POLY-MODAL LOGIC $S 5_{n} C$

Pavel A. Alexeev and Mikhail I. Golovanov*

(Received December 2, 1996; Revised March 27, 1997)

Abstract

We investigate a poly-modal logic $S 5_{n} C$ which has n-modalities ($n>1$) satisfying the axioms of $S 5$ and has axioms expressing permutability of modalities. We show that the logic $S 5{ }_{n} C$ is complete concerning Kripke semantics, has the finite model property and is decidable, however we prove $S 5_{n} C$ is not locally finite. A main result consists of an algorithmic criterion for recognizing the admissibility of inference rules in $S 5_{n} C$, i.e. the $\operatorname{logic} S 5_{n} C$ is decidable with respect to the admissibility.

AMS 1991 Mathematics Subject Classification. Primary 03B45.
Key words and phrases. Polymodal logic, local finiteness, decidability, admissibility of inference rules.

§1. Introduction

Semantics and deductive properties of many mono-modal logics are investigated very deeply. We mean the results concerning completeness and decidability of logics for the representative and rich classes, the results concerning the finite model property and the local finiteness, the results on the description of corresponding Kripke models. Mentioned results are related to the equational modal logics. But results about inference rules for modal logics belong to the quasi-equational logics, the theory of quasi-identities of modal algebras. The problems concerning inference rules for mono-modal logics are investigated rather profoundly.

These questions appeared in the study of intuitionistic logic by Moscow logical school headed by P.S.Novikov in forties, and then by Leningrad school in works of G.E.Mints and others, and in Kishinev school in works of A.V.Kuznetsov and his followers.

The main point of these studies was two related problems: (a) the Harvey Friedman problem (problem 40,[1]): about the existence of an algorithm for recognizing the admissibility of inference rules; (b) the problem of A.V.Kuznetsov about the existence of finite bases for admissible inference rules of the intuitionistic logic.

[^0]These problems were answered by V.V.Rybakov affirmatively for Friedman problem, but negatively for Kuznetsov question, using solutions of similar questions for the modal logics $S 4$ and $\operatorname{Gr} z[2,3]$. Also a complete description of the bases of admissible inference rules of the modal logic $S 4.3$ was obtained, and it was proved that these logics are decidable with respect to the admissibility of inference rules [4].

Therefore there are a number of results concerning the admissibility of inference rules for individual logics. Recently V.V.Rybakov [6] obtained a general theorem for the description of classes of mono-modal logics concerning the existence of algorithms for recognizing the admissibility of inference rules. A complete description of the hereditarily structurally complete modal logics over $K 4$ was found in [5]. Thus the problem of the admissibility of inference rules for mono-modal logics is studied in detail. As to poly-modal logics, the above mentioned problems of equational logics and especially the problems of quasi-equational logics are investigated not so deeply. It is quite natural, using the methods of mono-modal logics if possible, to investigate the corresponding and related problems for poly-modal logics.

A semantic investigation of poly-modal logics has been initiated with works of K.Segerberg (see for example [10]). A study of poly-modal logics has an independent theoretical and practical interest, and is important(see for example an interconnection discovered by M.Rennie [11]). However, in general case, poly-modal logics have as a rule more complicate structures comparing to mono-modal logics (see for instance [8]). Nevertheless it is possible sometimes to obtain rather strong positive results regarding poly-modal logics. For example, V.B.Shechtman [9] proved theorems of general character for semantic characterization of poly-modal logics, from which the completeness, the finite model property and the decidability follow for many logics.

The aim of this paper is a study of inference rules for the poly-modal logic $S 5_{n} C$ which has commutative modalities. Namely, the $\operatorname{logic} S 5_{n} C$ is a logic with n modalities $\square_{1}, \ldots, \square_{n}$, which have all axioms of $S 5$ and besides the following axioms: $\square_{i} \square_{j} p \equiv \square_{j} \square_{i} p, i, j=1, \ldots, n$. The problem is interesting since on the one hand this logic promises positive results and, on the other hand, among the extensions of $S 5_{n} C$ there are logics which are not decidable (see V.V.Rybakov [7]). In this paper we show that the logic $S 5_{n} C$ is complete concerning Kripke semantics, has the finite model property and is decidable, however we prove that $S 5_{n} C$ is not locally finite for $n>1$. A main result consists of an algorithmic criterion for recognizing the admissibility in $S 5{ }_{n} C$, i.e. the logic $S 5_{n} C$ is decidable with respect to the admissibility of inference rules.

We are grateful to V.V.Rybakov for offering this problem and for valuable discussions.

