ON THE CONTINUOUS AND THE COMPACT PSEUDO-OPEN MAPPINGS

Tamezo MASUDA and Yoshitomo MATSUO

(Received October 20, 1981)

§1. Introduction.

Let $f: X \longrightarrow Y$ be a continuous mapping onto Y. If $\mathscr D$ is a discrete collection of Y, then $\{f^{-1}(d): d \in \mathscr D\}$ is the discrete collection of X. (Theorem 1) As a mutually exclusive open collection of a separable space is a countable one, a normal space that can be expressed as a continuous image of a separable collectionwise normal space is the collectionwise normal space. (Theorem 2) Ernest, Michael 3 has prouved that each open covering G of a pointwise paracompact collectionwise normal space X has a locally finite open covering of X which refines G. With this results a pointwise paracompact normal space that can be expressed as a compact space. (Theorem 3) A regular screenable space that can be expressed as a continuous image of a separable space is the pointwise paracompact normal space. (Theorem 4) A pointwise paracompact normal screenable T_1 space is paracompact. With this results a normal screenable space that can be expressed as a compact pseudo-open image of a Hausdorff separable space is a paracompact space.

§2. Definition

- 1. A mapping $f: X \longrightarrow Y$ is continuous, if the inverse of each open set is open.
- 2. A continuous mapping $f: X \longrightarrow Y$ is said to be pseudo-open, if for any point y and any neighbourhood U of its pre-image $f^{-1}(y)$, Int f(U) (the interior of f(U)) contains y.
- 3. A mapping $f: X \longrightarrow Y$ is said to be compact, if for any point y, $f^{-1}(y)$ is compact.
- 4. A collection D of X is said to be discrete, if for any subcollection D_1 of D, $\{\overline{d}: d \in D_1\}$ is a mutually exclusive collection and $\cup \{\overline{d}: d \in D_1\}$ is closed.
- 5. A space X is said to be pointwise paracompact, if each open covering G of X has a point finite open covering of X which refines G.

T. MASUDA AND Y. MATSUO

- 6. A space X is said to be screenable, if for any open covering H of X, there exists a countable mutually exclusive open collections H_1, H_2, \dots , such that $\sum_{n \in \mathbb{N}} H_n$ refines H and covers X.
- 7. The open covering G_1 , G_2 ,...., of X are said to be developments of X, if for any integer n, $G_n > G_{n+1}$ and for any point p and any neighboarhood U of p, there exists an integer m such as $G_m(p) \subset U$. This space X is said to be a developable space.
- 8. A space X is said to be collectionwise normal, if for any discrete collection $\{d_{\alpha}^{}\}_{\alpha\in\Lambda}$, there exists a mutually exclusive open collection $\{U_{\alpha}^{}\}_{\alpha\in\Lambda}$ such that for any α of Λ , $d_{\alpha}\subset U_{\alpha}$.
- 9. A space X is said to be F_{σ} -screenable, if for any open covering G, there exists a countable discrete collections D_1 , D_2 ,...., such that $\sum_{n \in \mathbb{N}} D_n$ covers X and $\sum_{n \in \mathbb{N}} \{\overline{d} : d \in D_n\} < G$.
- 10. Let X be a developable space. A compact pseudo-open mapping $f: X \longrightarrow Y$ is said to be a developable mapping (metrizable mapping), if for any point y of Y and any open set V containing y, there exists an integer n such that if p is a point of Y and $G_n(f^{-1}(p)) \cap f^{-1}(y) \neq \emptyset$, then Int $f(G_n(f^{-1}(p))) \subset V$ $(f(G_n(f^{-1}(p))) \subset V)$.

§3. Theorems

THEOREM 1. Let $f: X \longrightarrow Y$ be a continuous mapping onto Y. If $\{d_i\}_{i \in \Lambda}$ is a discrete collection of Y, then $\{f^{-1}(d_i)\}_{i \in \Lambda}$ is a discrete collection of X.

