# GLOBAL STRUCTURE OF SOLUTIONS OF SOME SINGULAR OPERATORS WITH APPLICATIONS TO IMPULSIVE INTEGRODIFFERENTIAL BOUNDARY VALUE PROBLEMS* 

Liu Xiyu<br>(Received February 16, 1996)


#### Abstract

For a kind of singular non-continuous operators, we prove that unbounded continua of the solution set exist. As applications, we give global structure of the solution set to some impulsive singular integrodifferential boundary value problems.

AMS 1991 Mathematics Subject Classification. Primary 34B15, Secondary 47H15.

Key words and phrases. Singular operators, Coninua, Fixed point index, Impulsive integrodifferential boundary value problems


## 1. Introduction

Boundary value problems with singular nature arise quite naturally in physics, fluid dynamics and the study of radially symmetric solutions to elliptic problems, see [1]-[4] for example, while impulsive differential equations describe processes with a sudden change of their state at certain moments, see [5]-[8] and the references therein. At present, most papers study the solvabity of such problems, where the nonlinearity is sublinear at infinity, see [1]-[4], or multiple solutions of superlinear problems with superlinear zeros at the origin, see [5]. Recently, Wong in [9] proved that for some singular boundary value problems with parameter, solutions exist when $\lambda<\lambda_{0}$, while no solutions exist when $\lambda>\lambda_{0}$. His problems involve superlinear nonlinearities at infinity, see also [14].

In this paper, we will study the global structure of the solution set of some singular nonlinear operators, which have some "approximate properties". We do not assume they are defined on the whole cone and continuous. By applying fixed point index on cones, we give the existence of unbounded continua of the solution set.

[^0]As applications, we consider the following impulsive integrodifferential boundary value problems:

$$
\begin{align*}
& (L x)(t)+p(t) f(\lambda, t, x(t),(H x)(t),(S x)(t))=0 \\
& \quad t \in(0,1), t \neq t_{k}, k=1,2, \ldots, m \\
& \left.\Delta x\right|_{t=t_{k}}:=x\left(t_{k}+0\right)-x\left(t_{k}-0\right)=I_{k}\left(x\left(t_{k}\right)\right), \quad k=1,2, \ldots, m  \tag{1.1}\\
& \alpha x(0)-\beta \lim _{t \rightarrow 0} p(t) x^{\prime}(t)=\gamma x(1)+\delta \lim _{t \rightarrow 1} p(t) x^{\prime}(t)=0
\end{align*}
$$

where $(L x)(t)=\frac{1}{p(t)}\left(p(t) x^{\prime}(t)\right)^{\prime}, f \in C\left[[0, \infty) \times(0,1) \times \mathbf{R}^{+} \times \mathbf{R}^{1} \times \mathbf{R}^{1}, \mathbf{R}^{+}\right]$, $\mathbf{R}^{+}=(0, \infty), p \in C^{1}[0,1], p(t)>0$ for $t \in(0,1), H$ and $S$ are given by

$$
\begin{equation*}
(H x)(t)=\int_{0}^{t} k(t, s) x(s) d s, \quad(S x)(t)=\int_{0}^{1} k_{1}(t, s) x(s) d s \tag{1.2}
\end{equation*}
$$

with $k, k_{1} \in C[[0,1] \times[0,1],[0, \infty)]$, and $\alpha, \beta, \gamma, \delta \geq 0, \beta \gamma+\alpha \delta+\alpha \gamma>0$, $I_{k} \in C[[0, \infty),[0, \infty)], k=1,2, \ldots, m, 0<t_{1}<t_{2}<\ldots<t_{m}<1$. Note that the nonlinear term $f(\lambda, t, x, y, z)$ may be singular at $t=0,1$ and $x=0$. Using the existence principle of [11], we prove that unbounded continua of the solution set of (1.1) exist.

## 2. Global structure of solutions of singular operators

In order to treat global problems, we need the following auxiliary lemma. Recall that a subcontinuum is a maximal connected subspace of a topological space. In the case of metric spaces, a subcontinuum is always closed.

Lemma A. Let $X$ be a compact metric space, $a_{n}, a \in X, a_{n} \rightarrow a, E_{n}$ is the subcontinuum of $X$ containing $a_{n}$. Define $E=\varlimsup_{n \rightarrow \infty} E_{n}=\{x \in$ $X$ : There exists a subsequence $E_{n_{k}}$ and $x_{n_{k}} \in E_{n_{k}}$ with $\left.x_{n_{k}} \rightarrow x\right\}$. Then $E$ is closed and connected.

Proof. Clearly $E_{n}$ is compact. Let $x^{j} \in E, x^{j} \rightarrow x$. Suppose $x^{j}=$ $\lim _{k \rightarrow \infty} x_{n_{k}}^{j}$, where $x_{n_{k}}^{j} \in E_{n_{k}}^{j}$. Choose $k(j)$ such that $d\left(x_{n_{k(j)}}^{j}, x^{j}\right)<1 / j$. Then $\lim _{j \rightarrow \infty} x_{n_{k(j)}}^{j}=x$, hence $x \in E$ by definition. Thus $E$ is closed and compact. Suppose $E$ has a decomposition $E=K \cup S$, where $K, S$ are compact; nonempty and disjoint. Assume $a \in K$. Thus there exist disjoint open sets $U, V$ such that $K \subset U, S \subset V, \operatorname{cl} U \cap \operatorname{cl} V=\emptyset$, where $\operatorname{cl} U$ denotes the closure of $U$. Without loss of generality we can assume that $a_{n} \in U$ for $n \geq 1$. Now we have two cases.

