FURTHER ANALYSIS OF THE METABOLIC DATA FROM THE VIEWPOINT OF THE ALMOST-ONE PARAMETER HYPOTHESIS

Motosaburo MASUYAMA, Hiroyasu OGATA; Nahoko KANIWA; and Nobuo AOYAGI*

(Received March 2, 1984)

According to the first order kinetics, the logarithm of the serum concentration of a drug for the i-th subject, say $X_i(t) = \ln C_i(t)$, administered at the instant t = 0, satisfies a linear equation

(1)
$$X_{i}(t) = X_{i}(0) - k_{i}t$$
,

if the initial phase of the absorption is neglected, where \boldsymbol{k}_i denotes the rate constant for this subject.

Then taking the mean with respect to i, we obtain the equation for the mean, or the reference subject, namely

(2)
$$X.(t) = X.(0) - k.t.$$

Eliminating t, we get the following formula:

(3)
$$X_{i}(t) = a_{i} + b_{i}X.(t),$$

where we set

(4)
$$a_i = X_i(0) - b_i X_i(0)$$
, and $b_i = k_i / k$.

Then the variance of $X_{i}(t)$ is given by

(5)
$$V_n(t) = V_0 + 2U_{ab}X.(t) + V_bX.^2(t),$$

where V_a , V_b , and U_{ab} denote the variance of a_i , that of b_i , and the covariance of a_i and b_i respectively, or

(6)
$$V_{x}(t) = [s_{a} - s_{b}X.(t)]^{2} + 2U_{ab}(1 + \rho)X.(t)$$

where s_a , s_b and ρ denote the standard deviation (SD) of a_i , that of b_i , and the correlation coefficient between a_i and b_i respectively. Note that we have

(7)
$$\rho = U_{ab}/(V_a V_b)^{1/2}.$$

Now, according to the almost-one parameter hypothesis, ρ is almost equal to (-1), so that the SD of $X_{\sigma}(t)$ is given by

(8)
$$s_r(t) = s_q - s_h X.(t)$$

approximately.

Since ρ is not exactly equal to minus one, the last formula has a small bias. Let us estimate it.

Now, let us set

(9)
$$d = s_a - s_b X.(t)$$

and

$$(10) V_r(t) = d^2 + \varepsilon,$$

and assume that $\epsilon/d^2 << 1$. Then we have

(11)
$$s_{m}(t) = d + \varepsilon/(2d),$$

and the bias is approximately given by

(12)
$$\varepsilon/(2d) = U_{ab}(1+\rho)X.(t)/d$$

$$\dot{=} - s_{c}s_{h}(1+\rho)/CV_{m}(t),$$

where $CV_{m}(t)$ denotes the coefficient of variation (CV) of $X_{i}(t)$.

Since $X_i(t)$ is a monotone decreasing function of t, and $s_x(t)$ is a monotone increasing function of t, $CV_x(t)$ is a monotone increasing function of t. Hence the bias is a monotone decreasing function of t, which means that s_t is overestimated, when $X_i(t)$ is positive and the bias is neglected.

Naturally, if the sample size is sufficiently large, we may estimate at first V_b in the formula (5) and then we may compute the square root of this estimate. However, the sample size n of available data is usually one dozen or so and the regression estimate of V_b becomes sometimes negative.

The following data (Tables 1 \sim 4) were obtained to study the bioavailability of commercial products, so that the data are classified according to manufacturers and others.

It is preferable to classify the data according to the magnitude of T_{max} to fit the model (1). However, to make the sample size n larger than 10, two, or three classes are pooled, if necessary.

Two examples are given in the previous papers [1,2], we shall add five more examples. Note that in the following examples the common logarithm is used, except in the last example. Since b_i is dimensionless by definition, the relation $s_b = CV \ of \ k_i$ is valid in the common logarithmic scale.

1. Indomethacin. 25mg per os. Table 1 and Figure 1.

$$T_{max} = 1 \sim 3^{hrs}$$
. $n = 17$. $s_x(t) = 0.118 - 0.0705 \text{ X.}(t)$, $3 \le t \le 24$,

The regression estimate of V_h is negative.

2. Naldixic acid. 250mg per os. Table 2 and Figure 2.

$$T_{max} = 1 \text{ or } 2^{hrs}.$$
 $n = 16.$ $s_x(t) = 0.241 - 0.282 \text{ X.}(t),$ $3 \le t \le 8,$ $+0.007 +0.019$

The regression estimate of V_h is equal to $(0.323)^2$.

