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Abstract. In this paper we study the Cauchy problem for the cubic derivative
nonlinear Schrédinger equation involving at least one derivative in the nonlinear
term. We prove the global existence in time of solutions to the Cauchy problem
and construct the modified asymptotics for large values of time.
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81. Introduction

In this paper we study the Cauchy problem for the cubic derivative nonlinear
Schrodinger equation

(L.1) iug + sugy =N, z€R, tER,
' u(0,z) = up, ¢ € R,

where the nonlinear term is

N= 3 (a0 (0)°1 w) (10) w) ((10)* w)
w#0

12,0 ((10)7 u) (10)2 w) (i) w)
a3, ((10)7 ) ((19)7 w) ((10)"* )
a1, (D)7 W) (0)7 ) (D) ),

the coefficients a1 o, a3, a4 € C, a2 € R and the vector w = (w1, ws, w3)
has the components w1y, we, wg = 0,1 such that w # 0. This means that at least
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one derivative is included in the nonlinear term. The linear part of equation
(1.1) consists of the linear Schrédinger operator, while the nonlinearity involves
derivatives of unknown function of the cubic order. Such kinds of equations
appear in many areas of Physics (see [13], [14], [15]). The difficulty in the
study of the global existence in time of solutions to the Cauchy problem (1.1)
is that the cubic nonlinear term of equation (1.1) is critical for large time
values, and it is already known that the usual scattering states do not exist for
derivative nonlinear Schrodinger equation (1.1) with a1 = a3 = a4 =0,
a2 7 0. There are some works (see, [4], [8], [10], [12], [16], [18]) concerning
the large time asymptotics of solutions to the derivative nonlinear Schrodinger
equations with cubic nonlinearities which have the self-conjugate property:
N(e?u) = e N'(u) for all # € R. Recent developments in this direction can
be seen in [9]. In our previous paper [7] we considered the cubic derivative
nonlinear Schrodinger equation without a self-conjugate property in the case,
where the nonlinearity is represented in the form of a full derivative. In [7] we
used the techniques developed in our previous work [5], where we introduced an
appropriate representation of the solution and instead of the operator J = =+
itd, we used the dilation operator Z0; ' = z + 2t0,0; ', where 9y = [*__ du.
In the present paper we are interested in the asymptotic behavior of solutions
to the nonlinear Schrodinger equations with general cubic nonlinearities which
do not have a self-conjugate property and do not have the form of a full
derivative, however the nonlinearities which are in our scope must contain at
least one derivative. In this case the estimates of the operator J which can be
obtained have the growth with time more rapid than v/t and so the operator J
can not be used for obtaining the large time estimates of the solution. Instead
of the operator J we use the operator 7 = x0d, + 2t0; and P = —£0; + 2td;,
which are considered as the first order differential operators and work well for
our problem. We prove the global existence in time of solutions to the Cauchy
problem (1.1) and construct the modified asymptotics for large time.

We denote the linear Schrodinger evolution group U(t)¢ =
L feﬁ(””*y)Zgb(y)dy = Fle 3¢ F¢p, where Fp = ¢ = \/%_w [ e @ p(x)dx

27rit . . . .
denotes the Fourier transform of the function ¢, and the inverse Fourier

transformation F~! is defined by F~'¢ = \/%fe””gqb(f)df. The first-

order differential operator P commutes with the exponent eit€” and the
operator Z commutes with the exponent eie’/ t so they are very useful for
our applications. Note that the operators P and Z are related as follows
T = U (t) F~'PFU (—t), therefore we have ||Z¢||p. = |[PFU (—t) p|lr2. We
denote the usual Lebesgue space L? = {¢ € S'; 4[|, < oo}, where the norm

1/p .
16y = (Jg [¢(@)Pdz) P if 1 < p < oo and llse = ess.sup{|p(z)|;z € R}
if p = oo. For simplicity we write || - || = || - ||]o. Weighted Sobolev space is
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HF = {¢ €8 [[Bllpp = (@) 0)" 8, < oo}, mk €R, 1< p < oo,
() = V1+ 22 are the Japanese brackets. We denote also for simplicity
{2} = |z|/(z), H™F = ng,k and the norm ||¢||;mr = ||@|lm,k2. Different
positive constants we denote by the same letter C.

Now we state the result of this paper.

Theorem 1.1. Let the initial data ug € H>* and the norm |lug|l5, be suf-
ficiently small. Then there exists a unique global solution u of the Cauchy
problem (1.1) such that u € C (R; H3’3). Moreover there exist unique func-
tions Q, W, € L such that the following asymptotics is valid uniformly with
respect to x € R

T iz’
u(t,x) = %Q (?) exp ( 5

(1.2) +0 (¢,

ca(Z) w (2)rec 0 (2)

where a (§) = Z|w\7£0 ag,wé’l“", v E (0, 10*4) .

The result is obtained by estimating the following three norms of the solu-
tion

Y2 2T o

||U||x = |U||10
3
lully = Y (1 7V Hﬂu\lg,,-,o
Jj=0
and
2 3
aly = Y0P S [(P)
“ HZ k:0<> 1,2—k,00 k:O t110,3—k,00
3
+ 30 7 || ,
0 0,3—k,00

where v(t) = FU (—t)u(t), o = 0, A1 = 29, Ay = 407,A3 = 20y + 3, v €
(0, 10*4) . In order to explain our strategy shortly we consider the equation
Tuy + %um = u?uy. In the same spirit as in [5] we apply FU(—t) to both sides
of the equation to get

iv(tp) = FU(—t) (uPug) = FU (— )((Z/{(t).?_lv)2u(t).7-"_1ipv)

1

= 5 / / e o(t, p1)o(t, pa)ipsv(t, ps)dpidps,
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where A = % (p2 —p? —p3 —p%) , P3 = p — p1 — p2. Applying the stationary
phase method we find one stationary point (p1,p2) = (4, %), hence the main
term of the right hand side is

2[00 ()

By the change of variables of integration py = §+y — 2z, po = § —y — 2z we
rewrite the above integral in the form

i—pv (t, B) v (t, B) v (t, B) e 5tr // e_3ity2_itz2dydz
61 3 3 3
_ p 3( p) —ith
= ——=v" (¢, =) e 37 .
6tv/3 3

Thus we have

. 1 _y1, —3ity?—i
th(tap) = ge 3th2 //6 3ity? —itz> (¢ (plaanp?))_(D (§a§’§>>dydz

| N WP “3ity?—itz2 5 (P P P
1. - itp 3ity” —itz (I)(— Y _)d d
(1.3 tgee i [[ e 282 dya,

where @ (p1,p2,p3) = ipsv(t, p1)v(t, p2)v(t, p3). If we prove that the first term
of the right hand side of (1.3) is the remainder term in our function space, we
can get the estimates of the solution in the norm Z. We need Lemmas 2.1 -
2.3 to prove this. In our previous works [5] and [7] we could use the function
space involving the operator J = z + itd, making our proof easier than that
of the present paper. More precisely, we used in [7] the following estimate

1 —litp2// —3ity2—it22( ppp
o q) ) ) - (D (_a PR _>>
‘27re 3 e (p1,p2,p3) 33°3 dydz

