DEMAZURE OPERATORS FOR COMPLEX REFLECTION GROUPS $G(e, e, n)$

Konstantinos Rampetas*

(Received November 11, 1998)

Abstract This paper is a continuation of the work in [RS], where we studied Demazure operators for the imprimitive complex reflection group $\widetilde{W} = G(e, 1, n)$ and constructed a homogeneous basis of the coinvariant algebra $S_{\widetilde{W}}$. In this paper, we study a similar problem for the reflection subgroup $W = G(e, e, n)$ of \widetilde{W}. We prove, by assuming certain conjectures, that the operators $\Delta_w (w \in W)$ are linearly independent over the symmetric algebra $S(V)$. We define a graded space H_W in terms of Demazure operators, and we show that the coinvariant algebra S_W is naturally isomorphic to H_W. Then we can define a homogeneous basis of S_W parametrized by $w \in W$.

AMS 1991 Mathematics Subject Classification. Primary 20H15, Secondary 20F55, 51F15.

Key words and phrases. Complex reflection groups, Demazure operators.

§1. Introduction

Let $\widetilde{W} = G(e, 1, n)$ be the imprimitive complex reflection group isomorphic to $S_n \ltimes (\mathbb{Z}/e\mathbb{Z})^n$, regarded as a subgroup of $GL(V)$ with $V \cong \mathbb{C}^n$. (Here S_n denotes the symmetric group of degree n). Let $S_{\widetilde{W}}$ be the coinvariant algebra of \widetilde{W}, i.e. the quotient of the symmetric algebra $S(V)$ by the ideal generated by the non-constant homogeneous \widetilde{W}-invariant polynomials. In [BM1], K. Bremke and G. Malle constructed a length function $n : \widetilde{W} \to \mathbb{N}$ satisfying the property $\sum_{w \in \widetilde{W}} n(w) = P_{\widetilde{W}}(t)$, where $P_{\widetilde{W}}(t)$ is the Poincaré polynomial associated with the graded algebra $S_{\widetilde{W}}$. In [RS], we defined a Demazure operator Δ_w for each $w \in \widetilde{W}$, which is an endomorphism on $S(V)$ reducing the

*The author gratefully acknowledges financial support by the Japanese Ministry of Education.
grading by \(n(w) \), and constructed a basis of \(S_{\tilde{W}} \) parametrized by \(w \in \tilde{W} \) by making use of \(\{ \Delta_w \mid w \in \tilde{W} \} \).

In this paper, we consider the group \(W = G(e, e, n) \), which is a subgroup of \(\tilde{W} \) of index \(e \), isomorphic to \(S_n \ltimes (\mathbb{Z}/e\mathbb{Z})^{n-1} \). The length function \(\ell : W \to \mathbb{N} \), satisfying the property \(\sum_{w \in W} t^{\ell(w)} = P_W(t) \), was constructed by [BM2], where \(P_W(t) \) is the Poincaré polynomial associated with the coinvariant algebra \(S_W \) of \(W \). We recall the definition of Demazure operators. For each \(\alpha \in V \), let \(s_\alpha \) be the complex reflection with eigenvector \(\alpha \). A Demazure operator \(\Delta_\alpha : S(V) \to S(V) \) is defined by

\[
\Delta_\alpha(f) = \frac{f - s_\alpha(f)}{\alpha}, \quad \text{for } f \in S(V).
\]

We define an operator \(\Delta_w \) for each \(w \in W \) as follows. It is known by [BM2] that there exists a system of representatives \(N \) of the left cosets \(W/S_n \) satisfying the property that \(\ell(u'u'') = \ell(u') + \ell(u'') \) for \(u' \in N \), \(u'' \in S_n \). We define \(\Delta_{w'} \) for \(w' \in N \) as a certain product of various \(\Delta_\alpha \) for \(s_\alpha \in W \). On the other hand, the operator \(\Delta_{w''} \) for \(w'' \in S_n \) is already defined by the theory of Demazure operators for finite Coxeter groups. Then we define, for \(w = u'u'' \in W \) (\(u' \in N \), \(u'' \in S_n \)) the operator \(\Delta_w \) by \(\Delta_w = \Delta_{w'}\Delta_{w''} \). In the case of \(\tilde{W} \), the crucial step for the proof of the main result is to show that the operators \(\{ \Delta_w \mid w \in \tilde{W} \} \) are linearly independent over \(S(V) \). In our situation, we can prove (Theorem 3.10) that the operators \(\{ \Delta_{w'} \mid w' \in N \} \) are linearly independent over \(S(V) \). It is also known by the general theory that the operators \(\{ \Delta_{w''} \mid w'' \in S_n \} \) are linearly independent over \(S(V) \). We expect that \(\{ \Delta_w \mid w \in W \} \) are linearly independent over \(S(V) \). In our paper, we prove this by assuming certain conjectures, (3.12.1) and (3.12.2), concerning the property of \(\Delta_{w'} \) (\(w' \in N \)). Our main result asserts that a similar theorem as in the case of \(\tilde{W} \) holds for \(W \), assuming the above conjectures. More precisely, let \(\mathcal{D}_W \) be the subspace of the dual space of \(S(V) \) generated by \(\epsilon \Delta_w \) (\(w \in W \)), where \(\epsilon : S(V) \to \mathbb{C} \) is the evaluation at 0. Then we can show (Theorem 3.25) that \(\{ \epsilon \Delta_w \mid w \in W \} \) gives a basis of \(\mathcal{D}_W \), and that \(S_W \) is naturally isomorphic to the dual space of \(\mathcal{D}_W \).

The conjecture (3.12.1) is related to the evaluation of \(\Delta_{w_1} \) (\(w_1 \) is the longest element in \(W \) with respect to \(\ell \)) at certain polynomial, and is verified to be true (Theorem 3.14) under the assumption that \(e \geq n \). This theorem leads to the following interesting characterization of \(\Delta_{w_1} \). Let \(J \) be the operator on \(S(V) \) defined by \(J = \sum_{w \in W} \epsilon_w(w)w \), where \(\epsilon_w : W \to \{ \pm 1 \} \) is the sign character of \(W \). Let \(Q \) be the product of all eigenvectors of reflections contained in \(W \). Assume that \(e \geq n \). Then \(\Delta_{w_1} \) is expressed (Proposition 3.18) as \(\Delta_{w_1} = dQ^{-1}J \) for some non-zero constant \(d \in \mathbb{C} \).
§2. Preliminaries

2.1. Let V be the unitary space \mathbb{C}^n with standard basis x_1, x_2, \ldots, x_n. Let $\widetilde{W} = G(e, 1, n)$ be the imprimitive complex reflection group contained in $GL(V)$. The group \widetilde{W} is generated by $\{t, s_1, \ldots, s_n\}$, where s_i is a reflection permuting x_i and x_{i-1}, and t is a complex reflection of order e, which sends x_1 to ζx_1 and leaves all the other x_i unchanged. (Here ζ is a fixed primitive e-th root of unity).

Let $W = G(e, e, n)$ be the subgroup of \widetilde{W} of index e generated by reflections $S = \{s_1, s_2, \ldots, s_n\}$ of order 2, where $s_1 = ts_2t^{-1}$ sends x_1 to $\zeta^{-1}x_2$ and x_2 to ζx_1. Note that W is the Weyl group of type D_n if $e = 2$, and W is the dihedral group of order $2e$ if $n = 2$.

