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THE DISTRIBUTION OF THE TWO
SAMPLE SMIRNOV TEST

BY
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1. Introduction. Let x{¥,. .., x® and x{, . . ., x,‘g’ be the two random samples

from populations having continuous cumulative distribution functions Fi(x) and Fa(x)
respectively, and let Fia(x), Fam(x) denote the corresponding empirical distributions.
Further without loss of generality let us suppose that » < m. The Smirnov statistic for
testing the hypothesis Fi(x) = Fa(x) is

Dnm = SI;P|F1n(x) — Fom(x)].

The exact distribution of Drn for equal-sized samples, i.e. n = m, has been found ex-
plicitly by Gnedenko-Korolyuk [5] and independently by Drion [4], and the table for
1 < n = m X 40 has been given by Massey [7]. Korolyuk [6] and Blackman[1],[2] studied
for the case where one sample size is an integer multiple of the other and Depaix [3] for the
general case. However in the case of unequal-sized samples the expressions for the distri-
bution are extremely complicated and poorly suited for computation. In practice, the small
sample distribution of Drm may be computed numerically with the aid of a high speed
digital comiputer based on the recursion relation given by Massey [8]. He has also given a
small table for 1 < n < m < 10 and certain other selected values of #, m < 20. The prob-
lem for the distribution of Dy has been studied by many other authors. For the further
investigations of this problem, for example, refer to the references in Steck {9].

The purpose of this paper is to give an approximate formula of the distribution of
Dy for two samples with slightly different sizes. Though we make an experimental de-
sign for equal-sized samples, yet obtaining the samples with missing values we must deal
with two samples having slightly different sizes in practice. In this paper, at first we shall
find the exact distribution of Dum in some restricted range and at the next step the ap-
proximate formula which is used in general will be constructed with a linear combination
of two equal-sized sample distributions.

2. Exact Distribution of Du» in some Restricted Range. To find the distribution of
Dam we make use of the graphical representation as mentioned in Gnedenko-Korolyuk
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[5] (or in Wilks [fO], I;.HSS—P.459). Let the order statistics of two samples combined be
za) < z@) < . . . < Z(¥m), and let {; be a random variable defined as follows:
&= { 1/n if z@"’ﬁelongs to the 1st sample
—1/m if z¢) belongs to the 2nd sample
We put st =014 . . . + 8t (so=0) and consider the: graph of the points (7, s,
t=0,1,...,n+ m, in the (2, s)-plane; that is, connecting the sequence of points by
line segments, we have a path which begins at O(0, 0) and ends at P(# + m, 0). Then all
possible sequences of x’s and x®’s among the order statistics zq) <z < ... <
Zn+my Will be represented by all possible paths joining the diagonal corners of a paral-

(t=12,...,n4+m

lelogram’s lattice of sides » and m. The number of all possible paths from O to Pis (" _: m)

and under the null hypothes1s F1(x) Fy(x) all of these paths are equally probable.
The problem of finding the value of P(Dnm =1- 7 — ’%) isequivalent to determining

the number of paths which do not lie entirely between the lines s == 4 (1 - % — %)

and dividing this number by (n -: m) . We here denote these lines by L}; and L;, respec-

tively.
Now we further consider the following two lines:

1% line through two points (n —i1— %) and (n + 4,1 — #)
17+ line through two points (m — i, =14 i) and (m +i -1+ i)

and let P denote the (j + 1)th lattice-point from the left-hand side on the line Zj, s
similarly, let Pj; be defined to /77 ;. There are i + 1 lattice-points on theline /§ and these
are represented by {P#, P, - . ., P}, Furthermore we introduce the following
notations for the set of lattice-points. -
A(l): set of lattice-points lying above or just on a line 7,
B(l): set of lattice-points lying below or just on a line /
Si:  setof j lattice-points counted from the right-hand side on /%, i.e. {P} FAPRPTR
Pfiy Pg}
Sgj: set of J lattice-points counted from the left-hand side on /7, i.e. Pg, Py 1s
s Pi iy, ;—1}

. Let M denote the largest integer of k satisfying 1 < — < k ']Ic' then we see that
il ife=0,1,2,..., M,
a
ALg) = 409 = 0 Sten
Q.1 ; .
B(Lgy) = BUp) = U Sgen
il ife=0,1,2,... Mandbsuchthatl <a+b <M+ 1,
.2 A(Lab) A(La,+b—l 0) us, +b at1
B(Lz) = BLgip1.0 U Sgibatt
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Table 1 shows the values of Mfor1 < rn < 20and n < m < n + 6. Tt should be noted
that for equal-sized samples we have M = n = m especially.