3. Metronidazole. 250mg per os. Table 3 and Figure 3.

$$T_{max} = 2 \sim 3^{hrs}$$
. $n = 12$. $s_x(t) = 0.177 - 0.188 \text{ X.}(t)$, $6 \le t \le 32$, $\pm 0.009 \pm 0.022$

The regression estimate of V_b is equal to $(0.305)^2$ and the CV obtained from the regression estimates of k_i 's is 0.256.

4. Fulfenamic acid. 100mg per os. Table 4 [3] and Figure 4.

$$T_{max} = 1.5^{hrs}$$
. $n = 30$. $s_x(t) = 0.161 - 0.079 \text{ X.}(t)$, $2.5 \le t \le 8$, $\pm 0.009 \pm 0.018$

In this case the regression estimate of V_h is negative.

5. Amikaein. 200mg intramuscular injection. Table 5 [4] and Figure 5. $t = 1 \sim 4^{hrs}$. n = 12.

$$s_x(t) = 0.164 - 0.119 \text{ X.}(t),$$

 $\pm 0.009 \pm 0.011$

We have $\rho(a_i, b_i) = -0.988$. The CV obtained directly from the regression estimates of k_i 's is 0.127.

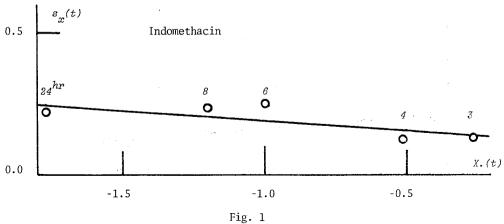
The authors are grateful to Dr. H. Matsuzaki. The original data for the last example were obtained through her.

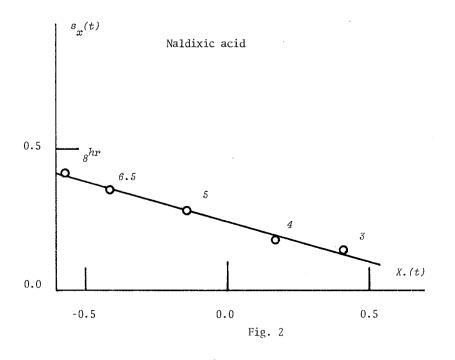
	10	9	∞	7	6	ហ	4	3	- 2	B.1	10	9	∞	7		ر.	4	3	2	A.1	Subj.
	17447	13872	5272	8069	3382	4473	8996	20458	4855	8069	2798	-2765	-1584	4815	1574	-183	3116	-2967	2007	1035	0.5hr
	12441	757	1463	6091	1925	2111	1215	15229	1688	5317	-4814	-3434	-2589	2924	-1232	-599	-4065	-5196	-626	1249	F1
	9101	1904	835	7033	-1106	315	-1492	13188	4365	315	-1517	1163	-484	1249	-512	-1156	1707	-569	-2817	-1973	<i>t</i> >
	6253	3152	4711	4023	1904	1851	1146	6421			2218	4895	3224	835	2328	2111	4157	2048	635	2823	ೲ
	4737	4622	5186	5935	4855	4486	3768	5452	11612		4473	8508	5072.12441	4342	5361	5143	6778	4191	2798	5100	4
	4157	9469	11079	16198	12007	8069	8996	6655	13565	10315	8996	10969	12441	9666	8996	9431	12218	10315	4698	10315	6
	7055	12076 16778	14089	13010	12076	9706	12441	7545	18861		11487	10915	7122	14202	11612	13188	14089	10362	7620	14437	8
Table 1	14318	16778	15229	18239	19586	13979	18239	12924	8	18239	19586	20458	14815	20458	15850	16198	19586	20458	17696	16990	24
(-X)	10	9	8	7	6	5	4	3	2	D.1	10	9	8	7	6	5	4	3	2	C.1	Subj.
× 10 ⁴	8729	4660	3645	19586	10362	10088	15686	10362	8	11249	8268	6478	4056	16778	10044	14815	16778	14089	6861	12676	0.5^{hr}
Indom	4895	3768	2218	20458	8601	5686	5986	8633	15376	6778	2924	2984	1163	13188	4295	6968	13468	8729	3335	8508	1
Indomethacin capsule	915	2161	2291	16198	5498	2725	232	2774	9666	947	1379	680	605	10458	1118	1805	7852	-149	-660	2218	80
capsu	-120 -1035	2269	2441	3778	2048	915	-390	1249	5607	348	-22 .	1765	2441	757	-737	-1106	4295	665	1746	1824	3
le	-1035	4486	3830	757	1046	835	1046	17	1113	3893	-1303	3862	3410	3768	2218	-952	1180	5017	2351	5143	4
	5406	8069	9431	5986	6198	6478	6198	4295	1373	8894	3872	11487	7905	8697	7670	5114	4260	9914	9101	12518	0,
	10706	12366	12924	9586	11612	10915	10362	9031	8794	8097	8416	12518	12076	9788	10969	9208	8268	11487	9666	14815	00
	10706 25229	12366 15686	12924 20458	15850	11612 18539	10915 16383	10362 16576	9031 17696	8794 15086	8097 18239	8416 13768	12518 19208	12076 14437	9788 16990	10969 18239	9208 14089	8268 18539	11487 16778	9666 16990	14815 19208	24