Let $S(V) = \oplus_{i \geq 0} S^i(V)$ be the symmetric algebra on V, where $S^i(V)$ denotes the i-th homogeneous part of $S(V)$. The group W acts naturally on $S(V)$ and we denote by I_W the ideal of $S(V)$ generated by the W-invariant homogeneous elements of $S(V)$ of strictly positive degree. The coinvariant algebra associated with W is defined as $S_W = S(V)/I_W$, which has a natural grading $S_W = \oplus_{i \geq 0} S^i_W$ inherited from that of $S(V)$. The Poincaré polynomial $P_W(t)$ is defined by the formula

$$P_W(t) = \sum_{i \geq 0} \dim_{\mathbb{C}}(S^i_W)t^i.$$

The group \widetilde{W} acts on $S(V)$, and the coinvariant algebra $S_{\widetilde{W}}$ and the Poincaré polynomial $P_{\widetilde{W}}(t)$ associated with \widetilde{W} are defined similarly.

2.2. In [BM1], Bremke and Malle constructed a length function $n : \widetilde{W} \to \mathbb{N}$ by making use of a certain root system, and showed that the sum $\sum_{w \in \widetilde{W}} t^{n(w)}$ coincides with $P_{\widetilde{W}}(t)$. In [BM2], they defined a different type of length function $\ell : \widetilde{W} \to \mathbb{N}$ (the function ℓ_2 in the notation of [BM2]), in terms of an alternative root system and showed that the restriction of ℓ on W satisfies the formula $\sum_{w \in W} \ell^{(w)} = P_W(t)$. Note that the subgroup of W generated by $S' = \{s_2, \ldots, s_n\}$ is identified with S_n. The restriction of ℓ on S_n coincides with the usual length function of S_n with respect to S'.

They found a system of left coset representatives \mathcal{N} of W/S_n having nice properties with respect to the length function ℓ on W as follows. For $0 < a \leq e$, $1 \leq i \leq n$ we define an element of W by

$$w(a, i) = \begin{cases} \ s_1 \cdots s_2 f^t & \text{if } 0 < a \leq e/2, \\ \ s_1 \cdots s_2 f^t s_2 \cdots s_i & \text{if } e/2 < a \leq e. \end{cases}$$ (2.2.1)
It is known by Lemma 1.10 in [BM2] that the length of the element \(w(a, i)\) is given as

\[
\ell(w(a, i)) = \begin{cases} (i-1)(2a-1) & \text{if } 0 < a \leq e/2, \\ (i-1)(2e-2a) & \text{if } e/2 < a \leq e. \end{cases}
\]

Put

\[
\mathcal{N} = \{w(a_1, 1) \cdots w(a_n, n) \mid 1 \leq a_i \leq e, \sum_{i=1}^{n} a_i \equiv 0 \pmod{e}\}
\]

They proved the following fact.

Proposition 2.3 ([BM2, Cor.1.16, Prop. 2.6]). The set \(\mathcal{N}\) is a system of representatives for the left cosets \(W/S_n\) satisfying the following.

(i) For \(w' \in \mathcal{N}, w'' \in S_n\), we have

\[
\ell(w'w'') = \ell(w') + \ell(w'').
\]

(ii) If \(w' \in \mathcal{N}\) is given as \(w' = w(a_1, 1) \cdots w(a_n, n)\), then \(\ell(w') = \sum_{i=2}^{n} \ell(w(a_i, i))\).

(Note that \(\ell(w(a_1, 1)) = 0\) by (2.2.2)).

2.4. Let \(s_\alpha\) be the reflection in \(W\) with eigenvector \(\alpha \in V\). (Here we assume that the eigenvalue attached to \(\alpha\) is not equal to 1). We define an operator \(\Delta_\alpha : S(V) \rightarrow S(V)\) by the formula

\[
\Delta_\alpha(f) = \frac{f - s_\alpha(f)}{\alpha}, \quad (f \in S(V)).
\]

We call \(\Delta_\alpha\) a Demazure operator on \(S(V)\). Demazure operators are defined for complex reflection groups in general. In the case of finite Coxeter groups, there exists a well established theory for Demazure operators by [BBG], [D]. In the case of (non-real) finite complex reflection groups, not much is known. In [RS], we studied Demazure operators for the group \(\tilde{W}\), and showed that the structure of the coinvariant algebra \(S_{\tilde{W}}\) is described in terms of Demazure operators, as in the case of Coxeter groups, by constructing a certain (non-canonical) basis of \(S_{\tilde{W}}\). Here we take up a similar problem for the group \(W\).

We give some properties of Demazure operators. We have the following.

\[
\Delta_\alpha^2 = 0,
\]

\[
\Delta_\alpha(fh) = \Delta_\alpha(f)h + f\Delta_\alpha(h),
\]
for \(f, h \in S(V) \). If \(f \in S(V) \) is \(s_\alpha \)-invariant, then \(\Delta_\alpha(f) = 0 \). Now let \(S(V)^W \) be the subalgebra of \(S(V) \) consisting of the \(W \)-invariant elements. Then it follows from (2.4.2) that

\[(2.4.3) \quad \Delta_\alpha(fh) = f \Delta_\alpha(h) \quad \text{for} \quad f \in S(V)^W.\]

In particular, we have \(\Delta_\alpha(I_W) \subseteq I_W \) and \(\Delta_\alpha \) induces an operation on \(S_W \).

2.5. Let \(S_n \) be the subgroup of \(W \) as in 2.2. Then \((S_n, S') \) is a Coxeter system, with associated length function \(\ell : S_n \to \mathbb{N} \). Hence, by the general theory of Demazure operators for finite Coxeter groups, we have the following facts. Let \(w = s_i s_{i_2} \cdots s_{i_k} \) (\(s_i \in S' \)) be a reduced expression of \(w \in S_n \). Then we define

\[(2.5.1) \quad \Delta_w = \Delta_{i_1} \cdots \Delta_{i_k},\]

where \(\Delta_i = \Delta_{\alpha_i} \) with \(\alpha_i = x_i - x_{i-1} \). It is known that the operator \(\Delta_w \) is independent of the choice of the reduced expression. (See, for example [H, IV, Prop. 1.7]).

Let \(w_0 \) be the longest element in \(S_n \). We define a polynomial \(Q_0 \) by \(Q_0 = \prod_{i>j} (x_i - x_j) \). The following facts are known.

Proposition 2.6 ([H, IV, Prop. 1.6]). \(\Delta_{w_0}(Q_0) = 1 \).

Proposition 2.7 ([H, IV, Cor. 2.3]). For any \(w, w' \in W \) such that \(\ell(w) \leq \ell(w') \), we have \(\Delta_{w'} \Delta_{w^{-1}w_0} = \delta_{w, w'} \Delta_{w_0} \).

Note that the condition \(\ell(w) \leq \ell(w') \) is dropped in the statement of Corollary 2.3 in [H].

3. Demazure operators for \(G(e, e, n) \)

3.1. From now on we identify \(S(V) \) with the polynomial algebra \(\mathbb{C}[x_1, \ldots, x_n] \) with indeterminates \(x_i \). The group \(W = G(e, e, n) \) acts on \(\mathbb{C}[x_1, \ldots, x_n] \) as in 2.1.

