SOME PROPERTIES OF P-SASAKIAN MANIFOLDS

Tyuzi ADATI and Teturo MIYAZAWA (Received July 1, 1977)

Recently, I. Sato [4] defined the notion of (ϕ, ξ, η) structure of a differentiable manifold satisfying $\phi^2 = I - \eta \otimes \xi$ and $\eta(\xi) = 1$, where ϕ is a (1, 1)-tensor, ξ a vector field and η a 1-form on the manifold, and he called the manifold with such a structure an almost paracontact manifold and studied several properties of the manifold by an analogous manner to the case of an almost contact manifold [3]. Furthermore, he and K. Matsumoto defined and studied a P-Sasakian manifold and an SP-Sasakian manifold which are considered as special cases of an almost paracontact manifold and obtained several interesting results [5].

In this paper, we shall study P-Sasakian manifolds. We shall devote §1 to preliminaries. In §2, we shall give several theorems on P- and SP-Sasakian manifolds. We shall discuss in §3 conformally flat P-Sasakian Manifolds.

§1. PRELIMINARIES

Let M be a differentiable manifold of dimension n. If there exist in the M a mixed tensor field ϕ_i^h , a contravariant vector field ξ^h and a covariant vector field η_i satisfying η_a $\xi^a = 1$, ϕ_i^a $\phi_a^h = \delta_i^h - \eta_i \xi^h$, where Latin indices take values 1,2,...,n, then such a manifold is said to have an almost paracontact structure $(\phi_i^h, \xi^h, \eta_i)$ and the manifold with such an almost paracontact structure is called an almost paracontact manifold.

It is showed that in an almost paracontact manifold there exists a positive definite Riemannian metric g_{ji} , which is called an associated Riemannian metric with the almost paracontact structure, such that $\mathbf{n}_i = g_{ia} \xi^a$, $g_{ba} \phi_j^{\ b} \phi_i^{\ a} = g_{ji} - \mathbf{n}_j \mathbf{n}_i$. The set $(\phi_i^{\ h}, \ \xi^h, \ \mathbf{n}_i, \ g_{ji})$ is called an almost paracontact Riemannian structure and the manifold with such an almost paracontact Riemannian structure is said to be an almost paracontact Riemannian manifold [4].

In an almost paracontact Riemannian manifold, the following relations hold

good:

$$\eta_{\alpha}\xi^{\alpha} = 1, \quad \phi_{i}^{\alpha}\eta_{\alpha} = 0, \quad \phi_{\alpha}^{h}\xi^{\alpha} = 0, \\
(1.1) \qquad \phi_{i}^{\alpha}\phi_{\alpha}^{h} = \delta_{i}^{h} - \eta_{i}\xi^{h}, \\
rank \quad (\phi_{i}^{h}) = n - 1.$$

Moreover, if we define ϕ_{ji} by $\phi_{ji}=g_{ia}\phi_{j}^{a}$, then in addition to the above relations the followings are satisfied

$$(1.2) \qquad \begin{array}{c} \phi_{ji} = \phi_{ij}, \\ g_{ba} \phi_{j}^{b} \phi_{i}^{a} = g_{ji} - \eta_{j} \eta_{i}. \end{array}$$

Now, we consider an n-dimensional differentiable manifold with a positive definite metric g_{ji} which admits a unit covariant vector field η_i satisfying

where \triangledown_j denotes covariant differentiation with respect to the metric tensor g_{ji} . Furthermore, if we put

(1.4)
$$\xi^h = g^{ha} \eta_a, \quad \phi_i^h = \nabla_i \xi^h,$$

then it is easily verified that the manifold in consideration becomes an almost paracontact Riemannian manifold. Such a manifold is called a *P*-Sasakian manifold [5].

