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Recently, I. Sato [4] defined the notion of (¢, &, n) structure of a diffe-
rentiable manifold satisfying 6%=I —n gt and n(g) =1, vhere ¢ is a (1, 1)-
tensor, £ a vector field and n a 1-form on the manifold, and he called the mani-
fold with such a structure an almost paracontact manifold and studied several
properties of the manifold by an .analogous manner to the case of an almost con-
tact manifold [3]. Furthermore, he and K. Matsumoto defined and studied a P-
Sasakian manifold and an SP-Sasakian manifold which are considered as special
cases of an almost paracontact manifold and obtained several interesting re-
sults [5]. ' :

In this paper, we shall study P-Sasakian manifolds.” We shall devote §1
to preliminaries. In §2, we shall give several theorems on P- and SP-Sasakian -
manifolds. We shall discuss in §3 conformally flat P-Sasakian Manifolds.

51. PRELIMINARIES
Let M be a differentiable manifold of dimension n. If there exist.in the =

M a mixed tensor field %h , a contravariant vector field Eh and a covariant
h

;- nigh, where Latin indices-

- . . _ a, h_
vector field n. satisfying n, 2= 1, ¢'i ¢a =4
take values 1,2,¢¢<+,n, then such a manifold is said to have an almost para-
contact structure (d’i h, Eh, ”1:) and the manifold with such an almost para-

contact structure is called an almost paracontact manifold.
It is showed that in an almost paracontact manifold there exists a posi-
tive definite Riemannian metric 95i0 which is called an associated Riemannian

metric with the almost paracontact structure, such that n.= giaga R
b .
G5 %a: g5~ nyng. The set (d’i‘h’ £, N;s g;;) is called an almost para-

contact Riemammian structure and the manifold with such an almost paracontact :

Riemannian structure is said to be an almost paracontact Riemannian manifold [4].
In an almost paracontact Riemannian manifold, the following relations hold
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good:
- a_ _ h.a
na8a~1, ¢iﬂa—0,¢a~§a-0,
a, h _h h
(1'1) q)i cba _Si‘nig L

rank ((b.h) =n-1

Moreover, if we define ¢ by ¢ gwd)J , then in addition to the above

relations the followings are satisfied

(1.2) bii~ b

b, a_
Ipe®; % = 9557 N

Now, we consider an n-dimensional differentiable manifold with a positive
definite metric g : which admits a wnit covariant vector field n. satisfying

(1.3) vgnt_vtng— 0

VeViNs = Gy mnngt Caggt mnngs

where V. denotes covariant differentiation with respect to the metric tensor gji‘
Furthermore, if we put

@ =, el v,

then it is easily verified that the manifold in consideration becomes an almost
paracontact Riemannian manifold. Such a manifold is called a P-Sasakian manifold

[5].

In a P-Sasakian manifold, the following relations hold good:

a_ _ a = —(_
(1'5) Rkji na_ gkinj—gjink: Ri na (‘VL 1)ni b
where ng h and R ; are the curvature tensor and the Ricci tensor respectively,
Bii it Brrs 5= 915 Grsm 2mn)* 075 (g - 2mgny)
- ¢kj(gz7:'2nzn7:) - ¢ki(ng_ annj)s
. B.oa_ .
1.8 i Rigpg®s % T st 9radind ~ g% Srilin)

(g khn,j o Jhnknt gznknh gkzngnh) 4

Ry~ Jcba¢cb¢ a_(n—Z)g 400~ (2n=3)n.n,,

where we have put 7%= g’ a%i, =g %ba'

Let us consider an »n-dimensional differentiable manifold with a positive
definite metric 95z . which admits a unit covariant vector field n; satisfying

(1'7) an,f 'gji"'njni 3
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then we can easily show by putting £h= ghana and ¢.71,’V.7n1, that the manifold

in consideration is a P-Sasakian manifold.- Stich a manifold is called an SP-
Sasakian manifold [5].
Let P be a point of ¥ and My be the tangent space of ¥ at P. 1In the My,

the set of vector v such that n(»)=0 spans an (n-1)-dimensional subspace I;P of

MP' When ¢J1,—Vgn7, gji' ”j“i’ dv=v (v eVP) . Therefore we ogly deal with the

case of (1.7).

