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1. INTRODUCTION. The problem of »n rankings of m objects is usually des-
cribed that m objects are ranked from I to m for some characteristic by each
of judges and an experimenter wishes to test the difference among the ranks
assigned to the m objects. The Friedman's test is well known as a test of
significant for such a problem. The various problems of n rankings have been
studied by many investigators. Refer to the last references for detail.

The principal results of the theory of rankings have been outlined in
Kendall's book (1948), and further mathematical details can be found in book
by Puri and Sen (1971). .

In the test based on the method of n rankings, the null hypothesis is
usually given that the ranks are assigned at random by each of judges, that
is, all rankings are equally frequent in the population of rankings of 1 to m.
Under this hypothesis, it becomes easy to find the distributions of tést_ sta-
tistics. However, to find the distributions in non-null case is usually very
intractable problem. Elteren and Noether (1959), and Sen (1967) considered
the non-null distribution of Friedman's test statistic for the sequence of
translation-type alternative hypothesis K, (n denotes the sample size) and
studied the asymptotic efficiency of this test. For large » the hypothesis
X, is near to null hypothesis H,, so that this type of limit process provides
only a way of studing the effect of small translation on the test. It seems
that the distribution theory in the general non-null case is the major out-
standing problem of ranking theory., On the other hand, we are frequently
confronted with the case in which the hypothesis of random ranking is umsuit-
able for the null hypothesis. For instance, when we wish to test for equal-
ity of mean ranks between two sets of rankings of m objects, we can take no
longer the assumption of random ranking as the null hypothesis. In which
case, we should refer to test for testing the null hypothesis that the two
samples are taken from a population with some probability distribution.
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. The purpose of the present paper is to study the distribution of
quadratic form in sample from a general population of rankings. At first we
. shall study the property of dispersion matrix I in the ranking population. As
shown in the lemmas of section 2, I has an interesting structure in the rank-
- ing population. Based on the property, we shall next cansider in section 3 to
find the distribution of quadratic form in sample. We can come to the conclu-
sion that, under some condition related to the dispersion matrix I, the quad-
ratic form in sample from general population of rankings is asymptotically
distributed according to chi-square distribution. Furthermore the effect of
small sample will be also studied by simulation. At last two sample test based
on the method. of » rankings will be considered in section 4. It seems that
little wark has been done in this problem, aside from Linhart (1960). The
approximate test described in Linhart (1960) is very rough and there is no
reason to conclude its adequacy. We shall induce the test statistic from the
corollary 2 in section 3. However, when the parameters contained in the sta-
tistic are unknown, we must use the estimates of the parameters. In which
case, it is very complicated problem to find the distribution of the statis-
tic. Hence we will attempt to study the approximate distribution by simula-
tion. '

2. SOME PROPERTYS OF THE DISPERSION MATRIX IN THE RANKING POPULATION. Let
us consider a sanple space ® whose sample points consist of the set of all
m! permutatlors “of the first m natural nubers. If we denote the permutation
by m-dimensional vector Ye = (Pigs- cesPpg)ts £ = 1,.. .,m!, where 2 rig= m(m.
+1)/2, then the sample space is denoted by f = {Kil""’K’m'} Let Ris a
random vector which -is defined at every sample point in & and let the pro-
bablllty is assigned to each sample point in & as follows; P{} = KZ«E} = Pgs
£ = 1,...,m!, where O_spgsl and ) pg= 1. For instance, if all permutations
are equally probable, then it beZE:omes p.= 1/m! for all £ = 1,...,m!. We here
suppoée that p; may be assigned arbitrary real mumber as far as the condition '
of probab111ty is satisfied. Suppose random vector R has the mean vector

K= (Miseeesly) ', where Zut m(m+1)/2, and dlspersmn matrix I = (o;5), i,

J=1,...,m which are deflned as follows;
. m!

v = E(R;) = Z PiEPEs
£=1 m!

0ij = cov(Ry,R;) = E_Zl (T gug) (20

In this paper, 5uch a ranking population will be conveniently referred to as
n(] 1> ).

2.1)
(2.1) oy
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LEMMA 1. In the ranking population w(Q,%), the following properties hold.

m
2.2) .Zl"ij =0, for i =1,...,m

= m moo, o,
2. = .= - . = L —u.
2.3 try q;.Z.1°% %ZjaﬂfJ ;1(1 we ),

where trl denotes the trace of the matrix I.

If B has equi-variances and equi-covariances, then from above lemma 1, we
can see that o, = tri/m and 95 = [-%trz]/ [m(m-1)/2].  Hence the dispersion
matrix is denoted as follows;

try
(2.9 =t (I -Lm),

where I is a mym identity matrix and £ denotes a mym matrix with all compo-
nents 7. Thus, we can obtain the following lemma.

LEMA 2. (1) 1fF ys has equi-variances and equi-covariances, then the dis-
persion matrix is denoted as (2.4).
(2) In general, the dispersion matrix of ﬁ is denoted by using H = (hij )

which ig mym symmetric matrix with properties ) hij =0 and Z hy; =0, as
follows; v z

=t r_ 1
(2.5) I = 1 (I 7E) + H.

s s . . 2
It should be noted that I-ﬁlE is idempotent matrix, that is, (I - %E )
=7I- T;L,—E . We mext consider to find the g-inverse matrix of £. The following
lemma gives a way to find a g-inverse of I.