In a P-Sasakian manifold, the following relations hold good:

(1.5)
$$R_{kji}^{} n_a = g_{ki} n_j - g_{ji} n_k$$
, $R_i^{} n_a = -(n-1) n_i$, where $R_{kji}^{}$ and R_{ij} are the curvature tensor and the Ricci tensor respectively,

$$R_{lkj}{}^{a}{}^{\phi}{}_{ai}{}^{+}{}^{R}{}_{lki}{}^{a}{}^{\phi}{}_{ja}{}^{=}{}^{\phi}{}_{lj}(g_{ki}{}^{-}{}^{2}n_{k}n_{i}){}^{+}{}^{\phi}{}_{li}(g_{kj}{}^{-}{}^{2}n_{k}n_{j})$$

$$-{}^{\phi}{}_{kj}(g_{li}{}^{-}2n_{l}n_{i}){}^{-}{}^{\phi}{}_{ki}(g_{lj}{}^{-}{}^{2}n_{l}n_{j}){}^{+}{}^{\phi}{}_{li}(g_{lj}$$

$$R_{ji}^{-R}_{jcba}\phi^{cb}\phi_i^{a}=(n-2)g_{ji}^{-\phi}\phi_{ji}^{-(2n-3)}\eta_j\eta_i$$

where we have put $\phi^{ji} = g^{ja}\phi_a^i$, $\phi = g^{ba}\phi_{ba}$.

Let us consider an n-dimensional differentiable manifold with a positive definite metric g_{jj} which admits a unit covariant vector field η_j satisfying

$$(1.7) \qquad \nabla_{j} \eta_{i} = -g_{ji} + \eta_{j} \eta_{i} ,$$

then we can easily show by putting $\xi^h = g^{ha}\eta_a$ and $\phi_{ji} = \nabla_j \eta_i$ that the manifold in consideration is a *P*-Sasakian manifold. Such a manifold is called an *SP*-Sasakian manifold [5].

Let P be a point of M and M_P be the tangent space of M at P. In the M_P , the set of vector v such that n(v)=0 spans an (n-1)-dimensional subspace V_P of M_P . When $\phi_{ji}=\nabla_j\eta_i=g_{ji}-\eta_j\eta_i$, $\phi v=v$ $(v\in V_P)$. Therefore we only deal with the case of (1.7).

§ 2. SOME THEOREMS ON P- AND SP-SASAKIAN MANIFOLDS

I. Sato [4] introduced four tensor fields N_{ji}^h , N_{ji}^h , N_{i}^h and N_{i}^h in an almost paracontact Riemannian manifold with local coordinate $\{x^h\}$ as follows:

$$(2.1) \qquad N_{ji}^{h} = \phi_{ji}^{h} - (\partial_{j}\eta_{i} - \partial_{i}\eta_{j})\xi^{h},$$

$$N_{ji}^{e} = \phi_{j}^{a}(\partial_{a}\eta_{i} - \partial_{i}\eta_{a}) - \phi_{i}^{a}(\partial_{a}\eta_{j} - \partial_{j}\eta_{a}),$$

$$N_{i}^{h} = \mathfrak{L}(\xi)\phi_{i}^{h}, \quad N_{i} = \mathfrak{L}(\xi)\eta_{i},$$

where $\partial_j = \frac{\partial}{\partial x^j}$, ϕ_{ji}^h is the Nijenhuis tensor of ϕ_i^h and $\mathfrak{L}(\xi)$ means the Lie derivative with respect to the vector field ξ^h . N_{ji}^h is so-called torsion tensor field of the almost paracontact structure. Concerning these four tensor fields, he proved the following

LEMMA 2.1[4]. If any one of N_{ji} and N_{ji} vanishes, then N_i vanish. If $N_{ji}^{\ \ h}$ vanishes, then all the other tensors N_i, N_{ji} and N_i vanish.

The torsion tensor N_{ji}^{h} can be written in an almost paracontact manifold, by a straightfoward culculation, in the form

$$(2.2) \qquad N_{ji}^{\quad h} = \phi_{j}^{\quad \alpha} (\nabla_{\alpha} \phi_{i}^{\quad h} - \nabla_{i} \phi_{\alpha}^{\quad h}) - \phi_{i}^{\quad \alpha} (\nabla_{\alpha} \phi_{j}^{\quad h} - \nabla_{j} \phi_{\alpha}^{\quad h}) + n_{i} (\nabla_{j} \xi^{h}) - n_{j} (\nabla_{i} \xi^{h}).$$

Now we assume that the manifold is a P-Sasakian one. Substituting (1.3) and (1.4) into (2.2) and making use of (1.1) and (1.2), we find

$$N_{ji}^h = 0$$
.

Thus we have

THEOREM 2.1. A P-Sasakian manifold has the vanishing torsion tensor N $_{ji}^{\ \ h}$.