§2. Definitions and preliminary results

A normal modal n-logic is an extension of the classical propositional calculus by adding n modalities $\square_{1}, \ldots, \square_{n}$, which has axioms $\square_{i}(p \rightarrow q) \rightarrow\left(\square_{i} p \rightarrow\right.$ $\left.\square_{i} q\right)(i=1, \ldots, n)$, and the rules $\vdash A \Rightarrow \vdash \square_{i} A(i=1, \ldots, n)$ and, possibly, other additional axioms. A weak product of the normal modal logics L_{1} and L_{2} with modalities $\square_{1}, \ldots, \square_{n}$ and $\square_{n+1}, \ldots, \square_{n+m}$ is a normal logic $L_{1} \times L_{2}$ with modalities $\square_{1}, \ldots, \square_{n}, \square_{n+1}, \ldots, \square_{n+m}$, which contains all axioms of L_{1} and L_{2} and the axioms $\square_{i} \square_{j} p \equiv \square_{j} \square_{i} p, \diamond_{i} \square_{j} p \rightarrow \square_{j} \diamond_{i} p(1 \leq i \leq n<j \leq n+m)$.

The language of the propositional logic $S 5_{n} C$ extends the language of the classical propositional calculus with modalities $\square_{1}, \ldots, \square_{n}$. The logic $S 5_{n} C$ has axioms

$$
\begin{array}{r}
\square_{i}(p \rightarrow q) \rightarrow\left(\square_{i} p \rightarrow \square_{i} q\right), i=1, \ldots, n, \\
\square_{i} p \rightarrow p, i=1, \ldots, n, \\
\diamond_{i} \square_{i} p \rightarrow p, i=1, \ldots, n, \\
\square_{i} p \rightarrow \square_{i} \square_{i} p, i=1, \ldots, n, \\
\square_{i} \square_{j} p \equiv \square_{j} \square_{i} p, i, j=1, \ldots, n,
\end{array}
$$

and the following inference rules:

$$
\vdash A, \vdash A \rightarrow B \Rightarrow \vdash B, \vdash A \Rightarrow \vdash \square_{i} A(i=1, \ldots, n)
$$

A logic λ is called locally finite if, for any m, there exist only a finite number of pairwise nonequivalent formulas of m propositional variables. An n-frame is the structure $\left\langle U, R_{1}, \ldots, R_{n}\right\rangle$, where U is a nonempty set and R_{1}, \ldots, R_{n} are binary relations on the set U. A Kripke n-model is a structure $\left\langle U, R_{1}, \ldots, R_{n}, V\right\rangle$, where $\left\langle U, R_{1}, \ldots, R_{n}\right\rangle$ is an n-frame and V is a function from a set of propositional variables to the powerset of U (we call this function as valuation). When there is no risk to confuse, we will speak of \ll Kripke model \gg instead of \ll Kripke n-model \gg. The truth value of a formula can be defined in poly-modal case quite similarly as the mono-modal case. Let \mathcal{M} be a Kripke model with a valuation defined on m-elements set P_{m} of propositional variables. We say that \mathcal{M} is m-characterizing for the logic λ, if for any formula φ with variables from $P_{m}, \varphi \in \lambda \Longleftrightarrow \mathcal{M} \Vdash \varphi$. An element v of the model $\left\langle U, R_{1}, \ldots, R_{n}, V\right\rangle$ is definable if there is a formula α such that for any $w \in U w \Vdash_{V} \alpha \Longleftrightarrow w=v$. In this case we say that α defines v. Let $\mathcal{M}=\left\langle U, R_{1}, \ldots, R_{n}, V\right\rangle$ be a Kripke model and let W be a new valuation of some propositional variables on the frame of the model \mathcal{M}. The valuation W is called definable, if for any variable p_{i} from the domain of W, there exists a formula α_{i} such that $W\left(p_{i}\right)=\left\{x \in U \mid x \Vdash_{V} \alpha_{i}\right\}$.

Suppose $\mathcal{M}_{1}=\left\langle U^{\prime}, R_{1}^{\prime}, \ldots, R_{n}^{\prime}, V^{\prime}\right\rangle$ and $\mathcal{M}_{2}=\left\langle U^{\prime \prime}, R_{1}^{\prime \prime}, \ldots, R_{n}^{\prime \prime}, V^{\prime \prime}\right\rangle$ are Kripke models. We call the model $\mathcal{M}=\left\langle U, R_{1}, \ldots, R_{n}, V\right\rangle$ a disjoint union
of models \mathcal{M}_{1} and $\mathcal{M}_{2}\left(\mathcal{M}=\mathcal{M}_{1} \sqcup \mathcal{M}_{2}\right)$ if the following hold: $U=U^{\prime} \cup U^{\prime \prime}$, $U^{\prime} \cap U^{\prime \prime}=\emptyset,\left.R_{i}\right|_{U^{\prime}}=R_{i}^{\prime},\left.R_{i}\right|_{U^{\prime \prime}}=R_{i}^{\prime \prime}$ and $\left.V\right|_{U^{\prime}}=V^{\prime},\left.V\right|_{U^{\prime \prime}}=V^{\prime \prime}$. Let $F=\left\langle U, R_{1}, \ldots, R_{n}\right\rangle$ be an n-frame. Assume U^{x} is the smallest subset of U containing x and satisfying the condition: if $y \in U^{x}$ and $(y, z) \in R_{i}$ for some $i, 1 \leq i \leq n$, then $z \in U^{x}$. We use the denotation $R_{i}^{x}=\left.R_{i}\right|_{U^{x}}$. We say a subframe $F^{x}=\left\langle U^{x}, R_{1}^{x}, \ldots, R_{n}^{x}\right\rangle$ of a frame F is the cone of F with the root x.