LEMMA 3. For some constant P(Z1),a necessary and sufficient condition for

- = M1 L
(2.6) 2T = oEn (1 mE’)
to be g-inverse matrix of I, ie that the following relation holds
2.7 5?2 =-ELL

Outline of the Proof. At first let us show that under the given condition
(2.7), £ defined in (2.6) is a g-inverse of I. Substituting (2.5) and (2.6)
into (2.7), we obtain

(2.8) I -pE) + HY = ol(I —E) + H)
and further‘ from lemma 2 we can obtain
2.9 B(I -%B) = H.

Thus, using these formulas we can derive the ralation zr = after some calcu-
lations for the expression cbrained by substituting (2.5) and (2.6) into I z.
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Next we show that if r~defined in (2.6) is a g-inverse of £, then the
condition (2.7) is satisfied. Substituting (2.5) and (2.6) into 7% = I,
we get (2.8). Multiply both members of (2.8) by [trz/(m-l)]z, we can imme-
diately obtain that £° = [(Ptr3)/(m-1)] E. (Q.E.D.)

The reason that the parameter P is introduced in lemma 3, is the follow-
ing: If ep=1, then from (2.8) we get E=0 (zero matrix), that is, in this
case I has equi-variances and equi-covariances. Inversely if £ has equi-
variances and equi-covariances, then for p = 1 the condition (2.7) is satis-
fied. Therefore, when p =1 the condition (2.7) holds if and only if ¥ has
equi-variances and equi-covariances. Thus, by introducing the parameter o ,
we made that the lemma 3 is held for arbitrary dispersion matrix I. »

As practical problem, one may ask whether it is always possible to find
the value of ¢ which satisfy the condition (2.7) as = is given. To amswer
this question, we may propose the least squares method as a way to determine
°. Putting D = (d,.) = P2 - br%, where b = (m-1)/trz, d 5 = Po _bX%g £
and we minimize the sum of squares @ = ZZd 2 with respect to p. 'I'he Yesult
is the following; v
(2.10) P = [m1)/](a" uiz)]zg(%j 5% )/zzc 15

- To evaluate the relative error of approx1mat10n, we calculate the follow-
ing value;
(2.11) e =11d%; /6] o, )
1d g

If the condition (2.7) exactly holds, then € becomes zero, Even if the
value of € is not equal to zero (but it is too small), by using the value of
¢ showed in (2.10) we may approximately use the lemma 3. To study the ade-
quateness of this procedure an experiment was made to the case of m= 4.
When m = 4 the ranking population consist of the set of all 4/ =24 permuta-
tions of the first four nutural numbers; I, 2, 3 and 4. We assumed (1, 2, 3,
4)is criterion ranking and other rankings were aranged by the magnitude of the
rank correlation to the criterion ranking. The probabilities are asigned so
as to decrease as the magnitudes of rank correlation are decrease. The pro-
cedure was made in computer by using random numbers, aside from example 1 and
2. The mean vector and dispersion natrix of each ranking population were also
calculated. From table 1, we know that in all ‘examples, the condition (2.7)
is not satisfied exactly, however relative errors € are too small. Further
other 150 experiments were made, and the relative errors were about 2%~ 5%.
Thus in concluding, it is deemed appropriate to emphasize that for arbitrary
dispersion matrix I it is always possible to find the good approximate value
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of p which satisfy the condition (2.7). Also, it should be noted that the
value of p is near to 1 as the dispersion matrix is near to equi-variances and
equi-covariances.

Table 1. Examples of ranking population

Probability
Rankings
Example 1 Example 2 Example 3 Example4  Example5 Example 6

(1,2,3,4) 0.0740 0.200 0.276173 0.221826 0.31178537  0.29546168

(1,2,4,3) .0694 .100 .128881 .121649 .26875174 .27781859
1,3,2,4) .0651 .100 .096097 .104969 .06435754 .21300643
(2,1,3,4) .0633 .100 .056214 .089511 .06403858 .08858875
1,3,4,2) .0595 .040 .051208 .080418 .05449387 .03733666
(1,4,2,3) .0561 .040 .043061  .068404 .05233414 .02027781
2,1,4,3) .0526 .040 .042050 .067077 04673335 .01664855
2,3,1,4 .0494 .040 .039098 .046441 .04545423 01281462
(3,1,2,4) .0467 .040 .034713 .037999 .03260917 .00864382
(1,4,3,2) .0441 .025 .033962 .037850 .02326739 .00831622
(2,3,4,1) L0425 .025 .028962 .033643 .00985218 . ,00529284
(2,4,1,3) 0412 .025 .028732 .032221 .00846463 .00451156
(3,1,4,2) .0391 .025 .022799 .016370 .00828950 .00436694
3,2,1,4) .0374 .025 .019469 .013810 .00342480 .00218790
(4,1,2,3) .0358 .025 .017634 .007579 .00181609 .00140415
2,4,3,1) .0336 .020 .016382 .004303 .00143692 .00101739
(3,2,4,1) .0321 .020 .015090 .003465 .00082206 .00088867
(3,4,1,2) .0304 .020 .014102 .003150 .00076252 .00058187
(4,1,3,2) .0275 .020 .011825 .003044 .00065603 .00050839
(4,2,1,3) .0246 .020 .009804 .002390 .00029964 .00025544
(3,4,2,1) .0221 .013 .007121 .001993 .00023761 .00007120
4,2,3,1) .0198 .013 .004169 .001622 .00006436 .00000040
4,3,1,2) .0179 .013 .001615 .000374 .00004762 .00000001