Let M be an n-dimensional differentiable manifold with an almost paracontact structure (ϕ, ξ, η) and R be a real line. We construct a product manifold $M \times R$. If we denote the tangent space of $M \times R$ at a point (P, Q), $(P \in M, Q \in R)$ by T, then the tangent space M_D of M at P may be naturally identified with a subspace

of T.

Now, denoting the unit vector of R by ζ , we define a linear map $F: T \to T$ by

(2.3)
$$F(X) = \phi X, \quad \text{if} \quad X \in M_p, \quad \eta(X) = 0,$$
$$F(\xi) = \zeta, \quad F(\zeta) = \xi,$$

then we can easily see that $F^2(X) = X$, $F \neq I$ hold good for any vector X of T. Therefore, F gives an almost product structure on T. As $P \in M$ and $Q \in R$ are arbitrary we see that an almost product structure F can be defined over $M \times R$ by means of the almost paracontact structure (ϕ, ξ, η) .

About the integrability of such a structure F, I. Sato proved the following

LEMMA 2.2[4]. Let M be a differentiable manifold with an almost paracontact structure (ϕ, ξ, η) . Then, the almost product structure F over M×R defined by (2.3) is completely integrable if and only if $N_{ji}^h=0$ holds good over the whole M.

Thus, from Theorem 2.1 and above Lemma 2.2 we have

THEOREM 2.2 Let M be a P-Sasakian manifold with the structure (ϕ, ξ, η) . Then, the almost product structure F over M×R defined by (2.3) is completely integrable.

We assume that a P-Sasakian manifold has the vanishing Ricci curvature tensor R_{ii} . Then from (1.5) we have

$$-(n-1)\eta_i=0,$$

which is inconsistent with such an assumption that the vector \mathbf{n}_i is a unit vector. Thus we have

THEOREM 2.3 In a P-Sasakian manifold, the Ricci curvature tensor can not vanish. Especially, a P-Sasakian manifold can not be flat.

We assume that a P-Sasakian manifold is an Einstein one, then we have

$$(2.4) R_{ji} = \frac{R}{n} g_{ji} .$$

Substituting (2.4) into (1.5), we find

$$R = -n(n-1).$$

Thus we have

LEMMA 2.3. If a P-Sasakian manifold is an Einstein one, the scalar curvature

has a negative constant value -n(n-1). Especially, if a P-Sasakian manifold is of constant curvature, the scalar curvature has a negative constant value -n(n-1).

If we assume that a P-Sasakian manifold is of constant curvature, then from Lemma 2.3 we have

(2.5)
$$R_{kjih}^{=} -(g_{ji}g_{kh} - g_{ki}g_{jh})$$
, from which follows (2.4).

Substituting (2.4) and (2.5) into (1.6)₃, we get on account of (1.2) $\phi\phi_{jj} = (n-1)(g_{jj} - \eta_j \eta_i).$

Contraction above equation with g^{ji} gives

$$\phi^2 = (n-1)^2 \quad .$$

Hence we find

$$\phi_{ji} = -g_{ji} + \eta_j \eta_i,$$

that is, the manifold is an SP-Sasakian one.

Thus we have

THEOREM 2.4. If a P-Sasakian manifold is of constant curvature, the manifold is an SP-Sasakian one.

The equations $(1.2)_1$ and $(1.4)_2$ show that η_i is a gradient vector of a scalar $\eta = \eta(x)$, that is to say,

$$(2.6) \eta_{i} = \frac{\partial \eta}{\partial x^{i}}$$

Thus, in a *P*-Sasakian manifold there exists a family of hypersurfaces $\eta(x^1, x^2, \cdots, x^n)$ = constant to which the vector ξ^h is normal. On the other hand, from $(1.1)_1$ and $(1.4)_2$ we have

$$\xi^a \nabla_a \xi^h = 0$$
,

from which we find that the curves generated by $\boldsymbol{\xi}^h$ are all geodesics. Thus we have

THEOREM 2.5. A P-Sasakian manifold contains a family of hypersurfaces $\eta(x)$ = constant satisfying (2.6) whose orthogonal trajectories are geodesics.

Contracting (1.3)
$$_2$$
 with g^{ji} , we get $\nabla_{\nu}\phi = 0$,

from which follows ϕ = constant. Hence we have

LEMMA 2.4. In a P-Sasakian manifold, ϕ is a constant.

