl styrene (ABS) filament was purchased from 

MatterHackers and used to 3D print model turbine blades. 

Design and Manufacture of DC TENG Models 

Sanity Check: Model 1 

 The first product was model 1.1, a simple arrangement in which a scrap of acrylic was 

covered with a sheet of aluminum foil, which was then taped in place, as shown in Figure 6. The 
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foil was rubbed rapidly against a scrap of polyvinyl chloride for approximately 10 seconds, at 

which point the materials were separated. The voltage difference between the aluminum and 

ground was measured immediately, and a temporary voltage spike was measured. Although this 

voltage quickly dissipated, it was the first visible indication that the triboelectric effect may result 

in measurable output power. 

 

Figure 6: Test model used to confirm the effects of triboelectricity. Acrylic (clear) is approximately 0.25 inches thick and 

1 inch wide. 

First Test: Model 2 

 A more complicated model was constructed when funds became available. It was 

designed such that one section of the DC TENG could be rotated with respect to the other by 

means of a small DC motor, as shown in Figure 7. Two iterations of DC TENG were designed for 

this test section, with model 2.1 a replica of the one-segment design (referred to as s1) shown in 

the literature, and model 2.2 having twenty segments (s20). The diameters of each of these DC-

TENG, measured as the exterior diameter of the PVC component, were 2.5 inches.  
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Figure 7: DC TENG test model 2.1. The s1 generator has a diameter of 2.5 inches, measured as the outer diameter of the 

PVC component. 

 Although this model was capable of producing some measureable output, it was too small 

to enable testing of more complicated DC TENG with higher segment counts. When attempted, 

the electric brushes would be in contact with multiple segments simultaneously, preventing 

power generation. 

Second Test: Model 3 

 Model 3.1 was built to be a considerably larger and more useable test stand than the 

previous system, and capable of testing two DC-TENG simultaneously. In this model, the axis of 

the DC TENG is stationary while the central portion (the rotor) spins freely, which more closely 

imitates the actual system in use within a wind turbine. Model 3.2, shown in Figure 8, 

implemented several improvements on the design of model 3.1, most notably the addition of a 

motor and supporting structures which enabled the rotor to be tested. Both DC TENG in model 
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3.2 were s20 designs with PVC outer diameters of 8 inches. As is apparent in this image, on one 

side of the rotor the narrow electrode (no external tabs) is fixed to the test stand, while on the 

opposite end the wide electrode (multiple external tabs) is fixed to the test stand. These sides are 

described as the Narrow Electrode Fixed (NEF) and Wide Electrode Fixed (WEF) sides of the rotor, 

respectively. 

 

Figure 8: DC TENG test model 3.2, containing a single rotor with two electrically independent s20 generators. The rotor 

is driven through a belt drive system mounted on the test stand. 

 A detailed diagram of model 3.2 is shown in Figure 9. Key components of the assembly 

are labeled corresponding to entries in Table 2. A full list of components is provided in Appendix 

B. Additional views of the CAD model are available in Appendix C. 

WEF Side 

NEF Side 
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Figure 9: Exploded view of DC TENG model 3.2, with key components labeled. Only key generic components and those 

designed specifically for the Narrow Electrode Fixed (NEF) half of the apparatus are labelled. Full component list shown 

in Appendix B. 

Table 2: Part list corresponding to the labels in Figure 9. Full component list shown in Appendix B. 

Label Part Name Material Part Description 

1 Slip Ring with Flange Plastic/wiring 6 wires, max 240V @ 2A 

2 Slip Ring Connection Plate NEF 0.25-inch acrylic Laser Cut by Engineering Tech. 

3 Spacing Washer 0.25-inch acrylic Laser Cut by Engineering Tech. 

4 Wide Electrode s20 NEF 0.063-inch aluminum sheet Water Jet by Machine Shop 

5 PVC s20 0.25-inch Water Jet by Machine Shop 

6 Narrow Electrode s20 NEF 0.063-inch aluminum sheet Water Jet by Machine Shop 

7 Stand Cap NEF 0.25-inch polycarbonate Water Jet by Machine Shop 

8 Axial Pipe Schedule 40 aluminum size 3/8 Machined by Machine Shop 

9 Ball Bearing stainless steel 5/8" Shaft Dia., 1-3/8" OD 

10 Turbine Cap NEF 0.25-inch acrylic Laser Cut by Engineering Tech. 

11 Drive Belt Rubber Dayco ELA V-Rubber Belt 

12 Gear Motor Metal 47:1 Gear Ratio 

 