(4,3,2,1) .0158 011 .000826 .000079 .00000055 .00000000
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Mean vector

g =

Example

Example

Example

Example

Example

Example

H1
H2
H3
Wy

Example 1 Example 2

2.1224
2.4402
2.6518
2.7856

1.842
2.265
2.735
3.158

1.005196  1.013529

R. KANNO

Example 3 Example 4

1.575662
2.319296
2.863894
3.241146

1.018034

0.002415 0.006804 0.007860

1.126618
-0.418880
-0.371480
-0.336257

1.031036
-0.269130
-0.343870
-0.418036

0.746121
-0.234965
-0.252376
-0.258780

0.492114
-0.282008
-0.158952
-0.051154

0.309834
-0.174196
-0.156424

0.020787

0.186837
-0.142003
-0.046289

0.001455

1.471454
2.340389
2.905021
3.283134

1.157830
0.030628

DISPERSION MATRIX I

.231423
-0.
-0.

412222
400321

.980775
-0.
-0.

367775
343870

.874549
-0.
-0.

338930
300654

.963139
-0.
-0.

372641
308489

.637085
-0.
-0.

276965
185923

.480260
-0.
-0.

280733
057522

1.219156
-0.435454

0.980775
-0.269130

0.921214
-0.329907

0.927986
-0.396392

0.759547
-0.326157

0.663768
-0.336745

example 5

1.276924
2.193069
3.120680
3.409325

1.252980
0.040270

1.172032

1.031036 |

0.889341 |

0.756036

0.491294 |

0.392812

Example 6

1.168859
2.217842
3.058245
3.555052

1.492280
0.064560

-
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3. SAMPLING DISTRIBUTIONS. Suppose R = (R1,...,R, )" is a m-dimensional
random vector with mean vector j and dispersion matrix g, and let x,,. sesky,
is a sample of size n from a m-variate ranking population whose distribution
has mean vector p and-dispersion matrix I. By using multivariate central °
limit theorem (Wald and Wolfowitz 1944}, (See Puri and Sen (1971), P.25), we’
have the following theorem. The proof may be constituted by the similar way
in Puri and Sen's book (1971).

THEOREM 1. If Re= (rlg,...,rmg) ', 8= 1,...,m ig a sample from the rank-
ing distribution with mean vector y and dispersion matrix ¥ , then sample mean
vector 5 = (Rl,.. ,R )}, where R =—Z L has as the asymptomc distribu-
tion the m-variate ( degenerate) normaZ distribution N( kg,-—z)

We here study the distribution of quadratic form related to the sample
mean vector % under the assumption f is distributed according to the (degener-
ate) normal distribution N(j,=Z). At the lemma 3 in the section 2, we
showed that when the condition (2.7) is satisfied, I denoted by (2.6) is a
g-inverse of . Therefore, when we put g = E-)d and @ = nz”, it is easily
seen that

(CYAF 1s distributed as N( 0_, )
®) Q( ):)15 idempotent matnx
) tr[Q(—E)] (m-1)/p,

that is, X3 = gox is distributed as chi-square distribution with (m-1)/p
degrees of freedom. Thus, we can obtain the following theorem.

THEOREM 2. Suppose the sample mean vector R = (Rl,...,R ) has the m--
variate (degenerate) normal distribution N( )d,—-z) Then a necessary and suf-
ficient condition for the quadratic form: X§ = n(f -y)'E(R - p), where

= [(m-1)/(ptrZ)] (I - %E’ ), to be distributed according to chisquare dis-
tribution with (m-1)/p degrees of freedom, is that there exists the values of
P(21) which satisfy the following relation: - = [otrE / (m-1)]I.

NOTE. By using lemma 1, xiis described as follows;

(3.1) X3 =n lw 'g(R u)

Here it should be noted that when I is equi-variances and equi-covarian
covariances, the condition (2.7) holds for p = I, and xi is distributed as.chi-
square distribution with (m-1) degrees of freedom, Further if we assume the
random ranking, that is, P(Z = ;ci) =1/ml, €= 1,...,ml, B = s 3 ,...,”‘*1 )»
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and I = [m(m+1)/121(1 -%E'), then xi becomes

m+1 2
2 )-

This is the same statistic that of Friedman's test, Hence theorem 2 is the

2 _ L
3.2) X5 —[12n/m(ml-1)]iz_1(1?i -

extension of the Friedman's xi. and it gives the distribution for the non-null
case in the Friedman's test.

From the theorem 2, we can obtain the following corollaries.

COROLLARY 1. Under the same condition in theorem 2,

(3.3 xZen Ui Ik, -T2

: pY(e2 —u,2) 15 2
igs distributed according‘l'to a non-central chi-square distribution with (m-1)/p
d.f. and the non-centrality parameter:

m-1 m mt1

(3.4 n [W]iZ{ui -—5?
If we assume the random i"anking, that is, P(R = ;(;g) = 1/m!, then X;Z coincide
with the Friedman's xi. Namely, this corollary gives the distribution for a
non-null case in Friedman's test. )

COROLLARY 2. Suppose B‘" and R'® are independently distributed the m-
variate (degenerate) normal distribution N(p") 711-12“’) and N(y@, %22:‘_2’),
respectively. A necessary and sufficient condition for the quadratic form:

m
2 _ 0 el g oey1ml Vi pey_ Moy 2y 2
(3.5 Xaw = [gog 262"+ 52 9]Ai§1[m% R~ (M- u )]

to be distributed according to chi-square distribution with (m-1)/0 d.f., is
that there exists the value of p(ZJ1) which satisfy the.following relation;