5
< O Tullf g lu

oo

1,0°

However this estimate does not work for the problem under consideration since
the norm || J u||% o grows in time fast enough. In order to prove the estimates
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of solutions in the norm X we use the formula

u(t,z) = Ut)F o(t,p) = F e 5P u(t, p)

it 2 1 2 it (p

2Ty (¢ p)dp = e [e 2

7l 7

Lo [ 509700, p)d
ey e 2t e t v 5
V2r pep

.2 .
L Lesm [teny _e——w / / —girty?—irts?
V2 0

p

X (‘I’ (p1,p2,p3) — @ (— '3 —>>dyd2d7dp

1 ia? 7t g i ppp dr
_ 2 p qu) )—d
\/—2473”/ t / (555) T

The second and third terms of the right hand side of the above representation
are considered in Lemma 2.6 and Lemma 2.5, respectively. To understand
better the role of Lemmas given in Section 2 we give now the correspond-
ing formulas for the other three types of nonlinearities, for example we take
WU, WTUg, WUT,. Applying the operator FU(—t) we obtain

ol v(t,p)dp

FU(—1) (wur) = o | [ S5m0t p)ipsot. )i dps,
where A = % (p +p? — p%) , P3 = p+p1—ps. The stationary point is now
(p1,p2) = (p,p), hence by the change of the variables p; = p—2z, po = p—y—=2
we get

FU(—1) (Tuug)
1 o
= o [ i o)y

1 —ity?+itz? (T .
— gl EpP )+ 5 [ [ (STt pipa(t )
2t 27
—ip v (t,p)[" v (t,p) ) dydz,

whence we see that in order to treat the nonlinearity iuuu, we have to intro-
duce the phase function exp ( flt —id= |v (T,p)|2 dT) which helps us to cancel

the first summand in the right-hand side of the above formula. The nonlinear-
ities W, Uu, are considered in the same manner as u?u, and do not involve
any divergent term in their asymptotic representations. We conclude this sec-
tion by summarizing the content of each Section. In Section 2 we prove some
preliminary estimates. We need Lemmas 2.1 -2.3 to estimate the solution in
the norm Z. We use Lemmas 2.4-2.6 to estimate the solution in the norm X.
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To overcome another difficulty - the so-called derivative loss in the derivative
nonlinear Schrodinger equation we follow the idea of Doi [2]. In Section 3 we
describe the smoothing property of the linear Schrodinger evolution group and
then by virtue of the usual energy type estimates involving special operator
S defined in Section 3 we estimate the solution in the norm Y. Section 4 is
devoted to the proof of Theorem 1.1.

§2. Lemmas

In the next lemma we estimate the following integral [ e"AD (&) dydz, where
52(51762763)7 with 61 = $+y_za 52 =T —Yy—z 53 = IL‘+O’Z, A=
ay® + B2%, here the constants «, 3,0 € R\{0},0 # —1, so that &,&,,&;
are linearly independent; the function ® (&) = A (&) #(&1)v (&) (€3), A(E) =

neWl W3 W3
m%, the powers w1, wo, w3 take the values 0 or 1 with the condition

wy +wy +wsz # 0, the powers 01, 02, 03 are such that max (0,n —1) <o, <2
with the condition 01 409 +03 =n+3, n =0,1,2,3. Also we denote £, =

1—y
(,,) . We denote [[¢la = 9110, 00 + 161700 (IPBlc +t 6]l 1 )

Lemma 2.1. We have the following estimate

H// ™ (D (&) — B (&) dydz|| < CMET3?

o0
for all t > 1, where M = ||¢]g ¥l ¢ls 7 € (0,107).

Proof. First we integrate by parts with respect to y using the identity

A 9 A
(1) = Y (™)

where Y = (1 + 2iozty2)_1 , we get

(2.2) / / &N (B (£) — B (&) dydz = I + T + I,
where

I =Ct / / ¢ (B (8) — B (€)Y dyd,

I=— / / ¢ (&) yVdydz and I3 = / / "B, (&) yVdydz.
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In the first integral I; we now integrate by parts with respect to z, using the
identity ') = Z 4 o (ze““\) where Z = (1+ 27Jﬁtz2)71 , we get

Il — Ct2 // ztA ({0))y2y2z222dydz
(2.3) +Ct // em\ <I>'§1 (&) + @, () — 0P, (§)> y* V2?2 Zdydz.

Via the operator P = —£0¢ + 2t0; we write d¢p = —% (P — 2tdy) ¢, there-
- 1=y -
fore [0t ()] < C (I¢I™ (Pgl +2t108]))  |0es" < C1e] " |éllg, whence

denoting &, =y, &5 = z and {y} = |y| / (y) we get for t > 1

17|00
< Csup/ |D (& |<ty ) ! <tzz>71 dydz
TER
+C§2§//Z‘@§ ‘|z| ty?) tz> 1dydz
(1+{en (&) P {a!
< CMt7*3/2 dyd
= rch // TGN T &N T EN &)

jam= IIER

1
<omMp=Po TN, // el 1{5]}7 Wz -3,

En)
1<l<m<5 1<k<j<5

where we have used the estimates

{ETEY T Y e Y g ey

1<k<iI<5
for j =1,2,3, m=1,2,3,4,5, and
() (€7 6 T e T < O (e THED T (g T ) T ) T e )

for 1 <k <l <m <5 so that

<x>n C y—2 v—2
T G G e e SO T e

for 1 <1<5,k>3.
Now let us estimate the second integral I, For the case a4+ 8 # 0 we make
a change of variables of integration y = 6 —n and z = —a{ — 7 to get

B =C [[ ¢ (€)(5¢ - nyvacan,




16 P. NAUMKIN

where © = af(a + B)¢2 +(a+ B)n%, Y = (14 2iat(6¢ —n)?) ", & = o+
(a+B), & =2+ (a—P)C+2n, &5 = z — oal — on. We now integrate by
parts with respect to 7 via the identity

. 9 .
(2.4) et = H— (ne'?),
where H = (1 + 2it(a + ﬁ)nZ)f1 to obtain

L= ot [[ e P © e Y
wct [ [ (pc - npy*al, (€ nidndc
+C / / (207 ¢, (€) — o ¢, (€)) (B¢ —m) YnHdndc,
whence denoting £, = y, &5 = n we have by the above identity

172l 0
< OMtY3/?

X Z Zsup

j=2,3,5m—1T€ER

< OM3/2 Z Z / {gk}7 1{51}7 dyn<CMt7_3/2.

2 fy f >2 o
1<l<m<5 1<k<j<5 m

dydn

// S R (A R ) L R ) A
(6N G (Ea) (6s)

In the case a + 8 = 0 we make the change of the independent variables
y=n+C(and z =n—( to get

L=C / / (¢ 4 ) DBL (E) dnd( = T + T,

where @ = (1 + 2ZOét(C +77)2)_1 ) 61 = $+2C7 52 =T — 2777 53 =z _UC‘FU??’
the integral I is taken over the domain |(|t < 1, so we can easily estimate it

as (with &4 = y)

// 2)" &6 €)™ dddy

3/2
| alloo < CME3/ Zsup )7 () () () 1€

j=1 zeR

1
< CMt"™ 3/2 Z Z / {gk}ﬂ ' {fj}7 d¢dy < CMt773/2’

£n)’
1<l<m<4 1<k<j<4 Em
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and the integral I5 is taken over the domain |(|t > 1, therefore we can integrate
by parts with respect to n to obtain

¢ to " " -~
= 7/§t>1/€4 o (2@6162 () — 0P, (5)) (¢ +n) ¢ ' Ydnd¢

C 4diatln 2@/ -1 2d d
4 /dm/e (C+ )2, (€)¢'Y2dndc

¢ ) diatCn g 1
+ /qt>1 [ eteenat, (€)¢ toandc,

whence we have the estimate

. (14 {3 6™ fey " dcay
||I5“oo < CMt" 3/22 sup // 51 (71 7 52 0’2 7<§3>03 7<§4> |<|1 Y

1=2 j= lweR

1
< COME3? Z Z / {gk}v 1{51}7 dedy < CMtY 32,

£n)’
1<l<m<4 1<k<j<4 Em

where ¢, = y. The last integral I3 is considered in the same manner as the
integral Is. Thus the first estimate is true. Lemma 2.1 is proved. I

W1 W2 W3
We denote now ® (£) = A(€) (61)(E2)¢(&), A(€) = eyrbrimsleym
where 0 < o; <2and o1 +02 +03 =4.