First if there exists $N$ such that $E_{n} \subset U$ for $n>N$, then by definition $E \subset \operatorname{cl} U$, which contradicts $S$ is nonempty. Next if there exists a subsequence $E_{n_{k}}$ with $E_{n_{k}} \not \subset U$. Since $E_{n}$ is connected, we can find $x_{n_{k}} \in E_{n_{k}} \cap \mathrm{~b} U$, where
$\mathrm{b} U$ denotes the boundary of $U$. By the compactness of $X$ we get $E \cap \mathrm{~b} U \neq \emptyset$. This is a contradiction. Q.E.D.

Let $\mathfrak{X}$ be a Banach space, $P$ a cone of $\mathfrak{X}, \mathfrak{X}^{*}$ be a linear vector space. Consider an operator $A: \mathbf{R}^{*} \times \mathcal{D}(A) \rightarrow \mathfrak{X}^{*}$, where $\mathcal{D}(A)$ is a subset of $P$, $\mathbf{R}^{*}=[0, \infty)$. Note that $\mathcal{D}(A)$ need not be open or closed. We will study the following operator equation

$$
\begin{equation*}
A(\lambda, x)=0, \quad(\lambda, x) \in \mathbf{R}^{*} \times \mathcal{D}(A) \tag{2.1}
\end{equation*}
$$

Define $\Sigma \subset \mathbf{R}^{*} \times \mathcal{D}(A)$ to be the set of all solutions of (2.1). For $\lambda=0$, we write

$$
\Omega^{0}=\{x \in \mathcal{D}(A):(0, x) \in \Sigma\}
$$

We always understand $\Sigma$ to be a metric space with its induced topology from $\mathbf{R}^{*} \times P$. Let $x^{0} \in \Omega^{0}$, and denote by $E\left(x^{0}\right)$ the subcontinuum of $\Sigma$ containing $\left(0, x^{0}\right)$. Define

$$
E=\operatorname{cl}\left(\bigcup\left\{E\left(x^{0}\right): x^{0} \in \Omega^{0}\right\}\right)
$$

where the closure is taken in the space $\mathbf{R}^{*} \times P$. Associated with the operator $A$, we will consider an approximate operator $A_{n}$, where $A_{n}: \mathbf{R}^{*} \times P \rightarrow P$ is continuous. Denote the solution set of the following equation

$$
\begin{equation*}
x=A_{n}(\lambda, x) \tag{2.2}
\end{equation*}
$$

by $\Sigma_{n}$, i.e., $\Sigma_{n}=\left\{(\lambda, x):(\lambda, x) \in \mathbf{R}^{*} \times P,(\lambda, x)\right.$ is a solution of (2.2) $\}$. Again, we define

$$
\Omega_{n}^{0}=\left\{x \in P:(0, x) \in \Sigma_{n}\right\}
$$

For $x^{0} \in \Omega_{n}^{0}$, denote by $E_{n}\left(x^{0}\right)$ the subcontinuum of $\Sigma_{n}$ containing $\left(0, x^{0}\right)$. Write

$$
E_{n}=\operatorname{cl}\left(\bigcup\left\{E_{n}\left(x^{0}\right): x^{0} \in \Omega_{n}^{0}\right\}\right)
$$

We will assume the following conditions to be satisfied:
$\left(\mathrm{N}_{0}\right) \quad \Sigma$ is closed and locally compact in $\mathbf{R}^{*} \times P$.
$\left(\mathrm{N}_{1}\right) A_{n}$ are completely continuous on $\mathbf{R}^{*} \times P$, for any integer $n \in \mathbf{N}$.
$\left(\mathrm{N}_{2}\right) \Omega_{n}^{0}$ are nonempty, for any integer $n \in \mathbf{N}$.
$\left(\mathrm{N}_{3}\right)$ If $\left(\lambda_{n}, x_{n}\right) \in \Sigma_{n}$ and is a bounded sequence, then there exists a subsequence $\left(\lambda_{n_{k}}, x_{n_{k}}\right)$ satisfying $\left(\lambda_{n_{k}}, x_{n_{k}}\right) \rightarrow(\lambda, x)$ and $(\lambda, x) \in \Sigma$.
$\left(\mathrm{N}_{4}\right) \lim _{\|x\| \rightarrow \infty} \frac{\left\|A_{n}(0, x)\right\|}{\|x\|}=0$ for any integer $n \in \mathbf{N}$.
Throughout this section, we use $\mathrm{b} D$ to denote the boundary of the set $D$ in the metric space $\mathbf{R}^{*} \times P$.

REMARK. Condition $\left(\mathrm{N}_{3}\right)$ is an approximate hypothesis, which relates the operator $A_{n}$ with $A$.

Lemma 2.1. Let $\left(N_{1}\right)\left(N_{2}\right)\left(N_{4}\right)$ be satisfied. Then $E_{n}$ is unbounded for every $n \in \mathbf{N}$.

Proof. Clearly $\Sigma_{n}$ is locally compact from condition $\left(\mathrm{N}_{1}\right)$. Suppose that $E_{n}$ is bounded for some $n$. Let $B_{R}=\{x \in P:\|x\| \leq R\}, Q_{R}=[0, R] \times B_{R}$. Then we can choose $R>0$ such that $E_{n} \subset Q_{R}$ and $E_{n} \cap \mathrm{~b} Q_{R}=\emptyset$, where

$$
\mathrm{b} Q_{R}=\left([0, R] \times \mathrm{b} B_{R}\right) \cup\left(\{R\} \times B_{R}\right), \quad \mathrm{b} B_{R}=\{x \in P:\|x\|=R\}
$$

Let $X_{n}=\Sigma_{n} \cap Q_{R}$, then $X_{n}$ is a compact metric space and $E_{n} \subset X_{n}$. Define $Y_{n}=\Sigma_{n} \cap \mathrm{~b} Q_{R}$, hence $E_{n}, Y_{n}$ are disjoint compact subset of $X_{n}$.