For \(i = 2, 3, \ldots, n \) we define inductively the element \(s'_i \) as follows; Let \(s'_2 = s_1 \) and \(s'_i = s_{i-1} s'_i s_{i-1} \). Then \(s'_i \) is the complex reflection of order 2, which sends \(x_i \) to \(\zeta x_{i-1} \), and \(x_{i-1} \) to \(\zeta^{-1} x_i \). We note that if we put \(y_i = \zeta^{-1/2} x_i \) and \(y_{i-1} = \zeta^{1/2} x_{i-1} \), then we can regard \(s'_i \) as a permutation of \(y_i, y_{i-1} \). We define two operators \(\Delta_{s'_i}, \Delta_{s'_i} \) on \(S(V) \) by the formulas

\[(3.1.1) \quad \Delta_{s'_i}(f) = \frac{f - s_i(f)}{x_i - x_{i-1}}, \quad \Delta_{s'_i}(f) = \frac{f - s'_i(f)}{\zeta^{-1/2} x_i - \zeta^{1/2} x_{i-1}}, \quad (f \in S(V)).\]
Then the following two formulas hold:

\[
\Delta_s(x_i^a x_{i-1}^b) = \varepsilon \sum x_i^j x_{i-1}^{a+b-1-j},
\]

\[
\Delta_{s'}(x_i^a x_{i-1}^b) = \varepsilon \zeta^{(2n-1)/2} \sum \zeta^{-j} x_i^j x_{i-1}^{a+b-1-j},
\]

where in both formulas the sum is taken over \(j \) such that \(\min\{a,b\} \leq j \leq \max\{a,b\}-1 \), and \(\varepsilon = 1 \) (resp. \(\varepsilon = -1 \)) if \(a > b \) (resp. \(a < b \)). The first formula is contained in [R&S], and the second one is obtained from the first by changing the variables \(x_i \mapsto y_i, x_{i-1} \mapsto y_{i-1} \).

For \(i = 2, \ldots, n \), we define operators \(\Delta_i^{[a]}, \Delta_{s'}^{[a]} \) in the following way

\[
\Delta_i^{[a]} = \cdots \Delta_{s'}^{[a]} \Delta_i^{[a]}, \quad \Delta_{s'}^{[a]} = \cdots \Delta_{s'}^{[a]} \Delta_i^{[a]}.
\]

3.2.

In order to study the above operators in a more detailed way, we need to evaluate them at various polynomials. For this we prepare some notation.

Let \(a, b \) be two positive integers such that \(1 \leq a \leq b \). We put

\[
c(a, b) = (-1)^{[a+1]/2} \prod_{j=1}^{a-1} (\zeta^{(b-j)/2} - \zeta^{-(b-j)/2}),
\]

where \([a] \) denotes the smallest integer which does not exceed \(a \). We have \(c(a, b) = -1 \) if \(a = 1 \). The following two lemmas will be used in our later discussion.

Lemma 3.3. Let \(a, b \) be integers such that \(1 \leq a \leq b \).

(i) Assume that \(a < b \). Then we have

\[
\Delta_i^{[a]}(x_i^b x_{i-1}^b) = \begin{cases} c(a, b)(x_i^{b-a} + x_{i-1}^{b-a}) + f, & \text{if } a \text{ is odd}, \\ c(a, b)(y_i^{b-a} + y_{i-1}^{b-a}) + f, & \text{if } a \text{ is even}, \end{cases}
\]

\[
\Delta_{s'}^{[a]}(x_i^b x_{i-1}^b) = \begin{cases} (-1)^{a-1} \zeta^{-b/2} c(a, b)(y_i^{b-a} + y_{i-1}^{b-a}) + f, & \text{if } a \text{ is odd}, \\ (-1)^{a-1} \zeta^{-b/2} c(a, b)(x_i^{b-a} + x_{i-1}^{b-a}) + f, & \text{if } a \text{ is even}, \end{cases}
\]

where in each case, \(f \) denotes a polynomial divisible by \(x_i x_{i-1} = y_i y_{i-1} \).

(ii) Assume that \(a = b \). Then we have

\[
\Delta_i^{[a]}(x_i^a x_{i-1}^a) = c(a, a),
\]

\[
\Delta_{s'}^{[a]}(x_i^a x_{i-1}^a) = (-1)^{a-1} \zeta^{-a/2} c(a, a).
\]
Proof. We prove only the formula (i). The proof of (ii) is similar, and simpler. We show the first formula in (i). The case where $a = 1$ is straightforward from (3.1.2). The following two formulas are obtained by using the definition of Δ_s, Δ_t and the fact that $y_i = \zeta^{-1/2} x_i$ and $y_{i-1} = \zeta^{1/2} x_{i-1}$.

$$\Delta_t(x^{b-a+1}_i + x^{b-a+1}_{i-1}) = (\zeta^{(b-a+1)/2} - \zeta^{-(b-a+1)/2})(y_t^{b-a} + y_t^{b-a} + f_1,$$

$$\Delta_s(y^{b-a+1}_i + y^{b-a+1}_{i-1}) = (\zeta^{-(b-a+1)/2} - \zeta^{(b-a+1)/2})(x_s^{b-a} + x_s^{b-a} + f_1),$$

where f_1 is a polynomial divisible by $x_i x_{i-1} = y_i y_{i-1}$. We also notice that since $x_i x_{i-1} = y_i y_{i-1}$ is stable by the reflections s_i and s_t, if a polynomial f is divisible by $x_i x_{i-1} = y_i y_{i-1}$, then so are $\Delta_s(f)$ and $\Delta_t(f)$. The first formula in (i) follows from the above formulas by induction on a. Next we show the second formula in (i). If we note that $x^b_{i-1} = \zeta^{-b/2} y^b_{i-1}$, it is easy to see that $\Delta_t^a(y^b_{i-1})$ coincides with the polynomial which is obtained from $\Delta_t^a(x^b_{i-1})$ by replacing x_i, x_{i-1} by y_i, y_{i-1}, by replacing ζ by ζ^{-1}, and then by multiplying by $\zeta^{-b/2}$. Hence the second formula follows immediately from the first one.

Next we compute the values $\Delta_t^a(x^b_i)$ and $\Delta_t^a(x^b_i)$. By (3.1.2) we see that

$$\Delta_s(x^b_i) = -\Delta_s(x^b_{i-1}), \quad \Delta_t(y^b_i) = -\Delta_t(y^b_{i-1}).$$

Therefore we have

$$\Delta_t(x^b_i) = \zeta^{b/2} \Delta_t(y^b_i)$$

$$= -\zeta^{b/2} \Delta_t(y^b_{i-1})$$

$$= -\zeta^b \Delta_t(x^b_{i-1}).$$

This implies that the value $\Delta_t^a(x^b_i)$ (resp. $\Delta_t^a(x^b_i)$) coincides with $-\Delta_t^a(x^b_{i-1})$ (resp. $-\zeta^{b \Delta_t^a(x^b_{i-1})}$). Therefore as a corollary to Lemma 3.3 we obtain the following result.

Lemma 3.4. Let a, b as in Lemma 3.3.

(i) Assume that $a < b$. Then we have

$$\Delta_t^a(x^b_i) = \begin{cases}
-c(a, b)(x^{b-a}_i + x^{b-a}_{i-1}) + f & \text{if } a \text{ is odd}, \\
-c(a, b)(y^{b-a}_i + y^{b-a}_{i-1}) + f & \text{if } a \text{ is even,}
\end{cases}$$

$$\Delta_t^a(x^b_i) = \begin{cases}
(1-a) \zeta^{b/2} c(a, b)(x^{b-a}_i + x^{b-a}_{i-1}) + f & \text{if } a \text{ is odd}, \\
(1-a) \zeta^{b/2} c(a, b)(x^{b-a}_i + x^{b-a}_{i-1}) + f & \text{if } a \text{ is even.}
\end{cases}$$
(ii) Assume that \(a = b \). Then we have
\[
\Delta^{[a]}_i(x_1^a) = -c(a,a),
\]
\[
\Delta^{[a]}_x(x_1^a) = (-1)^{a-1} \frac{1}{a} c(a,a).
\]

3.5. We fix an integer \(a \geq 0 \). We define, for \(2 \leq i \leq n \), an operator \(\Delta_i[a] \) on \(S(V) \) by the formula
\[
\Delta_i[a] = \begin{cases}
\Delta_2^{[a]} \cdots \Delta_n^{[a]} & \text{if } a \geq 1, \\
1 & \text{if } a = 0.
\end{cases}
\]
The operator \(\Delta_i[a] \) reduces the grading by \((i-1)a\). For each \(a \geq 0 \), we define a polynomial \(g_{i,a}(x) \) of degree \((i-1)a\) by \(g_{i,a}(x) = (x_1 \cdots x_{i-1})^a \). Then the following lemma holds.