 Although the turbine blades were not constructed for this model, they were designed to 

be located as shown in Figure 10. This version would be used for testing either in specific locations 

outdoors or, if scaled down to an appropriate size, in a wind tunnel. 
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Figure 10: Version of model 3.2 in which the belt drive system has been removed and turbine blades added. Ultimately, 

this intended to be the basic design for models used in wind tunnel testing. 

Future Design: Model 3.3 

 Although time did not permit its fabrication, model 3.3 was designed to enable three DC 

TENG to be tested simultaneously. A computer-aided design (CAD) model is shown in Figure 11, 

in which turbine blades have been added to show the intended final configuration. This model 

would be too large to test in the on-campus wind tunnel, requiring the use of a high powered fan 

and an anemometer instead. Such tests have not yet been designed fully. 
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Figure 11: SolidWorks model of multiple-rotor DC TENG test stand model 3.3. Note the opposite orientation of turbine 

blades on each rotor. 

 This model would be tested with each rotor spinning in the opposite direction, as they 

would in a multi-rotor wind turbine array. Counter-rotation would be due to switching the 

orientation of each set of turbine blades. For this model, the first iteration of the blades were 3D 

printed from acetyl butyl styrene (ABS) based on a design obtained from airfoilplotter.com. 

 

Figure 12: Turbine blades, manufactured through additive manufacturing (3D printing). 
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Testing of Model 3.2 

 The experimental setup was designed to evaluate the open circuit voltage output of each 

DC TENG within model 3.2. One oscilloscope channel was dedicated to each DC TENG, with one 

probe attached to each output wire. The following MATLAB script was used to collect the data 

from both oscilloscope channels and display each in a separate figure plotting voltage vs time: 

clc, clear 

[signal1, time1] = swave(1); 

[signal2, time2] = swave(2); 

 The code used here uses the function “swave,” written by John Spinelli (Union College 

Department of Computer and Electrical Engineering), which creates an independent figure 

displaying the readout from the screen of the oscilloscope for each channel. The screen range is 

easily adjustable, and limiting the field of view of the oscilloscope limits the data range while 

increasing the accuracy of each measurement. Regardless of the time span, the code saves 600 

data points at equal time increments. During testing, the DC motor and belt drive assembly were 

directly wired to an adjustable laboratory power supply, and used to spin the center portion of 

the assembly (the rotor). A handheld tachometer was used to measure the rotations per minute 

of the rotor, which were constant at a given power input into the motor. When a steady speed 

was attained, the MATLAB code was initialized, and data acquired.  

 A nearly identical setup was used to measure an approximation of short circuit current, 

in which the two output wires of a DC TENG were connected across a low-resistance (R, in Ohms 

[Ω]) resistor. The resulting voltage difference (V, in volts [V]) would be used to calculate the 

current (I, in amperes [A]) using Ohms Law, shown in Equation 2. 

  𝑉 = 𝐼 ∗ 𝑅 2 
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Testing Results and Discussion 

Open Circuit Voltage of Model 3.2 

 The voltage output for a single DC TENG within model 3.2 is shown in Figure 13, with each 

data set corresponding to a test run at a different rotational speed. Within each of the figures 

generated by the open circuit voltage tests, the datasets were vertically shifted so that multiple 

could be displayed in the same plot. Each follows a general pattern of having the majority of data 

points approximately equal to zero, with periodic voltage spikes. It was initially thought that these 

spikes were noise from the system, as they were highly irregular, but it was found to be due to 

mechanical irregularities which forced brushes to only make contact intermittently. Upon 

repairing this issue, a regular pattern emerged due to the radial symmetry of the electrode 

geometry (which is the source of the electrons comprising the current flow). The frequency of 

peaks corresponds to the frequency at which a single segment of the DC TENG would be expected 

to pass by a stationary point (which is the frequency of completed DC TENG cycles, as described 

by Figures 1 and 2).  
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Figure 13: Open circuit voltage of a single DC-TENG at various rotational speeds, as indicated by the accompanying 

blocks on the right of the figure. Each data set contains a nearly uniform horizontal line which corresponds to a reading 

of zero volts, to elucidate analysis each was offset by a different amount. The proportionate difference between each 

peak and the baseline for that data set is preserved. 

