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Abstract. We study the scattering problem and asymptotics for large time of
solutions to the Hartree type equations
tug = —%Au—i— f(ul>)u, (t,z) € R x R,
u(0,z) =uo(z), z€R", n>2
where the nonlinear interaction term is f(|u|?) = V|u|?, V(z) = A|z|~%, X ¢€
R,0 < § < 1. We suppose that the initial data ug € H%! and the value
€ = |luo||go, is sufficiently small,where [ is an integer satisfying I > [3] + 3,
and [s] denotes the largest integer less than s. Then we prove that there exists
a unique final state uy € H%'~2 such that for all t > 1
T ix?2  itl—d

1
u(t,a:) = (it)%u+(?)eXp(2_t_1—5

Flas ) () +O(1+2) 40" /2=7)

uniformly with respect to z € R™ with the following decay estimate ||u(t)|| e <

Cet%i%, for all £ > 1 and for every 2 < p < oo. Furthermore we show that for
% < § < 1 there exists a unique final state uy € H%!'~2 such that for all £ > 1

i11—6

ot
t) — —
Jut) - exp(- T —

f(|ﬁ+|2)(%))U(t)u+lle =0(t'~*)

and uniformly with respect to z € R™

1 T iz? it ? 2\, T
t, = — — = 5 d O tfn/2+1726 ’
o) = i (el = T () + O )
where ¢ denotes the Fourier transform of the function ¢, H™S = {¢p €

S5 llmes = 1+ [22)/2(1 = A)™/24] 12 < oo}, mys € R. In [5] we as-
sumed that ug € H™9% N HY™, (m = n + 2), and showed the same results
as in this paper. Here we show that we do not need regularity conditions on
the initial data by showing the local existence theorem in lower order Sobolev
spaces.
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§1. Introduction

We study the asymptotic behavior for large time of solutions to the Cauchy
problem for the Hartree type equation

(L.1) { iOu=—3Au+ f(lu?)u, (t,z) € RxR",

u(0,z) = ug(z), =€ R,

where

Fut) =V <t = [ Ve = y)laP )y,

V(z)=Mz|™°, AeR, 0<d<1l and n>2.

From the point of view of the large time behavior of solutions we classify the
equation (1.1) by the value ¢ into three cases. We call the equation (1.1) with
1 < ¢ < n as the super-critical one. If § = 1 the equation (1.1) is known as
the Hartree equation and is considered as the critical case in the scattering
theory. We refer to the equation (1.1) with 0 < § < 1 as the sub-critical case.
It is known that the usual scattering states do not exist in the critical and
sub-critical cases (see, e.g., [8]). Therefore the scattering problem in these
cases is more difficult than that of the super-critical case. The critical case
was considered in many papers, see, for example, [2, 4, 6, 9]. For the super-
critical case, see, e.g., [3,7,8]. Recently in [5] we studied the sub-critical case
0 < § < 1 and obtained the sharp time decay estimates of solutions. For
1/2 < § < 1 we proved the existence of the modified scattering states under
the conditions that the initial data ug € H™° N H®™ (m = n + 2) and the
norm ||%g||m,0 + ||%o||o,m is sufficiently small. Our purpose in this paper is to
remove the regularity conditions on the initial data. More precisely, we will
prove the results of [5] under the conditions that the initial data uy € H"? and
the norm |[ugl|o,; is sufficiently small, where [ is an integer satisfying I > [5]+3
and [s] denotes the largest integer less than s.

In what follows we consider the positive time ¢ only since for the negative
one the results are analogous. We use the following notation and function
spaces. We let 0; = 0/0z;,0% = 0" --- 09", a = (o, (g, ..., o) € (NU{O})",
la| = 2?21 aj. And let F¢ or ¢ be the Fourier transform of ¢ defined by
Fp(&) = W [ e7 @ Ep(x)dx and F~1¢(z) be the inverse Fourier transform
of ¢, i.e.

Flo(z) = W [ et g(€)de.