Lemma 2.2. We have the following estimates

H / / N D (&) dydz

for all t > 1, j = 1,2,3, where My = |¢[[¢]BllellB, M2 = [I9lBl4]llelB
and Mz = ||gllsllv[lsllell, v € (0,107%)

< Cth771/2,

o0

Proof. First let us obtain the estimate for the case j = 3. As in Lemma 2.1
we integrate by parts with respect to y using identity (2.1)

/ / NP (&) dydz = Ct / / D (£) 2V dydz — / / "oy (£) yYVdydz

+// eitACﬁ"gQ (&) yYdydz.

Whence using the operator P = —£0¢ + 2t0; by the Cauchy inequality we
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obtain denoting £, =y

H / / e (€) dydz
N
s (€3) (€)™
< OMt7 xelg (/ s (mz 4/dy (€077 (&) 7 (€)™ (€u)

:1’27

< OMst" 2 [ dz(z —2)P 2 Y e 1dy
e (feer (3 [

< CMstY 12,

Now let us prove the estimate for the case j = 1. As in the proof of Lemma 2.1
for the case a4+ 6 # 0 we make a change of variables of integration y = ¢ —n
and z = —a( —n and integrate by parts with respect to n via identity (2.4) to
get

//ei“@( dydz = c// o (&) dnd¢ = Ct// "0 (&) n? H2dndc

+C [ [ (2, (€) - o0, (€)) nHdnd.

where @ = afi(a+B)(* +(a+B)n%, & = z+ (a+P)¢, & = o+ (a—B)¢ + 21,
&3 = z—oal —on. Whence by the Cauchy inequality we have, denoting &£, =,

H / / D (&) dydz .

2\3
i () {6
< OM 1?2 21615 (/df1 ( Z /dn Yo 7 £)7 T (&5) P <f4>)>

[,m=2,3,4

< s (/C > ! 2”( 2 /fl“{sm}“dnjj

k=1,5,6,7 [,m=2,3,4
< CMp 2,

where {5 = 2 —ao(, { = 2+o)z —o(a+8)( & = v+ (a=p)¢ if
a— 0 #0,and & = &5, if @ = . And in the case o + 8 = 0 we make the
change of the independent variables y = n + ¢ and z = n — { to get

/ / "o (&) dydz = C / / MG (¢) dnd¢ = Iy + I,
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where &, =2 +2(, & = x —2n, &5 = ¢ —o( + on, the integral I is taken over
the domain |{|t < 1, so it is easily estimated as

“w (1) dn '\
Halleo = G (meg/cm “ (/ (€077 (&) <f3>037> )

< CMyt /2

and the integral I5 is taken over the domain ||t > 1, therefore integrating by
parts with respect to n we obtain

C/ / diat -1

Iy == Mol (28! (&) — 0@, (&) ) ¢ tdndc,
= L (2%, (€) - 00, (©)

whence denoting &, = ( we get

151l oo

2
. dc (€0 {&}" " dn

< CMt~! — /

- R /C|t21 {¢)? Z / (ED)T &) (E) P TT (€a)

z€R =23

.
v—1 . 'y—ld
< OM V2 sup / e (5~ [l&) D
ICle>1—y4 5

2 2_
reR <€l> j k=23 <€k> K
< CMt7~1/2,
where &5 = (24 o) x — 20(. Therefore the estimate for the case j =1 is true.

The case 7 = 2 can be reduced to the case 7 = 1 by the change of the variable
of integration y — —y. Lemma 2.2 is proved. I

W
Let @ (§) = A (&) #(€ A(g) = M%, the powers o1,

DY (€2)e(€3),
03, o3 are such that n < o; < 2 with the condition o1 +02 +03 = n + 4,
n=20,1,2.

Lemma 2.3. We have the estimate

‘ e / / N (&) dydz

for all t > 1, where M = ||¢lsllllslels. 7 € (0,1071)

< OMtY?

o0

Proof. To prove the estimate of the lemma we write 9, [[ e®*® (¢) dydz =
Ji + Jo + J3, where J; = [[ e”A@gl (&) dydz. As above we integrate by parts
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with respect to y using identity (2.1)

Js =Ct // eiltA@'g3 (&) y*V?dydz — // ZtA(I)él.fg (&) yYiyd
i / / g (€) yYdydz.

Whence using the operator P = —£0¢ + 2t0; and denoting {, = y we obtain

1 1
sl < CME~ 2 sup 3 // = )" {6,771 {65} dydz
1

l'ERm 1,2,4 0—1 7 62 02 7<§3>03 7<§4>

< CMt1/? Z Z / {53}7 1{§m}7 tdydz < oM 12,

2—y
1<k<I<4m=1,2,4 5l>

Now let us estimate J;. For the case o + 3 # 0 we make a change of variables
of integration y = ( —n and z = —a( —n and integrate by parts with respect
to n via identity (2.4) to get

J = C / / ;. (&) dnd¢ = Ct / / e (&) n*H?dnd¢

+O// " (20 ¢, () — 0 ¢, (€)) nHdndC,

where Q@ = af(a+0)C* +(a+p)n?, & = z+(a+B)(, & = z+ (a—B)( + 2,
&3 =z — oa¢ — on. Whence we have the second estimate denoting &, =7

1 1
R VN LY e
1

IERm 2,3,4 Ul 7 §2>0-2 7<§3>03 7(54)

< COMt"~ 1/2 Z Z / {51}7 l{fm}7 ldydz < COM~ 1/2.

2—y
1<k<I<4m=2,3,4 fl)

And in the case a + = 0 we make the change of the independent variables
y=n+Cand z =n—( to get

// eitA(Dlgl (g) dydz — C// e4i0¢t(ﬂ@’§1 (E) dndC = I4 + I5,

where & = 2+ 2(, & = x —2n, &5 = ¢ —o( + on, the integral I is taken over
the domain |(|t < 1, so we have

fy 1
|illoo < CM sup / / . {flg M o
zeR J|([t<1 51 b 7 52 > 7(53) o
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and the integral I5 is taken over the domain ||t > 1, where integrating by
parts with respect to n we obtain

=T [ [ (20, ©) - 0t ©0) ¢ anac

whence we have the estimate

15100

1+{5l}{fj}” Ny ey
< CMt dnd
= 221‘%[ Z// T )
< CMt2,

Integral J; is estimated in the same manner. Therefore the third estimate of
the lemma is true. Lemma 2.3 is proved. I

In the next simple lemma we give a time - decay estimate for the integral
fe”” 2-q)° ¢ (t, z) 2¥dz uniformly with respect to ¢ € R, for w = 1,2, 3.