 Critically, the consistent orientation of the voltage spikes is a strong indicator that the 

desired direct current output was produced (when any energy was being produced at all). In other 

tests, the voltage spikes are largely negative. This is solely due to the arrangement of the channel 

probes, and would switch sign if these probes were reversed. In the figure, as the rotational speed 

increased, so too did the frequency and magnitude of the voltage spikes produced by the DC-

TENG. Although the maximum output was only between 0.1 V to 0.4 V, this data was only 

collected at speeds up to 109 RPM, Zhang et al. performed tests between 150 and 1350 RPM [1]. 

At increased speeds, the energy production is expected to be much greater, increasing linearly 

[1]. 

Short Circuit Current of Model 3.2 

 Short circuit current density, obtained by dividing the output current of a DC TENG by the 

effective surface area (defined as the surface area of a single face of the PVC layer), is the primary 
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method used by Zhang et al. to characterize the output of the DC TENG [1]. Attempts to measure 

the voltage drop across a resistance of 330 Ω resulted in negligible voltage readings, indicating 

that the current was extremely low. Lower-resistance resistors must be obtained and arranged in 

parallel to reduce the overall resistance and enable actual values to be calculated for the short 

circuit current. 

Efficiency Approximations 

 There are multiple measures of efficiency for a DC TENG turbine. First, the DC TENG 

efficiency can be defined as the energy output by the DC TENG divided by energy of the rotating 

mass as it spins. For a driven test turbine, such as model 3.2, the motor efficiency is the energy of 

the rotating mass as it spins divided by the electrical energy forced into the motor. For a wind 

tunnel test turbine, such as the thus far unbuilt model 3.3, the turbine blade efficiency is the 

energy of the spinning mass divided by the energy of the wind (for wind energy approximation, 

see Appendix D). This is limited by the Betz Limit, which fixes the maximum turbine blade 

efficiency at 59% [5]. Finally, the overall turbine efficiency would be the energy of the impinging 

wind divided by the energy produced by the DC TENG.  

 The energy of the rotating mass can be calculated from its angular velocity (ω, in 

radians/s) and a computer-based calculation of the mass moment of inertia (J in kg*m2), shown 

in Equation 3.  

  𝐸𝑟𝑜𝑡 =
1

2
∗ 𝐽 ∗ 𝜔2 3 

 An evaluation of the mass properties of the rotating mass in model 3.2, highlighted in 

Figure 14 below, calculated the mass moment of inertia about the axis of rotation to be 21.4 lb*in2 

(see Appendix E for additional calculations).  
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Figure 14: Side view of model 3.2, in which the rotating components have been highlighted in blue as part of the mass 

property calculation provided in Appendix E. The ink axis shown are located at the center of mass of the selection, with 

Ix oriented along the axis of rotation. 

 Using Equation 3, the kinetic energy of the rotating section at various angular speeds was 

calculated, and the results are listed in Table 3. 

Table 3: Calculated kinetic energy of rotating components at rotational speeds tested previously. 

RPM Kinetic Energy (J) 

21 0.02 

48 0.08 

70 0.18 

87 0.26 

109 0.41 

 

 Typically, the energy produced by the DC TENG can be calculated by the measured output, 

multiplying the power produced by time. From this, the efficiency of the DC TENG would be 
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determined. However, due to the lack of data for output current, this energy cannot be calculated 

at this time. 

Future Work 

Green Fee Project 

 This project was intended to produce a proof of concept DC TENG prototype for use in a 

wind turbine, and as a result there are multiple areas which remain to be explored in the future. 

As part of an ongoing Green Fee project, more extensive electrical testing will be completed, with 

priority going to short circuit current measurements and open circuit voltage measurements over 

a wide range of rotational speed [8]. This short circuit current, when divided by the effective 

surface area to produce short circuit current density, will be directly comparable to the data 

produced by Zhang et al., as discussed above. In addition, an array of these prototypes with 

varying diameters will be tested in vertical and horizontal orientations. Thinner sheets of PVC will 

be used to reduce weight and improve electrical conductivity between it and the aluminum layers. 