We shall represent one of hypersurfaces $\eta(x^1, x^2, \dots, x^n) = \text{constant}$ appeared in the Theorem 2.5 by parametric equations

$$x^{i} = x^{i}(u^{\lambda})$$

where Greek index takes values 1,2,...,n-1, then we have

$$(2.7) \qquad \eta_{\alpha} B_{\lambda}^{\alpha} = 0$$

Remember the following formula

$$(2.8)' \qquad \nabla_{\mathbf{u}} B_{\lambda}^{h} = H_{\mathbf{u}\lambda} \xi^{h}.$$

The left hand side of this equation is so-called Bortolotti-van der Waerden covariant derivatives and $\textit{H}_{\mu\lambda}$ is the second fundamental tensor of the hypersurface.

From (2.7) we have

$$B_{\mathbf{u}}^{b}B_{\lambda}^{a}\nabla_{b}\eta_{a} + \eta_{a}\nabla_{\mathbf{u}}B_{\lambda}^{a} = 0.$$

Substituting (1.4) and (2.8) into above equation, we get

$$B_{\mathbf{u}}^{b}B_{\lambda}^{a}\phi_{ba} + H_{\mathbf{u}\lambda} = 0.$$

Contracting above equation with $g^{\mu\lambda}$ and using (1.1), we obtain $\phi + H = 0$.

where $H = g^{\beta\alpha}H_{\beta\alpha}$, $\frac{1}{n-1}|H|$ is so-called mean curvature of the hypersurface.

Thus from the Lemma 2.4 we have

THEOREM 2.6. In a P-Sasakian manifold, the mean curvature of a hypersurface $\eta(x^1, x^2, \dots, x^n)$ = constant satisfying (2.6) is a constant.

We shall prove the following

THEOREM 2.7. A P-Sasakian manifold is an SP-Sasakian one if and only if the following relation holds good

$$(2.9) \phi = -(n-1) .$$

PROOF. In a *P*-Sasakian manifold we have an identical equation $\{\phi_{ba} - (-g_{ba} + \eta_b \eta_a)\}\{\phi^{ba} - (-g^{ba} + \xi^b \xi^a)\} = 2\{\phi + (n-1)\}.$

Hence, since the manifold has a positive definite metric, (2.9) is equivalent to $\phi_{jj}=-g_{jj}+\eta_{j}\eta_{j}$,

which is the condition for the manifold to be SP-Sasakian.

Q.E.D.

From Theorems 2.6 and 2.7 we have

THEOREM 2.8. In a P-Sasakian manifold, let m be the mean curvature of a hypersurface n=constant satisfying (2.6), then we have

$$0 \leq m \leq 1$$

And therefore, for all hypersurfaces η =constant, when m=0, ξ^{h} is harmonic, and when m=1, the manifold is SP-Sasakian.

§3. CONFORMALLY FLAT P-SASAKIAN MANIFOLDS

If the Ricci tensor R_{ji} of a P-Sasakian manifold satisfies the relation $R_{ji} = ag_{ji} + b\eta_j\eta_i$,

where a and b are certain scalars which are said the associated functions of R_{ji} , then the manifold is called an n-Einstein one [5].

We shall start the following

Lemma 3.1. If a P-Sasakian manifold is conformally flat, the manifold is an η -Einstein one.

PROOF. We assume that a P-Sasakian manifold is conformally flat, then we have

$$(3.1) R_{kji}^{h} = \frac{1}{n-2} (g_{ji}R_{k}^{h} - g_{ki}R_{j}^{h} + R_{ji}\delta_{k}^{h} - R_{ki}\delta_{j}^{h}) - \frac{R}{(n-1)(n-2)} (g_{ji}\delta_{k}^{h} - g_{ki}\delta_{j}^{h}).$$

Transvecting (3.1) with $\eta_{\rm h}$ and making use of (1.5), we have

$$\begin{split} g_{ki} \eta_{j} - g_{ji} \eta_{k} &= -\frac{n-1}{n-2} (g_{ji} \eta_{k} - g_{ki} \eta_{j}) + \frac{1}{n-2} (R_{ji} \eta_{k} - R_{ki} \eta_{j}) \\ &- \frac{R}{(n-1)(n-2)} (g_{ji} \eta_{k} - g_{ki} \eta_{j}) \,, \end{split}$$

that is,

$$R_{ji}\eta_{k}-R_{ki}\eta_{j}=(\frac{R}{n-1}+1)(g_{ji}\eta_{k}-g_{ki}\eta_{j}).$$

Furthermore, transvecting above equation with ξ^k and using (1.1) and (1.5), we find

(3.2)
$$R_{ji} = (\frac{R}{n-1} + 1)g_{ji} - (\frac{R}{n-1} + n)\eta_{j}\eta_{i}$$
. Q.E.D.