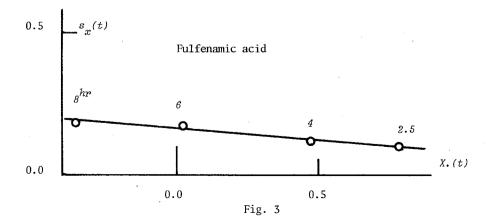
ıbj.	0.5 hr	1	62	6.3	4	જ	6.5	80	Subj.	0.5hr	7	©	п	41	5	6.5	80
	3464	6572	5488	4176	237	-4486	-9830-12291	12291	C.1	-5784	1082	370	4800	1931 -	-1475	-7620-10223	10223
	4878	6474	9297	5303	1065	-1904	-3585 -5100	-5100	2	-1169	1781	2753	2198	1486	-675	-2848 -2487	-2487
	1620	2420	7126	4929	1303	1713	-4535 -	-5031	3	3353	7124	6471	4023	1129	-942	-3045	-4353
	2894	086	3422	1984	-1457	- 8097	-13565-16990	06691	4	8	8	-372	5079	3111	-975	-8013-16990	06691
	9309	7911	5542	1248	-1979	-5498	-7100	8	2	1781	4260	3233	2398	3389	3446	-1198	-2495
	7452	6901	8462	5544	2601	314	- 2090 -	-2684	9	-18239	-6925	1951	3115	4526	5041	405	-3179
	8336	7964	7902	8238	3214	-22	-2636 -	-3279	7	-61	453	4050	3359	3541	4670	-731	-5560
	7946	1608	5156	849	-2321	-4306	-6162	8	8	8	-4962	-3468	-2418	4993	4755	1139	-3605
	7023	8884	7284	4014	1052	-1427	-3536 -	-5638	6	8	-2441	-545	1717	584	2574	1443 .	-5622
	7211	8134	6621	4628	1035	-3197	- 8969-	-7595	10	4062	3438	4639	8420	4254	821	48	170
	2964	3788	4002	2648	3073	438	-3851 -5214	-5214	D.1	8	-6799	-3036	-2480	2279	3391	-1180	-5817
	2251	2665	6872	7121	5408	2639	099	-325	2	-904	286	3908	5501	6005	3122	934	-615
	1364	2299	4464	5204	1752	-2069	-6737-14559	14559	23	-5031	- 3990	-3197	2041	2693	4739	2562	299
	-3134	-3344	3111	2804	2548	3698	-1818 -1637	-1637	4	8	8	-10177	-8665	98	3090	-1296	-4881
	-650	418	4630	5266	5112	2923	-501 -	-4449	5	-1325	-580	4198	4661	3012	2227	-928	-2306
	3530	4891	6556	6422	5623	3892	-1481 -	-6253	9	-5003	-1494	2598	4211	4195	4925	3749	2502
	871	5814	6662	5533	4396	2345	-1605 -	-2291	7	-443	1335	2049	4423	2629	5263	3854	2204
	286	2000	6823	3126	1590	-273	-283 -	-1481	œ	-3298	4153	3806	2400	-458	-2620	-5784	-8697
	741	5806	0929	5691	2767	1116	-1018 -	-2211	6	-2676	2360	5373	4288	2266	366	-1593	-3028
	-2041	-1355	-2041	7543	5579	1556	-3161 -4609	-4609	10	2749	-1361	-921	4943	5871	4118	492	199