A DC TENG with 10 segments will be constructed and compared to the current model to confirm 

the effects of segmentation number. The success of the Green Fee project also requires an 

understanding of the effects of electrical configuration between multiple DC TENG, as at present, 

it is unknown if wiring DC TENG together in series or in parallel will have an impact on the 

underlying phenomena. It is necessary to complete a more thorough characterization of the 

present design’s DC output before the combination of multiple generators can be explored 

further. 
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Independent Research 

 In addition to the steps which will be completed in the short term, there are many areas 

which may be improved through focused design projects. These include improving the brush 

design, studying the effect of using conductive lubricants (such as graphite), studying the effects 

of surface roughness, optimizing the number of segments, optimizing the thickness of the 

triboelectric layers, and replacing the PVC layer with one of Teflon or other triboelectric materials, 

based on their relative triboelectric values (see Appendix A). Beyond the improvement of 

individual DC TENG, it will be necessary to make improvements in how arrays of DC TENG rotors 

will operate together. This may include optimizing the pressure between generators, investigating 

wear prevention, and calculating the tradeoff between having more DC TENG and using a longer 

blade length to make occupy the same volume. Ultimately, as the technology is integrated into 

wind turbines, it will be necessary to calculate the cost of production per kWh achieved by these 

turbines, and compare to that of typical wind turbines. I believe that this technology has the 

potential to reduce the capital required significantly, leading to a reduced payoff period, which is 

critical to eventually making this technology viable. 

Utilization 

 As this project transitions into the Green Fee project, the objective shifts to constructing 

a fully functional wind turbine composed of several arrays, each containing multiple DC TENG [8]. 

Such a device must have a purpose, and when discussing how the turbine will be used, several 

factors must be considered. 

 Directly connecting the turbine to the electrical grid would require conversion from DC to 

AC current (reducing the power output), significant paperwork, and a large installation cost. 

Instead, the DC output of the turbine can be directly used to charge a bank of batteries. This stores 
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the variable power output of the turbine in a readily avaiable, easily controlled form. These 

batteries can then be used to directly power other devices, such as lights or drinking fountains 

(which would require the batteries to be permanently wired to these devices). Alternatively, the 

batteries can be physically removed from the charging array one at a time, and used to power 

other objects (such as golf carts or portable electronics). Clearly, the power output of the turbine 

determines which of these forms is the most practical. Also of primary importance is the 

accesibility of the battery bank, which is dependant on the location of the actual wind turbine. 

 Proper location is absolutely critical for this project. Wind speed, safety, accessibility, 

aesthetics, administrative approval, and other factors will all need to be taken into account when 

making this choice. In general, higher elevations above ground level directly corellate with higher 

wind speeds, and rather than construct a one-hundred foot turbine, it is much more practical to 

build an approximately 10 foot turbine on top of an existing, multistory building. At the moment, 

the Union College administration has expressed a commitment to maintaining the historical 

appearance of the main campus, which makes it unlikely that approval would be granted for such 

locations as the roof of the Peter Irving Wold Center, the roof of Reamer Campus Center, along 

the wall near the flagpole in the center of campus, or other potentially suitable locations (as 

determined by technical factors such as typical wind speed). Safety considerations support the 

use of rooftops, as this would prevent people or objects from colliding with the turbine without 

necessitating the addition of a safety cage. Rooftops do make installation, operation and 

maintenance somewhat more complicated and potentially dangerous, though there are several 

accessible roofs on campus that eliminate these risks. One such potential site may eventually be 

found on or near the new Science and Engineering Center, presently under construction. 

Accessibility is especially important if the design proves to require extensive maintenance, or if 

the power is collected in batteries which are intended to be removed for use. 
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 If the final turbine is calculated to produce below 1 W, it would not be sufficient to power 

a small light up display, and would have no appreciable impact on the carbon footprint of the 

college. In this case the remainder of the Green Fee funds may be invested in continuing to 

improve the technology, and not manufacturing a full scale turbine.  