Next we will prove that there does not exist a subconinuum of $X_{n}$ meeting both $E_{n}$ and $Y_{n}$. Suppose the contrary, and $Z$ be a subcontinuum of $X_{n}$ with $Z \cap E_{n} \neq \emptyset, Z \cap Y_{n} \neq \emptyset$. Choose $(\lambda, x) \in Z \cap E_{n}$. First assume $(\lambda, x) \in E_{n}\left(x^{0}\right)$ where $x^{0} \in \Omega_{n}^{0}$. Then $Z \cup E_{n}\left(x^{0}\right)$ is connected. But $E_{n}\left(x^{0}\right)$ is maximal, hence $Z \cup E_{n}\left(x^{0}\right)=E_{n}\left(x^{0}\right)$, in contradiction with $Z \cap Y_{n} \neq \emptyset$. Thus there exist $x_{j}^{0} \in \Omega_{n}^{0}$ and $\left(\lambda_{j}, y_{j}\right) \in E_{n}\left(x_{j}^{0}\right)$ such that $\left(\lambda_{j}, y_{j}\right) \rightarrow(\lambda, x)$. By Lemma A, $E^{*}=\overline{\lim }_{j \rightarrow \infty} E_{n}\left(x_{j}^{0}\right)$ is closed and connected. Also since $X_{n}$ is compact we find a subsequence $x_{j}^{0^{\prime}}$ of $x_{j}^{0}$ such that $x_{j}^{0^{\prime}} \rightarrow x^{0} \in \Omega_{n}^{0}$. Clearly $\left(0, x^{0}\right) \in E^{*}$ by definition, hence $E^{*} \subset E_{n}\left(x^{0}\right)$ and $(\lambda, x) \in E_{n}\left(x^{0}\right)$. By the above step we know this is also a contradiction.

From Lemma 1.1 of [12] we know that there exist disjoint compact subsets $K_{1}, K_{2}$ such that $X_{n}=K_{1} \cup K_{2}, K_{1} \supset E_{n}, K_{2} \supset Y_{n}$, hence $K_{1} \cap \mathrm{~b} Q_{R}=\emptyset$. Since $X_{n}$ is a metric space, we get an open set $U \subset Q_{R}$ with $K_{1} \subset U$, $U \cap \mathrm{~b} Q_{R}=\emptyset, U \cap K_{2}=\emptyset, \mathrm{b} U \cap K_{2}=\emptyset, \mathrm{b} U \cap K_{1}=\emptyset$. Thus $\mathrm{b} U \cap \Sigma_{n}=\emptyset$. By the general homotopy invariance of the fixed point index on cones (see [13] Theorem 11.3) we have

$$
i\left(A_{n}(\lambda, \cdot), U(\lambda), P\right)=\mu=\text { const. }
$$

where $U(\lambda)=\{x:(\lambda, x) \in U\}$. Evidently $U(R)=\emptyset$, hence $\mu=0$ for $\lambda \in$ $[0, R]$. But when $\lambda=0$, we have $\Omega_{n}^{0} \subset U(0)$ since $E_{n} \subset K_{1} \subset U$. As a result, $A_{n}(0, \cdot)$ has no fixed points outside $U(0)$. Thus

$$
\mu=i\left(A_{n}(0, \cdot), U(0), P\right)=i\left(A_{n}(0, \cdot), B_{T}, P\right)
$$

where $T$ is large enough. From condition $\left(\mathrm{N}_{4}\right)$ and the index computation formula of cone compresion (see [14]) we get $\mu=1$. Thus the proof is complete.
Lemma 2.2. Suppose that for every bounded open set $G$ of $\mathbf{R}^{*} \times P$ which contains $\{0\} \times \Omega^{0}, \mathrm{~b} G \cap \Sigma$ is nonempty, then $E$ is unbounded.
Proof. Suppose the contrary. Then we can choose $R>0$ such that $E \subset Q_{R}$, $E \cap \mathrm{~b} Q_{R}=\emptyset$. Let $Y=\Sigma \cap \mathrm{b} Q_{R}, X=\Sigma \cap Q_{R}$. Since $Y$ and $E$ are disjoint, similar to the proof of Lemma 2.1, we get disjoint compact subsets $K_{1}, K_{2}$ of
$X$ such that $E \subset K_{1}, Y \subset K_{2}, K_{1} \cap \mathrm{~b} Q_{R}=\emptyset, X=K_{1} \cup K_{2}$. Because $\mathbf{R}^{*} \times P$ is a regular space, there exists a bounded open set $U \subset \mathbf{R}^{*} \times P$ such that $K_{1} \subset U \subset Q_{R}, U \cap K_{2}=\emptyset, U \cap \mathrm{~b} Q_{R}=\emptyset$. Furthermore, choose oepn set $G$ satisfying $K_{1} \subset G \subset \mathrm{cl} G \subset U$. Consequently $\Sigma \cap \mathrm{b} G=\emptyset$, which contradicts our hypothesis. The proof is complete.

Theorem 2.3. Suppose $\left(N_{0}\right)-\left(N_{4}\right)$ hold. Then $E$ is unbounded.
Proof. We need only to verify the hypotheses of Lemma 2.2. Suppose $G$ is open and bounded which contains $\{0\} \times \Omega^{0}$. First we prove that $\Omega_{n}^{0} \subset G$ for $n$ large enough. In fact, suppose there exist $\left(0, x_{n}\right) \in \Omega_{n}^{0} \backslash G$. From ( $\mathrm{N}_{4}$ ) we know $x_{n}$ is bounded. Thus from $\left(\mathrm{N}_{3}\right)$ we can write $\left(0, x_{n}\right) \rightarrow(0, x) \in \Sigma$ (without loss of generality). Obviously $(0, x) \in\left(\mathbf{R}^{*} \times P\right) \backslash G$ and $(0, x) \in \Omega^{0}$. This contradicts $\Omega^{0} \subset G$. Hence there exists $N$ such that $\Omega_{n}^{0} \subset G$ for $n>N$. Since $E_{n}$ are unbounded we can find $x_{n}^{0} \in \Omega_{n}^{0}$ such that $E_{n}\left(x_{n}^{0}\right) \cap \mathrm{b} G \neq \emptyset$. Consequently $\Sigma_{n} \cap \mathrm{~b} G \neq \emptyset$. Then condition $\left(\mathrm{N}_{3}\right)$ yields $\Sigma \cap \mathrm{b} G \neq \emptyset$. Thus the proof is complete by Lemma 2.2.