Lemma 2.4. We have the estimate

H/eit”(’”_q)2¢(t,x) dz < o2 16110, .00

o0

+Ct 3Pl + C ||

HO,w,oo

for all t > 1.

Proof. We have feit“(””*q)ng(t,x) w“de = Ji + Jo, where J =
& (t,q) q“’fe"t”(f”*q)zdx and Jo = fe”“("’["*q)2 (¢ (t,z) ¥ — ¢ (t,q) ¢°) dzx. For
the first summand we get |Ji| < Ct™"/2(|¢]ly o - And in the second sum-
mand we integrate by parts with respect to x via identity

itp(z—q)° — d _ itu(z—q)*
(2.5) e X (@ =gy et=0"),

-1
where X = (1 + 2ipt (z — q)2) to get

Jy = — / 1= (X (¢ (t,2) 2% — § (t.0) ¢°)), (2 — q) da.



22 P. NAUMKIN

We write z¢,, = —P¢ + 2t¢}, then applying the Cauchy inequality we get
| J2| < C’/(\ﬂﬂ%?p\ +(2) 7|4

e )

<t(w—Q)2> t(z—q) >

< OtV | llg 00 + C Pl oy + C ||

_l’_

H(],w,oo ’

Whence the estimate of the lemma, follows. Lemma 2.4 is proved. I

We now consider the asymptotic behavior of the integral

Ni(t,r) :/dxe yHz=r)? / dr iz E(t,x) ¥ (r,z),
1

T

where F (t,z) = exp( fl lw (s,z 2‘13), = ,lbjxj, b; € R,

6 € R\{0}, U(t,z) = A(z)p(t,2) 9y (t,z) ¢ (L, ) A(z) = Y3, Bjad,
B; € C. We introduce G = {¢ € C(R;L*): ||¢]|g < oo}, where ||¢HG =

SuptZI = A <||¢“0,2,oo + ||P¢’|0,1,w +1 H¢tH0,2,oo + ||¢||B>7 A€ (07 0025)
Lemma 2.5. Let ¢,,p,w € G and
(2.6) lw(t) = w(7)lo,1,00 < CT~

Then there exists a unique W € L™ satisfying the following asymptotics

V2T . 2 . > iTor2 dr —1/2—-X
N (t) = NG exp (ia|W| logt—i—zﬁ)/l e \I/(T)7+O(Mt )

for all t > 1 uniformly in r € R, where 9 = a [[*(Jw(r)]* — |w(t)|2))d77,
M =gl el el (1 + i)

Proof. We put y = —5 + 07, q= —ﬁ. Then
N1 (t,7)
bdr i 5o : 2
:/ —e 27" /“/dxe’“t(m'I) E (t,z) ¥ (7, z)
1 7T

t . .
=/9%ﬁWW/MfW“Wwwmwmm—Emmwnm
1 T
VIT [Vdr e 1
+ 't/176 ﬁE(taQ)‘I’(ﬂQ)-
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Hence we can write the following representation N7 = 22:1 Ji, where

V2r /°° 5r2 dT
Ji = E(t,r T (7,1
= Zmen [ (%
\/27T t ) 5r2 1 dT
Jo = —3TME (¢, q) U —_—
2 n e 2 ( aQ) (T,Q) \/_—2,Ut 7_3
V2m /t” i g2 ( 1 ) dr
Js = e 3T/E t,q) v (T, —_—— 1) —,
3 \/E . ( Q) (T Q) \/_—2N T
V27 /tu i 52 . dr
Jy = E(t,r e 2T I _ QIO ) (1 ) 22
4 \/’E ( ) L ( ) ( ) T
V2 /tu i 52 dr
Js = e 2T (B (t,q) ¥ (1,q) — E (t,7) ¥ (1,7)) —,
=77 ), (E(tq) ¥ (r,q) = E(tr)¥(r,7)
th 71757‘2/ ipt(z— )2
Jo= [ Letririn [ quentea® (@ (r,2) B (t,) ~¥ (1,9) E (1,9))
1 T
and
V2 R d
== YZBn [ eun T
Vit 1 T

where v € (8)\, % — 4)\) .

Let us integrate by parts with respect to time in the integral J; via the
identity (1 4 'iT(5T2) ei767‘2 -0, (Teiﬂir?) we obtain |J1| < CMt—l/Q—u/?-l—?)/\ <
CMt=/2=2 since [tW, (t,z)| < CM |z|t3* and [tE; (t,z)| < CM |z|t**, and

similarly in the integral J, we integrate via identity (1 + ”5’" ) e 5T/ —

9, (Te*f‘”“ /ﬂ) to get || < CM (t3A—1+t—1/2—V/2+3A) g CMt=1/2=X,

Then |J3] < Ct” 2. Using the inequality ‘e SO i _ gior® | < C’r2§ we

obtain |Jy| < CMt2”+3/\ 3/2 < OME=Y2A,

Since [r —q| < Clr| 7, 195 (D)lg1 00 < CMt3* and ||E., B0 < C Mt
we have for the integral J; : |J5| < CtvH3A=3/2\f < OMt=Y/2=A, Integrating
by parts via identity (2.5) in the integral Js we get

t . .
s = ﬂegﬁr?/u/ewt(mq)? (¥ (r,z) E (L, z)

1 T

—U (7,q) E(t,q)) X),, (x — q) da,

where X is the same one as defined in the proof of Lemma 2.4. Since w € G

we have H(\I/E)' Ho Loo S C’Mt3)‘, hence

RARS C/ dT/ (VE), —dldT ot < one vz,
(fL“ —4) >
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Via (2.6) we see that there exists a unique limit function W € L such that
W — w(t)]0,1,00 < Ct=2*. We now denote x(t) = ia flt(|w(7)|2 — |w(t)|2))d77.
Then x(£) — x(5) = ia [ (1w(r)2 = [w(®) ) £ +ia(jw(t) | — |w(s) >) log s, where
1 <s <71 <t Using (2.6) we get

t
Ix(@) = x(s)lloe < C IlelB/ ()™ 7 dr + Cllwllg s™* log s < Ollw]lg s™
S

Therefore, we see that there exists a unique function ¢ € L, 49 = limy_, o, x(¢)
satisfying || — x()||co < Ct~*. Then via the identity

ia /It |w(7)|2dT—T = da|W|*logt + i + (x(t) — i)
via(jw®)2 — W) logt = ia|W[2logt +id + O (||w||Gt_)‘>
we obtain
(27) B (tr) =exp (ialW (r)Plogt +i9 (1) + O (Jwlg t™)
Therefore the integral J7 gives us the main term of asymptotics. Thus the
result of the lemma is true. i

In order to get uniform decay estimates of the solution we consider now the
integral

/dT/dLEB_% a—r)tirda? E(t,7)E(r,2)
< [[ @0 - @ (.80 dy:

for all r € R, ¢ > 1, where § € R, and as above we put & =(£;,&5,&3),
50 = (III,(L',(L‘) Wlth£1 =z+y -2z 52 =T —Y -z 53 =z +oz, A=
ay?® + 22, here the constants a, 3,0 € R\{0},0 # —1, the function ® (§) =
EVMESPESPH(E1) (€)@ (€3), the powers w1, wa, w3 take the values 0 or 1 with
the condition wy +wy +ws3 # 0.