Let $\mathcal{M}=\left\langle U, R_{1}, \ldots, R_{n}, V\right\rangle$ be an n-model and $x \in U$. Denote by \mathcal{M}^{x} the submodel $\left\langle U^{x}, R_{1}^{x}, \ldots, R_{n}^{x}, V^{\prime}\right\rangle$, where the frame $\left\langle U^{x}, R_{1}^{x}, \ldots, R_{n}^{x}\right\rangle$ is a cone of a frame $\left\langle U^{x}, R_{1}^{x}, \ldots, R_{n}^{x}\right\rangle$ with a root x and $V^{\prime}\left(p_{i}\right)=V\left(p_{i}\right) \cap U^{x}$. By \mathcal{E} we denote a one-element model that is a model with one element universe and with all relations $R_{i}(1 \leq i \leq n)$ reflexive. Note that, in case of n propositional variables, there are 2^{n} different one-element models. We call the frame $F_{1} \times F_{2}=\left\langle U_{1} \times U_{2}, \hat{R}_{1}, \ldots, \hat{R}_{n}, \hat{S}_{1}, \ldots, \hat{S}_{m}\right\rangle$ as cartesian product of frames $F_{1}=\left\langle U_{1}, R_{1}, \ldots, R_{n}\right\rangle$ and $F_{2}=\left\langle U_{2}, S_{1}, \ldots, S_{m}\right\rangle$, where $\left(x_{1}, y_{1}\right) \hat{R}_{i}\left(x_{2}, y_{2}\right)$, if $x_{1} R_{i} x_{2}$ and $y_{1}=y_{2} ;\left(x_{1}, y_{1}\right) \hat{S}_{i}\left(x_{2}, y_{2}\right)$, if $x_{1}=x_{2}$ and $y_{1} S_{i} y_{2}$. The composition of frames $F_{1}=\left\langle U, R_{1}, \ldots, R_{n}\right\rangle$ and $F_{2}=\left\langle U, S_{1}, \ldots, S_{m}\right\rangle$ is the frame

$$
F_{1} * F_{2}=\left\langle U, R_{1}, \ldots, R_{n}, S_{1}, \ldots, S_{m}\right\rangle
$$

If \mathcal{F}_{1} and \mathcal{F}_{2} are certain classes of n-frames and m-frames, respectively, then $\mathcal{F}_{1} \times \mathcal{F}_{2}=\left\{F_{1} \times F_{2} \mid F_{1} \in \mathcal{F}_{1}, F_{2} \in \mathcal{F}_{2}\right\}, \mathcal{F}_{1} * \mathcal{F}_{2}=\left\{F_{1} * F_{2} \mid F_{1} \in \mathcal{F}_{1}, F_{2} \in \mathcal{F}_{2}\right\}$.

If \mathcal{F} is a class of n-frames, then by $S(\mathcal{F})$ we denote an n-modal logic which contains all modal formulas which are true on the class \mathcal{F}.

Let V_{1} be a class of all 1-frames. $V_{1} \cap D$ is the class of all countable 1-frames or finite 1-frames, $R E F, S Y M, T R, N E, E$ are defined by axioms $\square p \rightarrow p$, $\diamond \square p \rightarrow p, \square p \rightarrow \square \square p, \diamond \top, \diamond \top \rightarrow \diamond \square \perp$ respectively.

Theorem 2.1 ([9], theorem 3). Let G be the semigroup generated by the classes of frames of a free semigroup of classes of frames (where the multiplication is the composition *) generated by classes $V_{1}, V_{1} \cap$ $D, R E F, S Y M, T R, N E, E$ and nonempty intersections of these classes. Let $\mathcal{F}, \mathcal{F}^{\prime}$ be certain elements of G. Then the following holds

$$
S\left(\mathcal{F} \times \mathcal{F}^{\prime}\right)=S(\mathcal{F}) \times S\left(\mathcal{F}^{\prime}\right)
$$