Theorem 2.4. Suppose $\Omega^{0}$ is bounded, and $\left(N_{0}\right)-\left(N_{4}\right)$ hold. Then there exists $x^{0} \in \Omega^{0}$ such that the subcontinuum $E\left(x^{0}\right)$ emanating from $\left(0, x^{0}\right)$ is unbounded.

Proof. Suppose that $E\left(x^{0}\right)$ is bounded for any $x^{0} \in \Omega^{0}$. Then from Theorem 2.3 there exist $x^{n} \in \Omega^{0}$ such that the bound of $E\left(x^{n}\right)$ tends to infinity. Without loss of generality we can assume that $x^{n} \rightarrow x^{0} \in \Omega^{0}$. Denote by $E\left(x^{0}\right)$ the subcontinuum containing $\left(0, x^{0}\right)$. Then $E\left(x^{0}\right)$ is bounded. Choose $R>0$ such that $E\left(x^{0}\right) \subset Q_{R}, E\left(x^{0}\right) \cap \mathrm{b} Q_{R}=\emptyset$, where $Q_{R}=[0, R] \times B_{R}$. Take $X=\Sigma \cap Q_{R}$ which is compact and closed. Then $E\left(x^{0}\right)$ is a compact closed subset of $X$. Define $Y=\Sigma \cap \mathrm{b} Q_{R}$, hence $E\left(x^{0}\right)$ and $Y$ are disjoint and compact. Consequently, there exist compact disjoint subsets $K_{1}, K_{2}$ of X such that $X=K_{1} \cup K_{2}, E\left(x^{0}\right) \subset K_{1}, Y \subset K_{2}, K_{1} \cap \mathrm{~b} Q_{R}=\emptyset$. Thus there exists a bounded open set $U \subset \mathbf{R}^{*} \times P$ satisfying $K_{1} \subset U \subset Q_{R}, U \cap\left(K_{2} \cup \mathrm{~b} Q_{R}\right)=\emptyset$. Again we get a bounded open set $G$ with $K_{1} \subset G \subset \operatorname{cl} G \subset U \subset Q_{R}$, hence $\Sigma \cap \mathrm{b} G=\emptyset$. Since $x^{n} \rightarrow x^{0}$ while $\left(0, x^{0}\right) \in E\left(x^{0}\right) \subset K_{1}$. Therefore $\left(0, x^{n}\right) \in G$ for $n$ large enough. So the unboundedness of $E\left(x^{n}\right)$ yields $E\left(x^{n}\right) \cap \mathrm{b} G \neq \emptyset$. Take $\left(\lambda_{n}, y_{n}\right) \in E\left(x^{n}\right) \cap \mathrm{b} G$. Because $\Sigma$ is locally compact there exists subsequence $\left(\lambda_{n}^{\prime}, y_{n}^{\prime}\right) \rightarrow(\lambda, x) \in \Sigma \cap \mathrm{b} G$ which is a contradiction. The proof is complete.

## 3. Applications to impulsive integrodifferential boundary value problems

In this section, we will apply the abstract results of the previous section to impulsive integrodifferential boundary value problems. Specifically we will show that the solution set of problem (1.1) has unbounded continua. For sim-
plicity we will assume $\beta \delta=0$ in this section. Now we list the main assumptions below. Recall that $\mathbf{R}^{*}=[0, \infty), \mathbf{R}^{+}=(0, \infty)$.

Define $M=\max \{k(t, s): t, s \in[0,1]\}, M_{1}=\max \left\{k_{1}(t, s): t, s \in[0,1]\right\}$. Let $J=[0,1], \mathfrak{X}=P C(J)=\left\{x: x\right.$ is a function from $J$ to $\mathbf{R}^{1}$, continuous at $t \neq t_{k}$, left continuous at $t=t_{k}$, and right hand limit at $t=t_{k}$ exist for $k=1,2, \ldots m\}$. Recall that $P C(J)$ is a Banach space with norm $\|x\|=\sup _{t \in J}|x(t)|$. Denote the normal cone of $P C(J)$ by $P=\{x: x \in$ $P C(J), x(t) \geq 0, t \in[0,1]\}$. A function $x \in P C(J)$ is called a positive solution of (1.1) if $x(t)>0, t \in(0,1), x \in P C(J)$ and satisfies (1.1). Throughout this paper, we use $C$ to denote a constant, and $C(\varepsilon)$ a constant dependent of $\varepsilon$, even if they may be different at different places. Write

$$
\left.\Delta\left(p x^{\prime}\right)\right|_{t_{k}}=\lim _{\varepsilon \rightarrow 0}\left[p\left(t_{k}+\varepsilon\right) x^{\prime}\left(t_{k}+\varepsilon\right)-p\left(t_{k}-\varepsilon\right) x^{\prime}\left(t_{k}-\varepsilon\right)\right]
$$

and introduce the following condition (see [11]):

$$
\begin{equation*}
\left.\Delta\left(p x^{\prime}\right)\right|_{t_{k}}=-\frac{\gamma I_{k}\left(x\left(t_{k}\right)\right)}{\delta+\gamma \tau_{1}\left(t_{k}\right)}, \quad k=0,1, \ldots, m \tag{3.1}
\end{equation*}
$$