Lemma 3.6. Assume that \(a \geq 1 \). Let \(\Delta_i[a] \), \(g_{i,a}(x) \) be defined as above. Then
\[
\Delta_i[a](g_{i,a}) = \{(a-1)^{a-1} \frac{1}{a} c(a,a)\}^{i-1}.
\]
In particular, \(\Delta_i[a](g_{i,a}) \neq 0 \) for \(1 \leq a \leq e-1 \).

Proof. First we note that the operator \(\Delta^{[a]}_i \) affects only the variables \(x_i \) and \(x_{i-1} \) and leaves all the others unchanged. Therefore we have
\[
(3.6.1) \quad \Delta_i[a](g_{i,a}) = (x_1 \cdots x_{i-1})^a \Delta^{[a]}_x(x_1^a).
\]
But we have \(\Delta^{[a]}_x(x_1^a) = (-1)^{a-1} \frac{1}{a} c(a,a) \) by Lemma 3.3 (ii). Hence the right hand side of (3.6.1) can be written as \(\gamma g_{i-1,a} \) with \(\gamma = (-1)^{a-1} \frac{1}{a} c(a,a) \). Repeating this procedure for the operators \(\Delta^{[a]}_{i-1}, \ldots, \Delta^{[a]}_2 \) we obtain the result. \(\square \)

3.7. Let \(\mathcal{M} = [0, e-1]^{n-1} \) (\(n-1 \) copies of the interval \([0, e-1]\)). For each \(\lambda = (\lambda_2, \ldots, \lambda_n) \in \mathcal{M} \), we define an operator \(\Delta_\lambda \) on \(S(V) \) by
\[
\Delta_\lambda = \Delta_n[\lambda_n] \cdots \Delta_2[\lambda_2].
\]
Also for \(\lambda \in \mathcal{M} \) we define a polynomial \(P_\lambda(x) \) by \(P_\lambda = \prod_{i=2}^n g_{i,\lambda_i} \). Let \(\lambda = (\lambda_2, \cdots, \lambda_n), \mu = (\mu_2, \cdots, \mu_n) \in \mathcal{M} \). We define a total order \(\lambda > \mu \) on \(\mathcal{M} \) by \(\lambda_2 = \mu_2, \ldots, \lambda_{i-1} = \mu_{i-1} \) and \(\lambda_i > \mu_i \) for some \(i \geq 1 \). Then we have the following proposition.
Proposition 3.8. Let $\lambda, \mu \in \mathcal{M}$. Then there exists a non-zero element $c_\lambda \in \mathbb{C}$ such that

$$\Delta_\lambda(P_\mu) = \begin{cases} c_\lambda & \text{if } \lambda = \mu, \\ 0 & \text{if } \lambda > \mu. \end{cases}$$

Proof. First we note that $\Delta_i[\lambda_i]$ leaves $g_{i, \mu_i} = (x_1 \cdots x_{i-1})^{\mu_i}$ invariant for $j < i$. In fact, $\Delta_i[\lambda_i]$ consists of various products of the operators $\Delta_{s_1}, \ldots, \Delta_{s_j}, \Delta_{s'_j}, \ldots, \Delta_{s'_{i-1}}$ and these operators leave g_{i, μ_i} invariant, since s_j and s'_j stabilize $x_{j-1}x_j = y_{j-1}y_j$ (in the notation of 3.1).

First assume that $\lambda = \mu$. Then by Lemma 3.6 $\Delta_i[\lambda_i](g_{i, \lambda_i})$ is a non-zero constant for each i. Combining with the above remark, we see that

$$\Delta_\lambda(P_\lambda) = \prod_{i=2}^n \Delta_i[\lambda_i](g_{i, \lambda_i}),$$

and the right hand side is a non-zero constant, which we write as c_λ.

Next assume that $\lambda > \mu$. Then there exists i such that $\lambda_2 = \mu_2, \ldots, \lambda_{i-1} = \mu_{i-1}$ and $\lambda_i > \mu_i$. Then we have

$$\Delta_\lambda(P_\mu) = c \Delta_n[\lambda_n] \cdots \Delta_i[\lambda_i](\prod_{j=i}^n g_{j, \mu_j}),$$

with some $c \in \mathbb{C} - \{0\}$ by a similar argument as in the previous case. But then

$$\Delta_i[\lambda_i](\prod_{j=i}^n g_{j, \mu_j}) = (\prod_{j=i+1}^n g_{j, \mu_j}) \Delta_i[\lambda_i](g_{i, \mu_i}),$$

and $\Delta_i[\lambda_i](g_{i, \mu_i}) = 0$, since $\Delta_i[\lambda_i]$ reduces the degree by $(i-1)\lambda_i$, which is bigger than the degree of g_{i, μ_i}. Hence $\Delta_\lambda(P_\mu) = 0$. \hfill \square

3.9. Let \mathcal{D}_W be the subalgebra of $\text{End}_{\mathbb{C}} S(V)$ generated by $\Delta_i (s \in S)$ and $\alpha^* (\alpha \in V)$, where $\alpha^* : S(V) \to S(V)$ denotes the multiplication by the vector α. Then \mathcal{D}_W becomes a left $S(V)$-module. We also note that for any $w \in W$ the endomorphism w on $S(V)$ is contained in \mathcal{D}_W, since $s_\alpha = 1 - \alpha^* \Delta_\alpha \in \mathcal{D}_W$ for any $s_\alpha \in S$. Since $\Delta_{s'_i} = w \Delta_{s'_i} w^{-1}$ for some $w \in S_n$, we see that $\Delta_{s'_i}$ ($2 \leq i \leq n$) are also contained in \mathcal{D}_W. Therefore $\Delta_\lambda \in \mathcal{D}_W$ for any $\lambda \in \mathcal{M}$.

As a corollary to Proposition 3.8 we have the following theorem. The proof is immediate from Proposition 3.8.

Theorem 3.10. The set $\{\Delta_\lambda | \lambda \in \mathcal{M}\}$ of operators in \mathcal{D}_W is linearly independent over $S(V)$.