 If the final turbine would produce between 1 W and 250 W, it is not enough energy to be 

of practical use to the college. However, it could be used to trickle charge battery packs or 

illuminate a light emmitting diode (LED) array. In this case there are several options. If the 

installation costs allow, it could be beneficial to install several turbines near one another, which 

will work in tandem. These could have rotors which are either the same size or of varying sizes, 

which would enable multiple optimal wind speeds of operation for the set of turbines.  

 If a single turbine (or a collection of several turbines) can produce at least 250 W, it will 

be enough to assist with charging much larger batteries [9]. This could be useful for supplementing 

the power needed to operate Union-owned electric carts or other vehicles, to power a phone 

charging station, or many other possibilities. This scenario provides the most flexibility as far as 

utilization options, and is clearly the ideal case, as well as the least likely. 

 If economic and manufacturing considerations allow, installing multiple turbines of 

varying geometries would lead to increased overall power output and potentially an wider range 

of operational wind speeds. As outlined above, if the turbines are capable of producing even just 

a small amount of power at low wind speed, there are several options for utilizing their output.  

Lessons Learned 

 The majority of lessons learned over the course of this project were developed as 

solutions to very specific practical problems, while others were much more broadly applicable.  
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 Research First 

o Search the internet for related ideas to ensure others have not already done the 

same thing 

o Read technical papers – including patents – to develop a more thorough 

understanding of underlying phenomena and methodologies 

o Quantify the desired scope of your project, and evaluate its ultimate “worth” to 

you to ensure you will remain motivated throughout the process 

 Measure critical material properties beforehand 

o Adhesives are typically insulators, so should not be relied upon to conduct 

electricity 

o Some materials cannot be machined using specific techniques 

 Design for manufacturing 

o Be specific in dimensions, tolerances, file and part names, and materials 

o Never indicate “take your time” to machinists, they will not  

o Concentrate complexity into unique parts so you do not need to modify standard 

parts 

o Large pieces are difficult to keep perfectly flat 

o Occasionally, the cost of standard parts is prohibitive because they are 

manufactured at a high quality, and it is more cost effective to build your own 

stand in component 

o Design flexibility into select components which can be adjusted as desired 

 Balance rigidity and manufacturability 

o Tight tolerances can make construction difficult or permanent 

o Loose tolerances produce loose joints which can wobble and get looser as a result 

o Avoid non-locking nuts and threaded rods 

o Recognize that nuts on spinning objects will either loosen or tighten, depending 

on direction of rotation 

 Share your ideas 

o Getting people interested keeps you excited about your project and committed 

to its success 

o When people know what you are doing, they may make suggestions which would 

never have occurred to you otherwise 

o Asking for help from professionals (professors, machinists, technicians, farmers, 

students, etc.) can lead to new ideas and new partners in your endeavor 

o Exposing your ideas to criticism and questions helps you move beyond your self-

imposed limits 

 Keep careful notes 

o Take pictures and videos at every step 

o Save files in multiple locations 

o Carefully label everything 

o Use consistent and intuitive naming system 
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o Keep track of where you make mistakes 

o Plan all expenditures in advance and track spending 

o Preserve all receipts and images of all receipts 

 Plan ahead 

o Avoid calling internationally unless you are equipped to do so 

o Search throughout physical or online stores for items similar in form to what you 

are looking for, as there may be unexpected products available which solve your 

problem 

o Start early prototyping with small models that are cheap to manufacture 

o Do not rely on 3D printing to be rapid or successful 

o Organize tests so that failure can be educational 

o Account for lead times and hidden fees when ordering materials 

 Prioritize long term goals 

o Design components so they may be easily modified in digital and physical form 

o Label such that multiple iterations will be easily traceable 

o Determine which design changes bring you closer to your goal and which will 

need to be replaced in the next iteration regardless 

Conclusion 

 At present, the characterization of model 3.2 is largely incomplete, making any 

conclusions about the effectiveness of the current design premature. However, it is evident that 

the conceived design has been successful in producing a measurable direct current voltage while 

running at relatively slow angular velocities. In addition, the technology was easily scaled and 

extrapolated from the designs previously published, indicating that for future improvements it 

may be similarly simple to adjust and scale various features as needed. It remains to be seen 

whether the design will become effective enough to be integrated into wind turbines, however, 

the potential for direct-current triboelectronic nanogenerators is apparent.  
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Appendices 

Appendix A: Triboelectric Series 

Table 4: Triboelectric Series for Common Insulators. The metal effect indicates the charge acquired by the material if 

rubbed with metal, relative to the normal affinity. In this column, N indicates Normal (or consistent with the standard 

affinity) and W indicates a weak resulting charge affinity. Tests were performed by Bill Lee (Ph.D., physics). ©2009 by 

AlphaLab, Inc. (TriField.com), which also manufactured the test equipment used. This table may be reproduced only if 

reproduced in whole [2]. 