From (2.1) and (2.2), it may be shown that fora =0,1,2,. . ., M and bsuchas1 <
a+bs<M+1,
2.3) A(LE) U B(Lg) = {AU5 1) U BU 7y} U {S3ip 041 U Saib.art)

where the sets 4 (I, ) UB(I7y5-1) a0d Sfyp, o1 U Sgipp 4 2re disjoint. Therefore when
we wish to find the number of paths which do not lie entirely between the lines L}, and
L, it is sufficient to discuss the number of paths in the following two cases: one is to
pass through at least one point in 4 (! ?) U B(/7), and the other is to lie between the two
lines 1}, /7 and pass through at least one point in Sg;- UsSg; We here denote these num-
ber of paths by Qum(i) and Ram(, f), respectively. Namely the number of paths which
do not lie entirely between the lines L}, and Lg is represented by Qum(a + b — 1)
+ Rum (a + b, a + 1). Therefore we have, for a=0, 1, 2, . . ., M and b such as
1Sa+b=M+1,

2.4). P(D,,m >1-4_25

a_ _’;)= [Qnn(@+ b — 1)+ Run(a + b, a + 1)]/(" ";l’”)

where it should be noticed that Qnm(i) + Ram( + 1, i + 2) = Qum( + 1):

We next consider to find the values of Qum(i) and Rum(i,j). Fortunately, for the com-
putation of Qnm(i) we may apply the similar way used in Gnedenko-Korolyuk [5]. The
result is
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Table 1. Values of M which are defined to the largest integer of k satisfying1 < % < kk—+1 for
1=n=<20amdn=m=n+6

n m= n n+1 n+2 n+3 n+4 n+5 n+ 6

1 . 1

2 2 1

3 3 2 1

4 4 3 1 1

5 5 4 2 1 1

6 6 5 2 i 1 1

7 7 6 3 2 1 1 1

8 8 7 3 2 1 1 1

9 9 8 4 2 2 1 1
10 . 10 9 4 3 2 1 1
11 11 10 5 3 2 2 1
12 12 11 5 3 2 2 1
13 13 12 6 4 3 2 2
14 14 13 6 4 3 2 2
15 15 14 7 4 3 2 2
16 16 15 7 5 3 3 2
17 17 16 8 5 4 3 2
18 18 17 8 5 4 3 2
19 19 18 9 6 4 3 3
20 20 19 9 6 4 3 3

. P n+m q n+m

@3 Qnm(?) = 2351 (an + amt Qa — 1)1') - ,,E ((B + Dn + pm — 2,9,-)
_ er ( n+m )
=i\vn+ @ 4 Dm — i)

where p = [’%} qg= [’-1#_27} r= [’ﬁ] [x] denotes the Iargest

integer less than or equal to x. On the the other hand, the computation of Rum (Z,7) is very

complicated in general. Hence we consider to find the values of Rum (i, ) in the special

case: that is, 7 and j are subjected to the conditionthatj < i + 1 < 1 4 min (M, [” ; 1}}

orjgi:l-Fmin(M,l:n;

each other’s point in Si"]'- and SZ-—]-, Rum(i, j) may be easily found by using only the following.
result: Let U(a, b) be the number of paths from O to A4 in Fig. 2. Then we have U(a, b)) =
(*50) = (22 5) where v0, = 1and U @, By =5 + 1.

By using this result, for example, in the case of Fig. '1, that is,whenn=5m="7a=2
and b = 1, the number of paths which lies between the two linens / 1,15 and passes through:
the point Py, is given by the product of U(1, 2) and U(2, 5).