Lemma 2.6. Let ¢, ¢, p,w € G and (2.6) be fulfilled. Then there exists a
unique W € L™ satisfying the following asymptotics

V2 0o
Na (t) = \/_:: exp (ia|W|* log t + id) / eV (1) dT+o(t—1/z—AM>
t 1
for all t > 1, where V (1) =
I8l Il el (1+ lwl)

B0 [f ™ (@ (1,€) - @ (7.&)) dydz, M =
A
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Proof. We now write Ny = J; + Jo + J3, where
t” i § 2 : 2
Jy :/ dre 27 /“/dwe”‘t(wq) E(t,r)V (r,7),
1

t , _
I, = / dre~ 707 / dxe"@0” (B (t,2) V (7,2) — B (t,r) V (7,7))
1

and

, t
J3 = /dwe_;t(x_’")Q/ dTe”MrZE(t,:B) Vi(r,z),
t

v

here V (1,2) = E (1,2) [[ ™ (@ (,€) — @ (7,&)) dydz, p = —5 + 07, ¢ =

—ﬁ, v = % + 10A. In view of the estimate of Lemma 2.1, Lemma 2.5 and
asymptotics (2.7) the integral J; gives us the main term of the asymptotics

tv _ )
J o= / dre= 370 /1 / doe™@=0° B (£, 1)V (r,r)
1

\/27T /t” ) 62 dT
= E(t,r e BT/ 1y, T
Vit () 1 ( )\/——2M

oy v
= 27rE (t,r) / L Ve (r,r)dr + O (Mtil/%)‘)
1

Vit
V2 9 52

= exp (1a|W|* logt + @9 / eV (r,r)dr + O Mt V2=
N p (ia|W[*logt +id) | (r,7) ( )

since by Lemma 2.1 we have |V ()] < CM77+33=3/2_ In the remainder inte-
gral Jo we integrate by parts via (2.5)

% : _
Jo = / dre 370 /H / ¢it(z—a)® (X (E(t,z)V (1,2)
1
—B(t,r)V (r,r); (z — q) dz.
By Lemma 2.3 we have ||V (7)[lg 1 o < CMtBX7=1/2)7 hence we obtain

- : : Iz~ gl + g — r]) de
| < C/l dq—/(|E|‘Vm(T,IE)‘+‘Ew‘|V(Ta$)|) <t(z—q)2>

Now let us prove the following estimate ||J3]| ., < CMt~'/27*. Using rep-
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resentations (2.2) and (2.3) of Lemma 2.1 we get J3 = Z?:l I;, where

t , _ _

I :/ dT/dme;t("’["’")2“751"2 // e”A\IIyZdydz,
tl/

I, = / dT/dxe stla—r)*+irde? // ™Ay Zdydz,
tl/

t

dT/dwetm r)*+irda? E// ”A<I>§ (1,€) yVdydz
tl/

and

— d /dxe_% x—r)2 +iroz? E// zTA(I)/ 7_’5) yYVdydsz,
tl/

where E = E (t,7,2) = E (t,z) E (1,2), ¥ = CEt(

ZyZy + CEtZ (¢ (Ta £1a €2a 53) -

ZyZy + CEtZ (@ (Tv x,T, 53) -
Note that

D (7,€) + ¥, (1,€)) X
® (1,2,2,63))* 222V Z, Q = CEI® (7,€) x
® (1,€0) y* 22V Z.

o ({81} + {6 +{&)) —1 ~1
0] < CMrPEE 2l S+ D (Jal ! el )

Let us first consider the integral /;. We make a change of the variable of
integration z = x — (, then we get

t .
I = / dr / / dyd¢Zy / e,
tl/

Where€1=y+C,§2=—y+C,€3 (1+U)x_UCa =
%rQ—l—%(ay?—FﬂC),q:—ﬁr—i-% (p=—-L+01,0=04p8 2=

-1
(1 + 2B (z — C)2> Now we can integrate by parts with respect to x via
the identity (2.5). We get

t
L=C dT//dyd(:y/eitQ (XZ9). (z — q) d.
tl/

il —q) — pg® —

Since

i < D )

x (1 (1677 +V7) (ol + 12D)
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we have

(2 - ) Y (EXZ)|

OM+ |z —ql ({&i )+ {6 +{&)) <|§1|771
(€2) (62) (€a) () (722) (1 (@ = 0)°)

el ™) (14 (16" + V7 + Vi) Iyl + 12)

cM y—1 y—1 v—1 Z'y—l
) G e (T el ) (W )

_ _ _ -1 _
gl ) (gl (Vo V) 1 e =g ).

Hence we obtain

IN

IN

t dr
1
tv 3/2=TA ‘—% + ((5—1—ﬁ)7‘5

(™" 16l 7) (=" 4+ 120" 1l )™
X /// dydzdx

(€0 (Ea) (Ea)
x <|53|“ + ( ) & — q|“)
< OMt=Y/2=2,

Analogously, in the integral I, we make a change z = %’ then we get

t .
I = / dr / / dydCZY / "2z,
tl/

where ¢ = 2o +y— L¢, oo —y — 1¢, ¢ = ¢, Q—u(x—q)z—qu—

1242 (e 1B, g =~ + FEG u = —3 435, 5 =64 B B = &
- -1

7 = (1 + 2B (x — C)2> . Then we integrate by parts with respect to x via

the identity (2.5) to get the estimate

| < OM

t E t
7—5—)—57 5—1—57

+|-

I < Cgt 12,

Now let us estimate the integral I3, For the case o + 8 # 0 we make a
change of variables of integration y = 8¢ — n and z = —a( — 7 to obtain

¢ _ L .
h-c [ ar / de stz Hirde® / / VB, (€) (BC — n)Y dCdn,
tl/
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where W = af(a + B)¢* + (a + B)n?, Y = (1 + 2iar(B¢ —7])2)71, £ =
z+ (a+0)(, & =2+ (a— B)C + 21, &3 = © — oal — on. We now integrate
by parts with respect to n via the identity (2.4) to obtain I3 = I5 + I, where

I5 C » dT/d:L‘e; T—r) +zr§x E// “-W 2(1)2,162 (7- g)
—0® ¢, (7,€)) 1 (BC — ) Y Hdnd

Iy=C dT / dze~3t@—r)+irés’ / / e™VK; (1,€)Y Hdndl,
tl/

where H = (1 + 22’7(a+ﬂ)772)_1, K = —n — 4dila + B)mn? (B —n) H —
4icrn(B¢ —n)?Y. Hence we have

|I;] < CM thTS/FQ
(leal "+ leal" ) (ea} + {62} + {&sD)
dydndz
[ v o T a7 () (€a) ()

< COMt/2A

In the integral Is we change the variable z + (o + ) =0, then &, =0, &, =

2 (1+0)a+
afﬁ a+59+ 2n, &3 = %ﬂﬂ — o580 — on, and we get

t . ~
Is=C [ dr / / dndf / dze"CHEK®; (€)Y,
tl/

9\ —1
where Y = (1+2i7a((f%59_ff%ﬂ$—n) ) L Q=p(z—q) —pg® =51’ +

%(&n2+392>,q:—ﬁr—i—%%@,u———wwﬁ,&—a—i—ﬂB a+ﬁ 5 =0+ ﬂ
As above we integrate by parts with respect to = via the identity (2.5) to g

t . ~ !
=0 | dr / / dndoH / dwelt® (z — q) (ICEHXY(I)’§1>

T
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Since || < Oplh, X4 < 0% vy < ¢

\/F
(tn(a—q))’ try7y WO 8ot

(z — q) (ICEHXY@’&),

T

M7 |z — ] ({&,} + {8} + {&})

<
(1) (€2) (€a) (rn) (b (2 = @) ) {ry2 1y |
x (14 (il + D) (V7 + Vil + €™ + 1&571))
CMT?)\—?)/Q
<

NI (=" Iy + 1nl™") + 1yl 1ol
1 2 3

x (Jeal "+ leal o+ (V7 Vi) [l 7 e =g ).