Define $\mathcal{D}(A)=\left\{x: x \in \mathfrak{X}, x(t)>0, t \in(0,1), x^{\prime}(t)\right.$ and $p(t) x^{\prime}(t)$ are continuous at $t \in(0,1), t \neq t_{k}, k=1,2, \ldots, m$, and $x$ satisfies (3.1) $\}$. Let $\mathfrak{X}^{*}=\left\{x: x\right.$ in a real function on $\left.J \backslash\left\{t_{1}, t_{2}, \ldots, t_{m}\right\}\right\}$, and

$$
A(\lambda, x)=L x+f(\lambda, t, x, H x, S x,), \quad t \in(0,1), t \neq t_{k}, k=1,2, \ldots, m
$$

Suppose $\int_{0}^{1} 1 / p(t) d t<\infty$. Then $A: \mathbf{R}^{*} \times \mathcal{D}(A) \rightarrow \mathfrak{X}^{*}$. Note that $\mathcal{D}(A)$ need not be open or closed. Denote:

$$
\tau_{1}(t)=\int_{t}^{1} \frac{1}{p(t)} d t, \quad \tau_{0}(t)=\int_{0}^{t} \frac{1}{p(t)} d t
$$

then we have $\tau_{1}, \tau_{0} \in C[0,1]$. Let $\rho^{2}=\beta \gamma+\alpha \delta+\alpha \gamma \int_{0}^{1} 1 / p(t) d t$, and write

$$
u(t)=(1 / \rho)\left[\delta+\gamma \tau_{1}(t)\right], \quad v(t)=(1 / \rho)\left[\beta+\alpha \tau_{0}(t)\right]
$$

Note that $\gamma v+\alpha u \equiv \rho$. Define

$$
G(t, s)= \begin{cases}u(t) v(s) p(s), & 0 \leq s \leq t \leq 1 \\ v(t) u(s) p(s), & 0 \leq t \leq s \leq 1\end{cases}
$$

$$
\begin{aligned}
& \theta(s)=\tau_{1}(s), \quad \text { when } \beta>0, \delta=0, s \in(0,1) \\
& \theta(s)=\tau_{0}(s), \quad \text { when } \beta=0, \delta>0, s \in(0,1)
\end{aligned}
$$

$\theta(s)=\tau_{0}(s)$ for $s \in[0,1 / 2]$, and $\theta(s)=\tau_{1}(s)$ for $s \in(1 / 2,1]$ when $\beta=0$, $\delta=0$. Write $f_{n}(\lambda, t, x, y, z)=f_{n}(\lambda, t, \max \{1 / n, x\}, y, z)$. Define

$$
\begin{align*}
\left(A_{n}(\lambda, x)\right)(t)= & \int_{0}^{1} G(t, s) f_{n}(\lambda, s, x(s),(H x)(s),(S x)(s)) d s  \tag{3.2}\\
& +\left(\delta+\gamma \tau_{1}(t)\right) \sum_{0<t_{k}<t} \frac{I_{k}\left(x\left(t_{k}\right)\right)}{\delta+\gamma \tau_{1}\left(t_{k}\right)}
\end{align*}
$$

We will make the following assumptions
$\left(\mathrm{H}_{0}\right) \int_{0}^{1} 1 / p<\infty$.
$\left(\mathrm{H}_{1}\right) f(\lambda, t, x, y, z) \leq \psi(t) \varphi(\lambda, x, y, z), t \in(0,1), \lambda, y, z \in \mathbf{R}^{*}, x \in \mathbf{R}^{+}$, where $\psi \in C\left[(0,1), \mathbf{R}^{+}\right], \varphi \in C\left[\mathbf{R}^{*} \times \mathbf{R}^{+} \times \mathbf{R}^{1} \times \mathbf{R}^{1}, \mathbf{R}^{+}\right]$and $\int_{0}^{1} \theta p \psi<$ $\infty$.
$\left(\mathrm{H}_{2}\right) \quad \theta(s) p(s)$ is bounded for $s \in(0,1)$.
$\left(\mathrm{H}_{3}\right) \lim _{x \rightarrow \infty} I_{k}(x) / x=0, k=1,2, \ldots, m$.
$\left(\mathrm{H}_{4}\right)$ For any $R>0$, there exist $\zeta \in C[0,1]$ with $\zeta(t) \geq 0$ for $t \in[0,1]$ and $\zeta(t) \not \equiv 0$ such that $f(\lambda, t, x, y, z) \geq \zeta(t)$ for $t \in(0,1), \lambda, x, y, z \in(0, R]$.
$\left(\mathrm{H}_{5}\right) \lim _{|x|+|y|+|z| \rightarrow \infty} \frac{\varphi(0, x, y, z)}{|x|+|y|+|z|}=0$.
Lemma 3.1. Suppose $\left(H_{0}\right)\left(H_{1}\right)\left(H_{2}\right)$ hold. Then $A_{n}(\lambda, x)$ maps $\mathbf{R}^{*} \times P$ into $P$ and is completely continuous, i.e., condition $\left(N_{1}\right)$ is satisfied.

Proof. It is straightforward. See [11] Lemma 2.3. Q.E.D.
Next we will make the convention that all our symbols associated with the solution set have the same meaning as in section 2 . Then from an existence principle obtained in [11] (see [11] Theorem 3.5) we know that $\Omega_{n}^{0}$ are nonempty, i.e., condition $\left(\mathrm{N}_{2}\right)$ is valid for (1.1), provided that $\left(\mathrm{H}_{0}\right)-\left(\mathrm{H}_{5}\right)$ hold.

