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§1. INTRODUTION

Impulsive differential equations arise naturally and often in engineering and
physics, see [1]-[4] for example. Recently, various existence principles of such
problems are obtained. Among these, Guo and Liu in [1] proved that at least
two solutions exist for superlinear impulsive boundary value problems. In this
paper, we consider the existence of positive solutions for impulsive integrod-
ifferential boundary value problems, where the nonlinear term is sublinear at
infinity and may have singular nature at the origin. Our results are new even
in the non-impulsive case. Specifically, consider the following problem:

(p()2' ()" +p(t) f(t, 2(t), (Hz)(t), (S2)(¢)) = 0,
te(0,1),t At k=12 ...m,

(1.1) Jim [zt +€) —a(ty — €)] = In(2(t)),
x(t) is left continuous at ¢t =tx, k=1,2,....,m,
az(0) — 6%ir%p(t):1:’(t) =~vyz(l) + 5%inip(t)m’(t) =0.

*This work is supported in part by NSF of China
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where f € C[(0,1) x R x R x R, R*], RT = (0,0), p € C[0,1]NC*(0,1),
p(t) > 0 for t € (0,1). We shall assume the following conditions throughout

this paper:
1
/ ——dt < 0.
o p(t)

The operators H and S are given by

(1.2) (Hw)@):iétk@,@x(ﬁd& (5@)@):télkﬁaspx@ds

with k, k; € C[[0,1] x [0,1],[0,00)], and «, B,7,6 > 0,8y + ad +ay > 0,50 =
0,I; € C[[0,00),[0,00)],k = 1,2,....m,0 < t1 < ta < ... < t;, < 1. Note
that the nonlinear term f(t,z,y,z) may be singular at ¢ = 0,1 and = = 0,
i.e., it may be unbounded when t tends to 0,1 or when x tends to 0. Let
J =10,1], PC(J) = {z : x is a function from .J to R!, continuous at t # ty,
left continuous at ¢ = ¢, and right hand limit at ¢t = ¢ exist for k = 1,2,...,m}.
Recall that PC(J) is a Banach space with norm ||z|| = sup |z(¢)|. Denote the
eJ

t
normal cone of PC(J) by P = {x:x € PC(J),z(t) > 0,t € [0,1]}. A function
x is called a positive solution of (1.1) if z(t) > 0,¢t € (0,1),z € PC(J) and
satisfies (1.1). Throughout this paper, we use C to denote a generic constant,
and C(e) a constant dependent of ¢.

§2. THE 2z-NONSINGULAR CASE

In this section, we assume that f(¢,z,y, z) is nonsingular with resect to x at
x = 0, and we shall prove the existence of positive solutions. Denote

| t1
(2.1) ﬁ@:lpmm mwzﬁpmﬁ
then we have 71,79 € C[0,1]. Let p?> = By + ad + om/l Ldt, and write
o p(t)
2.2 u(t) =[5+ 4m(O), o®) =[5+ an (o)

Note that yv + au = p. Define

u(t)v(s)p(s), 0<s<t<1,
(2:3) G“$_{mm@£@,ogugg1

Denote 6(s) = 71(s) for s € (0,1) when 8 > 0,5 = 0; §(s) = 7o(s) for s € (0,1)
when 3 = 0,8 > 0; 0(s) = mo(s) for s € [0,1], and 0(s) = 71(s) for s € (3,1]
when G =0, = 0. Write
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A(px')

= tim [p(ty +)a'(t + &) — p(ts — €)' (1), =€)},

tg

and introduce the following condition (see [1]):

e (x(t))

(24) A S (O

k=1,2,....m.

Similar to Lemma 1 of [1], we have the following Lemma.

Lemma 2.1. Ifz € P is a solution of the following integral equation

o) = (42)0) = [ Glt)f(s.a(s) <Ha:><s>, (Sm)(s))ds
(2.5) + (6 +ym(t) >

0<tp<t 5 + A tk)

then x is a positive solution of (1.1) satisfying condition (2.4).

Lemma 2.2. The following estimate holds
G(t,5) <O(s)p(s), t,s€[0,1],5 #£0,1.

Proof. 1t is straight forward, see [5], or see Appendix. O

In order to show the existence of positive solutions, we now make the fol-
lowing assumptions:

(Hy) f(t,z,v, z)1§ »(t)d(z,y, z), where ¢p € C[(0,1), RT],¢ € C[RT x
R! x R', R*] and / 0(s)p(s)y(s)ds < oo.

(Hg) 6(s)p(s) iso bounded for s € (0,1).

(Hs) lim I’“Q(f) —0,k=1,2,...m

¢(z,y,2)
B oo 2l Iyl + 2l
1

(Hs) )\[1+M+M1]/0 O(s)b(s)p(s)ds < .

t,s €[0,1]}, My = max{k;(t,s) : t,s € [0,1]}.

(H¢) For any h > 0, there exist y € C|0, 1] with y(¢) > 0 for t € [0,1] and
y(t) # 0 such that f(¢,z,y,z) > y(t) for t € (0,1),z,y,z € (0, h].

<\NA>0.

where M = max{k(t,s) :
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Lemma 2.3. Assume (H;y) holds, and ¢(x,y, z) is bounded on (0,1) x [0, M]
x[0, M|, where M > 0 is arbitrary. Then the operator A maps P* into P and
is completely continuous, where P* = {x € P : z(t) > 0,t € (0,1)}.

Proof.  For any x € ), where @ is a bounded subset of P, we have that
(2.6) f(s,z(s), Hz, Sz) < Cy(s),

where C' is a constant. Define

= [ 60515 5,2(5), () 9), (50) )ds = (412) 1),

() = G+ () > = (Ag2)(2).