We introduce some function spaces. LP = {¢ € S';[|4||, < oo}, where

I¢ll, = (f |¢(x)[Pda) /P if 1 < p < 0o and [|¢lle = ess.sup{|d(z)|;z € R"}
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if p = oo. For simplicity we let ||¢|| = ||¢|l2. Weighted Sobolev space
H™* = {$ € S||¢llm,s = I + J2[*)*/*(1 = A)™/?¢|| < o0}, m,s € R and
the homogeneous Sobolev space H™* = {¢ € §'; |||ac| (— )m/2¢|| < oo} with
seminorm ¢l jrm. = ||2°(—A)™2]. We let (,) = [ $(z) - Bx)dz. By
C(I; E) we denote the space of continuous functions from an 1nterval I to a
Banach space E.

The free Schrodinger evolution group U(t) = e gives us the solution of
the linear Cauchy problem (1.1) (with f = 0). It can be represented explicitly
in the following manner

Ut)p = W

itA/2

/6i<$_y)2/2t¢(y)dy — ‘7:_16_#52/2F¢.

Note that U(t) = M(t)D(t)FM(t), where M = M(t) = exp(”Z) and D(?)
is the dilation operator defined by (D(_t)z/))(ac) = (it_)n/Zd)(_)‘ Then sirie
D(t)~* = i"D(3) we have U(—t) = MF'D(t)"'M = Mi"F~'D(1)M,
where M = M (—t) = exp(—%).

Different positive constants might be denoted by the same letter C.

We now state our results in this paper.

Theorem 1.1. Let 0 < § < 1. Suppose that the initial data vy € H%!, and
the value € = ||ug||go.t is sufficiently small, where | is an integer satisfying
I > [§] + 3. Then there exists a unique global solution of the Hartree type
equation (1.1) such that U(—t)u(t) € C([0,00); H®!) and ||[U(—t)u(t)|o; <
Ce(1 + )= Moreover the following decay estimate

n

()], < Cet»~%
is valid for all t > 1, where 2 < p < oo.

Remark 1.1. The decay rate in Theorem 1.1 is the same as that of the solutions
to the linear Schrodinger equation.

Theorem 1.2. Let u be the solution of (1.1) obtained in Theorem 1.1. Then
for any ug satisfying the condition of Theorem 1.1, there exists a unique final
state iy, € H'=7° 0 < < 1 such that the following asymptotics

u(t,x) = @ z <z’gc2 i1—0

Gy (—)exp 9% 1-3
is valid as t — oo uniformly with respect to z € R"™.

Has PG +O+2) ) 0+

©3

t

For the values § € (%, 1) we obtain the existence of the modified scattering
states.
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Theorem 1.3. Let u be the solution of (1.1) obtained in Theorem 1.1 and
% < § < 1. Then there exists a unique final state 4, € H"=7°, 0 < v <1
such that the following asymptotics for t — oo is valid uniformly with respect
toz € R"

i?  itte

u(t,z) = ﬁfL*_(%)exp(— 1o 5f(|ﬂ+|2)(%)>—|—O(t_%+1_25)

and the estimate

T "
@)U Bus]| < €872

Ju(t) — exp(—— :

is true for all t > 1.

In Section 2 we prepare some preliminary estimates. Lemma 2.1 is the usual
Sobolev inequality. We show the local in time existence of solutions to (1.1) in
Theorem 2.2. Lemma 2.3 is necessary to treat the nonlinear term. Section 3
is devoted to the proof of Theorems 1.1-1.3. First we prove Theorem 3.1 and
Theorem 3.2 where we estimate the solutions of auxiliary system (3.1). And
then we prove Theorems 1.1-1.3.

§2. Preliminaries

We first state the well-known Sobolev embedding inequality (for the proof,
see, e. g., [1]).

Lemma 2.1. Let q,r be any numbers satisfying 1 < q,r < oo, and let j,m
be any real numbers satisfying 0 < j < m. Then the following inequality is
valid _

I(=2)2ull, < CI(=2)"ull¢lullg™

if the right-hand side is bounded, where C is a constant depending only on
m,n,j,q,r, a, here.% =Lt -2)4(1- a)% and a is any real number
from the interval L < a < 1, with the following exception: if m —j — % is

nonnegative and integer, then a = Z.

Theorem 2.2. Suppose that the initial data ug satisfy the condition of Theo-
rem 1.1. Then there exists a timeT' > 1 and a unique solution u of the Cauchy
problem (1.1) such that U(—t)u(t) € C([0,T]; H*!) and ||U(—t)u(t)|o; < 2e
for t € [0,T].