: Aoy a2 p 0 o lom, 1oy (Ll oo
(3.6) ‘ (nlz +nzz‘) L2 tr(nlz ok ’] (nlz‘ FgT ).
The corollary 2 is related to the problem of two sample test based on the

method of 7 rankings. In the following section we shall deal with this
problem. '

SIMULATION 3-1. The theorem 2 is based on the nommality of . However,
when 7 is not large the distribution of E may be differ from the normal dis-
tribution. In such a case the distribution of x2 must be also differ from the
chi-square distribution. To investigate the goodness of fit in small sample,
a simulation was made to each ranking populatibn of example 2, 3, and 6 showed
in section 2. 1In the ranking populations of example 2 and 3, the value of ¢
satisfied the condition (2.6) is nearly equal to I, respectively, that is,

p = 1.013529in example 2 and p= 1.018034 in example 3.



Therefore, from the above theorem 2 the distribution of x: is supposed to be
approximately chi-square distribution with 8 d.f. Next we have o = 1.492280
for the ranking population of example 6.
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Since it is nearly equal to 1.5, we

may predict xi has approximatly chi-square distribution with 2 d.f. Using

random numbers, 2,000 sets of n observations were generated from the ranking

population and from each set of n observations xi were computed. The computa-

tions were run on an IBM 370 using programs written in FORTRAN IV.

Table 2

gives us the cumulated relative frequency of x: , and further table 3 gives us
the k-statistics calculated from 2,000 values of Xi. From these simulations,
it seems that the agreement between the observed and theoretical distribution
is better as the value of ¢ is near to 1.

(a) for the population of example 2.

Table 2. The cumilative frequency in per cent of xi
for ¥ = 2,000 sets of sample.

(b) for the population of example 3.

al(%) »x%( al|n=10 n=20 n=30 n=40 al%) X§ ()| n=10 n=80 n=30 n=40
95 0.352|94.7 94.7 96.1 95.4 95 0.352)|95.4 94.9 95.4 94.9
90 0.584(91.3 90.3 90.9 90.2 90 0.584]91.1 89.3 90.8 90.0
80 1.005|81.0 79.9 80.8 80.6 80 1.005{80.0 8.0 79.3 80.3
70  1.424 |70.6 70.0 69.9 69.8 70 1.424|72.0 69.2 70.0 70.0
50 2.366 |50.3 50.7 48.9 49.3 50 2,366 | 50.7 49.1 48.2 50.1
30 3.665129.3 29.6 28.8 28.9 30 3.665|28.8 29.3 27.8 30.0
20 4.642|18.4 19.1 20.1 19.4 20 4.642119.2 19.0 18.5 19.5
10 6.251 ] 9.2 9.0 9.8 9.7 10 6.2514 9.9 9.2 8.3 9.6
5 7.815| 4.1 4.7 4.7 4.1 S 7.815} 4.5 4.9 4,6 4.5
2 9.837( 1.3 1.7 2.1 1.6 2 9.8374 1.8 1.9 1.9 1.8
1 11.345| 0.9 0.8 1.4 0.9 1 11.345| 1.0 1.0 0.9 0.7
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(c) for the population of example 6.

al(%) Xi(a) n=10 n=20 n=30 n=40
95 0.103]| 96.6 98.9 98.4 98.0
90 0.211] 94.4 95.4 94,2 95.1
80 0.446) 87.1 87.2 84.4 85.5
70 0.713| 75.0 77.6 73.7 75.4
50 1.386| 50.1 52.1 51.3 50.7
30 2.4081| 27.9 28.9 28.7 29.3
20 3.219| 19.2 17.9 18.9 18.9
i0 4.605|10.1 8.2 9.3 9.1
5.991 4 039 4.8 4.6

7.824 3014 2.4 2.2

9,210 .3 0.6 1.3 1.2

Table 3. The k-statistics of xi

(a) for the population of example 2.

cumulants of x§ n=10 n=20 n=30 n=40
K1 3 2.955648 2.955607 2.992191 2.945086
Ko 6 5.541287 5.573774 6.270521 5.587620
kg 24 23.313019 19.936005 29.705032 20.126068
K, 144 176.544296 97.638779 215.658142 94.933441
) (b) £for the population of example 3.
cumulants of xi n=10 n=20 n=30 n=40
K, 3 2.996101 2.950394 2.914041 2.972079
Ko 6 6.007073 5.809840 5.662573 5.660589
k3 24 28.453934 22.676407 22.671371 20.307907
ky, 144 231.316696 122.598282 128.257401 99.396820
(c) for the population of example 6.
cumulants ofxi n=10 n=20 n=30 n=40
o 2 2.068835 1.994871 2.039083 2.030946
Ky 4 4.166248 3.254177 4,127677 3.953521
Ky 16 18.935287 12.188395 20.142120 19.147064
K, 96 115.143265 68.976288 143.266953

151.402847
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4., TWO SAMPLE TEST BASED ON THE METHOD OF n RANKINGS. In this section we
will study on a test for equality of mean ranks between two sets of rankings

of m objects. Suppose ,{*“’ (Paseessri?s o = 1,...,m and ;6‘2’ ,(;‘2’

(2)) B = I1,...,np , are independent samples from two ranking populatlons
1;\(,” ) andm y (2) ‘2) respectively. We wish to test the null hypothesis
H, : ’\f"=y\f2’ against the alternative H, : H“’#
For such a problem, Linhart (1960) gave an approximate two sample test.
Namely, it is proposed to use a chi-square distribution with v degrees of
freedom for t/a, where

t = Z(RH) (2))

Var(t)/[ZE(t)] >
2E (t)/Var(t) = E(t)/a.