3.11. In the case of \(\tilde{W} = G(e, 1, n) \), the operator \(\Delta_w \) was constructed in [RS] for each \(w \in \tilde{W} \) by making use of a particular reduced expression of \(w \). Here \(\Delta_w \) is an operator which reduces the grading by \(n(w) \). In our case, the operators \(\Delta_\lambda \) with \(\lambda \in \mathcal{M} \) are not directly related to the elements of \(W \). However, one gets a bijection between the set \(\{ \Delta_\lambda | \lambda \in \mathcal{M} \} \) and the set \(\mathcal{N} \) in \(W \) as follows. For each \(0 < a \leq e \), we set

\[
\varphi(a) = \begin{cases}
2a - 1 & \text{if } 0 < a \leq e/2, \\
2e - 2a & \text{if } e/2 < a \leq e.
\end{cases}
\]

Then the map \(\varphi \) gives rise to a bijection from the set \([1, e]\) to the set \([0, e - 1]\), and one can define a bijection \(\tilde{\varphi} : \mathcal{N} \to \mathcal{M} \) by \(\tilde{\varphi}(w) = (\varphi(a_2), \ldots, \varphi(a_n)) \). Hence the set \(\{ \Delta_\lambda | \lambda \in \mathcal{M} \} \) is in bijection with the set \(\mathcal{N} \). It is easily checked, by using (2.2.2), that if \(\lambda \in \mathcal{M} \) corresponds to \(w \in \mathcal{N} \), then \(\Delta_\lambda \) reduces the degree by \(\ell(w) \).

3.12. In the case of \(\tilde{W} \), it was shown in [RS, Prop. 2.14] that \(D_{\tilde{W}} \) is a free \(S(V) \)-module with basis \(\{ \Delta_w | w \in \tilde{W} \} \). In order to obtain a similar result for \(W \), we try to construct operators \(\Delta_w \) for any \(w \in W \). In view of Proposition 2.3, any element \(w \in W \) can be expressed uniquely as \(w = w'w'' \), with \(w' \in \mathcal{N}, w'' \in S_n \) with \(\ell(w) = \ell(w') + \ell(w'') \). We now define \(\Delta_w \) \((w \in W)\) by \(\Delta_w = \Delta_\lambda \Delta_{w''} \), where \(\lambda \in \mathcal{M} \) is given by \(\lambda = \tilde{\varphi}(w') \). (Note that the operator \(\Delta_{w''} \) corresponding to \(w'' \in S_n \) is defined without ambiguity, see 2.5.)

We know, by Theorem 3.10, that the set \(\{ \Delta_\lambda | \lambda \in \mathcal{M} \} \) is linearly independent over \(S(V) \). It is also known that the set \(\{ \Delta_{w''} | w'' \in S_n \} \) is linearly independent over \(S(V) \). We expect that the set \(\{ \Delta_w | w \in W \} \) gives rise to a basis of \(D_W \). In what follows, we show that this conjecture is reduced to some properties of \(\Delta_\lambda \). Here we prepare some notation. For each \(\lambda \in \mathcal{M} \) we define the length \(\ell(\lambda) \) by \(\ell(\lambda) = \ell(\lambda') \) whenever \(\lambda \) corresponds to \(\lambda' \in \mathcal{N} \). Hence \(\ell(w) = \ell(\lambda) + \ell(w'') \) if \(w \in W \) corresponds to the pair \((\lambda, w'') \in \mathcal{M} \times S_n \). For each integer \(c \geq 1 \), we put \(\mathcal{M}_c = \{ \lambda \in \mathcal{M} | \ell(\lambda) = c \} \).

For each polynomial \(P_\lambda \) \((\lambda \in \mathcal{M})\) given in 3.7, we define its average \(\bar{P}_\lambda \) over \(S_n \) by \(\bar{P}_\lambda = \sum_{\sigma \in S_n} \sigma(P_\lambda) \). Note that \(\Delta_\lambda(\bar{P}_\mu) \) is a constant if \(\lambda, \mu \in \mathcal{M}_c \) for some \(c \). Let \(\lambda_0 = (e - 1, \cdots, e - 1) \in \mathcal{M} \). Then \(\lambda_0 \) is the longest element in \(\mathcal{M} \) with \(\ell(\lambda_0) = n(n - 1)(e - 1)/2 \). We consider the following two statements.

(3.12.1) \(\Delta_{\lambda_0}(\bar{P}_{\lambda_0}) \) is a non-zero constant.

(3.12.2) For any integer \(c \geq 1 \), the matrix \(\Delta_\lambda(\bar{P}_\mu) \) is non-singular.

We don’t know whether these two statements hold in a full generality for \(W \). It is verified that (3.12.1) holds whenever \(e \geq n \), which will be discussed in Theorem 3.14. In the case where \(n = 3 \) it is checked that (3.12.2) holds.
for small e. Note that (3.12.1) is a special case of (3.12.2), since the set \mathcal{M}_c consists of a single element λ_0 if $c = \ell(\lambda_0)$.

3.13. In order to look at P_λ more precisely, we shall extend the parameter set \mathcal{M} to \mathbb{N}^{n-1}. For each $\lambda = (\lambda_2, \cdots, \lambda_n) \in \mathbb{N}^{n-1}$, we define a polynomial $F_n(\lambda)$ by $F_n(\lambda) = \prod_{i=2}^{n} g_{i, \lambda_i}$. Hence if $\lambda \in \mathcal{M}$, $F_n(\lambda)$ coincides with P_λ. We put $\bar{F}_n(\lambda) = \sum_{\sigma \in S_n} \sigma(F_n(\lambda))$.

For each i ($1 \leq i \leq n$), let

$$
\sigma_i = \begin{pmatrix}
1 & 2 & \cdots & i & i+1 & i+2 & \cdots & n \\
1 & 2 & \cdots & n & i & i+1 & \cdots & n-1
\end{pmatrix} \in S_n.
$$

Then $\{\sigma_1, \cdots, \sigma_n\}$ is a complete set of representatives of the right cosets $S_{n-1}\setminus S_n$. For each $\mu = (\mu_2, \cdots, \mu_n) \in \mathbb{N}^{n-1}$, we define $\mu^{(i)} \in \mathbb{N}^{n-2}$, ($2 \leq i \leq n - 1$) by

$$
\mu^{(i)} = (\mu_2, \cdots, \mu_{i-1}, \mu_i + \mu_{i+1}, \mu_{i+2}, \cdots, \mu_n).
$$

Also we put $\mu^{(1)} = (\mu_3, \cdots, \mu_n) \in \mathbb{N}^{n-2}$ and $\mu^{(n)} = (\mu_2, \cdots, \mu_{n-1}) \in \mathbb{N}^{n-2}$. Then it is easy to see that

$$
(3.13.1) \quad \sigma_i(F_n(\mu)) = \begin{cases}
F_{n-1}(\mu^{(i)}) \cdot b_i(\mu) & \text{if } 1 \leq i \leq n - 1, \\
F_{n-1}(\mu^{(n)}) \cdot (x_1 \cdots x_{n-1})^{\mu_n} & \text{if } i = n,
\end{cases}
$$

where $b_i(\mu) = \mu_i + 1 + \cdots + \mu_n$ for $i = 1, \cdots, n - 1$. It follows from (3.13.1) that

$$
\sum_{\sigma \in S_{n-1}} \sigma \sigma_i F_n(\mu) = \begin{cases}
\bar{F}_{n-1}(\mu^{(i)}) \cdot b_i(\mu) & \text{if } 1 \leq i \leq n - 1, \\
\bar{F}_{n-1}(\mu^{(n)}) \cdot (x_1 \cdots x_{n-1})^{\mu_n} & \text{if } i = n.
\end{cases}
$$

Hence we have a recursive formula,

$$
(3.13.2) \quad \bar{F}_n(\mu) = \sum_{i=1}^{n-1} \bar{F}_{n-1}(\mu^{(i)}) b_i(\mu) + \bar{F}_{n-1}(\mu^{(n)}) (x_1 \cdots x_{n-1})^{\mu_n}.
$$