Remark 3.2. If $\left(\mathrm{H}_{0}\right)-\left(\mathrm{H}_{5}\right)$ are satisfied, $(\lambda, x) \in \Sigma_{n}$, then $x \in \mathcal{D}(A)$. Furthermore $x$ verifies (3.1), see [11].
Lemma 3.3. Let $\left(H_{0}\right)-\left(H_{5}\right)$ be satisfied, then $\Omega^{0}$ is bounded.
Proof. It is essentially the same as Lemma 3.1 of [11]. Q.E.D.
Lemma 3.4. Suppose $\left(H_{0}\right)-\left(H_{5}\right)$ hold. Then the solution set $\Sigma$ of (1.1) is locally compact in $\mathbf{R}^{*} \times P$.
$\operatorname{Proof}$. Let $(\lambda, x) \in \Sigma$ with $0 \leq \lambda \leq R,\|x\| \leq R$, where $R>0$ is a constant. We will prove our lemma in three steps.
(i) There exists $x^{*} \in C[0,1]$ such that $x^{*}(t)>0$ for $t \in(0,1)$ and $x(t) \geq$ $x^{*}(t), t \in(0,1)$, where $x^{*}$ is independent only on $R$.

In fact, let $\zeta$ be determined by $\left(\mathrm{H}_{4}\right)$. Then

$$
-L x \geq \zeta(t), \quad t \in(0,1), t \neq t_{k}
$$

Define:

$$
\begin{aligned}
y(t) & =\int_{0}^{1} G(t, s) \zeta(s) d s+\left(\delta+\gamma \tau_{1}(t)\right) \sum_{0<t_{k}<t} \frac{I_{k}\left(x\left(t_{k}\right)\right)}{\delta+\gamma \tau_{1}\left(t_{k}\right)} \\
x^{*}(t) & =\int_{0}^{1} G(t, s) \zeta(s) d s
\end{aligned}
$$

Then $y$ satisfies the boundary condition and

$$
\begin{gathered}
\left\{\begin{array}{c}
-(L y)(t)=\zeta(t), \quad t \in(0,1), t \neq t_{k} \\
\left.\Delta y\right|_{t=t_{k}}=I_{k}\left(x\left(t_{k}\right)\right), \quad k=1,2, \ldots, m
\end{array}\right. \\
\left.\Delta\left(p y^{\prime}\right)\right|_{t_{k}}=-\frac{\gamma I_{k}\left(x\left(t_{k}\right)\right)}{\delta+\gamma \tau_{1}\left(t_{k}\right)}, \quad k=0,1, \ldots, m
\end{gathered}
$$

Let $z=x-y$, then $-L z \geq 0, t \neq t_{k},\left.\Delta z\right|_{t_{k}}=0,\left.\Delta\left(p z^{\prime}\right)\right|_{t_{k}}=0$. Hence $z \in C^{1}(0,1)$, and $z$ satisfies the boundary conditions. Thus it is easy to show that $z(t) \geq 0, t \in(0,1)$, by using elementary comparison technique.

In fact, suppose $\beta>0, \delta=0$ for example. Then $z(1)=0$ from the boundary conditions. Since $L x \leq 0, t \neq t_{k}, p(t) z^{\prime}(t)$ decreases in $(0,1)$. First if $z(0)<0$, then the boundary conditions yield $\beta \lim _{t \rightarrow 0} p(t) z^{\prime}(t)=\alpha z(0) \leq 0$. Thus $p(t) z^{\prime}(t) \leq 0$ in $(0,1)$ and $z^{\prime}(t) \leq 0$ in $(0,1)$. This contradicts with $z(1)=0$. So we have $z(0) \geq 0$. Suppose $z(t)$ assumes its negative minimum $z(c)$ with $c \in(0,1)$. Then $z^{\prime}(c)=0$ and $p(t) z^{\prime}(t) \leq 0$ in $(c, 1)$, hence $z^{\prime}(t) \leq 0$ in $(c, 1)$. This again contradicts with $z(1)=0$. Therefore $z(t) \geq 0$ in $(0,1)$.
(ii) Denote by $t_{x}^{0}$ the zeros of $x^{\prime}(t)$, including limit zeros of $p x^{\prime}$. Then there exists $\eta$ independent of $n$ such that

$$
\begin{array}{ll}
(1) & t_{x}^{0} \leq 1-\eta,  \tag{1}\\
\text { when } \beta>0, \delta=0 \\
(2) & t_{x}^{0} \geq \eta, \\
\text { when } \delta>0, \beta=0 \\
(3) & \eta \leq t_{x}^{0} \leq 1-\eta, \\
\text { when } \beta=\delta=0
\end{array}
$$

In fact, let $\beta>0, \delta=0$ for brevity. Then the boundary conditions become $x(1)=0, \alpha x(0)-\beta \lim _{t \rightarrow 0} p(t) x^{\prime}(t)=0$. In this case $t_{x}^{0}<1$. Otherwise $-L x \geq$ 0 in $\left(t_{m}, 1\right)$, then $x^{\prime} \geq 0$, hence $x(t)=0$ in $\left(t_{m}, 1\right)$, which is a contradiction. If the required $\eta$ does not exist. Then we get a sequence of solutions $x$ with $t^{0}=t_{x}^{0} \rightarrow 1, t^{0} \in\left(t_{m}, 1\right)$. Evidently $|H x| \leq M R \leq C,|S x| \leq M_{1} R \leq C$. Define

$$
\begin{equation*}
\Phi(u)=\max \{\varphi(\lambda, x, y, z): 0 \leq \lambda \leq R, u \leq x \leq R, 0 \leq y, z \leq C\}+1 \tag{3.3}
\end{equation*}
$$

Then $\Phi$ decreases and for $t \in\left(t_{0}, 1\right)$ we get

$$
0 \leq-\left(p x^{\prime}\right)^{\prime} \leq p(t) \psi(t) \varphi(\lambda, x, H x, S x) \leq p(t) \psi(t) \Phi(x)
$$

Evidently $p x^{\prime} \leq 0$ and $x^{\prime} \leq 0$ on $\left(t^{0}, 1\right)$. Thus integration yields:

$$
0 \leq-\left(p x^{\prime}\right)(t) \leq \int_{t^{0}}^{t} p(s) \psi(s) \Phi(x(s)) d s \leq \int_{t^{0}}^{t} p(s) \psi(s) d s
$$