Q

v

The mean of © is

(1) B (2)
E(t) = Z F nz oii /
and the approximate varlance is

~ (1) 1 @2,2
Var(t) == 222( 085 * 055 -

However, in the L1nhart's paper, there is no reason to conclude that ¢/a is
distributed as chi-square distribution and also the degrees of freedom is
v=E(t)/a. Now from the corollary 2 in section 3, we can show that when we
let a=E (t)/v where v is a parameter, the statistic ¢/a has chi-square dis-
tribution with v d.f. The statistic are denoted as follows;

t/a = [t (L 1 2:(1) 1 2:(2)] X(Rm 7/(2))?

Thus, if we put v=(m-1)/p, 1t can be seen that under the hypothesis #, kx’(”

= 1(1'(2), the statistic ¢/« agrees with x** defined as (3.5). Hence from the co-
rollary 2 in section 3, ¢/a is distributed according to chi-square distribu-
tion with v = (m-1)/p d.f. under the condition (3.6).

In the following, we will consider the two sample test based on the

P 2
statistic Xk

4.1 TESTING THE HYPOTHSIS  H,:f'=® WHERE £V AND = ARE GIVEN DISPERSION
MATRICES. Under the null hypothesis #,, the statistic x:* becomes simpler
form as follows;

2 _ 1P 1 1 o@1¥ g g @)2
4.1 Xex = —m_ltr(nl ik )] izmi R.2)°%,
where £M'= (om) and £?= (¢*?) are given matrices, and the value of ¢ can be

found by substltuting oij/n (2’/7;2 for o in (2.10).
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Thus x**may be used as the test statistic for testing the hypothesis ", )é”

(2
=X
mately distributed accordlng to chi-square distribution with (m-2)/4 d.f. The

and when both 7; and 7, are large, the test statistic may be approxi-

signigicance of the observed value of xi*is determined by reference to the
table of chi-square distribution. Especially, when the value of (m-1)4 is
not integer, we may use the table of Incomplete Gamma Function. If the
observed value of x,%* exceeds the selected value X° (m-1)/p (a)in the table,

then we may reject H, at the level a.

4.2 TESTING THE HYPOTHESIS #_ : "= y* y wiERE "= 2% =1 BUT 1 IS
UNKNOWN MATRIX. From the corollary 2 and the assumptions fé” = ¥(2)= y and
DR L , it becomes that

2 _ ni+n2 -1 M _p @2
4.2) Xog = [m_l e trr] Z (R, -R.%),

This statistic has the chi-square dlStI‘lbuthIl with (m-1)/ d.f. under the con-
ditions described in corollary 2. However, in this case y and I are unknown
parameters, and we estimate them as follows;

_ =(2)
-g = n +n2(n1R +no R )
z

JRPYN (1 ~(1 (1} (1) (2) (2) (2) (2)
= (6,1 ~rrrmal Z( e R g(,gs Yrg B,

(4.3

and further estimate the parameter o by
~ m - 1 m m m
4.4 P T2 22y
( ) Z(’L - ].l )7,_21321 [ tggzl tg %) ] iXIJil 74"

Using the estimates, we propose the follow1ng one as the test statistic.

° DL p— > - M 5 (2,2
(4.5) X§*=ﬁ o J(i? -u 2)l; Z( 1 SR

It seems that to find the distribution of this statistic in algebra is very
complicated. Hence we will attempt to study the approximate distribution by
simulation.

SIMULATION 4-1. At first we study by simulation the small sample distri-
bution of xi Ldefined as (4.2). Using random numbers, N sets of two samples
(each sample size is njand n,) were generated from the same population m(y,Z).
We here supposed that y, X, and p are known in advance. The sample mean
vectors Rmand R‘Z)were calculated in each set of two samples and the value’of
X 25 WS found and the cumulated relative frequency table was made from the N
values of X**. The table 6 (a) and (b) give us the results for the ranking
population of example 3. In this case the value of p is nearly equal to one.
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Thus the distribution of X:*is supposed to be approximately chi-square distri-
bution with 8 d.f. By the goodness of fit test, this hypothesis is not \
rejected at 5% level, aside from the case of ny =my, = 10. However if we see
the goodness of fit in the region less than 50% point of the distribution, then
the case of ny = n, =10 is not also rejected at the same level., The k-
statistics of X:* are showed in table 7 (a) and (b). A glance at. the k-
statistics (sample cumulants) and population cumulants indicates a good agree-
ment, aside from the case of ny = n, = 10,

The table 8 gives us the results of simulation for the ranking population
of example 6. In this case, the agreement between the observed and the theo-
retical distribution is no good. The goodness of fit tests showed highly
significant in all cases. However, in the region less than 25% point of the
distribution, the hypothesis was not rejected in all cases. For reference, we
showed the k-statistics of xf*in table 9. )

In conclusion, it can be seen that even each sample size isi0 or so, the
agreement at the upper tail is good.