Let $\mathcal{M}' = [0, e-1]^{n-2}$ be the set corresponding to the situation in $G(e, e, n-1)$. Then for $\lambda = (\lambda_2, \cdots, \lambda_n) \in \mathcal{M}$, the operator Δ_λ can be written as $\Delta_\lambda = \Delta_n[\lambda_n] \Delta_{\lambda'}$ with $\lambda' = (\lambda_2, \cdots, \lambda_{n-1}) \in \mathcal{M}'$. By applying Δ_λ to the formula (3.13.2), we obtain

$$
(3.13.3) \quad \Delta_\lambda(\bar{F}_n(\mu)) = \sum_{i=1}^{n-1} \Delta_n[\lambda_n](\Delta_{\lambda'}(\bar{F}_{n-1}(\mu^{(i)}))) \cdot b_i(\mu) \\
+ \Delta_n[\lambda_n](\Delta_{\lambda'}(\bar{F}_{n-1}(\mu^{(n)}))) \cdot (x_1 \cdots x_{n-1})^{\mu_n}.
$$

By making use of the formula (3.13.3), we can compute the value $\Delta_{\lambda_0}(\bar{P}_{\lambda_0})$ under a certain condition, which gives a partial answer to the conjecture (3.12.1).
Theorem 3.14. Assume that \(e \geq n \). Then \(\Delta_{\lambda_0}(P_{\lambda_0}) = c_{\lambda_0} \), where \(c_{\lambda_0} \) is given as in Proposition 3.8.

Proof. Since \(\lambda_0 = (e - 1, \ldots, e - 1) \in \mathcal{M} \), \(\Delta_{\lambda_0} \) can be written as \(\Delta_{\lambda_0} = \Delta_{n-1}[e-1] \Delta_{\lambda_0}' \), where \(\lambda_0' = (e - 1, \ldots, e - 1) \in \mathcal{M}' \). First we note the following

\[
(3.14.1) \text{Let } \mu = (\mu_2, \ldots, \mu_n) \in \mathbb{N}^{n-1}. \text{ Assume that } \mu_i \equiv 0 \pmod{e - 1} \text{ for all } i \text{ and that } e - 1 < \sum_i \mu_i < e(e - 1). \text{ Then we have } \Delta_{\lambda_0}(\bar{F}_n(\mu)) = 0.
\]

We prove (3.14.1) by induction on \(n \). We apply the formula (3.13.3) with \(\lambda = \lambda_0 \). Note that if \(\mu \) satisfies the assumption of (3.14.1), then \(\mu^{(i)} \) \((2 \leq i \leq n - 1)\) above also satisfies the same condition. Hence (3.13.3) implies, by induction hypothesis, that

\[
\Delta_{\lambda_0}(\bar{F}_n(\mu)) = \Delta_n[e - 1](\Delta_{\lambda_0'}(\bar{F}_{n-1}(\mu^{(1)}))) \cdot x_n^{b_1(\mu)} + \Delta_n[e - 1](\Delta_{\lambda_0'}(\bar{F}_{n-1}(\mu^{(n)}))) \cdot (x_1 \cdots x_{n-1})^{\mu_n}.
\]

Here we may assume that \(\mu^{(1)} = \lambda_0' \) or \(\mu^{(n)} = \lambda_0' \), since both of \(\Delta_{\lambda_0'}(\bar{F}_{n-1}(\mu^{(1)})) \) and \(\Delta_{\lambda_0'}(\bar{F}_{n-1}(\mu^{(n)})) \) are zero, otherwise. But if \(\mu^{(1)} = \lambda_0' \), then \(\bar{F}_1(\mu^{(n)}) = \bar{P}_{\lambda_0} \), and \(\Delta_{\lambda_0'}(\bar{P}_{\lambda_0}) \) is a constant. The same argument holds for the case \(\mu^{(n)} = \lambda_0' \). Therefore, in order to prove (3.14.1), we have only to show that

\[
(3.14.2) \Delta_n[e - 1]x_n^{b_1(\mu)} = 0, \quad (3.14.3) \Delta_n[e - 1](x_1 \cdots x_{n-1})^{\mu_n} = 0.
\]

The left hand side of (3.14.2) can be computed by making use of the formula in Lemma 3.4. In particular, it is divisible by \(c(e - 1, b_1(\mu)) \). We claim that \(c(e - 1, b_1(\mu)) = 0 \). In fact, by our assumption, \(b_1(\mu) = \mu_2 + \cdots + \mu_n \) can be written as \(b_1(\mu) = d(e - 1) \) for some \(d \) such that \(1 < d < e \). Then there exists \(j \) \((1 \leq j \leq e - 2)\) such that \(b_1(\mu) - j \equiv 0 \pmod{e} \). This implies that \(c(e - 1, b_1(\mu)) = 0 \), and (3.14.2) holds. (3.14.3) can be proved in a similar way, by replacing \(b_1(\mu) \) by \(\mu_n \), and by using Lemma 3.3. Hence (3.14.1) is proved.

We now prove the theorem. We compute \(\Delta_{\lambda_0}(P_{\lambda_0}) \) by applying (3.13.3) with \(\lambda_0 = \mu \). Then \(\lambda_0^{(i)} \) \((2 \leq i \leq n - 1)\) satisfies the condition in (3.14.1), since \((n - 1)(e - 1) < e(e - 1)\) by our assumption. Hence, by applying (3.14.1), the terms corresponding to \(\mu^{(i)} \) \((2 \leq i \leq n - 1)\) vanish. It follows that

\[
\Delta_{\lambda_0}(P_{\lambda_0}) = \Delta_n[e - 1]x_n^{(n-1)(e-1)} \cdot \Delta_{\lambda_0'}(P_{\lambda_0'}) + \Delta_n[e - 1](x_1 \cdots x_{n-1})^{e-1} \cdot \Delta_{\lambda_0'}(\bar{P}_{\lambda_0}).
\]

But the first term of the sum goes to 0 by applying (3.14.2) with \(\mu = \lambda_0 \).

Since \((x_1 \cdots x_{n-1})^{e-1} = g_n, e-1\), the second term coincides with \(c_{\lambda_0} \), by Proposition 3.8. This proves the theorem. \(\square \)
3.15. Let \(u_0 \in S_n \) be as in 2.5, and let \(w_1 \in W \) be the element in \(W \) corresponding to \((\lambda_0, u_0) \in \mathcal{M} \times S_n\). Then \(w_1 \) is the longest element in \(W \) with \(\ell(w_1) = on(n - 1)/2 = N \), where \(N \) is the number of reflections in \(W \). Let \(Q_0 \) be as in 2.5. Then \(P_{\lambda_0}Q_0 \) is a polynomial of degree \(N \). Since \(P_\lambda \) is \(S_n \)-invariant, and \(\Delta_{u_0}(Q_0) = 1 \) by Proposition 2.6, we have

\[
\Delta_{\lambda_0}\Delta_{u_0}(P_{\lambda_0}Q_0) = \Delta_{\lambda_0}(P_{\lambda_0}) = c\lambda_0.
\]

Before stating the next result, we prepare a simple lemma.