Whence we get

t dr

|[Is] < CM T
' 13/2-7A ‘_% +o7|°

o 1] i (=" + 1l ) leal = + 1yl 0l o=

(1) (€2) (€3)
2) |z — ql”1>

t -~
+ ‘—5 + 0T
In the case a4+ = 0 we make the change of the independent variables y = n+(
and z =n — ( to get I3 = I7 + Ig,

T C d d 2 t(z—r) -l—m—&x E 41047'(77 p
7= . 7'/ Te~ // x (CT7))
x @ (7,€) (¢ +n)Ydndg,

y—1
N t o~ |
+1&5] 1+<ﬁ‘—§+57

< CMt™'/22,

t . 5 . ~
Is=C dT/dweét(Ir)er”MzE
tl/
y / / AT ((70) B (7,€) (C + ) DdndC,

where x (¢) € C'(R), x ( ) =1 for |¢| > 1 and x(¢) = 0 for [¢] < 3,

@:(1+22atc+772) afl—x+2ca52:$_27]af3:x_UC‘*‘U??a
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p = 1 — 11X, The integral I7 is taken over the domain (|77 < 1, so it is
estimated as

6 CT")) ly| dzd(dy “1/2-2
= eM e [l T e o S M

and the integral Ig is taken over the domain |(|7” > 1, therefore we can
integrate by parts with respect to 1 to obtain Ig = Iy + I1g, where

td . ~ .
Iy = C T/d]?etm r) +’T‘5m2E//d77dCe4w‘T§"CIQJ

tv

x (204, (7€) = 0@, (7.6)) x (¢T7) (¢ +1),

Iip=C o / dre™ 31000 // dnd(e" T TIYMD, (7, €),

tl/
here M = (1 —4iat({ +1)%Y) Ex (¢7?). We have the estimate

| Iy

({6} + (€} +{&1) (16" + 1651 ")
CM dzd
=M, o /// e @ T e ()

< OMt 2

In the integral Iy we make the change of the variable x 4+ 2¢ = 6 then &; = 0,
& =x—2n,&; = (1+ ):1:——0 on, and

Iio _C/ty //dndH/dxe’tQ M £ (1,8),

- -1
where 9 = (1 +igT (0 -z + 277)2> , Q= p(z—0)" — pg® — 3% — 2050n,
q= ——7" + utn, = —s —|— 6%. Via identity (2.5) we obtain

. ~ !
Iip=C dr /// dndfdze™? (z — q) (QJMX ¢ (T,§)> .
w T O—z ™
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Since

IMX '
(z—q) (m@gl (T,§)>
Cgr™ |z — q|
(1) (€2 (€a) (e (2 — @)%) (ry2) ¢ 7 [e]'
x (14 (P VIl 6l + 161 () + {6} +{&)D)
Cgr™ <7_2)\+p—1/2 +7.A—1/2\/W>
(€1) (€a) {€a) ] |z — q'
16T+ 16aC)' T Jes¢l T H ey T+ Iyl )

IN

(T e i

Thus we obtain

t dr (72/\“’71/2 + T/\fl/Z\/—L + 76)
[Iio| < CM 2

sl 7/\‘ L 5‘1 A/2

_q|7 ! —y 1—vy
dydCde s 51 ey (a&l 7+ gl
61T H 6T H €T el + Iyl

A/2—1

t 1 8A-3/2

t
< CM | dr (Tg)‘+p3/2 —3 + 76
tV

t
—5—’—7'5

A1/2>

< OMt Y22,

Whence the result follows. Lemma 2.6 is proved. §

83. Linear smoothing effect

In this section we represent the smoothing property of Doi [2] for the solutions
of the Cauchy problem for the linear Schrodinger equations

(3.1) g+ 5uge = f, T€R, teR,
U(O,(II) = Ug(iﬁ), z €R,

where the function f(¢,z) is a force.

The Hilbert transformation with respect to the variable z is defined as fol-
lows He(z) = 1PV [ %dz = —i.T*l%}"(ﬁ, where PV means the principal
value of the singular integral. We widely use the fact that the Hilbert transfor-
mation  is a bounded operator from L? to L2. The fractional derivative |0|%,
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a € (0,1) is equal to |0|% = F~H¢|*F¢p = CfR(qb(:L“ +z) — qb(m))‘z‘dﬁ and
similarly we have [0]*H¢ = —iF 'signé|é]*Fop = C [g (p(x + 2) — ¢(x)) 7%=,
with some constants C. The next lemma shows that the commutators [|0|%, ¢],
and [|0|*H, ¢] are continuous operators from L? to L2.

Lemma 3.1. The following inequalities

111021%, o191l < Cllblly g0 191l and  |[[10:[*H, p] Il < Cl|Bll1 0,00 191l

are valid, provided that the right hand sides are bounded.

We define the operator S(¢) = cosh(p) + isinh(p)H, where the real-
valued function ¢(t,z) € L (O,T; ng,()) N CH([0,T];L*>°) and is posi-
tive. From its definition we easily see that the operator S acts continu-
ously from L2 to L2 with the following estimate ||S(¢)9| < 2||¢ || exp ||¢]]oo-

Since || tanh(p)y|| < ||| tanh||¢]lse < [|%| the inverse operator S—1(p) =
(1+itanh(go)?—[)7lml(w) also exists and is continuous [|S7(¢)y| <

(1 — tanh [|@lloo)  |19]| < [|¢]] exp ||@lloo- The operator S helps us to obtain a
smoothing property of the Schrodinger - type equation (3.1) by virtue of the
usual energy estimates. In the next lemma we present an energy estimate,
involving the operator &, in which we have an additional positive term giving
us the norm of the half derivative of the unknown function u. We also assume
that () is written as p(x) = 9, ' (w?), so that w(z) = \/(9x)-

Lemma 3.2. The following inequality

d 1 2
ZlSul2 + 5 [wSviddu| < 215(Su, I+ CllulPel (Juw]i,+

[l 0,00 + llllo)

is valid for the solution u of the Cauchy problem (3.1).
In the next lemma we give the estimate for the nonlinearity.

Lemma 3.3. We have the following estimates
|(Su, S¢ppdpv)|

9IS Vgl + |wls vioah|

+ Cllulllvll exp(6llelloo) (1117 0,00 + I3

<|

|%,0,oo) (1 + ||(10 |%,0,oo) )

and
(S, Sgp0,)
2
1S V10:u |+ exp(2lpllo) || 1615 VILTw

+ Cllull[v] exp(6llplloo) (1611 0,00 + 19117 0,00) (1 + [l0lIT 0,00) -
provided that the right hand sides are bounded.