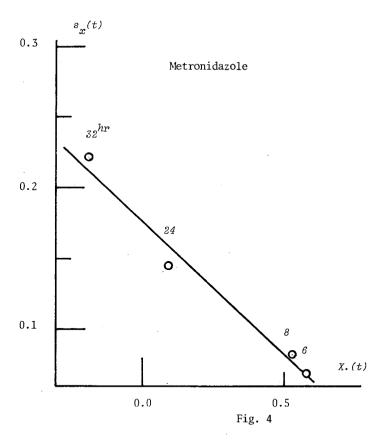
Table 2 $X \times 10^4$ Naldixic acid tablet

Subj.	0.75 ^{hr}	1.5	2.5	4.0	6.0	8.0
A.1	8028	10966	8109	2577	-223	-6021
2	<i>10626</i>	8965	4955	1584	-6021	- <i>3468</i>
3	10500	10821	7050	6 14 9	1931	-2676
4	9652	<i>9777</i>	6920	2833	-2366	-3768
5	-2076	4425	11937	7520	3483	-915
6	5786	9217	11059	7505	1335	-6576
7	8831	9504	7427	3181	-1249	-5086
8	5775	9253	9196	5011	-132	-5528
9	<i>11679</i>	9238	6284	3636	-915	-2366
10	.6618	6222	6972	4150	-1192	-3979
11	11926	10298	7931	4249	934	-555
12	8401	<i>9586</i>	7218	5490	828	-3279
13	9232	9850	7474	3636	828	-3468
14	7388	11565	8363	4914	294	-2291
15	<i>9754</i>	7076	6712	7832	2014	-1612
C.1	4166	7126	<i>85 19</i>	5694	3243	-362
2	<i>8904</i>	6767	6875	2765	899	-2757
3	5694	7789	5944	6435	4757	-410
4	5198	9969	8357	4014	-1367	-4815
5	<i>10781</i>	9528	7945	4116	-44	-4437
6	- 3279	253	1847	7152	<i>7404</i>	1492
7	-4089	9112	8500	5105	531	-4089
8	5105	11504	9315	6325	1732	-2676
9	8000	10382	8537	4742	2227	-1135
10 11 12	-10969 -13979	3579 6776 9227	5611 10103 10103	8062 6513 8704	1875 2227 3838	-4318 -605 -1249
13 14 15	-1871 11183 -1675	-5376 9304 <i>11297</i>	<i>7466</i> 6160 8370	6702 1987 4728	2577 -2147 531	-132 -2147
E.1	∞	4983	9562	7372	4548	2577
2	∞	6222	9633	5717	-177	-2366
3	7612	7284	6785	5809	3483	492
4	-757	8129	8351	5366	-315	-4089
5	11884	9680	7505	5527	969	-1938
6	∞	334	9952	8585	4728	1847
7	-5086	7846	8621	5263	755	-1192
8	∞	-6778	1584	5999	<i>7084</i>	2095
9	8762	<i>8904</i>	5999	3711	531	-2147
10 11 12	-15229 -15229 10261	-5528 11106	∞ <i>11661</i> 9703	6415 7760 6053	7642 3160 2788	1492 -2076 -2076
13	3766	8142	8162	5132	1644	-862
14	<i>8531</i>	8102	5635	2553	-1024	-7447
15	10615	<i>10752</i>	8287	5172	531	-1938


Table 3a $X \times 10^4$ Fulfenamic acid capsule


Subj.	0.75 ^{hr}	1.5	2.5	4.0	6.0	8.0
B.1	2201	9671	9058	5366	374	-2007
2	<i>10554</i>	8482	5658	2014	-3979	-10000
3	9823	9731	7267	5119	1644	-3010
4 5 6	3927 8055 3838	8000 10434 5340	6571 8055 <i>5775</i>	1335 4409 4330	-4815 294 <i>4378</i>	-2076 -362
7 8 9	-7447 6656	10453 -1549 11183	8325 5658 7853	4900 7752 4518	1967 5740 128	-3188 -555 -5376
10	8716	7917	7059	4216	-1079	-4437
11	-12218	<i>7896</i>	7738	4579	-1487	-7959
12	8837	10137	9063	6551	755	-4949
13	7551	9345	7396	4065	-555	-4815
14	7853	9523	6749	3032	-2218	-3872
15	<i>10000</i>	8388	5563	1644	-862	-7212
D.1	-5229	7604	7973	6628	3324	-1135
2	-3188	7110	6656	4983	374	-4559
3	9800	10013	7723	5403	128	-3768
4	7832	8814	6085	2601	-2007	-5086
5	<i>9987</i>	9106	7308	5694	1206	-3565
6	8299	8814	8261	6031	1303	-5528
7 8 9	∞ 9571	8681 8235 <i>10069</i>	8698 11345 7642	6191 8470 5514	1673 3820 864	-2007 -555 -2007
10	-10458	43	657 1	<i>7767</i>	3927	531
11	-9208	-2147	<i>9566</i>	8871	5775	1644
12	-7447	6964	10719	8476	4232	-88
13	7566	10035	8585	3838	755	-410
14	<i>11326</i>	9605	7193	4183	294	-1024
15	-5528	-809	<i>9841</i>	8727	4314	1038