PROOF. As f is continuous, $f^{-1}(\overline{d}_i)$ is a closed set. Hence $\overline{f^{-1}(d_i)} \cap f^{-1}(\overline{d}_i)$. For two members d_i , d_j of $\{d_i\}_{i \in \Lambda}$, $\overline{d_i} \cap \overline{d_j} = \emptyset$. Hence $f^{-1}(\overline{d}_i) \cap f^{-1}(\overline{d}_i) = \emptyset$. Suppose $\bigcup_{i \in \Lambda'} \left\{ \overline{f^{-1}(d_i)} \right\}$ ($\Lambda' \subset \Lambda$) is not closed set. There exists a point $x \in X$ such that $x \in \bigcup_{i \in \Lambda'} \left\{ \overline{f^{-1}(d_i)} \right\}$ and each open set U containing x intersects $\bigcup_{i \in \Lambda'} \left\{ \overline{f^{-1}(d_i)} \right\}$. Let f(x) = y. If $y \in \bigcup_{i \in \Lambda'} \left\{ \overline{d_i} \right\}$, there exists an open set U containing Y and $U \cap (\bigcup_{i \in \Lambda'} \left\{ \overline{d_i} \right\}) = \emptyset$. Hence $f^{-1}(U)$ containing X dose not intersect $\bigcup_{i \in \Lambda'} \left\{ \overline{f^{-1}(d_i)} \right\}$. If $Y \in \overline{d_j}$ ($J \in \Lambda'$), there exists an open set V such that $Y \in V$ and $Y \cap (\bigcup_{i \in \Lambda'} \left\{ \overline{d_i} \right\}) = \emptyset$. Hence $f^{-1}(V)$ containing X dose

not intersect $\bigcup_{i \in \Lambda' - j} \left\{ \overline{f^{-1}(d_i)} \right\}$. Let $W = X - \overline{f^{-1}(d_j)}$. $f^{-1}(V) \cap W$ is an open set containing x and dose not intersect $\bigcup_{i \in \Lambda'} \left\{ \overline{f^{-1}(d_i)} \right\}$. By this contreadiction, $\bigcup_{i \in \Lambda'} \left\{ \overline{f^{-1}(d_i)} \right\}$ is a closed set. Hence $\left\{ f^{-1}(d_i) \right\}_{i \in \Lambda}$ is a discrete collection of X.

THEOREM 2. Let $f: X \longrightarrow Y$ be a continuous mapping from X onto normal space Y. If X is a collectionwise normal separable space, then Y is a collectionwise normal separable space.

PROOF. It is obvious that Y is separable.

Let $\{d_i\}_{i\in\Lambda}$ is a discrete collection of Y. By theorem 1, $\{f^{-1}(d_i)\}_{i\in\Lambda}$ is a discrete collection of X. As X is a collectionwise normal space, there exists a mutually exclusive open collection $\{U_i\}_{i\in\Lambda}$ such that for each $i\in\Lambda$, $f^{-1}(d_i) \cap U_i$. As X is separable, $\{U_i\}_{i\in\Lambda}$ is a countable collection. Hence, $\{d_i\}_{i\in\Lambda}$ is a countable collection. Then $\{\overline{d}_i\}_{i\in\Lambda}$ is a countable closed discrete collection. As Y is a normal space, there exists mutually exclusive open collection $\{V_i\}_{i\in\Lambda}$ such that for each $i\in\Lambda$, $d_i \cap \overline{d_i} \cap V_i$. Hence Y is a collectionwise normal separable space.

Every point-finite open covering G of a collectionwise normal space S has a locally finite open covering of S which refines G. $\boxed{2}$

THEOREM 3. Let $f:X \longrightarrow Y$ be a compact pseudo-open mapping onto a pointwise paracompact normal space Y. If X is a collectionwise normal separable T_1 space, then Y is a paracompact separable space.

PROOF. Let p and q are points of Y. As X is a Hausdorff space and $f^{-1}(p)$ and $f^{-1}(q)$ are compact sets, $f^{-1}(p)$ and $f^{-1}(q)$ are closed sets and $f^{-1}(p) \cap f^{-1}(q) = \emptyset$. Let $U = X \cap f^{-1}(q)$. Then $p \in \text{Int } f(U)$ and $q \in \text{Int } f(U)$. Hence Y is a T_1 space. By theorem 2, Y is a collectionwise normal separable space.

Hence Y is a pointwise paracompact collectionwise normal separable T_1 space. Hence Y is a paracompact separable space.