2
<|
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For the proofs of Lemmas 3.1 - 3.3, see [8].

§4. Proof of Theorem 1.1

By virtue of the method of papers [1], [3], [11], [16] (see also the proof of
a-priori estimates below in Lemma 4.2) we easily obtain the existence of local
solutions in the functional space

F= {¢ € LOO ((_TaT) aH3’3) : ||¢||X + ||¢||Y + ||¢||Z < OO},

where the norms X,Y and Z are defined in the Introduction, for the conve-
nience of the reader here we repeat their definition

30,00 T <t>1/2_27 | Zu

|1,0,oo’

lullxy = llull o+ /(@) flu
3 . .
lully = Y46 "7 [Tl
j=0

and

3
AL
‘1,2—1@,00 + Z < >

k=0

ol = S0 [Pt

k=0

3
2O
k=0
where v(t) = FU (—t)u(t), o = 0, A1 = 29, Ay = 407,A3 = 20y + 3, v €
(0,107%).
Theorem 4.1. Let the initial data ug € H3*. Then for some time T > 0
there exists a unique solution u € F of the Cauchy problem (1.1). If we assume
in addition that the norm of the initial data |lugll3 , = € is sufficiently small,
then there ezists a unique solution uw € F of (1.1) on a finite time interval
[0,T] with T > 1/e, such that the following estimates supycjor llullx < Ve

and supyero 7y (lully + ullz) < ¥*

In the next lemma we obtain the optimal time decay estimate ||u(t)|[3,0,00 <

C (t)fl/ 2 of global solutions to the Cauchy problem (1.1) and the a-priori
estimate of solutions in the norms Y and Z.

()]
t10,3—k,00

Py

‘0,371@00 ’

are valid.

Lemma 4.2. Let the initial data ug € H>* and the norm luollz 4 = € be
sufficiently small. Then there exists a unique global solution of the Cauchy
problem (1.1) such that u € C (R; H3’3) and T*u € L, (R; H3*k’0), 0<
k < 3. Moreover the following estimates are valid

(4.1) sup ||lullx < vz and sup (||lully + |lull,) < /2.
t>0 t>0
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Proof. Applying the result of Theorem 3.1 and using a standard continuation
argument we can find a maximal time 7" > 1 such that the inequalities

(4.2) lullx <2vZ and (lully + |lullz) < 2¢**

are true for all ¢ € [0,T]. If we prove (4.1) on the whole time interval [0, 77,
then by the contradiction argument we obtain the desired result of the lemma.
In view of the local existence Theorem 3.1 it is sufficient to consider only
estimates of the solution for the time interval ¢ > 1. Note that from (4.2) we
get the estimate:

(z)?7F kaHB < CceM,

2
(43) IR

k=0

Let us start with the norm Y. Differentiating three times equation (1.1)
we get Luggy = Ny, Ugges + Na, Usges +Ro, where £ =0, + £92 and in view
of (4.2) the remainder term Ry is estimated as ||Rp| < C’||u]|§70,oo ulls o <
Ce™/4(t)7~". Applying the operator Z to both sides of equation (1.1) and using
the commutator relation £I* = (Z + 2)* £ we find L83 *TFu = N, 2 FThu+

Na, 027 FTFG + Ry, k = 1,2,3, where by virtue of (4.2) we get
2 4v—1
IRall < €l (Il + 1 Zully) < CE72 (817,

2

B oo (Nl + 1 Zullyy + %], )
# ully g 1 Zlly o 10

< 067/4 <t>7'y—1

[ Bl < Clu

|2,0

and
185l < C Nl o (Il + 1l + 2] o + 25
o ltllg 00 1Tt 0,00 (17010 + |1Z20], g ) + 1Tl g0 70l
< CeT/4 <t>10771 .
Thus we find
(4.4) Lhy = Ny, Ohy + Ny, Ohy, + Ry,

where hy, = (1+03%) ZFu and ||Ry| < Ce™/4 ()73~ | = 0,1,2,3. We
use the operator S(¢) = cosh(yp) + i sinh(¢)H, introduced in Section 3, where

we take now o(t,z) = 197! <|u(t,$)|2 + |um(t,:1:)|2> and as in Section 3 we
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define w(t,z) = L\/|u(t,:zi)|2 + |ug(t,z)[>. Then applying Lemma 3.2 we

£
obtain the energy type inequality for the functions Ay (index k£ we omit)

(4.5) %HShHZ + st\/@hH2
< 2S5 (Sh,S (Nu,he + Nayha)) |+ 2|S (Sh, SR)|
+ Cel?l (Julli + lullf o0 + lledlloo) 1A
where the functions R are bounded in L2. Hence we get via (4.2)
(4.6) | (Shi, SRy)| < = ([ | | Ryl < Ce™/2 ()7 +277L

To estimate the first summand & (Sh,S (NM hy + Na, BI)) in the left hand
side of (4.4) we apply Lemma 3.3 to obtain

(4.7)
|(Shi, S (Mo b + N ia) )| < O/ HwS\/|8m|th2 + CeD/2 (1) SRrtrL

Substitution of (4.6) and (4.7) into (4.5) yields

(49 LISkl + 1= V8 [T

< 0262HUH%,0 (Hu

2 6ky+2y—1
IL0.00 + 16l3,0,00 + 19lloo) 1SHE[I? + Ce™2 (172771,

We also have

x 2 2
lodse = |0 [ (Jutt.a)]? + ustt.a)]?) o'
" N

xr
= / (uglh + Gpu + Ugpliy + Ugrtiy) d

— 00

oo

- /w ((taw — NV — (1 — N)urt

—00
(U:v:v:v - N:v)a:v - (17'909090 - ﬁflf)uf’?) d:EHoo

_/x (Nﬂ—Nu—i—Nwﬁw—Nmum) dz

—o0

o0

< Cllullfpeo (L +Iulfo) < Ceft)™"

Therefore from (4.8) and the Gronwall inequality we get ||hy|| < Ce (£)3¥77.
Thus we have the estimate

(4.9) lu@)ly < 5 (7
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for all t € [0,T]. To prove the estimate in the norm Z we represent the solution
u of the Cauchy problem (3.1) in the form v (t) = U(¢)F v (t). Applying the
Fourier transformation to equation (1.1) and then changing the dependent
variables @ = e~ ¢ v we get

4
v (t, ) Z itz // e'thi D, ; (t,gj) dydz

where §; = % 0o=0,05=1, 4 = % A; = ajy? —|—ﬁj22, (a1,8y) = (—1,-3),
(a2,85) = (=1,1), (a3,83) = (1,— ) (a4, B4) = (—17 3) Do, (, E) =
Aj (€) Hk:l U(Tk,j (tvakngk)’ Aj( = 217r w#0 Fj.w Hk 15 v (1,€) =
v(t,f) if o =1 and vo(taﬁ) = Q)(t, ) ifo=-1,§& = (€1a€2a€3)v gj =
(fj,hfj,zafj,:a), Si1=51ty—280=5-Yy—283=5122, {1 =2+y—2,
52,2 =T—Y—=z, 52,3 =12z, 53,1 =—r+ty—2z, 53,2 =—Tr—Y—=z 53,3 = —z—2z,
54,1 = —§ +yY -z 54,2 = —§ —Yy—z 54,3 = —§ +2z, 05 = (Ul,jaUZ,jao'S,j)a
or=(1,1,1),02=(1,1,-1), o3 = (—1,-1,1), 04 = (—1,—1,—1). Similarly
we get

4
i (Pv), = 2iv; + Z ithie’ / / @ (1, €5) dydz,

(P2 ) (PU —4Z’Ut + ZeZw x // ltAJ @2] t g]) dde

and

i (P3v) = (732 ) — 124 (Pv), + 8ivy + Ze’w v // ith; ®3; (¢, §]) dydz,

j=1

! 3
where @ ; (t,€) = A;j (&) X \wok rimermyt Lio1 P 0oy (01560, k = 1,2,3,
w = (w17w27w3)7 |w| =w + w2 + ws.