Insulator Name Affinity (nC/J) Metal Effect Notes 

Polyurethane foam +60 +N 
All materials are good insulators (>1000 T 

ohm cm) unless noted. 

Sorbothane +58 -W Slightly conductive. (120 G ohm cm). 

Box sealing tape (BOPP) +55 +W 
Non-sticky side. Becomes more negative if 

sanded down to the BOPP film. 

Hair, oily skin +45 +N 
Skin is conductive. Cannot be charged by 

metal rubbing. 

Solid polyurethane, filled +40 +N Slightly conductive. (8 T ohm cm). 

Magnesium fluoride (MgF2) +35 +N Anti-reflective optical coating. 

Nylon, dry skin +30 +N 
Skin is conductive. Cannot be charged by 

metal rubbing. 

Machine oil +29 +N  

Nylatron (nylon filled with MoS2) +28 +N  

Glass (soda) +25 +N 
Slightly conductive. (Depends on 

humidity). 

Paper (uncoated copy) +10 -W 
Most papers & cardboard have similar 

affinity. Slightly conductive. 

Wood (pine) +7 -W  

GE brand Silicone II (hardens in air) +6 +N 
More positive than the other silicone 

chemistry (see below). 

Cotton +5 +N 
Slightly conductive. (Depends on 

humidity). 

Nitrile rubber +3 -W  

Wool 0 -W  

Polycarbonate -5 -W  

ABS -5 -N  

Acrylic (polymethyl methacrylate) 

and adhesive side of clear carton-

sealing and office tape 

-10 -N 

Several clear tape adhesives are have an 

affinity almost identical to acrylic, even 

though various compositions are listed. 

Epoxy (circuit board) -32 -N  

Styrene-butadiene rubber (SBR, 

Buna S) 
-35 -N 

Sometimes inaccurately called "neoprene" 

(see below). 

Solvent-based spray paints -38 -N May vary. 

PET (mylar) cloth -40 -W  

PET (mylar) solid -40 +W  

Continued on Next Page 
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Table 4: Continued 

Insulator Name Affinity (nC/J) Metal Effect Notes 

EVA rubber for gaskets, filled -55 -N 
Slightly conductive. (10 T ohm cm). Filled 

rubber will usually conduct. 

Gum rubber -60 -N Barely conductive. (500 T ohm cm). 

Hot melt glue -62 -N  

Polystyrene -70 -N  

Polyimide -70 -N  

Silicones (air harden & thermoset, 

but not GE) 
-72 -N  

Vinyl: flexible (clear tubing) -75 -N  

Carton-sealing tape (BOPP), 

sanded down 
-85 -N 

Raw surface is very + (see above), but 

close to PP when sanded. 

Olefins (alkenes): LDPE, HDPE, PP -90 -N 
UHMWPE is below. Against metals, PP is 

more neg than PE. 

Cellulose nitrate -93 -N  

Office tape backing (vinyl 

copolymer?) 
-95 -N  

UHMWPE -95 -N  

Neoprene (polychloroprene, not 

SBR) 
-98 -N Slightly conductive if filled (1.5 T ohm cm). 

PVC (rigid vinyl) -100 -N  

Latex (natural) rubber -105 -N  

Viton, filled -117 -N Slightly conductive. (40 T ohm cm). 

Epichlorohydrin rubber, filled -118 -N Slightly conductive. (250 G ohm cm). 

Santoprene rubber -120 -N  

Hypalon rubber, filled -130 -N Slightly conductive. (30 T ohm cm). 

Butyl rubber, filled -135 -N 
Conductive. (900 M ohm cm). Test was 

done fast. 

EDPM rubber, filled -140 -N Slightly conductive. (40 T ohm cm). 