Let $T(u)=\int_{0}^{u} d v / \Phi(v), z=T(x)$, then

$$
\begin{gathered}
0 \leq-z^{\prime}(t) \leq \frac{1}{p} \int_{t^{0}}^{t} p(s) \psi(s) d s \\
z\left(t^{0}\right) \leq \int_{t^{0}}^{1} \frac{1}{p} \int_{t^{0}}^{t} p(s) \psi(s) d s=\int_{t^{0}}^{1} p(s) \psi(s) \tau_{1}(s) d s \rightarrow 0
\end{gathered}
$$

Hence $x\left(t^{0}\right) \rightarrow 0$. But (3.1) gives $\left.\Delta\left(p x^{\prime}\right)\right|_{t_{k}}<0$. Thus $x$ increases in $\left(0, t^{0}\right)$. So $x\left(t^{0}\right)=\|x\| \rightarrow 0$. This contradicts with (i).
(iii) Now we assume $\beta>0, \delta=0$, then $\theta=\tau_{1}$. Other cases are similar. Let $\|x\|=x\left(t^{0}+0\right)$. If $t^{0}=t_{k}, 1 \leq k \leq m$, then $x^{\prime}\left(t_{k}+0\right) \leq 0$. First suppose $x^{\prime}\left(t_{k}-0\right) \geq 0$. From (3.1) we know

$$
\begin{equation*}
0 \leq-\left.\Delta\left(p x^{\prime}\right)\right|_{t_{k}} \leq C, \quad \text { where } C \text { is independent on } x \tag{3.4}
\end{equation*}
$$

Thus $0 \leq-\left.p x^{\prime}\right|_{t_{k+0}} \leq-\left.\Delta\left(p x^{\prime}\right)\right|_{t_{k}} \leq C$, and $\left|x^{\prime}\left(t_{k}+0\right)\right| \leq C$. From step (i) and the continuity of $f$ we know

$$
\begin{equation*}
\left|x^{\prime}(t)\right| \leq C, \quad t \in\left[t_{1}, t_{m}\right] \tag{3.5}
\end{equation*}
$$

When $t \in\left(0, t_{1}\right)$, from (3.1), (3.5) and integration we get

$$
\begin{aligned}
0 & \leq-(L x)(t) \leq \psi(t) \varphi(\lambda, x, H x, S x) \leq \psi(t) \Phi(x(t)) \\
0 & \leq p(t) x^{\prime}(t) \leq p\left(t_{1}\right) x^{\prime}\left(t_{1}\right)+\int_{t}^{t_{1}} p(s) \psi(s) \Phi(x(s)) d s \\
& \leq C+\Phi(x(t)) \int_{t}^{t_{1}} p(s) \psi(s) d s
\end{aligned}
$$

Let $z=T(x)$, then

$$
\begin{aligned}
0 & \leq z^{\prime}(t) \leq \frac{C}{p(t)}+\frac{1}{p(t)} \int_{t}^{t_{1}} p(s) \psi(s) d s \\
& \leq \frac{C}{p(t)}+\frac{1}{p(t)} \int_{0}^{t_{1}} p(s) \psi(s) d s \in L_{1}\left[0, t_{1}\right]
\end{aligned}
$$

For $t \in\left[t_{m}, 1\right]$, similarly we obtain

$$
0 \leq-z^{\prime}(t) \leq \frac{C}{p(t)}+\frac{1}{p(t)} \int_{t_{m}}^{t} p(s) \psi(s) d s \in L_{1}\left[t_{m}, 1\right]
$$

Now suppose $x^{\prime}\left(t_{k}-0\right) \leq 0$. By induction we can assume without loss of generality that $x^{\prime}\left(t_{1}+0\right)<0$, or otherwise (3.5) holds. In the former case, $\alpha x(0)=\beta \lim _{t \rightarrow 0} p(t) x^{\prime}(t) \geq 0$. Therefore we can find a zero $t^{*}$ of $x^{\prime}$ (including limit zeros of $\left.p x^{\prime}\right)$. For $t \in\left(0, t^{*}\right)$, we have

$$
\begin{aligned}
0 & \leq p(t) x^{\prime}(t) \leq \int_{t}^{t^{*}} p(s) \psi(s) \varphi(\lambda, x, H x, S x) d s \\
& \leq C \int_{t}^{t^{*}} \Phi(x(s)) p(s) \psi(s) d s \leq C \Phi(x(t)) \int_{t}^{t^{*}} p \psi
\end{aligned}
$$

Let $z=T(x)$, then (Note that $\left.\theta=\tau_{1}\right)$

$$
\begin{equation*}
0 \leq z^{\prime}(t) \leq\{C / p\} \int_{t}^{t^{*}} p \psi \leq\{C / p\} \int_{0}^{t_{1}} p \psi \in L_{1}\left[0, t_{1}\right] \tag{3.6}
\end{equation*}
$$

For $t \in\left(t^{*}, t_{1}\right)$, we have

$$
\begin{gathered}
0 \leq-p(t) x^{\prime}(t) \leq \int_{t^{*}}^{t} p(s) \psi(s) \varphi(\lambda, x, H x, S x) d s \\
\leq C \int_{t^{*}}^{t} p(s) \psi(s) \Phi(x(s)) d s \leq C \Phi(x(t)) \int_{t^{*}}^{t} p(s) \psi(s) d s \\
0 \leq-z^{\prime}(t) \leq\{1 / p\} \int_{t^{*}}^{t} p(s) \psi(s) d s \\
\leq\{1 / p\} \int_{0}^{t_{1}} p(s) \psi(s) d s \in L_{1}\left[0, t_{1}\right]
\end{gathered}
$$