Since in the logic $S 5_{n} C$ each inference rule of type $A_{1}, \ldots, A_{k} / B$ is equivalent to the rule $A_{1} \wedge \cdots \wedge A_{k} / B$, we presuppose that each inference rule is of the form A / B. We say that an inference rule $A\left(p_{1}, \ldots, p_{m}\right) / B\left(p_{1}, \ldots, p_{m}\right)$ is admissible in a logic λ if, for any formulas $\phi_{1}, \ldots, \phi_{m}$, the condition $A\left(\phi_{1}, \ldots, \phi_{m}\right) \in \lambda$ entails $B\left(\phi_{1}, \ldots, \phi_{m}\right) \in \lambda$. We will also consider the logical connective "possible": \diamond_{i}, which is defined as an abbreviation for $\neg \square_{i} \neg$. Note that, $\square_{i} \varphi \equiv \neg \diamond_{i} \neg \varphi$ and $\diamond_{i} \varphi \equiv \neg \square_{i} \neg \varphi$ for every formula φ in $S 5_{n} C$ for any n.

§3. Main results

From our definitions above we immediately infer
Lemma 3.1. A frame $\left\langle U, R_{1}, \ldots, R_{n}\right\rangle$ is adequate to the logic $S 5_{n} C \Longleftrightarrow$ R_{i} is reflexive, symmetric, transitive and $R_{i} R_{j}=R_{j} R_{i}(i, j=1, \ldots, n)$.

Theorem 3.2. The logic $S 5_{n} C$ has the property of completeness for Kripke semantics and the finite model property.

To prove this theorem we need the following denotation and lemma. Denote by \mathcal{F}_{1} the set of all finite reflexive and transitive clusters (remind, a cluster is a frame of the kind $\left.\langle U, R\rangle \in \mathcal{F}_{1} \Longleftrightarrow \forall x, y \in U[(x, y) \in R]\right)$. It is well known that \mathcal{F}_{1} is a characterizing class for $S 5$.

Lemma 3.3. $S 5_{n} C=S(\underbrace{\mathcal{F}_{1} \times \cdots \times \mathcal{F}_{1}}_{n})$
Proof. By induction on n. For $n=1$ the lemma holds. Let the lemma be proved for every $k \leq n$ and let $k=n+1$. Applying Theorem 2.1 and the inductive hypothesis we have: $S 5_{n+1} C=S 5_{n} C \times S 5=S(\underbrace{\mathcal{F}_{1} \times \cdots \times \mathcal{F}_{1}}_{n}) \times S\left(\mathcal{F}_{1}\right)=$ $S((\underbrace{\mathcal{F}_{1} \times \cdots \times \mathcal{F}_{1}}_{n}) \times \mathcal{F}_{1})=S(\underbrace{\mathcal{F}_{1} \times \cdots \times \mathcal{F}_{1}}_{n+1})$. Lemma 3.3 is proved.

Theorem 3.2 follows immediately from Lemma 3.3.
Thus \mathcal{F}_{1}^{n} is a characterizing class of frames for $S 5_{n} C$. Let $C h a r_{m}$ be a disjoint union of all possible models of type $\left\langle F, R_{1}, \ldots, R_{n}, V\right\rangle$, where $F=$ $M_{1} \times M_{2} \times \cdots \times M_{n},\left(x_{1}, \ldots, x_{n}\right) R_{i}\left(y_{1}, \ldots, x_{y}\right) \Longleftrightarrow x_{1}=y_{1}, \ldots, x_{i-1}=$ $y_{i-1}, x_{i+1}=y_{i+1}, \ldots, x_{n}=y_{n}, M_{1}, \ldots, M_{n}$ are any finite sets and V is any valuation of variables p_{1}, \ldots, p_{m} on the frame F. According to Lemma 3.3 the model $C h a r_{m}$ is an m-characterizing model for $S 5_{n} C$.

Next theorem follows from the Theorem 3.2 and the fact that logic $S 5_{n} C$ is finitely axiomatizable.

Theorem 3.4. The logic $S 5_{n} C$ is decidable.
Theorem 3.5. The logic $S 5_{n} C$ for $n>1$ is not locally finite.
Proof. We introduce a model in the following way. We take the set $N \times N$ as a universe of our model and define the relations of accessibility R_{1}, \ldots, R_{n} as follows: $(r, s) R_{1}(q, t)$ iff $s=t ;(r, s) R_{2}(q, t)$ iff $r=q ;(r, s) R_{k}(q, t)$ iff $(r=q) \wedge(s=t)(k=3,4, \ldots, n)$. The valuation of the single variable p on this model is following one: $V(p)=\{(i, j) \mid i \leq j\}$. Now we introduce the set of formulas inductively :