Lemma 3.16. Let \(\varepsilon : S(V) \to \mathbb{C} \) denotes the evaluation at 0. Let \(I_W \) be the ideal of \(S(V) \) defined in 2.3. Then for any \(w \in W \) we have

\[
\varepsilon \Delta_w(I_W) = 0
\]

Proof. Let \(f \) be an element of \(I_W \). Then \(f \) can be written as

\[
f = \sum_i u_i f_i,
\]

with \(u_i \in S(V) \), \(f_i \in S(V)_W \), where \(f_i \) is homogeneous of positive degree. Then applying \(\Delta_w \) to \(f \), we obtain

\[
\Delta_w(f) = \sum_i \Delta_w(u_i)f_i,
\]

since \(f_i \) is \(W \)-invariant. Here \(\Delta_w(u_i)f_i \) is a polynomial without a constant term. This implies that \(\varepsilon \Delta_w(f) = 0 \) and the lemma follows. \(\square \)

3.17. Let \(\varepsilon_W : W \to \{\pm 1\} \) be the sign character of \(W \). Let \(Q \) be the polynomial in \(\mathbb{C}[x_1 \cdots, x_n] \) defined by \(Q = \prod_{i>j}(x_i^e - x_j^e) \). Then \(\deg Q = N \), and up to scalar, \(Q \) coincides with the product of the eigenvectors attached to all the reflections in \(W \). It is easy to see that \(Q \) generates a one-dimensional representation of \(W \) affording \(\varepsilon_W \). We define an operator \(J : S(V) \to S(V) \) by

\[
J = \sum_{w \in W} \varepsilon_W(w)w.
\]

Then \(J \) is a projection on the \(\varepsilon_W \)-isotypic subspace of \(S(V) \). We have the following remarkable result, although it is not used in the later discussion.

Note that it is an analogue of [H, IV, Prop. 1.6].

Proposition 3.18. Assume that \(e \geq n \). Then there exists a non-zero constant \(d \) such that \(\Delta_{w_1} = dQ^{-1}J \).
It is known that S_W is a regular W-module, and S_W^N affords the sign representation of W. Hence we have

$$S_W^N(V) = (I_W)^N + \mathbb{C}Q,$$

where $(I_W)^N = I_W \cap S_W^N(V)$. Now $\tilde{P}_{\lambda_0}Q_0 \in S_W^N(V)$, and (3.15.1) implies, in view of Lemma 3.16, that $\tilde{P}_{\lambda_0}Q_0 \notin I_W$. Hence there exists a non-zero constant $c' \in \mathbb{C}$ such that $Q \equiv c\tilde{P}_{\lambda_0}Q_0 \pmod{I_W}$. In particular, we have $\Delta_{w_1}(Q) = c$ with $c = c'c_{\lambda_0}$, by Theorem 3.14. Since Δ_{w_1} and $Q^{-1}J$ are $S(W)^W$-endomorphisms of $S(V)$, both of them are determined by the restriction to $S_W^N(V)$. Hence, by comparing the value at Q, we see that $\Delta_{w_1} = dQ^{-1}J$ with $d = c/|W|$. This proves the proposition. \hfill \Box

3.19

We now return to the condition (3.12.2). We deduce several properties of the operators Δ_w by assuming this condition. Note that for any $\lambda, \mu \in \mathcal{M}_c$, the polynomial $\Delta_\lambda \Delta_{w_0}(\tilde{P}_\mu Q_0)$ is a constant.

We denote by A_c the matrix $(\Delta_\lambda \Delta_{w_0}(\tilde{P}_\mu Q_0))_{\lambda, \mu \in \mathcal{M}_c}$, under a suitable order, for a given integer $c \geq 0$. Then since $\Delta_\lambda \Delta_{w_0}(\tilde{P}_\mu Q_0) = \Delta_\lambda (\tilde{P}_\mu)$ by a similar argument as in (3.15.1), we see that

\[(3.19.1) \text{ Assume that (3.12.2) holds for } W. \text{ Then the matrix } A_c \text{ is nonsingular.}\]

We have the following lemma.

Lemma 3.20. Assume that (3.12.2) holds for W. Then the operators $\{\Delta_\lambda \Delta_w | \lambda \in \mathcal{M}, w \in S_n\}$ are linearly independent over $S(V)$.

Proof. We consider the dependence relation

\[(3.20.1) \sum_{\lambda, w} a(\lambda, w) \Delta_\lambda \Delta_w = 0\]

on $S(V)$, where $a(\lambda, w) \in S(V)$. By induction on the length $\ell(w)$ of $w \in S_n$, we may assume that $a(\lambda, w') = 0$ for any $w' \in S_n$ such that $\ell(w') < \ell(w)$ and for $\lambda \in \mathcal{M}$. Multiplying $\Delta_{w^{-1}w_0}$ to the equation (3.20.1) from the right, and by making use of Proposition 2.7 together with induction hypothesis, we obtain

\[(3.20.2) \sum_{\lambda \in \mathcal{M}} a(\lambda, w) \Delta_\lambda \Delta_{w_0} = 0.\]

We show that $a(\lambda, w) = 0$ by induction on the length of \mathcal{M}. Assume that $a(\mu', w) = 0$ for any $\mu' \in \mathcal{M}$ such that $\ell(\mu') < c$. We evaluate the equation (3.20.2) at $\tilde{P}_\mu Q_0$ for $\mu \in \mathcal{M}_c$. Note that $\Delta_\lambda \Delta_{w_0}(\tilde{P}_\mu Q_0) = 0$ if $\ell(\lambda) > c$.\hfill \Box
Hence the non-zero contribution only comes from the terms corresponding to \(\lambda \in \mathcal{M}_c \). We consider such equations for all \(\mu \in \mathcal{M}_c \). Then it is regarded as a linear equation with variables \(a(\lambda, w) (\lambda \in \mathcal{M}_c) \), and with coefficient matrix \(A_c \). Since the matrix \(A_c \) is non-singular by (3.19.1), we see that \(a(\lambda, w) = 0 \) for any \(\lambda \in \mathcal{M}_c \). This proves the lemma.

We can now prove the following proposition, which is analogous to proposition 2.14 in [RS].

Proposition 3.21. Assume that (3.12.2) holds. Then the algebra \(\mathcal{D}_W \) is a free \(S(V) \)-module with basis \(\{ \Delta_w \mid w \in W \} \).

Proof. Let \(K \) be the quotient field of \(S(V) \). The operator \(\Delta_\alpha \) on \(S(V) \) can be extended to an operator on \(K \). We consider the subalgebra \(\mathcal{D}_W^K \) of \(\text{End}_K K \) defined by \(\mathcal{D}_W^K = K \otimes_{S(V)} \mathcal{D}_W \). Since \(\dim_K \mathcal{D}_W^K \leq |W| \), Lemma 3.20 implies that

\[(3.21.1) \text{ The set } \{ \Delta_w \mid w \in W \} \text{ gives a basis of } \mathcal{D}_W^K \text{ as a } K\text{-vector space.}\]

By a similar argument as in the proof of Lemma 2.14 in [RS], the proof of the proposition is reduced to showing the following lemma.