Table 6., The cumulative frequency in per cent of X:*
for N set of two samples from the ranking
population of example 3;

P = 1,018034
(a) sample size ny =n,, N = 2,000 (b) sample size ny #n,, N = 2,500

(%) X%a) ny=10 n,=20 n, =30 (%) X%’a) ny=10 ny=18 n, =26
Ny =10 Np =20 ng =30 Ny =14 Ny =26 Ny =38

95 0,352 94.8 94.1 94,1 97.5 0.216 97.4 97.6 97.1
90 0.584 91,7 88.4 88.9 95.0 0.352 94,8 95.2 94,6
80 1,005 81.5 78.5 78.6 90.0 0.584 88,7 89.9 90.0
70 1.424 71,7 68.5 67.8 75.0 1.213 72,4 74.2 75.8
50 2.366 49,7 49,0 47.7 50.0 2.366 46.6 49.0 51,0
30 3.665 30.9 27.7 29.3 25.0 4,110 23,9 24,3 24.4
20 4,642 19.2 18.9 19.9 10.0 6.251 9.4 9.4 9.1
10 6.251 10.0 9.3 9.7 5.0 7.815 4.3 4.,5. 4.9
7.815 4.7 4.6 4.6 2.5 9.350 2.1 2.5 2.7

9.837 1.5 1.9 1.5 1.0 11.345 0.9 1.2 1.2

1 11,345 0.8 0.8 0.7 - 0.5 12.838 0.4 0.6 0.5
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Table 7. The k-statistics of xf*for N sets of two samples
from the ranking population of example 3;
p=1,018030

(a) sample size ny =ny, ¥ = 2,000

Cumulants of X% ny =mn, = 10 ny=mn, =2 'ng=n, =30
K 3 2.960945 2.925636 - 2.905402
K2 6 5.390018 5.846196 5.769601
kg 24 18.140976 23.199219 22.169205
K, 144 T 79.472946 131.179810 127.838776

(b) sample size n; #np, ¥ = 2,500

Cumilants of X3 | ny =10 ny =14  n =18 n, =26 ny =26 n, =38

Ky 3 2.865918 2.939877 2.988397
Ky 6 5.737030 5.855556 5.900165
Ky 24 22.614380 22,902939 23.453506
K, 144 129.659927 119.339981 131.460831

Table 8. The cﬁmulative frequency in per cent of Xf*for
N =2,500 sets of two samples from the ranking
population of example 6; o = 1,492280

sample size n1 = n2,

T AC) e/
97.5 0.051 | 99.6 99.0 99.4
95 0.103|.98.2 97.6 98.4
90 0.211 | 94.2 93.5 95.4
75 0.575 | 79.4 78.4 81.1
50 1.386 | 51.9 52.7 53.0
25 2,770 | 25.0 24.4 25.2
10 4.605 8.8 10.0 10.3
5 5.991 4.2 4.6 5.2
2.5 7.380 2.2 2.2 2.8
1 9.210 0.9 1.0 1.0
0.5 10.600 0.4 0.5 0.4
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Table 9. The k-statistics of- ‘X:* forN = 2,500 sets of
two samples . from the ranking population of
example 6; p = 1.492280

sample size 7y # ny,

Cumulants of ¥5| n, =10 ny= 14 n =18 ny= 26 n, =26 n,= 38
k1 2 2.015131 2.022084 2.098906
Ky 4 3.523962 3.641783 3.867070
kg 16 13,099769 13.618194 15.195964
K, 96 73.,207672 71.942368 81.414764

SIMILATION 4-2. If we put f=1 in (4.2) and substitute 2(1' -uz) for tri
by using the results of lemma 1, and further substitute L\lfor,g R then we
obtain the f0110w1ng statistic;

(4.6) ;i* n’:’(;z[ (22 'ﬁtz) T o] X(-lﬂ 7(:2))2

We here wish to find the approximate dlstributi(m of this statistic by
simulation. N sets of two samples were generated and from the each set of two
samples 7"} F%nd j were calculated and X;,was found. The cumulative
frequency table of ')‘('ikwas made corresponding to the table of chi-square dis-
tribution with m-1d.f. Table 10 shows the results. From thlS table wWe can
see that probability P( X** 2t) have a tendency to large than P( X -1 2t), and
the difference becomes. larger as parameter p sepalate from 1. Thus, if the
table which assume that X**ls distributed as chi-square distribution with m-1
d.f. is used to test the hypothesis #,, the test is a conservative one; if H
is rejected by that test we can have real confidence in that decision. For

reference, the k-statistics are also shown in table.1l.
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Table 10. The cumilative frequency in per cent of &i*
for N = 2,500sets of two samples.

for the population of Ex.3 for the population of Ex.4

(%) X5(a) =10 n,=18 n1=86 n,=10 n;=18 n,=26
n2=14 n,=26 n,=38 n,=14 n,=46 n2=38

97.5 0.216 97.7 97.6 97.1 97.5 97.3 96.6
95.0 0.352 95.4  95.4  94.9 95.0  95.3  94.3
90.0 0.584 90.4 90.6 90.6 89.3 89.9 90.2
75.0 1.213 74.7 75.5 76.8 75.1 74.7 75.9
50.0 2.366 50.1  51.2 5.9 51.6  49.8  52.8
25.0 4,110 26.1 26.2 25.8 27.0 25.1 26.7
10.0 6.251  10.4  10.6 9.8 1.8 10.8  12.3
5.0 7.815 5.0 5.2 5.6 6.2 5.8 6.5

2.5 9,350 2.5 2.6 3.0 3.1 3.4 3.2

1.0 11.345 1.0 1.2 1.2 1.4 1.6 1.3

0.5 12.838 0.4 0.5 0.4 0.9 0.9 0.7

for the population of Ex.5 for the population of Ex.6

ny =10 ny=18 n;=26 m =10 ny=18 n,=26
n2=14 n2=26' n-2=38 n2=14 n2=26 n,= 38

96.8 96.9 97.9 97.1 96.2 97.5
94.4 94.0. 94.9 94.2 93.1 95.0
89.2 8.0 . 89.5 88.6 86.4 89.0
74.8 75.3 73.7 72.3 71.2 73.3
50.5 51.3 50.2 48.3 48.7 48.6
27.1 25.7 26.0 26.3 25.9 26.2
12,5 12.2 11.3 11.8 12.3 12.6
6.6 6.6 6.7 6.4 7.5 7.8
3.3 3.8 3.5 3.9 3.8 5.1
1.5 2.0 1.4 1.7 1.8 2.6

0.8 1.2 0.6 1.0 1.2 1.5
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Table 11..The k-statistics of %:* for N = 2,500
sets for two samples.