) §2. SOME THEOREMS ON P- AND SP-SASAKIAN MANIFOLDS . .
I. Sato [4] introduced four tensor fields Iv..h, N.., Iv.h and N. in an
Ji Ji* i i
almost paracontact Riemannian manifold with local coordinate {:fh } as follows:
h I3 h
=6, - (8.n.- 9.n.
Hep= 94 (n 8n)£,

2.1 J,b-tbg(an—an)—d)(an-an),

=5.(E)¢ m=2(En,,

where 3 321, ¢.71, is the Nijenhuis tensor of ¢ and L) means the Lie

derlvatlve with respect to the vector field E ”jih is so-called torsion tensor
field of the almost paracontact structure. Concerning these four tensor fields,
he proved the following k '

LEWMA 2.1[4]. If any one of N, and zvjih vanishes, then N, vanish. If

IV..h vanishes, then all the other temsors N., V.. and N.h vanish. »
Jr ‘ g i

R

The torsion tensor N..~ can be written in an almost paracontact manlfold by

a straightfoward culculatlon, in the form
_ - h h h By
2.2) ”j’b‘ '¢j (Va¢i -V'i,¢a )-¢i (Va¢j -Vj¢a )+T'I7:(V £ )-ﬂ-(V £7).
Now we assume that the manifold is a P-Sasakian one. Substituting (1 3) and
(1.4) into (2.2) and making use of (1.1) and (1.2), we find
h
N.."=0 .

Jt
Thus we have

THEOREM 2.1. A P-Sasakian manifold has the vanishing torsion temsor Njih'

Let M be an n-dimensional differentiable manifold with am almost paracontact
structure (¢, £, n) and R be a real line. We construct a product manifold M x R..
If we denote the tangent space of M x R at a point (P, Q), (P€M, QeR) by T,
then the tangent space M, of ¥ at P may be naturally identified with a subspace
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of T. .
Now, denoting the unit vector of R by z, we define a linear map F: T>T by
F(x) = ¢x, if XeMp, nx =0 ,

(2.3) - :
F& =t , F@ =¢,

then we can easily see that F2 (x) = x, F# I hold good for any vector X of T.
Therefore, F gives an almost product structure on T. As P€M and @ €R are arbi-
trary we see that an almost product structure F can be defined over MxR by means
of the almost paracontact structure (¢, &, n).

About the integrability of such a structure F, I. Sato proved the following

LEMA 2.2[4]. Let M be a differentiable manifold with an almost paracontact
structure (¢, &£, N). Then, the almost product structure F over MxR defined by
- (2.3) ts completely integrable if and only if Njih=0 holds good over the whole
M. :

“Thus, from Theorem 2.1 and above Lemma 2.2 we have

THEOREM 2.2 ' Let M be a P-Sasakian manifold with the structure (¢, £, n).
Then, the almost product structure F over MR defined by (2.3) is completely
integrable.

We assume that a P-Sasakian manifold has the vanishing Ricci curvature tensor
Rji' Then from (1.5) we have .
| — (—1n, = 0,
which is inconsistent with such an assumption ;hat the vector n is a unit vector.
- Thus we have

. THEOREM 2.3 In a P-Sasakian manifold, the Ricei curvature tensor can not

vanish. Especially, a P-Sasakian manifold ecan not be flat..
We assume that a P-Sasakian manifold is an Einstein one, then we have

_R
- (2.49) Rji = 95

- Substituting (2.4) into (1.5), we find
) R=—nn-1).
Thus we have

LEMMA 2.3. If a P-Sasakian manifold is an Einstein one, the scalar curvature
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has a negaﬁve constant value -n(n-1). ~ Especially, if a P-Sasakian manifold is

of constant curvature, the scalar curvature has a negative constant value -n (n-1).

If we assume that a P-Sasakian manifold is of constant curvature, then from

‘Lemma 2.3 we have
(2.5 Rkjih= -(gjigkh - gkigjh)"
from which follows (2.4).

Substituting (2.4) and (2.5) into (1.6) 32 We get on account of (1.2)

¢¢ji =n-1) (gji - njni)-
Contraction above equation with gJ 'L gives
2 2
"= (- 1" .
Hence we find
$i0 = 95 * NNgs

that is, the manifold is an SP-Sasakian one.
Thus we have

THEOREM 2.4. If a P-Sasakian manifold is of constant curvature, the

manifold is an SP-Sasakian one.