Lemma 3.22. Let \(\Delta \) be a \(d \)-product of \(\Delta_s \) \((s \in S)\). Then \(\Delta \) can be written as

\[
\Delta = \sum_{w \in W} a_w \Delta_w,
\]

where \(a(w) \) are elements in \(S(V) \) satisfying the following conditions.

\[(3.22.1) \begin{cases}
a_w = 0 & \text{if } \ell(w) < d, \\
a_w \in S^{(\ell(w)-d)}(V) & \text{if } \ell(w) \geq d.
\end{cases}\]

We prove Lemma 3.22. Here we recall that any \(\Delta_{w'} \) \((w' \in W)\) can be written as \(\Delta_{w'} = \Delta_\lambda \Delta_w \) with \(\lambda \in \mathcal{M}, w \in S_n \). Hence by (3.21.1) \(\Delta \) can be expressed as

\[(3.22.2) \Delta = \sum_{\lambda \in \mathcal{M}, w \in S_n} a(\lambda, w) \Delta_\lambda \Delta_w,
\]

with \(a(\lambda, w) \in K \). We write \(a(\lambda, w) = a_{w'} \) if \(w' \in W \) corresponds to \((\lambda, w)\). We shall prove that \(a(\lambda, w) \) satisfies the condition (3.22.1) by induction on the length \(\ell(\lambda) \) of \(\mathcal{M} \), and on the length \(\ell(w) \) of \(S_n \). We fix \(w \in S_n \) and assume that (3.22.1) is verified for any \(a(\lambda', w') \) such that \(\lambda' \in \mathcal{M} \) and that \(w' \in S_n \) with \(\ell(w') < \ell(w) \). Also we assume that it is verified for any \(a(\mu', w) \) such
that $\ell(\mu') < c$ for an integer $c \geq 0$. We show that $a(\lambda, w)$ satisfies (3.22.1) for any $\lambda \in \mathcal{M}_c$. By multiplying $\Delta_{w^{-1}w_0}$ on both sides of (3.22.2) from the right, we have

$$\Delta_{w^{-1}w_0} = \sum_{\lambda \in \mathcal{M}} a(\lambda, w)\Delta_\lambda \Delta_{w_0} + \sum_{\lambda', w'} a(\lambda', w')\Delta_{\lambda'} \Delta_{w''},$$

where in the second sum, λ' runs over all the elements in \mathcal{M}, and w' in S_n such that $\ell(w') < \ell(w)$. Here $w'' \in S_n$ is given by $w'' = w'w^{-1}w_0$ with $\ell(w'') = \ell(w') - \ell(w) + \ell(w_0)$. We evaluate the equation (3.22.3) at $P_\mu Q_0$, with $\mu \in \mathcal{M}_c$, which is a polynomial of degree $c + \ell(w_0)$. Then the non-zero contribution in the first sum comes from the terms corresponding to $\lambda \in \mathcal{M}_1$, where

$$\mathcal{M}_1 = \{\lambda \in \mathcal{M} | \ell(\lambda) \leq c\}.$$

First assume that $c + \ell(w) < d$. Then for any $\lambda \in \mathcal{M}_1$, we have $\ell(\lambda) < d$. Hence by induction hypothesis, we have $a(\lambda, w) = 0$ for $\lambda \in \mathcal{M}_1$ such that $\ell(\lambda) < c$. On the other hand, again by induction hypothesis, $a(\lambda', w')\Delta_{\lambda'} \Delta_{w''}(P_\mu Q_0)$ is a homogeneous polynomial of degree $c + \ell(w) - d < 0$. This means that there are no contributions from the terms in the second sum, and we have

$$\Delta_{w^{-1}w_0}(P_\mu Q_0) = \sum_{\lambda \in \mathcal{M}_c} a(\lambda, w)\Delta_\lambda \Delta_{w_0}(P_\mu Q_0).$$

Since $d + \ell(w^{-1}w_0) > \ell(\mu) + \ell(w_0)$, we have $\Delta_{w^{-1}w_0}(P_\mu Q_0) = 0$. This implies that $a(\lambda, w) = 0$ for any $\lambda \in \mathcal{M}_c$, since the matrix A_c is non-singular by (3.19.1). Next assume that $c + \ell(w) \geq d$. Take $\lambda \in \mathcal{M}$ such that $\ell(\lambda) < c$. Then by induction hypothesis, $a(\lambda, w)$ is a homogeneous polynomial of degree $\ell(\lambda) + \ell(w) - d$ for such λ, if it is positive, and $a(\lambda, w) = 0$ if $\ell(\lambda) + \ell(w) - d < 0$. Hence $a(\lambda, w)\Delta_\lambda \Delta_{w_0}(P_\mu Q_0)$ is a homogeneous polynomial of degree $c + \ell(w) - d$, if it is non-zero. On the other hand, by a similar argument as before we see that the term in the second sum $a(\lambda', w')\Delta_{\lambda'} \Delta_{w''}(P_\mu Q_0)$ is also a homogeneous polynomial of degree $c + \ell(w) - d$, if it is non-zero. Moreover, $\Delta_{w^{-1}w_0}(P_\mu Q_0)$ is a homogeneous polynomial of the same degree. Since the matrix A_c is a non-singular \mathbb{C}-matrix, we see that $a(\lambda, w)$ is a homogeneous polynomial of degree $c + \ell(w) - d$ for any $\lambda \in \mathcal{M}_c$. This shows that $a(\lambda, w)$ satisfies the condition in (3.22.1). The lemma is now proved and the proposition follows.

The following lemma can be proved in a similar way as Lemma 2.16 in [RS], in view of [RS, Remark 2.10].

Lemma 3.23. Let P be a homogeneous polynomial of degree N. Let I be a graded ideal of $S(V)$ containing I_W, but not containing P. Then $I = I_W$.

3.24 Let $S(V)^* \equiv \oplus_{i \geq 0} S^i(V)^*$, where $S^i(V)^*$ denotes the dual space of $S^i(V)$ over \mathbb{C}. We have a natural pairing $\langle \cdot, \cdot \rangle : S(V) \times S(V)^* \to \mathbb{C}$, $\langle u, f \rangle = f(u)$. Let $\varepsilon : S(V) \to \mathbb{C}$ denote the evaluation at 0. Then for each $\Delta \in D_W$ we can regard $\varepsilon \Delta$ as an element in $S(V)^*$. Let \tilde{D}_W be the subspace of $S(V)^*$ generated by $\varepsilon \Delta$ with $\Delta \in D_W$. Let H_W be the dual space of D_W. Then we have a natural map $c : S(V) \to H_W$, which sends $u \in S(V)$ to the restriction to \tilde{D}_W of the map $\langle u, \cdot \rangle : S(V) \to \mathbb{C}$. We can now state the main theorem, which is an analogue of [RS, Th. 2.18].

Theorem 3.25. Assume that the conjectures (3.12.1) and (3.12.2) hold for W. Then there exists a unique graded \mathbb{C}-algebra structure on H_W such that c induces an isomorphism $S_W \cong H_W$. The set $\{\varepsilon \Delta_w | w \in W\}$ gives a basis of the \mathbb{C}-vector space \tilde{D}_W. In particular, if we denote by $\{X_w | w \in W\}$ the dual basis of $\{\varepsilon \Delta_w | w \in W\}$, the map c can be described, for $u \in S(V)$, as

$$c(u) = \sum_{w \in W} \varepsilon \Delta_w(u) X_w.$$

Proof. It follows from proposition 3.21 that $\{\varepsilon \Delta_w | w \in W\}$ gives rise to a basis of D_W. Since $\dim S_W = |W|$, in order to prove the theorem it is enough to prove that $\ker c = I_W$. Since D_W has a structure of a right $S(V)$-module, we see that $\ker c$ is a graded ideal of $S(V)$. It also follows from Lemma 3.16 that $I_W \subset \ker c$. Now (3.12.1) asserts that $\Delta_{\lambda_0} \Delta_{\omega_0}(P_{\lambda_0} Q_0) \neq 0$ (see (3.15.1)). Hence $P_{\lambda_0} Q_0$ is a polynomial with $\deg P_{\lambda_0} Q_0 = N$, which is not contained in I. Then one can apply Lemma 3.23 with $P = P_{\lambda_0} Q_0$ and we conclude that $I = I_W$. This proves the theorem.

References

Konstantinos Rampetas
Department of Mathematics, Science University of Tokyo
Noda, Chiba 278-8510, Japan
E-mail address: kostas@ma.noda.sut.ac.jp