Cumulants for the population of Ex. 3 for the population of Ex. 4
2
of X3 n1=10,n2=14 n,=18,n,=26 n,=26,n,=38 n,=10,n,=14 n,=18,n,=26 n,=26,n,=38

3.027413 3.062080 3.089874 3.139635 3.103562 3.165113

Ky 6 6.010499 6.130886 6.183678 6.814976 7.726810 . 6.802587

<, 24 21.797180 23.387070 24,362335 28.035095 47,530319 27.794922

k“ 144 102.193588 121.319382 133.799500 155.059296  477.151367  153.055527
for the population of EX. 5 for the population of EX. 6

ny=10,n,=14 n,=18,n,=36 n,=26,n,=38 n;=10,n,=14 n,=18,n,=26 n,=26,n,=38

3.146830 3.174977 3.114209 3.097045 3.099054 3.197673
7.214890 7.879880 7.453287 7.654876 8.071908 9.031637
31.832108 42,944321 40.681244 38.100266 41,135757 55.644501
191.456573  338.561279  390.598145  265.814453  286.842773  480.003906

SIMILATION 4-3. We here study the distribution of X2, denoted as (4.5) by
simulation., The distribution is supposed to be approximately chi-square dis-
tribution. However we don't know the degrees of freedom. Thus, at first the
simulation was made to the ranking population of example 3 as follows; N sets
of two samples were generated and the values of if* were calcuated from the
each sets of two samples and further from these values of X2, the first four k-
statistics were found. Table 12 gives us the results. From this table we can
see that the relation which should be hold among the cumulants of chi-square
distribution, is approximately held among the first four k-statistics of f(f* .
Hence it may be assumed that the statistic )“g%* is approximately distributed
according to chi-square distribution and the degrees of freedom is nearly
equal to the first k-statistic. As shown in table 13, the agreement between
the observed and theoretical distribution is good. In practical case, we must
estimate the first cumulant of f(:* to use it as the degrees of freedom.

Table 12. The k-statistics of f(:* for N_=2,500/sets of two samples
from the ranking population of example 3; ¢ = 1.018034

Cunulants ny.= 10 ny = 18 . ny = 26
of X% n, = 14 n, = 26 n, = 38
Y
Ky v K =2.394498 k =2.643459 |k, =2.776564
Ko v 1.872003 k 1.896261 k, . 1.930138 K
K3 8 7.361886 Kk 7.370822 K 7.969460 k,
€y 48, 41.757175K 40.724161k, - 49.778573k,
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Table 13. The cumulative frequency in per cent of )'Zi* for N =2,500 set
of two samples from the ranking population of example 3.

(a) sample size n; =10, n2'=14 (b) sample size n, =18, n, =26
(%) Xou (0 X2, (%) B o) 2,
97.5 .103- 98.4 95.5 .230- 96.8
95.0 - .186- 97.3 89.4 .460- 91.3
90.0 .344- 92.6 83.0 .691- 84.8
80.0 .657- 82.6 70.4 1.151- 71.6
50.5 1.753- 50.1 49,0 2.072- 49.4
31.0 2.848- 30.2 30.1 3.223- 30.0
20.7 3.725- 19.9 20.1 4.144- 19.4
10.0 5.283- 9.2 9.7 5.755- 9.2

5.0 6.745- 4.6 5.1 7.137- 4.6
2.5 8.195- 2.3 2.0 9.209- 1.9
1.0 10.100- _ 0.8 0.9 10.820- 0.8

(c) sample size n, = 26, n, = 38

a(%) x2 (o) %?
2,78 £33
96.1 .236- 96.3
90.5 .472- 91.6
84.4 .707-  85.0
72.1 1.179- 74.0
50.5 2.122- 51.2
31.2 3.301-  31.1
20.8 4.244- 19.8
10.0 5.895- 8.9
5.3 7.310- 5.2
.0 9.432- 2.0
.9 11.082- 1.0

SIMULATION 4-4. To estimate the first cumlant of 3(1 %> We attempted to
study the distribution of (m-1)/f by simulation. N sets of two samples were
generated and from each sets the values of (m-1)/5 were calculated and the
first and the second k-statistics were found from these values of (m-1)/5 .
Table 14 gives us the cumlated relative frequency of standardized form of
(m-1) /6, From this, it seems that the distribution of (m-1)/6 may be supposed
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to be approximately standardized normal distribution. We wish to estimate the
first cumlant of 3\&2* by the estimator (m-1)/6. However, table 15 shows that
there is a bias in (m-1) /6. This may be corrected approximately by transforma-
tion to [(m-1)/8] (1+1/2n, +1/2n,) Table 16 gives us the first k-statistic of
the corrected estimates.