$$
\begin{aligned}
& \alpha=p \wedge \diamond_{2} \neg p, \\
& \beta_{0}=\square_{2} p,
\end{aligned}
$$

```
\(\gamma_{0}=\square_{1} \neg \alpha\),
\(\beta_{1}=\square_{2}\left(\gamma_{0} \vee \alpha\right) \wedge \neg \beta_{0}\),
\(\gamma_{1}=\square_{1}\left(\beta_{0} \vee \beta_{1} \vee \neg \alpha\right) \wedge \neg \gamma_{0}\),
\(\beta_{i+1}=\square_{2}\left(\bigvee_{j=0}^{i} \gamma_{j} \vee \alpha\right) \wedge \bigwedge_{j=0}^{i} \neg \beta_{j}\),
\(\gamma_{i+1}=\square_{1}\left(\bigvee_{j=0}^{i+1} \beta_{j} \vee \neg \alpha\right) \wedge \bigwedge_{j=0}^{i} \neg \gamma_{j}\).
```

It is clear that the formulas γ_{i} and β_{j} are valid only on the elements of the sets $\{(k, i) \mid k \in N\}$ and $\{(j, k) \mid k \in N\}$ respectively. This yields that there exist an infinite set of pairwise nonequivalent formulas with one propositional variable. Hence the logic $S 5_{n} C$ is not locally finite and Theorem 3.5 is proved.

Theorem 3.6. An inference rule $A\left(p_{1} \ldots, p_{m}\right) / B\left(p_{1} \ldots, p_{m}\right)$ is not admissible in $S 5_{n} C$ iff the following hold:

1) $\left(\square_{1} \ldots \square_{n} A \rightarrow B\right) \notin S 5_{n} C$,
2) there exists a valuation on one-element model \mathcal{E} such that $\mathcal{E} \Vdash A$.

Proof. Necessity. Suppose an inference rule $A\left(p_{1}, \ldots, p_{m}\right) / B\left(p_{1}, \ldots, p_{m}\right)$ is not admissible in $S 5_{n} C$. Hence there exist formulas $\phi_{1}, \ldots, \phi_{m}$ such that $A\left(\phi_{1}, \ldots, \phi_{m}\right) \in S 5_{n} C, B\left(\phi_{1}, \ldots, \phi_{m}\right) \notin S 5_{n} C$. Therefore

$$
\square_{1} \ldots \square_{n} A\left(\phi_{1}, \ldots, \phi_{m}\right) \in S 5_{n} C
$$

According to Lemma 3.3 there is a certain frame F in \mathcal{F}_{1}^{n} such that the formula $B\left(\phi_{1}, \ldots, \phi_{m}\right)$ is false on F. Let V be a valuation which disproves the formula $B\left(\phi_{1}, \ldots, \phi_{m}\right)$ on the frame F. Since $\square_{1} \ldots \square_{n} A\left(\phi_{1}, \ldots, \phi_{m}\right) \in S 5_{n} C$ we have $F \Vdash_{V} \square_{1} \ldots \square_{n} A\left(\phi_{1}, \ldots, \phi_{m}\right)$. Now we introduce a new valuation V^{\prime} on the frame F in the following way: $V^{\prime}\left(p_{i}\right)=\left\{x \mid x \Vdash \phi_{i}\right\}$. By induction on the length of formula we can prove $F \Vdash_{V^{\prime}} \square_{1} \ldots \square_{n} A\left(p_{1}, \ldots, p_{m}\right)$ and $F{\nVdash V^{\prime}}^{\prime}$ $B\left(p_{1}, \ldots, p_{m}\right)$. Therefore $\left(\square_{1} \ldots \square_{n} A\left(p_{1}, \ldots, p_{m}\right) \rightarrow B\left(p_{1}, \ldots, p_{m}\right)\right) \notin S 5_{n} C$ and 1) is proved.

Since the one-element frame E with reflexive relations R_{1}, \ldots, R_{n} is adequate to $S 5_{n} C$ we have $E \Vdash_{V} A\left(\phi_{1}, \ldots, \phi_{m}\right)$ for any valuation V. We fix the valuation V and introduce on E the new valuation $V^{\prime}\left(p_{i}\right)=\left\{x \mid x \vdash_{V} \phi_{i}\right\}$, then $E \Vdash_{V^{\prime}} A\left(p_{1} \ldots, p_{m}\right)$ and 2$)$ hold.
Sufficiency. Suppose the conditions 1) and 2) of our theorem hold. Then there exists a model \mathcal{M}, which is a cone of $C h a r_{m}$, such that $\mathcal{M} \nVdash\left(\square_{1} \ldots \square_{n} A\right.$ $\rightarrow B)$. Let the power of the model \mathcal{M} is k. We define an extension of the valuation V of variables p_{1}, \ldots, p_{m} on the model \mathcal{M} to the valuation of p_{1}, \ldots, p_{m+k} such that, for $i=m+1, \ldots, m+k$, the set $V\left(p_{i}\right)$ contains exactly one element of the model \mathcal{M} and if $i, j \in\{m+1, \ldots, m+k\}, i \neq j$ then $V\left(p_{i}\right) \cap V\left(p_{j}\right)=\emptyset$. Under the valuation V, extended in such a manner, all elements of the model \mathcal{M} are definable, \mathcal{M} is a submodel of the model $C h a r_{m+k}$ and $\mathcal{M} \nVdash\left(\square_{1} \ldots \square_{n} A \rightarrow B\right)$ holds. We define $V\left(p_{i}\right)$ on \mathcal{E} for $i=m+1, \ldots, m+k$ in such a way that, $\mathcal{E} \nVdash p_{i}$. According to the definition
of V, all elements of the model $\mathcal{N}=\mathcal{M} \sqcup \mathcal{E}$ are definable. Now we obtain that the model $\mathcal{N}=\mathcal{M} \sqcup \mathcal{E}$ is a submodel of the model Char $_{m+k}$.