Also we have

$$
\left|x^{\prime}\left(t_{1}\right)\right|=\left|z^{\prime}\left(t_{1}\right)\right| \Phi\left(x\left(t_{1}\right)\right) \leq \Phi\left(x^{*}\left(t_{1}\right)\right)\left|z^{\prime}\left(t_{1}\right)\right| \leq C
$$

Hence (3.5) holds again. For $t \in\left[t_{m}, 1\right]$, similar reasoning yields

$$
0 \leq-z^{\prime}(t) \leq \frac{C}{p(t)}+\frac{1}{p(t)} \int_{t_{m}}^{t} p \psi \in L_{1}\left[t_{m}, 1\right]
$$

By the standard Arzela's technique we know that $\{z(t)\}$ is compact. Hence $\{x(t)\}$ is compact. If $\|x\|=x\left(t^{0}\right), t^{0} \in(0,1), t \neq t_{k}, k=1,2, \ldots, m$, or $\|x\|=x(0)$. The proof is similar. Q.E.D.

Lemma 3.5. Suppose $\left(H_{0}\right)-\left(H_{5}\right)$ hold. Then $\Sigma$ is closed.
Proof. Let $\left(\lambda_{n}, x_{n}\right) \in \Sigma$ and $\left(\lambda_{n}, x_{n}\right) \rightarrow(\lambda, x)$ in $\mathbf{R}^{*} \times P$. Evidently $\left(\lambda_{n}, x_{n}\right)$ is bounded, hence from step (i) of the proof of Lemma 3.4 we know $x_{n}(t) \geq$ $x^{*}(t)$ and $x(t) \geq x^{*}(t)$, where $x^{*} \in C[0,1]$, and $x^{*}(t)>0$ for $t \in(0,1)$. Again we assume $\beta>0, \delta=0$ for simplicity. Since $f$ is continuous, then $p(t) f\left(\lambda, t, H x_{n}, S x_{n}\right)$ converges in $P C[\varepsilon, 1-\varepsilon]$, where $\varepsilon>0$. As a result, $x_{n}^{\prime}, p x_{n}^{\prime}$ converges in $P C[\varepsilon, 1-\varepsilon]$. Thus $x \in \mathcal{D}(A)$ and satisfies the impulsive conditions. It is easy to show that $(\lambda, x)$ is a solution of (1.1), using technique similar to Theorem 5.1 of [15]. The proof is complete.

Now we come to our main theorem of this section.
Theorem 3.6. Suppose $\left(H_{0}\right)-\left(H_{5}\right)$ hold. Then there exists $x^{0} \in \Omega^{0}$ such that the subcontinuum $E\left(x^{0}\right)$ emanating from $\left(0, x^{0}\right)$ of the solution set $\Sigma$ is unbounded.

Proof. This follows from Theorem 2.4 and the previous lemmas. Note that condition $\left(\mathrm{N}_{3}\right)$ is valid by Theorem 3.5 of [11]. Q.E.D.
Corollary 3.7. Let the hypotheses of Theorem 3.6 be satisfied. Then one of the following assertions holds:
(i) Problem (1.1) is solvable for any $\lambda \geq 0$.
(ii) The solution set $\Sigma$ of (1.1) has an asymptotical bifurcation point in $\mathbf{R}^{*}$.

Proof. The projection of $E\left(x^{0}\right)$ in Theorem 3.6 onto $\mathbf{R}^{*}$ is connected, hence is an interval. If this interval is unbounded, then assertion (i) hold. If this interval is bounded, then $\Sigma$ has an asymptotical bifurcation point in this interval, see Guo and Lakshimikantham [10]. The proof is complete.

## References

1. D. O'Regan, Some existence and some general results for singular nonlinear two point boundary value problems, J. Math. Anal. Appl. 166 (1992), 24-40.
2. D. R. Dunninger and J. C. Kurtz, Existence of solutions for some nonlinear singular boundary value problems, J. Math. Anal. Appl. 115 (1986), 396-405.
3. J. A. Gatica, V. Oliker and P. Waltman, Singular nonlinear BVP for second order ODE, J. Diff. Eqs. 79 (1989), 62-78.
4. D. O'Regan, Singular second order BVP, Nonl. Anal. 65 (1990), 1097-1109.
5. D. Guo \& X. Liu, Multiple positive solutions of boundary value problems for impulsive differential equations, Nonl. Anal. 25 (1995), 327-337.
6. Lakshmikantham V., Bainov D. D. \& Simeonov P. S., Theory of impulsive differential equations, World Scientific, Singapore, 1989.
7. D. Guo \& X. Liu, Extremal solutions of nonlinear impulsive integrodifferential equations in Banach spaces, J. Math. Anal. Appl. 177 (1993), 538-552.
8. D. Guo, Solutions of nonlinear integrodifferential equations of mixed type in Banach spaces, J. Appl. Math. Simul. 2 (1989), 1-11.
9. Wong, P. H., Existence of positive solutions of singular boundary value problems, Nonl. Anal. 21 (1993), 397-406.
10. D. Guo \& Lakshmikantham V., Nonlinear problems in abstract cones, Academic Press, New York, 1988.
11. Liu Xiyu, Positive solutions of impulsive integrodifferential boundary value problems, SUT J. of Math. 32 (1996), 67-81.
12. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Func. Anal. 7 (1971), 487-513.
13. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Review 18 (1976), 620-709.
14. Choi, Y. S., A singular boundary value problem arising from nearignition analysis of flame structure, Diff. Integral Eqns. 4 (1991), 891-895.
15. Xiyu Liu, Some existence and nonexistence principles for a class of singular boundary value problems, Nonl. Anal. (to appear).

## Liu Xiyu

Department of Mathematics, Shandong Normal University Jinan, Shandong 250014, People's Republic of China


[^0]:    * This work is supported in part by NSF of Shandong Province and NNSF of China.