Table 14. The cumulative frequency in per cent of
(m-1)/6 for N =2,500sets of two samples.

for the population of Ex. 3 for the population of Ex. 4

al%) N(0.1)

ny=10 ny=18 ny=26 ny=10 n,=18 ny=26

ny=14 n,=26 n,=38 ny=14 n,=26 n,=38

95 -1.645-  94.6 93.3 93.5 94.7 95.0 94.7
90 -1.282-  89.5 89.1 89.5 89.9 91.0 90.4
80 -0.841- 79.3 80.7 81.6 80.3 81.8 80.7
70 -0.524- 69.8 71.8 72.9 71.4 71.4 71.5
60 -0.253- 61.0 63.6 63.6 59.7 61.2 61.3
50 0.000- 51.6 54.2 55.2 49.3 49.2 50.9
40 0.253- 42.3 44.2 44.6 39.5 38.8 40.0
30 0.524- 31.7 32.9 33.4 30.0 28.5 29.8
20 0.841- 20.4 20.7 20.4 19.9 20.0 20.0
10 1.282- 9.4 .1 7.5 9.6 10.4 10.1
5 1.645- 4.2 .6 2.0 .8 5.0 4.6

for the population of Ex. 5 for the population of Ex. 6

m=10 ny =18 ny =26 nm =10 m =18 m =26
ny=14 ", =26 ", =38 ny=14 ", =26 1, =38
94.6 94.4 93.9 96.4 95.4 94.9
89.7 90.0 89.2 90.1 89.8 89.8
80.0 81.4 80.6 78.2 79.4 79.0
70.7 71.9 72.4 68.3 70.2 70.0
61.1 62.4 62.2 58.4 59.5 60.0
50.6 51.6 52.6 49.1 49.8 50.9
39.7 41.2 41.8 39.1 40.5 41.1
29.2 29.7 30.2 30.3 30.2 30.8
19.0 18.7 19.1 20.0 19.4° 19.6
9.4 2 8.8 9.9 10.0 10.0
4.9 1 4.3 5.2 5.1 4.7
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Table 15. The k-statistics of (m-1)/p for =2,500sets of two samples.

Population k-statistics n=10, n,=14 n,=18, n,=26 n,=26, n,=38
m-1 k. 2.299020 2.548746 . 2.664714
Ex. 3 67 ke 0.073143 0.041409 0.024939
2ok 2.394498 2.643459 2.776564
m-1 K 2.133801 2.322762 2.404845
Ex. 4 b ky 0.067311 0.042003 0.028143
etk 2.317151 2.459420 2.568421
m1 ki 1.955979 2.137086 2.210874
Ex. 5 b7 Ky 0.072162 0.048474 0.033444
e v Kk 2.133750 2.308908 2.331448
m1 Kk 1.747953 1.861587 1.911978
Ex. 6 0 k, 0.086049 0.061092 0.046962
Rw ' K 1.901415 1.976542 2.078894

Table 16. The first k-statistic of [(m-1)/8]" (1+1/2ny +1/2n5)
for n = 2,500 sets of two samples,

Population 7,=10, ny=14 ny=18, n,=26 n,=26, n,=38
Ex. 3 2.496080 2.668560 2.751021
Ex. 4 2.316700 2.431953 2.482736
Ex. 5 2.123636 2.237548 2.282482
Ex. 6 1.897779 1.949098 1.973905

Further, many other simulations were made to study the.distribution of )?:*,
that is, to find the degrees of freedom as the function ofm, n;, n, and ¢
However the procedure becomes more complicated and adequate results for practi-
cal application were not obtained.

In conclution, from the simulations described above it is deemed appropri-
ate to emphasize that;

(i) when the value of ¢ is not too separated from I, the statistic ')‘('j*
denoted by (4.6) may be used as the test statistic. In this case ‘the
districution of 5&’2* is regarded as chi-square distribution withm-I
d.f., and the test based on?(z** is a conservative one. Fortunately,
in many practical cases it may be predicted that the value of p is
nearly equal to 1.
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(ii) whén we wish to test with accuracy, the statistic ﬁi* denoted by
(4.5) should be used. In this case the distribution of f(i* is re-
garded as chi-square distribution with [(m-1)/8] (1+1/2n, + 1/2n,)
d.f., where § denotes the estimate of o defined as (4.4).

At last we apply two tests {%x and X2, to the example taken up in the
Linhart(1960). That is the following: Bantu pupils have been asked to rank 6
different jobs in a number of job families according to their preferences. The
object of the study was to get an impression of the occupational ambitions of
Bafttu youths, to find out whether there is a common job hierarchy, and if so
whether it changes with educational standard of the youghs. Table of frequen-
c1es of ranks and the first two k- statlstlcs (i.e. sample rank mean vectors R“:
B R*ana sample dispersion matrices £ 1 by ) are given in the Linhart's paper.

In this example, m=6, n1=n2=30, and from the first two k-statistics we can
obtain

-1 1 1 _
(1+ —+2n—2) = 4,51

3ei? ~i.2) = 10,3183, YERT - RP )2 = g,7775,
1 7z T 1

6 =

2"1

1.1467, =L = 4. 38,
o

~

2 - Y2 _
%2, = 30.2598, X2 = 34.7202

These values are highly significant for 4,51 d.f. and 5 d.f., respectively.
For reference, we show the result of Linhart's approximate test in the follow-
ing.
_ M z(2y2 _
t = E(Ri - B2 = 4.772,
E(t) = 0.629, Var(t} = 0.177,

a = 0,141, v = 4,46,

X2 = t/o= 33.9,
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