Table 3b


σ	4	3	2	BB.1	ъ	4	3	2	BA.1	5	4	3	2	AB.1	2	4	3	2	AA.1	Subj
8	8	8	- 7228	8	-4217	776	-6273	1492	-6847	5765	8135	6522	5709	7577	4102	6711	6940	6154	7401	\cdot 1^{hx}
-3311	3394	-1292	-2877	54	8311	5793	-875	5856	3683	6315	7256	7874	8218	7589	7127	6897	6639	6958	7123	%
5681	3917	4423	2183	4947	8055	6352	7798	6977	7960	5540	6882	6641	7751	7790	7139	5938	7439	6645	7075	c _N
6993	4498	4803	4610	6631	7445	6503	7423	6845	7797	5187	6532	5965	7928	6178	6607	6060	6253	6328	6558	A
5594	3612	7316	7883	6515	6500	4789	6998	6313	5970	4845	6307	5721	6536	6195	4904	5378	5561	5281	5702	63
4917	2749	6431	6846	5860	5945	4323	5541	6137	6234	3425	3583	6142	5467	5399	4473	4893	4701	5457	4732	8
-2387	-3072	1510	725	1646	1450	532	2527	2907	655	-2474	-2744	1516	-559	819	815	822	397	2158	-577	24
-7383	-9477	-1189	-1672	-545	-1572	-2513	1152	958	-3772	-6712	-6203	-1155	-3427	-1653	-2505	-1639	-1966	634	-3634	32
ر. د	4	3	2	DB.1	5	4	3	2	DA.1	5	4	3	2	CB.1	5	4	3	2	CA.1	
5 -3221	4 8	3	2 %	I)B.1 ∞	8	4 403	3	2	DA.1 ∞	8	4	3 -17471	2 8	CB.1 -3925	5 -9948	4 -12358	3	2 %	CA.1 -4467	1^h
5 -3221 -7889	4 *	3 8	2 8 8	•	8	4 403 3549	3	2 8	•	8 &	-9031	3 -17471 -9014	2 8		5 -9948 3550	4 -12358 6390	3 ∞ -20809	2 %		1hr 2
			2 ∞ ∞ ∞	8					8					-3925					-4467	1^{hr} 2 3
-7889	8	8	∞ ∞ −9289	. w -1414	8	3549	732 7842 7	8	. ∞ 3678 6188 <i>6</i>	8	-9031 -4387 -3189	-9014 -3966 -3231	∞ -6625 -3152	-3925 4169 <i>4705</i> 4241	3550	6390	-20809	∞ -4194 -2510	-4467 -2019	8
-7889 ∞ ∞ -2208	» » « -8887	· -8289 -	8	. ∞ -1414 2942	8	3549 5123	732 7842 7	8	. ∞ 3678 6188 <i>6</i>	8	-9031 -4387 -3189	-9014 -3966 -3231	∞ -6625 -3152	-3925 4169 <i>4705</i> 4241	3550 5971 <i>6910</i>	6390 <i>6639</i>	-20809 -3760	∞ -4 <u>1</u> 94 -	-4467 -2019 -899	8
-7889 ∞ ∞ -2208 <i>2337</i>	[∞] [∞] [∞] -8887 -3671	∞ -8289 -5035 4437	∞ ∞ −9289	∞ -1414 2942 <i>7147</i> 4612	8	3549 5123 <i>6789</i>	732 7842 7398 5649		. ∞ 3678 6188 <i>6</i>	∞ ∞ ∞ -52 <i>3754</i>	-9031 -4387 -3189 -1746 50	-9014 -3966 -3231	∞ -6625 -3152 -354	-3925 4169 <i>4705</i> 4241	3550 5971 <i>6910</i>	6390 <i>6639</i> 6271 5343	-20809 -3760 938 1585	∞ -4194 -2510	-4467 -2019 -899 -335 <i>906</i>	2 3 4
-7889 ∞ ∞ -2208 <i>2337</i>	» » « -8887	∞ -8289 -5035 4437	∞		8 8 8 8	3549 5123 <i>6789</i> 5911	732 7842 7398 5649 5944	∞ ∞ ∞ -11427 -8687		» » » <u>-52</u>	-9031 -4387 -3189 -1746 50	-9014 -3966 -3231 -377 <i>2637</i> 1295	∞ -6625 -3152 -354 <i>95</i>	-3925 4169 <i>4705</i> 4241 3639	3550 5971 <i>6910</i> 5828	6390 6639 6271 5343 4983 707	-20809 -3760 938 1585 <i>2007</i>		-4467 -2019 -899 -335 <i>906</i> 408	2 3 4 6