1}) Since under these conditions there is no path joining

Thus under the conditions that j<i+1<1 +‘mjn(M, [n _2— 1

:I)orjg i =1+ min
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2
26  Run, j)=2;>;:; UEm—i=2+8UG—8 n—1—8
f—l[(m—'—i-—-2+ 25) __'(m—j—2+2§)][(n+i—1 —’2&)

(M , [n = 1]), Rum (i, /) may be founc_'l'as follows:

=% § £—2 i—¢&
_(n+ir1—2§):|
i—&—2 I

Norte: It should be noticed that if we put # = m, a = i, b = 0, then (2.4) becomes as
follows: ) o ,
@ , P(Dnn >1-— i) =L [0nal — 1) + RuaGi, i + 1)

i A:’<=-(i—21,§g,m(i)*

\n/

Aahd'(2.5i)bvecomcs>_' : L -
@8 Onali) =2 3 (m--ff;-‘-n‘i) 2n

M=

2z =2 £ s+ tn—251
(2n2—'l—'i) - (3::2Z éi) + (4n'2+n 3i) - (Sn 2—n4i)+ e ]
n

dl
g (T Rl M B A

Il

_n'—,l-4':(n—z:))+"r,'°‘] o

" (— 1)
25 (¢ 1)+1(n+5(n—i)’_ '

where r = |: n }
: n—i ! -
Hence we have =the}1foﬂqwing‘1"¢sult: S ‘
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2n

n+€(n-——i))' i=012,...,n

1 r
e Pmzi-L)= (2,1) L, o
n
This result coincides with that of Gnedenko-Korolyuk [5] and Drion [4] for equalsized
samples.
From (2.4), (2.5) and (2.6), we may obtain immediately the following theorem.

THEOREM. Let M be the largest integer of k satisfying 1 £ — m k-llc_ 1 Then, for

@=0,1,2,.. ., min (M, [IITI:I) and b suchthat 0 < a+ b <1+ min (M,[n——-; ID,

we have
_a_b\_ nt+m\, & [[m—a—b—2+2
@10 P(D'"";I n m)_z[(a+b_1)+ {( £ )
_(m“‘a"b—2+2§}.{(n+a+b—1—2§)
5#2 - a+b—&

_ (n+d+b—1—2§)H/(n+m)
at+b—&—-2 n
and in particular when a =iandb =0, fori =0,1,2, . . .,min(M, [n — lil),

S oy |

1 n

(n+Dn+2). (n+r)
(2n—1+1)(2n—1+2) (2n—l+r)

P(Dnn >1— —')
R n

and whena=0andb =1, fori=0,1,2, . . .,1 + min (M,[”-—Z IJ)

@ oz =) =T ()L
_@n—itr+2@n—i+r+3).. Qu—i+2r+1)
+ D@r+2). (n+r) *

P(Dmmz 1 —ﬂ) +2[(”+f )
m i
‘ (n+i— 1)]/(n+m)
T\ i-2 n. J
3. Approximation to the Distribution of D»n. We here consider the approximate for-

mula which is computed by using equal-sized dlstnbutlon, and that works well when r
and m are slightly different.

where r=m—nz=0.

Now, P(Dnm =1— 7 — ;Ii—) has the following relation:

P(szl—‘ib)=P{ ,.mg(l—l——”-)—b(l——l—)}<. ..
n n m n m
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<P{D,.,,.g(1—l——"— —2 —;——)}

<P{D,.m 1—%—_ (.___]
<P(D,mg1_%__'%)
sl 2-He (1)
e

=P(Dnmgl—‘ib).
m

Hence, when we construct the approximation of P(Dnm =1-— —:— — TZ-) based on linear

interpolation, it follows that

(3.2) P(D"'”-Z—l_%_i)-——.—'aLP(Dﬂmgl—a—l—b)

m a+b+1 n
b _a+b
o P(Dmgl m).

Thus, from (2.11), (2.12) and (3.2), we can obtain the approximate formula which is com-

puted by using the values of P(D"'gl—‘%b)andP(Dmmgl—a+£’"_l)_

However, since it is rather complicated, we here propose experimentally the following
approximate formula:

__g._.é_-— ar+l m r >
63 PPmz1-5 - s S ) P(D,...=l
_a+b + br 2m—a—b+l)’.
n) (a+b)r+1( m
P(Dmmgl_‘Lb—l),
m

where r = m — n. When there are multiple sets of (a, b) which give the same valueto 1 —

% — %, let P (Dnm =1~ i;— — %)be assigned to the average of the values which are

calculated from each set of (g, b).