Further we construct a definable valuation W on the model $C h a r_{m+k}$. Denote the elements of $\mathcal{N}=\mathcal{M} \sqcup \mathcal{E}$ as a_{1}, \ldots, a_{k+1}, where a_{k+1} is R_{i} maximal element for any R_{i}. The model \mathcal{M} contains the elements a_{1}, \ldots, a_{k} and a_{k+1} is the element of the model \mathcal{E}. Suppose h_{1}, \ldots, h_{k+1} are the formulas defining the elements a_{1}, \ldots, a_{k+1} in the model \mathcal{N},respectively. Put $f_{i}=h_{i} \wedge \bigwedge_{j, j \neq i, k+1} \neg h_{j}, i=1, \ldots, k, f_{k+1}=\bigwedge_{j=1}^{k} \neg h_{j}$. Now the formulas f_{1}, \ldots, f_{k+1} define the elements a_{1}, \ldots, a_{k+1} in the model \mathcal{N}, respectively. Consider following formulas:

$$
\begin{equation*}
g_{a}=f_{a} \wedge \bigwedge_{i}\left(\bigwedge_{a R_{i} y} \diamond_{i} f_{y}\right) \wedge \bigwedge_{i}\left(\square_{i} \bigvee_{a R_{i} y} f_{y}\right) \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\varphi_{a}=g_{a} \wedge\left(\bigwedge_{x \in \mathcal{M}} \square_{1} \ldots \square_{n}\left(f_{x} \rightarrow g_{x}\right)\right) \tag{2}
\end{equation*}
$$

where $a \in\left\{a_{1}, \ldots, a_{k}\right\}$.

$$
\begin{equation*}
\varphi_{a_{k+1}}=\neg\left(\bigvee_{a \in \mathcal{M}} \varphi_{a}\right) \tag{3}
\end{equation*}
$$

Note that the elements a_{1}, \ldots, a_{k+1} are defined by the formulas $\varphi_{a_{1}}, \ldots \varphi_{a_{k+1}}$ on $\mathcal{M} \sqcup \mathcal{E}$, respectively. We will prove that, for any $x \in C h a r_{m}$, if $x \Vdash_{V} \varphi_{a}$ and $x \Vdash_{V} \varphi_{b}$ then $a=b$. If $a=a_{k+1}$ or $b=a_{k+1}$ then the statement follows from the formula (3). Let $a, b \in\left\{a_{1}, \ldots, a_{k}\right\}$ and $a \neq b$. Then according to (2) and (1) we have $x \Vdash_{V} f_{a}, x \Vdash_{V} f_{b}$. By construction of f_{a} and f_{b} we have $x \Vdash_{V} h_{a} \wedge \neg h_{b}$ and $x \Vdash_{V} h_{b} \wedge \neg h_{a}$, a contradiction.

We introduce the following formulas :

$$
\begin{equation*}
\Phi_{i}=\bigvee_{a \in \mathcal{N}, a \Vdash p_{i}} \varphi_{a} \quad(i=1, \ldots, m) \tag{4}
\end{equation*}
$$

If, for some $i, \forall a \in \mathcal{N} a \nVdash_{V} p_{i}$ then we put by definition $\Phi_{i}=p_{i} \wedge \neg p_{i}$.
Now we define a new valuation W on the frame of $C h a r_{m+s}$ as follows:

$$
W\left(p_{i}\right)=\left\{x \mid x \Vdash_{V} \Phi_{i}\right\} .
$$

This valuation is defined by the formulas $\Phi_{i}(1 \leq i \leq n)$ and $W\left(p_{i}\right)=V\left(p_{i}\right)$ on the model \mathcal{N}. It means $C h a r_{m+s} \nVdash W_{W} B\left(p_{1}, \ldots, p_{m}\right)$. We need to show that $C h a r_{m+s} \Vdash_{W} A\left(p_{1}, \ldots, p_{m}\right)$. For this it is necessary to prove