Proof. We introduce the function space

Xr ={p € C([0,T); L*); ll¢llx, = sup [U(=t)p(t)]lor < oo}.
0<t<T
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We denote by X7, the closed ball of X7 with a center at the origin and a
radius p. We consider the linearized version of the equation (1.1):

{ iu=—2Au+ f(jv]*)v, (t,z) eRxR"
U(O,IL‘) ZUO(x)a r €R",

where v € X7 ,. This Cauchy problem defines the mapping A : u = Av acting
in X7. Using Lemma 2.1, Holder’s inequality and the fact that the operator
J = U(t)zU(—t) commutes with the linear Schrédinger operator id; + 1A we
obtain

d -
N u®]* < 2ATm (St T f(|o]*)0)]

<C Y |t (Tu, (6#9) £ (1010f?)) T o) |

1<k<l

<C Z 1T ullll(@)* £ (1M 0]*) /sl T~ 0ll2n/(n—26)
1<k<l

<C Y N ulllTF PV M (=) TR M (—t) St
1<k<l

< Ct=° | ull (1 + || ' ])®.

Whence we can easily see that the mapping A is a contraction mapping from
X7, into itself if we take p sufficiently small. This implies Theorem 2.2. [

The following lemma is used for obtaining estimates of the nonlinear term.

Lemma 2.3. We have the following estimates

el

10 < Cllolleollldllco + 141l geo),

> [Re(¢,05(Vyp - V)| < CllglIFo (19 lloo + 18]l rv.0)
j=1

and

1059, 07 (V))] < Clllle + 191l ) 10501,

if the right-hand sides are bounded, where 1 is a real valued function, ¢ is a
complex valued function, | > [5] + 3,k =1 +2,n > 2.

For the proof, see [5, Lemma 2.2]. O
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§3. Proof of Theorems
In the same way as in [5,(3.2)] we have
wy = t%Vng + #Aw + ETtiwAg,
(3.1) ge =t f([wl®) + 52 (V9)* + 51z Ag,

g(1) =0, w(l) =wv(l) = FM(~1)U(-1)u(1)

by putting w = e FMU(—t)u(t). In order to obtain the desired result
we prove the global existence of solutions to (3.1) under the condition that
lv(1)]]1,0 is sufficiently small. The later is true by virtue of Theorem 2.2 since

lo(W)lz,0 = U (=1)u(1)]lo,:-

We first prove the local existence theorem for the system of equations (3.1).

Theorem 3.1. Suppose that the initial data v(1) satisfies ||v(1)|;0 < p,
where p is sufficiently small. Then there exists a time T > 2 and a unique
solution to the Cauchy problem for the system of equations (3.1) such that
w e C([1,T); H?), g € C([1,T), H*° N L>), and the following estimates are
valid ]

1o + 17 (lglloo + Nlgll i) + 27 gl grro < 2p,

for any t € [1,T], where |l > [3] 43, k = [ + 2.

[w

Proof. We consider the linearized version of the system of equations (3.1):

wy = FVwVj+ 55 Aw + HwAg,

(3:2) ge = t=°f(10%) + 5z (V9)* + 51 Ag,
g(1) = 0,w(1) = v(1) = FM(=1)U(~1)u(1).

The Cauchy problem (3.2) defines a mapping A
(5)-4(5),
g g
We introduce the function space

X :{ (‘g") sw e C([1,T]; H ), g € C([1,T); L™ n H+2); H (%;) ‘

<oo},
X

where

[(%)

= sw (oo

Xy 1<t<T

Lo + g @)oo + lg(®ll gr0) + t5/2—1||g(t)||H,+2,0)>.
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We denote by A7 5, the closed ball in X7 with a center at the origin and a

radius 2p. We now let
w
( f] > S XT’2P.

For the first equation in the system (3.2) the estimates in H"? are easily
obtained by the usual energy method. The second equation of the system
(3.2) is parabolic and therefore possesses a regularizing effect so we do not
encounter a derivative loss. Then the standard contraction mapping yields
the result. O

We next prove the following theorem.