Teflon -190 -N 
Surface is fluorine atoms-- very 

electronegative. 
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Appendix B: Bill of Materials for Model 3.2 
Table 5: Bill of materials for all components of model 3.2. Note that part numbers may not correspond to numbers in 

figures within the body of the document. 

Label Part Name Material Description 
Material Source/Part 

Number 
Quantity 

1 Narrow Electrode s20 NEF 
0.063-inch 

aluminum sheet 
Water Jet by Machine Shop 

McMaster 

Carr/89015K38 
1 

2 
Narrow Electrode s20 

WEF 

0.063-inch 

aluminum sheet 
Water Jet by Machine Shop 

McMaster 

Carr/89015K38 
1 

3 PVC s20 
0.25-inch polyvinyl 

chloride (PVC) 
Water Jet by Machine Shop 

McMaster 

Carr/8747K126 
2 

4 Wide Electrode s20 NEF 
0.063-inch 

aluminum sheet 
Water Jet by Machine Shop 

McMaster 

Carr/89015K38 
1 

5 Wide Electrode s20 WEF 
0.063-inch 

aluminum sheet 
Water Jet by Machine Shop 

McMaster 

Carr/89015K38 
1 

6 Electrical Brush 

Crimped brass 

bristles fastened to 

wire 

Manufactured by Hand Gordon Brush/44775 8 

7 Turbine Cap NEF 0.25-inch acrylic 
Laser Cut by Engineering 

Technician 

McMaster 

Carr/8560K355 
1 

8 Turbine Cap WEF 0.25-inch acrylic 
Laser Cut by Engineering 

Technician 

McMaster 

Carr/8560K355 
1 

9 
Slip Ring Connection Plate 

NEF 
0.25-inch acrylic 

Laser Cut by Engineering 

Technician 

McMaster 

Carr/8560K355 
1 

10 
Slip Ring Connection Plate 

WEF 
0.25-inch acrylic 

Laser Cut by Engineering 

Technician 

McMaster 

Carr/8560K355 
1 

11 Stand Cap NEF 
0.25-inch 

polycarbonate 
Water Jet by Machine Shop McMaster Carr/8574K43 1 

12 Stand Cap WEF 
0.25-inch 

polycarbonate 
Water Jet by Machine Shop McMaster Carr/8574K43 1 

13 Test Stand Bar stainless steel 12-inch threaded rod 
Lowe's Home 

Improvement 
4 

14 Spacing Washer 0.25-inch acrylic 
Laser Cut by Engineering 

Technician 

McMaster 

Carr/8560K355 
12 

15 Axial Pipe 
Schedule 40 

aluminum size 3/8 

Machined to spec. by 

Machine Shop 

McMaster 

Carr/5038K172 
2 

16 Pipe Bushing Plastic 
Machined to spec. by 

Machine Shop 
Scavenged Scrap 2 

17 Ball Bearing stainless steel 
Trade No. R10, for 5/8" Shaft 

Dia., 1-3/8" OD 

McMaster 

Carr/60355K506 
2 

18 Slip Ring with Flange Plastic/wiring 
22mm diameter, 6 wires, max 

240V @ 2A 
Adafruit/736 2 

19 Gear Motor Metal 47:1 Gear Ratio Pololu/3229 1 

20 Motor Bracket Aluminum Sheet Purchased with Gear Motor 
McMaster 

Carr/8560K355 
1 

21 Motor Stand Brace Arm 0.25-inch acrylic 
Laser Cut by Engineering 

Technician 

McMaster 

Carr/8560K355 
2 

22 Motor Stand Base 0.25-inch acrylic 
Laser Cut by Engineering 

Technician 

McMaster 

Carr/8560K355 
1 

23 Motor Hub Aluminum 
Contains tapped hole for set 

screw 
Pololu/2676 2 

24 Pulley Guard - Motor 
0.125-inch 

laminated wood 

Laser Cut by Engineering 

Technician 
Scavenged Scrap 2 

Continued on Next Page 
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Table 5: Continued 