By (4.3) and Lemma 2.2 with 01 =0, 09 = 03 = 2 we get

|[[ #a@Ptenmine e

o0

< oy @] < T fuly el < o2 (!




NONLINEAR SCHRODINGER EQUATION 37

and by Lemma 2.1 with 01 =02 =1, 03 =2 we get

H/(/’e#Alfal(s>7>2v(t,sl)7>v(t,sg)v(t,sa>dydz
< Ot WﬂﬂMwWﬂmMmmw
+C (17 [P0l | (@) Pollg | (@) ]|
< o™ ully llully, < Ce? )"
The rest terms are considered in the same manner. Therefore we obtain

(4.10) [(P3),||, < Ce® () " and ||PP| < Ce ()™

o0

Applying (4.3), Lemma 2.3 with n = 2 and Lemma 2.1 with n = 3 we get

o, < o [[ e (1.8,) dya:
0,2,00
x// et D ; (t,Ej) dydz
0,2,00
2 I 3 2
< cf@o| <ol < e,

then applying Lemma 2.3 with n = 1 and Lemma 2.1 with n = 2 we obtain

Oy // e'thi Dy ; (t,§j) dydz
x// 't Dy ; (t,§j) dydz

< Ol Pollg @] <yl < 02 (),

H (PU Il

< Clloz

|0,1,00 071700

0,1,00

0,1,00

finally via Lemma 2.3 with n = 0 and Lemma 2.1 with n = 1 we obtain

Oy // e'thi s ; (t,§j) dydz
:Jc// €itAj¢2,j (t,{j) dydz
o

2
< C||Poll @0+ C Iy ol | ()0
< C0) ol < O (1),

< Cllozllo + Cl(Po)Z

B
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Thus we have

‘ < 163/4.
12-koo 2

(4.11) 22: ()2 HP’%

Now by (4.3) and applying Lemma 2.1 with n = 3 we get

4
[l < O[] e n (b duaz|
=1 ,3,00
3
< O ol g0 +C 77|t 0 |
< ol o

then by Lemma 2.1 with n = 2 we obtain

4
[P lopme < Clillgns + €32 || [[ 0 (1:8;) dyds
j=1 0,2,00
< CEW) T OB T Pl 00 1916.2,00

2
+C )2 () Polg | ()20 < c2 M,

whence [|Pvl|g 5 o, < Ce (tY'. Finally via Lemma 2.1 with n = 1 we have

H (7321))’

t

0,1,00

<C H“lltuo,l,oo +C H(Pv); 0,1,00

4
+ C’Z // e'thi Dy ; (t,{j) dydz
7=1

<O+ o) |P2o| L 1013 .0

0,1,00

2
+ O PG 10 002,00 + € (872 P20 ||(2) 0

B
+ OO @) Polly ||@?0]| < ce

whence HPQU Ho Lo S Ce (t)*2. To get the uniform estimate of v we exclude the
worst term with 7 = 2 containing §» = 0 by the change of the dependent vari-

able v = hE, where E = exp (ia flt v (1, 2)|? d—T) = exp (ia flt \h (1, z)|? d{),

T
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a(z) = Z?Zl bjz!, bj = > lw|=j 02w Then we have
4
=1 1S 2 ; .
By eithie / / e (Do (1,€;) — @0 (1.€;0)) dydz
i=1
Lc
— e 2
+EZ ?eztéjm Dy ; (t,Ej,O) =Ji + Jo,
j=1

for the first summand by Lemma 2.1 we obtain ||Ji]|,, < C ()73 x
2 |13 13v=3/2 11,113 2 1\ 137—3/2 .
H(x) UH <Oty |lullz < Ce® ()™ */“. And in the second summand
B

we integrate by parts with respect to time ¢ via identity (1 + i5j7'$2) eiTdie” =

0 iT 2
2 (Te ) )
t
/Jng

S

t
. _ d
/ GZT(SijE (’T, I) (I)[]’j (7', gj,(]) ?T

S

Q
™

J=1
E(1,2) ®; (1,€;,)
< C 276 x2 > B d
- Z ( 7 (1 +1id;722) rar
< Cg? Z |x| dr < Ce?s 40
- r(1+722)| = ’

since ‘(I)[)’j (T,Ej,o)‘ < Clz| Hv||g,1’oo < Ce? |z, ‘8T<I>0,j (T,Ej,o)‘ < 952 |z| and
0.5 (,2)| < Ce3/2 [a] . Thus [lo]l, = |All, < Ce, [Ih (1) — b ()] < Cet~ 100
and we get
3 3

(412) S @ ( ) +3 () 34,

P 0,3—k00 5 0,3—k,oo 2
By (4.11) and (4.12) we obtain
(4.13) ull, < 32

Now let us obtain the estimate of the solution in the norm X. By Lemma
2.4 with w = 3 we get

el < o [ oo cu
< CtY g0 + CEH POl go + Cllorllg s 0
< ceMiyT,
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since ||Pvlgy = || Zully < C (" |lully < Ce*(H)*7. And we obtain the
estimate of |lul|, by Lemmas 2.5-2.6 since we have

e—irzt/Q (t, ,r,)

= \/%_W/ e 3lr=o)’y, (t,x) dw—C/ E (t,z) h(t,z)dx
= C’/eZt(rm)zE(t,x)h(O,x) dx

4 : 1 .
+C’Z/dxe_%t(r_’”)2E(t,x)/ E(1,7) €m0’ g
i=1 0

X // e’ D, ; (T,Sj) dydz
(r— w) iTé;x? dr
+ZC’/ t:B/ETI) @0](7530)—d:p

t .
+ZC /dwe 3tr=2) E(t,x)/ d7E (1,2) eimdje?
1

(4.14)  x // eiThi (@o,5 (7, ¢;) — Po,j (1,€50)) dydz,

here in the first and second summands we easily can integrate with respect to
z since the estimate of the derivative provided by Lemma 2.3 does not give
us any growth, when 7 € (0,1). Now we have [jul; o = [[vlq; = ||hllo; <
1hllg 9. < Ce3*. Finally writing the representation similar to (4.14) for the
function Zu with E = 1, (i.e. @ = 0) via Lemmas 2.5 -2.6 we have the estimate

|Zull,, = er 7=¢)’ Pu (t,§) de < Celt )27 172 and by Lemma 2.4 we get
0T ul|, = er Y Pu (t,€) gdgH < Ce (1) 12, Hence
(4.15) lullx < V.

Inequalities (4.13), (4.15) imply estimate (4.1) for all ¢ > 0. thus Lemma 4.2 is
true. Applying Lemma 4.2 and also Lemmas 2.5 -2.6 we get the asymptotics
(1.2). Theorem 1.1 is proved. i
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