Theorem 3.2. Suppose that the initial data v(1) are such that the value
lv(1)]l1,0 < 2¢, where € is sufficiently small. Then there exists a unique so-
lution to the Cauchy problem for the system of equations (3.1) such that
w € C([1,00); H'?), g € C([1,00), H*® N L>°), and the following estimates
are valid )

lwlleo + 8~ (lgllso + gl geo) + 127 gl gro < 3,

where | = [3] +3, k =1+2.
Proof. We estimate the following norms J(t) = ||w(t)||;,0 and I(¢) = 37 1(|lglloo

+ 2 jaj=k 10%gl)) of the functions w and g on the time interval [1,T7]. Differ-
entiating (3.1) with respect to z; and using the usual energy method we get

1+
t2

d 2
EHB;-sz = Ret—z(aé-w, 3§(Vg -Vw)) + Re (3;-10, 8;- (wAg)),

whence by the first two estimates of Lemma 2.3 and Theorem 3.1 we obtain

%J(t) < CtII()J(t) < Cp2t— 1972

and integration with respect to t gives

(3.3) J(t) < 2+ Cp2.

Analogously by virtue of the third estimate of Lemma 2.3 we find

d _ 1 1
—05gll* <2t *1(859, 05 F(Jwl*)| + =1(979,97 (Vo)) = Vgl

_ _ _ 1
< Ot (=) 2r; 1107 (=) 2 f (jwl) | + Ct = 117 = (19751,

where r; = Bj’-“g and ¥k = [ + 2. From Lemma 2.1 we have the estimate
1(=A)%/27,]| < Cllr;]|*=°||Vr;||° since 6 € (0,1). Then using the Young’s
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inequality ab < %p + %, where we take a = C||7"j||1_5||8;?(—A)_5/2f|| and
b=t°||Vr;||° p= 2725, q= %, so that 1—1) + % =1, we get
d _ _ 2 _
Zlrll” < Clrgll* 2|0F (=) £ )7 + Oty |12
< 0T ||r | =5+ Oty |17 < Cpt'
since f(jw|?) = (—A)~*=" |w|? (see [10]) we have by Lemma 2.1
195 (=2) 7272 f(|w]?)|| < Cll9F (=2) ™" wl?||

< O(=2)2 = E || < Cll(=A) 2D~ F wf?|,
<N =AYl < Cllwlfy for n>4

and for n = 2,3

10F (=) 272 f (jw?)]| < ClIOF (=) /2 |w]?|
< C(=A)RFw | < Olfwl o < Cllw]?o,

Integration with respect to ¢ yields
(3.4) lrl|* < Cp*2°.

For the L* norm by (3.1) and Lemma 2.1 we see that there exists a positive
constant € < 1/2 such that

t t 3 t dt

9|l = “/1 gedt|| oo S/l t 6||f(|w|2)“oodt+/1 (H(V9)2Hoo+||A9Hoo)t—2
Lo 2 ! 2 dt
S/l £ f (Jw] )HoodtJr/l (I1(Vg) ’|oo+€“9||oo+CH9||Hk,0)t—2

< Cpt 0+ &t' 0 sup ||glloo
1<t<T

since |Aglloo < Cllglss “Ngl%no < €llglloe + Cligll g0, where a = 4/(2k —n).
Therefore we have

(3.5) g]loo < Cp*t'70.

In the same way we estimate the norm in H%° to get

t t t
mmmzw[%mmms[fWﬂmmmmw+[mwmwmo

dt _
(36) + ||Ag||H10)t—2 < Cp2t1 9,
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From (3.3)-(3.6) we see that

1]

if we take p satisfying Cp? < e. Thus Theorem 3.1 and the standard continu-
ation argument yield the result. O

< 2e+ Cp2 < e,
X7

We are now in a position to prove Theorems 1.1 - 1.3.

Proof of Theorem 1.1. From the identity
FMU (—t)u(t) = w(t) exp(—ig(t))
we have
1U (=t u(@)llo; = [IFMU(=t)u(t)llo = [lw(t) exp(—ig(#))ls,o-
Whence applying Lemma 2.1 we obtain

lw(#) exp(=ig(®)llio < Cllwllio( + llgllee + gl fe0)’

< Ce(1 + )=,

Hence by Theorem 2.2 and Theorem 3.2 we see that there exists a unique
solution u of (1.1) such that U(—t)u(t) € C([0,00); H%!) and ||U(—t)u(t)|lo; <
Ce(1 + t)(1=9!, By virtue of the identity

1
(it)"/2

u(t) = M()D({)w(t) exp(~ig) = s M(Bw(t, 7) exp(—ig(t, 7))

we easily get

Ju®ll, < G2t Dl < O [t DiPde)