Label Part Name Material Description 
Material Source/Part 

Number 
Quantity 

25 Pulley Surface - Rotor 0.25-inch acrylic 
Laser Cut by Engineering 

Technician 

McMaster 

Carr/8560K355 
2 

26 Pulley Guard - Rotor 0.25-inch acrylic 
Laser Cut by Engineering 

Technician 

McMaster 

Carr/8560K355 
2 

27 Drive Belt Rubber Dayco ELA V-Rubber Belt Dayco/269599 E030195 1 

28 Standard Bolt A stainless steel 
0.25-inch dia., 1.25-inch 

length 

Lowe's Home 

Improvement 
6 

29 Internal Connecting Rod stainless steel 
5.5-mm dia. threaded rod, 4-

inch length 

Lowe's Home 

Improvement 
3 

30 Standard Nut A stainless steel Fit 0.25-inch bolts 
Lowe's Home 

Improvement 
22 

31 Metric Nut A stainless steel Fit 5.5-mm threaded rods 
Lowe's Home 

Improvement 
18 

32 Motor Stand Bolt stainless steel Purchased with Gear Motor 
Lowe's Home 

Improvement 
4 

33 Motor Stand Nut stainless steel Purchased with Gear Motor 
Lowe's Home 

Improvement 
4 

34 Standard Bolt B stainless steel 
0.25-inch dia., 0.75-inch 

length 

Lowe's Home 

Improvement 
4 
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Appendix C: Additional Views of Model 3.2 

 

Figure 15: Isometric view of model 3.2, in which the Wide Electrode Fixed (WEF) side is in the foreground. Varying colors 

and transparencies are the result of SolidWorks materials properties fixed for each component. 
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Figure 16: Section of isometric view of model 3.2. Some details of the interior components, such as the pipes and slip 

rings, are visible. 
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Appendix D: Wind Energy Approximations 

 The energy of the wind which impinges upon the wind turbine can be predicted using 

complicated computer modeling or empirically determined. For purposes of this report, a much 

simpler approximation is utilized to obtain an estimate, beginning with the definition of kinetic 

energy: 

  Kinetic Energy = (1/2) * Mass * Speed^2 4 

 This equation is applied to a rectangular prism control volume, containing only air, which 

has specific dimensions:  

  Length of air = Wind speed * Time 5 

  Turbine swept area = Turbine height * Turbine diameter 6 

 The mass of this air is: 

  Mass = Air density * Length of air * Turbine swept area 7 

 After substituting these equations, for a wind with a given average speed, the kinetic 

energy it contains may be approximated by Equation 8: 

  Kinetic Energy = (1/2) * (Air density * Turbine swept area * time) * Wind speed^3 8 
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Appendix E: Mass Properties of Model 3.2 

Table 6: Results of mass properties calculation for the rotating mass in SolidWorks CAD model of turbine model 3.2. In 

this model, the X axis corresponds to the axis of rotation of the rotor. The mass of all components was estimated by the 

CAD program upon setting the appropriate material for each component of the assembly. 

Mass properties of selected components 

     Coordinate system: -- default -- 

    
The center of mass and the moments of inertia are output in the coordinate system of Large 

Simple Model 03.21 

Mass = 3.16 pounds   

    
Volume = 59.53 cubic inches  

    
Surface area = 626.36 square inches 

    
Center of mass: ( inches )  

 
X = 6.38   

 
Y = -18.04   

 
Z = 5.69   

    
Principal axes of inertia and principal moments of inertia: ( pounds * square inches ) 

Taken at the center of mass.  

 
 Ix = ( 0.00,  0.00,  1.00)    Px = 18.86 

  Iy = ( 0.48, -0.88,  0.00)    Py = 21.36 

  Iz = ( 0.88,  0.48,  0.00)    Pz = 21.39 

    
Moments of inertia: ( pounds * square inches ) 

Taken at the center of mass and aligned with the output coordinate system. 

 Lxx = 21.38 Lxy = -0.01 Lxz = 0.00 

 Lyx = -0.01 Lyy = 21.37 Lyz = 0.00 

 Lzx = 0.00 Lzy = 0.00 Lzz = 18.86 

    
Moments of inertia: ( pounds * square inches ) 

Taken at the output coordinate system. 

 Ixx = 1152.32 Ixy = -363.71 Ixz = 114.71 

 Iyx = -363.71 Iyy = 252.29 Iyz = -324.43 

 Izx = 114.71 Izy = -324.43 Izz = 1176.07 
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