To examine the adequateness of this approximation, and to comparison with the other
approximation which results in one sample case (i.e. by putting / = nm/(n -+ m), it is com-
puted from the distribution of Kolmogorov statistic di = maxlF (x) — Fi(x)|), numerical
examination was made for several values of » and m. The results are shown in Table 2,
In many numerical examples, it appears that when r = m — n is small, i.e. less than 5
or so, our approximation is reasonable and better than the approximation which results
in one sample case.
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Table 2. Comparison of the approximate values and the exact distribution of Dy
Examplel. n=8,m=9,l=nm/(n + m) = 423

h Exact values of Approximation
P(Dum = hI72) by formula (3.3) by P(d, = h[72)

55 .00831 00793 .00705
54 .01119 01119 .00786
48 .02024 02237 05665
47 .03357 .03356 .06469
46 04689 04475 07287
45 .05594 05594 .08091

Example2. n=10,m = 12,] = 545

A . Exact values of Approximation
P(Dum = h/60) by formula (3.3) by P(d; = h/60)

40 .00673 00667 .01284
39 01054 .01083 01698
38 01531 101499 02111
37 .01981 : .01915 02524
36 02262 02331 102937
35 102769 02745 04492
34 03698 03868 06048
33 ) 04889 .04992 07604
32 06175 06115 09159

Example3. n =12, m =15,1 = 6.66

A Exact values of Approximation
P(Dum = h/60) by formula (3.3) by P(d, = h/60)

36 .00955 .00920 01537
35 01308 01216 01825
34 .01703 .01873 02316
33 .02187 02312 .03293
32 .02967 03117 04276
31 .03980 .03858 05260
30 .05072 .04600 06237

Example 4. n =16, m = 20,1 = 8.88

h Exact values of Approximation
P(Dnm = h/80) by formula (3.3) by P(d; = h/80)

41 01210 01143 01737
40 01542 01672 .02132
39 01968 02419 02523
38 02511 02786 02918
37 .03136 .03153 .03309
36 .03931 04504 03704
35 04889 .05082 04975

34 05974 06972 06973
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Example 5. n=10,m =15,l =6

A Exact values of Approximation
P(Dum = h/30) by formula (3.3) by P(d; = h{30)

20 00551 00621 .00377
19 .01003 01055 01614
18 01813 .01893 .02850
17 .02958 103523 04086
16 .04983 .06025 05322
15 07740 .07898 {06559

Example 6. n=9,m =15, 1 = 5.62

A Exact values of Approximation
P(Dum = h/45) by formula (3.3) by P(d; = h/45)

30 00728 .00824 .00996 .

29 .01038 : .01250 .01636

28 01485 .02664 02273

27 102231 .03118 .02909

26 02973 04127 04598

25 .04180 .05029 06271

Acknowledgment The author would like to express his sincere appreciation to Prof.
Y. Tumura for his guidance and his effective advice given to the author through this work.

1
(2]
(3]
(4]
[B)
(6]
N
{81
9]

(10

REFERENCES

Blackman, J. (1956): An extension of the Kolmogorov distribution. Ann. Math. Statist., 27,
513-520. .

Biackman, J. (1958): Correction to “An extension of the Kolmogorov distribution.” Ann.
Math. Statist., 29, 318-324.

Depaix, M. (1962): Distributions de déviations maximales bilatérales entre deux échantillons
indépendents de méme loi continue. Comptes Rendues Acad. Sci. Paris, 255, 2900-2902,

Drion, E. F. (1952): Some distribution-free tests for the difference between two empirical
cumulative distribution functions. Ann. Math. Statist., 23, 563-574.

Gnedenko, B. V. and Korolyuk, V. S. (1951): On the maximum discrepancy between two
empirical distributions. (in Russian). Doklady Akad. Nauk SSSR, 80, 525-528.

Korolyuk. V. S. (1955): On the deviation of empirical distributions for the case of two in-
dependent samples. (in Russian). Izv. 4kad. Nauk. SSSR Ser. Mat., 19, 81-96.

Massey, F. J., JR. (1951): The distribution of the maximum deviation between two sample
cumulative step functions. Ann. Math. Statist., 22, 125-128.

Massey, F. J., JR. (1952): Distribution table for the deviation between two sample cumula-
tives. Ann. Math. Statist., 23, 435-441.

Steck, G. P. (1969): The smirnov two sample tests as rank tests. Ann. Math. Statist., 40, 1449-
1466.

Wilks, S. S. (1962): Mathematical statistics. New York: John Wily and Sons.