The equations (1.2)1 and (1.4)2 show that n, is a gradient vector of a
scalar n = n{x), that is to say,

@6 n, =30

Thus, in a P-Sasakian manifold there exists a family of hypersurfaces
n(xl, acz,--- . :cn) = constant to which the vector Eh is normal. On the other
"hand, from (1.1); and (1.4), we have

h_
s“vas =0 ,

from which we find that the curves generated by Eh are all geodesics.
Thus we have

THEOREM 2.5. A4 P-Sasakian manifold contains a family of hypersurfaces
n(x) = constant satisfying (2.6) whose orthogonal trajectories are geodesics.

Contracting (1.3), with ¢77, we get
Vi = 0,

from which follows ¢= constant. Hence we have
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LEMMA 2.4. In q P-Sasakian manifold, ¢ is a constant.

We shall represent one of hypersurfaces n(:cl, :c2,---, «™") = constant appeared
in the Theorem 2.5 by parametric equations ‘
T _ . Z.A
» " =2 () »
where Greek index takes values 1,2,++-,n-1, then we have
a_
2.7)  nB=0,

>

a
where B)\a = ax)‘ . Induced Riemannian metric I in the hypersurface is given by

du b a
gux= Bll BX gba .

Remember the following formula

’ h_ n
(2.8) VuBA = ng .

The left hand side of this equation is so-called Bortolotti-van der Waerden

- covariant derivatives and B is the second fundamental tensor of the

A
hypersurface. -

From (2.‘7')“we have
b, a ) @ _
Bu B)\ Vbna + naVuB)\ 0.
Substituting (1.4) and (2.8) intq above equation, we get -
b, a _ :
Bu B)\ ¢ba + HIJ)\ = 0.

Contracting above equation with gu)‘ and using (1.1), we obtain

$+HE=0,
where # = gBaHBa, n—_l_-l—[H | i5 so-called mean curvature of the hypersurface.

‘Thus from the Lemma 2.4 we have

THEOREM 2.6, In a P-Sasakian manifold, the mean curvature of a hypersurface
n(xl,xz, ---,xn)= constant satisfying (2.6) is a constant.

We shall prove the following -

THEOREM 2.7. A P-Sasakian manifold is an SP-Sasakian one if and only if the
following relation holds good ’

2.9) ¢=—m—-1) .
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PROOF. In a P-Sasakian ,mnifold we have an identical equation
{8, - (=g 4y Y HEP% (-P%+£PE%) 12004 (n-1)).

Hence, since the manifold has a positive definite metric, (2.9) is equivalent to

559505
which is the condition for the manifold to be SP-Sasakian. ' Q.E.D.

From Theorems 2.6 and 2.7 we have

THEOREM 2.8. In a P-Sasakian manifold, let m be the mean curvature of a
hypersurface n=constant satisfying (2.6), then we havé :
0<ms<1 .
And therefore, for all hypersurfaces - v =constant, when m = 0, F,h ig harmonic,
and when m=1, the manifold is SP-Sasakian.

§3. CONFORMALLY FLAT P-SASAKIAN MANIFOLDS
If the Ricci tensor Rji of a P-Sasakian manifold satisfies the relation
Rji = agJ bn n .y ) s
where a and p are certain scalars which are said the associated functions of R 29
then the manifold is called an n-Einstein one [5]. .

We shall start the following

Lemma 3.1. If a P-Sasakian manifold is conformally flat, the manifold is

an n-Einstein one.

PROOF. We assume that a P-Sasakian manifold is conformally flat, ’then we
have

B o
B R DR e R e 6 Rk‘l, G2y O S)

Transvecting (3.1) with y, and making use of (1.5), we have
n-1 : L1 . y -
92" 95" = 12 @i Ik 2By ")
R ,
D D) 9K k"
that is,
= (2 -
BBy~ Gog * D agmyeapgn;)- ‘ ‘
" Furthermore, transvecting above equation with Ek and using'(l.l) and (1.5), we
find . ‘
_ R
(3.2) Rji_ (n_ 1)g (n 7+ n)n M- -Q.E.D.
Now, we shall prove the next
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THEOREM 3.1. If a P-Sasakian manifold is conformally flat, then the manifold
becomes an SP-Sasakian one and the curvature tensor of the manifold is given by .
(3.3) R
fjin = L5 6B+ D50y, - 9495
-n—_—z— (n-—z + n) (gyyn N = G 95, - gkinjnh)-
Especially, when R = -n(n-1), the manifold is of constant curvature -1.