Lemma 3.7. Let $\alpha\left(p_{1}, \ldots, p_{m}\right)$ be an n-modal formula. Suppose an element x from the characterizing model Char r_{m+s} is such that $x \Vdash_{V} \varphi_{a}$, where a is an element of the model $\mathcal{N}=\mathcal{M} \sqcup \mathcal{E}$. Then

$$
x \Vdash_{W} \alpha \Longleftrightarrow a \Vdash_{V} \alpha .
$$

Proof. Induction on the length of the formula α. Let $\alpha=p_{j}$. If $a \Vdash_{V} p_{j}$, then by the formula (4) Φ_{j} contains φ_{a} as a disjunctive part, hence according to the condition of lemma: $x \Vdash_{V} \Phi_{j}$ and by the definition of $W x \Vdash_{W} p_{j}$. Suppose $x \Vdash_{W} p_{j}$, then according to the definition of the valuation W there exists some disjunctive term φ_{b} in Φ_{j} where $b \in \mathcal{N}$ for which $x \Vdash_{V} \varphi_{b}$. As stated above this implies $b=a$. Therefore $a \Vdash_{V} p_{j}$ by the definition of Φ_{j}. We accomplished the first step of our inductive proof.

The proof for logical connectives $\vee, \wedge, \neg, \rightarrow$ is trivial.
Now consider the case $\alpha=\square_{i} \beta$.
a) Put $a=a_{k+1}$, i.e. $x \Vdash \neg\left(\bigvee_{a \in \mathcal{M}} \varphi_{a}\right)$. Let $K=\left\{z \mid x R_{i} z\right\}$. Then $\forall z \in$ $K z \Vdash_{V} \neg\left(\bigvee_{a \in \mathcal{M}} \varphi_{a}\right)$. For, if not, there exists an element $b \in \mathcal{M}$, for which $z \Vdash_{V} \varphi_{b}$. According to the definition of K and the properties of the relation R_{i} we have $(z, x) \in R_{i}$. Since $\square_{i}\left(\bigvee_{b R_{i} y} f_{y}\right)$ is a conjunctive member of the formula φ_{b} there is an element $c \in \mathcal{M}$ for which $x \Vdash_{V} f_{c}$. From (2) it follows $x \Vdash_{V} \varphi_{c}$, but this contradicts with the condition $x \Vdash_{V} \varphi_{a_{k+1}}$. Therefore in our case if $\left.V\right|_{\mathcal{E}}=\left\{a_{k+1}\right\}$ then $W\left(p_{i}\right) \supset K$ otherwise $W\left(p_{i}\right) \cap K=\emptyset$ holds, i.e. the valuation W does not distinguish the elements of the set K. It means $\forall \gamma \forall y \in K\left[y \Vdash_{W} \gamma \Longleftrightarrow a_{k+1} \Vdash_{V} \gamma\right]$. Thus in this case our lemma is proved.
b) Let $a \neq a_{k+1}$. Suppose $x \Vdash_{W} \square_{i} \beta$. Let b be some element for which the relation $a R_{i} b$ holds. Since the relation $a R_{i} b$ holds the formula φ_{a} contains $\diamond_{i} f_{b}$ as a conjunctive term. Now the condition $x \Vdash_{V} \varphi_{a}$ yields $x \Vdash_{V} \diamond_{i} f_{b}$. Hence $\exists t\left[\left(x R_{i} t\right) \wedge\left(t \Vdash_{V} f_{b}\right)\right]$. Since the formula $\square_{1} \ldots \square_{n}\left(f_{b} \rightarrow g_{b}\right)$ is a conjunctive term of the formula φ_{a} and the relation $x R_{i} t$ holds, the assertion $t \Vdash_{V} g_{b}$ follows from the facts $x \Vdash_{V} \varphi_{a}$ and $t \Vdash_{V} f_{b}$. Now from this assertion and the construction of the formula φ_{b} we have $t \Vdash_{V} \varphi_{b}$. The relation $x R_{i} t$ and the condition $x \Vdash_{W} \square_{i} \beta$ yield $t \Vdash_{W} \beta$. Therefore $b \Vdash_{V} \beta$ holds by the inductive hypotheses. Since this holds for any element b, for which the relation $a R_{i} b$ holds we have $a \Vdash_{V} \square_{i} \beta$.