THEOREM 4. Let $f: X \longrightarrow Y$ be a continuous mapping onto a regular screenable space Y. If X is a sparable space, then Y is a pointwise paracompact normal screenable space.

T. MASUDA AND Y. MATSUO

PROOF. Let G is an open covering of Y. As Y is a regular space, for each point y of Y there exists an open set U containing y and there is an open set V of G and $\overline{U}_y \subset V$. Let $H = \{U_y\}_{y \in Y}$.

As Y is a screenable space there exist mutually exclusive open collections K_i $(i=1,2,\cdots)$ each of which refines H and $\sum_{i\in N}K_i$ covers Y. For each integer i and each $k_1\in K_i$, $k_2\in K_i$, $f^{-1}(k_1)\cap f^{-1}(k_2)=\phi$. As X is a separable space, for each integer i $\{f^{-1}(k):k\in K_i\}$ is a countable open collection. Hence $\sum_{i\in N}K_i$ is a countable open collection which covers Y. Y is a regular space and each open covering G of Y has a countable open covering of Y which refines G. Hence Y is a normal space.

Let $\sum_{i \in \mathbb{N}} K_i = \{W_1, W_2, \dots\}$. For each W_i , there is an open set $G_i \in G$ such as $\overline{W}_i \in G_i$.

Let $M_1 = G_1$, $M_i = G_i \sim \bigcup_{j=1}^{i-1} \overline{W}_j$ $(2 \le i)$. $\{M_i\}_{i \in N}$ is an open covering of Y and each point p of Y is contained only finite member of $\{M_i\}_{i \in N}$. Hence Y is a pointwise paracompact normal screenable space.

A space X is a paracompact space if and only if X is a pointwise paracompact normal screenable T_1 space. $\boxed{3}$

THEOREM 5. Let $X \longrightarrow Y$ be a compact pseudo-open mapping onto a regular screenable space Y. If X is a Hausdorff separable space, then Y is a paracompact space.

PROOF. By theorem 3, Y is a T_1 space. By theorem 4, Y is a normal pointwise paracompact space. Hence Y is a normal screenable pointwise paracompact T_1 space. By $\boxed{3}$, Y is a paracompact space. \blacksquare

Let X be a Hausdorff developable space and Y is a Topological space. If $f: X \longrightarrow Y$ is a developable mapping onto Y, then Y is a developable T_1 space.

4 If f is a metrizable mapping onto Y, then Y is metrizable. 4

THEOREM 6. Let $f: X \longrightarrow Y$ be a developable mapping onto a regular screenable space Y. If X is a Hausdorff separable developable space, then Y is metrizable.

CONTINUOUS, COMPACT PSEUDO-OPEN MAPPINGS

PROOF. By theorem $\boxed{4}$, Y is a developable T_1 space. By theorem 4, Y is a normal space. Hence Y is a normal screenable developable T_1 space. Then Y is metriable. $\boxed{1}$

COROLLARY 1. Let $f: X \longrightarrow Y$ be a compact pseudo-open mapping onto a normal F_{σ} -screenable space Y. If X is a separable collectionwise normal T_{1} space, then Y is a paracompact space.

COROLLARY 2. Let $f: X \longrightarrow Y$ be a continuous mapping onto a normal Moore space Y. If X is a separable collectionwise normal space, then Y is metrizable.

COROLLARY 3. Let $f: X \longrightarrow Y$ be a continuous mapping onto a screenable Moore space Y. If X is a separable space, then Y is metrizable.

COROLLARY 4. Let $f: X \longrightarrow Y$ be a developable mapping onto a screenable space Y. If X is a separable Hausdorff developable space, then Y is metrizable.

REFERENCES

- [1] R. H. Bing: Metrization of topological space S. Can. J. Math. 3(1951). 175-186.
- [2] Ernest Michael: Point-finite and locally finite covering S. Can. J. Math. 7(1955). 275-279.
- [3] T. Masuda: On the paracompactness of pointwise paracompact, normal and screeable spaces. Mathematics Science University of Tokyo. 17 vol. (1975) 1-3.
- [4] T. Masuda and Y. Matsuo: On the mappings from the developable spaces onto some spaces. To appear.

SCIENCE UNIVERSITY OF TOKYO