 $X \times 10^4$ Metronidazole sugar-coated pill

			$c^{\mu g/ml}$						
Subj.	0.5 ^h	rs 1	2	3	4	$10^4 k_i$	10 ³ X;(0)	$10^{4}a_{i}$	$10^{4}b_{i}$
i = 1	12.6	11.8	8.7	6.0	3.9	3693	2869	2461	9123
2	10.1	11.6	8.2	5.1	3.2	4338	2921	-1602	10717
3	13.1	12.7	8.6	5.8	3.9	3936	2937	1413	9723
4	13.0	11.8	8.0	4.7	3.4	4265	2896	-1335	10535
5	12.6	12.1	9.2	6.5	4.3	3451	2873	4220	8525
6	11.1	11.2	8.1	5.3	3.5	3914	2835	555	9668
7	11.7	10.4	7.2	4.5	3.2	4006	2747	-983	9896
8	9.5	10.7	7.5	4.7	3.1	4184	2812	-1599	10335
9	10.2	9.8	6.0	3.3	1.9	5519	2857	-10633	13635
10	12.2	12.2	8.6	5.7	3.9	3833	2897	1744	9468
11	9.2	12.1	9.1	6.5	4.2	3511	2880	3860	8673
12	11.2	13.0	9.4	5.9	4.1	3928	2980	1899	9702
					mean	4048	2875	0	10000

Table 5 Amikacin

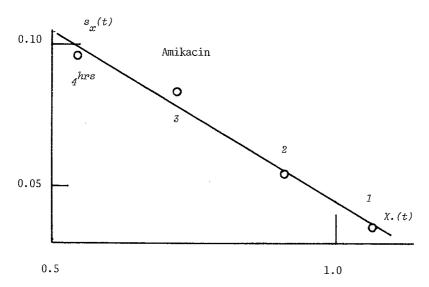


Fig. 5

REFERENCES

- [1] Masuyama, M.(1984): The almost-one parameter hypothesis on the metabolic turnover, TRU Mathematics, 20-1, 1-4.
- [2] Masuyama, M., Ogata, H., and Aoyagi, N.(1984): Individuality of metabolism from the viewpoint of the almost-one parameter hypothesis, ibid., 7-10.
- [3] Niwa, N., Ogata, H., Shibazaki, T., Ejima, A., Watanabe, Y., Motohashi, K., Sasahara, K., Nakajima, E., Morioka, T., and Nitanai, T.(1983):

 The bioavailability of flufenamic acid and its dissolution rate from capsules, Int. J. Clin. Pharmacol. Toxicol., 21, 56-63.
- [4] Saionji, K., Hayashi, Y., Kosakai, N., Kudo, Y., Ota, H., Kawai, T., Adachi, F., Kunii, O., Kataoka, N., Kamidono, S., Ishigami, J., I, N., Tadano, J., and Kumazawa, J.(1983): Fluorescence polarization immuno-assay for the monitoring of aminoglycoside antibiotics level in serum -- Gentamicin, Tobramycin, Amikacin --, Seibutu-siryô Bunseki, 6, No.2, 24-39. (in Japanese with English abstract)

DEPARTMENT OF APPLIED MATHEMATICS SCIENCE UNIVERSITY OF TOKYO

*DIVISION OF DRUGS

NATIONAL INSTITUTE OF HYGIENIC

SCIENCES