Vice versa, let $a \Vdash_{V} \square_{i} \beta$. That is $\forall b \in \mathcal{M}:\left(a R_{i} b\right) \rightarrow\left(b \Vdash_{V} \beta\right)$. Note $x \Vdash_{V} \varphi_{a}$ by hypotheses, φ_{a} contains $\square_{i} \bigvee_{a R_{i} y} f_{y}$, hence $\forall z:\left(x R_{i} z\right) \rightarrow\left(z \Vdash_{V}\right.$ $\left.\bigvee_{a R_{i} y} f_{y}\right)$. Let $x R_{i} z$. This yields $\exists b\left[\left(a R_{i} b\right) \wedge\left(z \Vdash_{V} f_{b}\right)\right]$. Because the formula φ_{a} contains the formula $\square_{1} \ldots \square_{n}\left(f_{b} \rightarrow g_{b}\right)$ as a conjunctive term, we have $z \Vdash_{V} g_{b}$, that yields $z \Vdash_{V} \varphi_{b}$. So we get $\left(b \Vdash_{V} \beta\right) \wedge\left(z \Vdash_{V} \varphi_{b}\right)$, therefore by inductive hypothesis $z \Vdash_{W} \beta$. And since z is any element for which $x R_{i} z$ we have $x \Vdash_{W} \square_{i} \beta$. The lemma is proved.

Proof. To complete the proof of Theorem 3.6 we put $A\left(p_{1}, \ldots, p_{m}\right)$ instead of the formula α in Lemma 3.7. Note that $\forall x \in \operatorname{Char}_{m+k}$ if $\forall a \in \mathcal{M} x \nVdash_{V} \varphi_{a}$
then according to (3) $x \Vdash_{V} \varphi_{a_{k+1}}$, that is $\forall x \in$ Char $_{m+s} \exists a \in \mathcal{N}\left(x \Vdash_{V}\right.$ $\left.\varphi_{a}\right)$. Since according to the hypothesis $\mathcal{N} \Vdash_{V} A\left(p_{1}, \ldots, p_{m}\right)$ applying Lemma 3.7 we arrive at: $C h a r_{m+k} \Vdash_{W} A\left(p_{1}, \ldots, p_{m}\right)$. Remind that $C h a r_{m+k} \not_{W}$ $B\left(p_{1}, \ldots, p_{m}\right)$. The model Char $_{m+k}$ is $(m+k)$-characterizing model of the logic $S 5{ }_{n} C$ and the valuation W is definable. Therefore the inference rule $A\left(p_{1}, \ldots, p_{m}\right) / B\left(p_{1}, \ldots, p_{m}\right)$ is not admissible in logic $S 5_{n} C$. The Theorem 3.6 is proved.

Using this theorem we can construct an algorithm for verifying the admissibility of the inference rules in the $\operatorname{logic} S 5_{n} C$. Hence we have

Corollary 3.8. The logic $S 5_{n} C$ is decidable with respect to admissibility of the inference rules.

References

1. H.Friedman, One hundred and two problems in mathematical logic, J. of Symb. Logic 40 no. 3 (1975), 113-130.
2. V.V.Rybakov, Criteria of admissibility of the reference rules in modal logic $S 4$ and intuitionistic logic, Algebra i Logika 23 no. 5 (1984), 546-572 (in Russian).
3. V.V.Rybakov, Problems of substitution and admissibility in modal logic Grz and intuitionistic propositional calculus, Annals of Pure and Applied Logic 49 (1990), 1-34.
4. V.V.Rybakov, Admissible rules for logics, which are extension of S4.3, Siberian math. j. 25 no. 5 (1984), 141-145.
5. V.V.Rybakov, Hereditarily structurally complete modal logics, J. Symb. Log. 60 no. 1 (1995), 266-288.
6. V.V.Rybakov, Criteria for admissibility of inference rules. Modal and intermediate logics with the branching property, Studia Logica 53 no. 2 (1994), 203-226.
7. V.V.Rybakov, Schemes of theorems for first order theories as propositional modal logic, Abstracts of the 1992 European Summer Meeting of ASL Veszprém, Hungary,.
8. F.Wolter, What is the upper part of the lattice of bimodal logics?, Studia Logica 53 no. 2 (1994), 235-242.
9. V.B.Shechtman, Two-dimensional modal logics, Mathematical Notice 23 no. 5 (1978), 759-772.
10. K.Segerberg, Two-dimensional modal logic, J. Philos. Logic 2 no. 1 (1973), 77-96.
11. M.Rennie, Models for multiply modal systems, Z. Math. Logik Grundlangen Math. 16 (1970), 175-186.

Pavel A. Alexeev
Department of Mathematics, Krasnoyarsk State University
av.Svobodnyi 79, 660062 Krasnoyarsk, Russia

Mikhail I. Golovanov
Department of Mathematics, Krasnoyarsk State University
av.Svobodnyi 79, 660062 Krasnoyarsk, Russia
E-mail: glvnv@math.kgu.krasnoyarsk.su

[^0]: *The investigation was supported by Grant Center of Novosibirsk State University, Krasnoyarsk Regional Fund of Science, RFFI grant 96-01-00228.