Now, we shall prove the next

THEOREM 3.1. If a P-Sasakian manifold is conformally flat, then the manifold becomes an SP-Sasakian one and the curvature tensor of the manifold is given by

$$(3.3) R_{kjih} = \frac{1}{n-2} \left(\frac{R}{n-1} + 2 \right) (g_{ji}g_{kh} - g_{ki}g_{jh})$$

$$-\frac{1}{n-2} \left(\frac{R}{n-1} + n \right) (g_{kh}\eta_{j}\eta_{i} - g_{jh}\eta_{k}\eta_{i} + g_{ji}\eta_{k}\eta_{h} - g_{ki}\eta_{j}\eta_{h}).$$

Especially, when R = -n(n-1), the manifold is of constant curvature -1.

PROOF. We assume that a P-Sasakian manifold is conformally flat, then from the Lemma 3.1 the manifold is an η -Einstein one. So, substituting (3.2) into (3.1), we obtain (3.3).

Differentiating (3.2) covariantly and making use of (1.4), we have

$$\nabla_{k}^{R} j_{i}^{i} = \frac{1}{n-1} g_{ji} \nabla_{k}^{R} - \frac{1}{n-1} \eta_{j} \eta_{i} \nabla_{k}^{R} - (\frac{R}{n-1} + n) (\phi_{kj} \eta_{i}^{+} \phi_{ki} \eta_{j}^{-}),$$

$$\nabla_{j}^{R} k_{i}^{i} = \frac{1}{n-1} g_{ki} \nabla_{j}^{R} - \frac{1}{n-1} \eta_{k} \eta_{i} \nabla_{j}^{R} - (\frac{R}{n-1} + n) (\phi_{jk} \eta_{i}^{-} + \phi_{ji} \eta_{k}^{-}),$$

from which follows

$$\begin{array}{ll} (3.4) & \nabla_{k}R_{ji} - \nabla_{j}R_{ki} = \frac{1}{n-1} \left(g_{ji}\nabla_{k}R - g_{ki}\nabla_{j}R\right) - \frac{1}{n-1}(\eta_{j}\eta_{i}\nabla_{k}R - \eta_{k}\eta_{i}\nabla_{j}R) \\ & - (\frac{R}{n-1} + n) \left(\phi_{ki}\eta_{j} - \phi_{ji}\eta_{k}\right). \end{array}$$

On the other hand, since the conformal curvature tensor $c_{kji}^{\quad \ \ \, h}$ vanishes we have

$$\nabla_{\mathcal{I}} C_{kji}^{h} = 0 \quad ,$$

from which follows

$$\nabla_a C_{k,i}^{a} = 0$$
 ,

that is, when n > 3,

$$(3.5) \qquad \nabla_{k}^{R}_{ji} - \nabla_{j}^{R}_{ki} = \frac{1}{2(n-1)} (g_{ji} \nabla_{k}^{R} - g_{ki} \nabla_{j}^{R}).$$

When n=3, the equation (3.5) is the condition for the manifold to be conformally flat.

It follows from (3.4) and (3.5) that

(3.6)
$$\frac{1}{2}(g_{ji}\nabla_k R - g_{ki}\nabla_j R) = (\eta_j \eta_i \nabla_k R - \eta_k \eta_i \nabla_j R) + \{R + n(n-1)\} (\phi_{ki}\eta_j - \phi_{ji}\eta_k).$$
Transvecting (3.6) with $\xi^k \xi^i$ and using (1.1), we have

$$(3.7) \qquad \nabla_{j} R = \eta_{j} \xi^{a} \nabla_{a} R.$$

Contraction (3.6) with g^{ji} gives by virtue of (1.1) and (3.7)

(3.8)
$$\nabla_{k} R = -2(\frac{R}{n-1} + n) \phi \eta_{k}$$
.