= a2 [ (e p)lPay i = celr
< Ot |l o p0 < Cet™P?
for all p > 2. This completes the proof of Theorem 1.1. [

Proof of Theorem 1.2. We have via Lemma, 2.3 and Theorem 3.2

t t
l(t) — w(s) -2 < / o, (Dli—s.0dr < C / (IVgVwlli—20

dr

dr t _
(3.7) | Awli—zp + [wAgli—20) 2 < Ce/ AT < Ces™
T s T
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for all 1 < s < t. Therefore there exists a unique limit W, € H'=2%  such
that limy_, o w(t) = W, in H'=2% and thus we get

1 o 1 o )
u(t,z) = == M(tw(t, E)e_zg(tﬁ == M(t)W+(£)6_19(t’7> + O(et=279)
(it) = t (it) = t
uniformly with respect to z € R" since for all 2 < p < 0o we have the estimate

1 N —g - —n )}
[Ju(t) — WM(t)WN;)e 90|, < Ot ||w(t, E) - W+(Z)”p

< Ot 2 w(t) — Wi |l, < CP 2 |w(t) — W llnja—n/po
< Cetn/p—n/Z—(s.
By Lemma 2.1, Theorem 3.2 and (3.7) we have for 0 <y <2
lw(t) = w(s)lli—r.0 < Cllw(t) — w(s) ;5" lw(t) —w(s)|}/5, < Ces™7/2,

Therefore W, € H'=79. For the phase g we write the identity

t T t T 1-46
o) = [ £Q0) 5+ [ (Vo7 +20)5T = FUWLP) =5 + 2(0),
where
1-6 __
0(t) =~ F(W?) +2(0) + (7 (u®)]?) — (w2 Y

dr

272’

+ / (V9)? + Ag)

U(t) = /1t(f(|w(7)l2) — F(lw®)]*) =
By Lemma 2.1
1£ (o)) = £ (@) )l < CUV(w@®F — [w@) ) llw(®)2 — k(@)1
< Ocllw(t) —w(r)||10 < O~

Hence we get g = %f(|W+|2) + O(1 + t'72%) uniformly in z € R”. From
these estimates the result of Theorem 1.2 follows with 4, = W,. O

Proof of Theorem 1.3. We have

O(t) — @(s) = / (f(lw(m)?) = fF(w®)*) =5

T

. . t1—6_1 . . 81—6_1
F(F)P) = FIW 1 P) === = (Fl()P) = F(W412)

(3.8)

dr

+ [ (Vo) + g 55
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where 1 < s < t. We apply Theorem 3.2 and (3.7) to (3.8) to get ||®(t) —
()l o + [|2(t) — (5)||oo < Ces'™2 for 1 < s < t. This implies that there
exists a unique limit ®, = lim;_,,, ®(t) € H"® N L such that

(3.9) 12() = Dl o + [12(2) = P4 floc < Cet' ™

since we now consider the case % < <1
By virtue of (3.9) we have

t1—6
1—6

(3.10) lg(£) — FAW4?) = @ floo < Cet' ™.

We now put 44 = W, exp(—i®,). Then we obtain the asymptotics for ¢ — oo
uniformly with respect to z € R"

1 (x) (ix2 it
7 U —)expl—— —
@)s P T 15

u(t,x) = FsP)(5)) + 0@/>+172),

Via (3.10) and (3.7) we have

1-46
|FMU(—=t)u(t) — i exp(—i lt - 6f(|ﬂ+|2))||

. e .
= llw(t) exp(~ig(t)) — Wy exp(—iq— 5f(|W+|2) —i®4)l
t1—5 B
< lw(t) = Wil + [Welllgt) — f(IW|?) 5 Dl < Cet' ™,

whence we get

1-6 T
() — exp(—ix—f(ja4 P )V (B)us
é

1—

= [lu(t) — M(t)D(t) eXP(—if_ S ([0 ) FM (tus |
1-6

< M@ DE)(FM(#)U(—t)u(t) — 4 exp(— f —fa )

1-6
M) D) exp(—ix— f ([ P)FM (1) — Dy |

<Ot 4 |F(M(t) — Duy|| < Ct2 + CtY|z2uy]| < Ct =2

since ||#?uy || = |Ady|| = [[A(Wie®+)|| < Ce. This completes the proof of
Theorem 1.3. [
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