PROOF. We assume that a P-Sasakian manifold is conformally flat, then from
the Lemma 3.1 the manifold is an n-Einstein one. So, substituting (3.2) into
(3.1), we obtain (3.3). A

Differentiating (3.2) covariantly and making use of (1.4), we have

-1 1 R
Visr™ g 955V - 7o N0y B-GI + m) (g ngr 4,
) 1 R
Vs n-l 9xi' 5 7 MgV R- G+ ) (Gpn, + dsem)
from which follows
.
B8 Riy - VR = ag @R - 6B s TR - VR

= (ﬁ n) (¢kinj - j,l:nk) .

On the other hand, since the conformal curvature tensor ijih vanishes we

have
ho_
from which follows
a _
Vaiji =0 ,
that is, when »>3,

When »=3, the equation (3.5) is the COIldlthIl for the manifold to be con-
formally flat.
It follows from (3.4) and (3.5) that

(3.6) (g A R R). (n N VR ~Tyn V. R} + {r#n(n- 1)}(¢k =0;M E
Transvecting (3.6) with F, £* and using (1.1), we have
_ a
(3.7) VR = nEV R B ’
Contraction (3.6) with ¢'° gives by virtue of (1.1) and (3.7)
(3.8) VR = -2 H v wyomy, .
Substituting (3.8) into (3.6), we get

- % + n)¢(g le gktn ) = {R + Tl(n-l)}(ﬂﬁkinj- ‘bjink)’
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from which follows by contraction with 5‘7

Thus, we find either

(3.9) R=-n(n-1)
or . :

=4

(3-10) by = 57 Gpgm M)
First, we consider the case of (3.9). Substituting (3.9) into (3.3), we get
(3-11) Rkj’ih = -(gj’igkh - gkigjh)’ ’- . .
that is, the manifold is of constant curvature —1. And therefore, we find from
the Theorem 2.4 that the manifold is an SP-Sasakian one.

Second, we consider the case of (3.10). Contracting (3.10) with ¢J.k and
making use of (1.1) and (1.2), we get

- =%

(3'12) gj' ﬂjni n_l ¢ji'

It follows from (3.10) and (3.12) that

%~ -DHg 4- non) = 0,

from which
¢$=-(n-1).
Thus we find
®;p =~ 955 ¥ NN
which is the condition for the manifold to be sP-Sasakian. Q.E.D.

REMARK. If we make use of (1.6) instead of (3.5) in the proof of the
Theorem 3.1, after all we find either

(3.13) R = (n-1)(n-4) :
or the manifold is an SP-Sasakian manifold. However, we can show that the case
of (3.13) does not occur as follows: ' '

Substituting (3.13) into (3.6), we have 4 ~

« q’ki“j - ¢ji"k =0 .
Contracting above equation with ¢k?‘ and using (1.1), we get
(= - l)nj =0

b4

which is inconsistent with our assumption that the vector n; is a wnit vector.:
This gives another proof of the Theorem 3.1.

In a conformally flat P-Sasakian manifold, we find from (3.8) that the
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scalar curvature R is a function of n alone. where n; = gg—, . ..'Therefore, the

scalar curvature R is a constant along the hypersurface n(x) =constant.
Concerning the case when the scalar curvature is & constant in the whole manifold,
we have the following

THEOREM 3.2. If a conformally flat P-Sasakian manifold has a non-zero -
constant scalar curvature, the manifold is of constant curvature. ’

PROOF. We assume that a conformally flat P- Sasak1an manlfold has a non-zero
constant scalar curvature. Then from (3. 6) we have
Rl = DYn o) = 0

from which follows
R=- n(n - 1) , N
Thus, from the Theorem 3.1 the manifold is of constant curvature S ‘ Q.E.D.
In an SP-Sasakian manifold, from the definition we have v ‘

ho_ h h
Vig - = 67: "'TI,L-E > ‘ ]
from which we find that the Eh is a concircular vector field.

On the other hand, one of the present authors studied subprojective manifolds
[1]. Making use of his theorem and Theorem 3.1, we have the following

THEOREM 3.3. A conformally flat P-Sasakian manifold is a subprojective one
G5 3. S e e
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