Substituting (3.8) into (3.6), we get

$$- \left(\frac{R}{n-1} + n \right) \phi (g_{ii} \eta_k - g_{ki} \eta_i) = \{ R + n(n-1) \} (\phi_{ki} \eta_i - \phi_{ji} \eta_k),$$

from which follows by contraction with $\xi^{\hat{J}}$

$$\{R + n(n-1)\}\{\phi_{ki} - \frac{\phi}{n-1} (g_{ki} - \eta_k \eta_i)\} = 0.$$

Thus, we find either

$$(3.9) R = -n(n-1)$$

or

(3.10)
$$\phi_{ki} = \frac{\phi}{n-1} (g_{ki} - \eta_k \eta_i).$$

First, we consider the case of (3.9). Substituting (3.9) into (3.3), we get (3.11) $R_{kjih} = -(g_{ji}g_{kh} - g_{ki}g_{jh})$,

that is, the manifold is of constant curvature -1. And therefore, we find from the Theorem 2.4 that the manifold is an SP-Sasakian one.

Second, we consider the case of (3.10). Contracting (3.10) with ϕ_j^k and making use of (1.1) and (1.2), we get

(3.12)
$$g_{ji} - \eta_j \eta_i = \frac{\phi}{n-1} \phi_{ji}$$
.

It follows from (3.10) and (3.12) that

$$\{\phi^2 - (n-1)^2\}(g_{ji} - \eta_j \eta_i) = 0,$$

from which

$$\phi = - (n - 1).$$

Thus we find

$$\phi_{ji} = -g_{ji} + \eta_j \eta_i,$$

which is the condition for the manifold to be SP-Sasakian.

Q.E.D.

REMARK. If we make use of (1.6) instead of (3.5) in the proof of the Theorem 3.1, after all we find either

$$(3.13) R = (n-1)(n-4)$$

or the manifold is an SP-Sasakian manifold. However, we can show that the case of (3.13) does not occur as follows:

Substituting (3.13) into (3.6), we have

$$\phi_{ki}\eta_{j} - \phi_{ji}\eta_{k} = 0$$

Contracting above equation with ϕ^{ki} and using (1.1), we get

$$(n-1)\eta_i = 0 ,$$

which is inconsistent with our assumption that the vector η_j is a unit vector. This gives another proof of the Theorem 3.1.

In a conformally flat P-Sasakian manifold, we find from (3.8) that the

scalar curvature R is a function of η alone where $\eta_i = \frac{\partial \eta}{\partial x^i}$. Therefore, the scalar curvature R is a constant along the hypersurface $\eta(x)$ =constant. Concerning the case when the scalar curvature is a constant in the whole manifold, we have the following

THEOREM 3.2. If a conformally flat P-Sasakian manifold has a non-zero constant scalar curvature, the manifold is of constant curvature.

PROOF. We assume that a conformally flat P-Sasakian manifold has a non-zero constant scalar curvature. Then from (3.6) we have

$${R + n(n-1)}(\phi_{ki}\eta_{j} - \phi_{ji}\eta_{k}) = 0,$$

from which follows

$$R = -n(n-1).$$

Thus, from the Theorem 3.1 the manifold is of constant curvature. Q.E.D. In an SP-Sasakian manifold, from the definition we have

$$\nabla_{i}\xi^{h} = -\delta_{i}^{h} + \eta_{i}\xi^{h},$$

from which we find that the ξ^h is a concircular vector field.

On the other hand, one of the present authors studied subprojective manifolds [1]. Making use of his theorem and Theorem 3.1, we have the following

THEOREM 3.3. A conformally flat P-Sasakian manifold is a subprojective one (n > 3).

REFERENCES

salar Buringer and a first transfer from the first profession for a construction of

- [1] T. Adati: On subprojective spaces, III, Tôhoku Math. J., (3)3(1951), 343-358. [2] T. Adati and K. Matsumoto: On conformally recurrent and conformally symmetric
- P-Sasakian manifolds, TRU Math., 13-1 (1977).

 [3] S. Sasaki: Almost contact manifolds, Lecture Note 1, Tôhoku University, (1965).

 [4] I. Sato: On a structure similar to the almost contact structure, Tensor, N. S., 30(1976), 219-224.
- [5] I. Sato and K. Matsumoto: On P-Sasakian manifolds satisfying certain conditions, to appear.
- [6] K. Yano: Differential geometry on complex and almost complex spaces, Pergamon Press, (1965).

SCIENCE UNIVERSITY OF TOKYO and TOYO UNIVERSITY