0<tp<t 5 "' 771 tk)

From [5] we know that y; € C]0,1] and A is continuous and maps bounded
sets into bounded sets, where P* and P have induced topology from PC(J),
see Appendix for complete proof. When ¢ € (0,1),t # t, we can directly get

t 1
(2.7) —plt)y)(t) = g /0 opfds — % / upfds.

Because the proofs of other cases are similar, we now only consider the case
of =6 =0, =~ =1. Then from (2.6) we have

t 1
() (1) < C /0 Topds + C / npds.

Notice the fact that

1 1 t 1
/0 p(t)(/o Tgpwds)dt:/o ToT1Wpdt < 0,

1 1 1
/0 p(lt)(/t T1pYds)dt :/0 ToT1Ypdt < 0.

Hence {y1(t)} is pre-compact for z € (). Similarly we can prove that {y2(t)}
is pre-compact for z € Q). As a result, A is completely continuous. The proof
is complete. O

Theorem 2.4. Suppose (H;)—(Hs) hold and ¢(x,y, z) is bounded on (0, 1) x
[0, M]x [0, M] for arbitrary M > 0. Then problem (1.1) has a positive solution
x € PC(J).
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Proof.  From the definition of A2 and condition (Hs), it is easy to show that

(2.8) [Agz]| < eClla]| + C(e)
Let M and M; be as in condition (Hs). From our assumptions we know that
¢(z,y,2) < (A +e)(|z + [yl + |2) + Cle),  ,9,2>0.
Hence
el < [ ovpote, Ha, S0)ds

1
< /0 Oupds(\ + &) (2] + M| + Mi|z]) + C(e).

Choose ¢ such that fol Ovpds(A+¢e)(1+ M + M;) < 1 and we obtain

A
o] _ |

lzl|—oc0 |||

Then the fixed point theorem of cone compression (see [6]) yields the required
solution. The proof is complete. O

§3. THE z-SINGULAR CASE

In this section we will give an existence principle when the function f (¢, z,y, 2)
is unbounded. First, consider the following approximate problem:

(p()2' ()" + p(t) fult, w()(Hx)(t%( z)(t)) = 0,
€(0,1), t#tpk=1,2,..,m,

(3.1) Jim fe(ty, + ) —a(ty — )] = I(w(t)),
x(t) is left continuous at t =tx, k=1,2,...m
ax(0) = flim p(t)2' () = v (1) + 6 lim p(t)2'(t) = 0

where f,,(t,z,y,2) = f(t,max{%,x},y, z). Suppose (Hj)-(Hs) hold. Then
from Theorem 2.4 we know that problem (3.1) is solvable for any integer
n < 1. Moreover, the solutions of (3.1) satisfy (2.4).

Lemma 3.1. Suppose (H1)—(Hs) hold. Then there exists a constant R > 0
independent of n such that 0 < z(t) < R,t € [0, 1] for any positive solution x
of (3.1).
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Proof.  Let z be a positive solution of (3.1).

(1) Suppose |z|| = =(0). From the boundary condition we know
ﬂ%ir%p(t)x’(t) = ax(0) > 0. Obviously %in%p(t)x'(t) <0, thus ﬁ%in%p(t)x'(t) =
0. As a result we can deduce @« = 0, and furthermore, 8 > 0 with
21ir1[1)p(2€):1:’(t) = 0. As stated above, in this case 6 = 0, henceforth x(1) = 0.

Then from (3.1) and (2.4) we get 2/(t) < 0 for ¢t € (0,1),¢ # tr. Choose T' > 1
such that

o(z,y,2) < (A +e)(z] + |yl +[2]) for [z +y[+[2| =T

Without loss of generality we can assume that there exists t, € (t5_1,t;] with
z(ty) =T, and ||z|| > T. In the following we assume that tg = 0,t,,41 =1
for convenience. Now we begin with the first interval [0,¢1]. In the case of
x(t1) < T, we then choose t] € (0,¢;] such that z(¢t7) = T. By integration we
get for t < t7 that

—p(t)2'(t) /Otp(s)fn(s,x(s),Hx, Sz)ds

IN

IA

() [ plo)uls)a + Ha + S2)ds

(3.3)

IN

Ot (4 M+ 24 [ pls)os)is.
Thus we have

H0) =T < el + 0+ M) [ pls)toim (5)ds
(3.4) < Ol 2+ 00) [ ple)i(s)ats)ds

From condition (Hjs), by letting ¢ be small enough we can get the required
constant R > 0 such that [|z|| < R. If on the other hand x(¢;) > T, then we
integrate (3.3) on [0,¢1]. Thus we get

(3.5) z(0) —z(t1) < (A +e)|lz||(1 + M + My) /0t1 P (s)0(s)p(s)ds.

< 0. Then integration on [t1,t] with

Because x satisfies (2.4) we know pz’ b0
1

t < t3 yields

(3.6) —p(t)2'(t) < —pa’

t
+ O o)z (1 + M + Ml)/ pbds
t1+0 t1

where t4 belongs to (t1,t2) or t5 = to. From (2.4) we get

v (z(t))
t1—=0 &+ y7i(t1)’

/

(3.7) —pa’
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From (Hs3) we have C(g) > 0 dependent of ¢ such that
(3.8) In(z) <ex+C(e), x>0k=12,..,m.

Moreover (3.3) yields

(3.9) —pa’

t1
oo SO ell (14 M+ 20) [ ps.

Together with (3.7) we can deduce that

(3.10)  —pa’

t1
oy S OOl (14 3+ 31) [ pds + <Clla] + C().
1 0

Combining (3.6) and (3.10) yields (Note that § = 71 in this case):
x(t1 +0) — x(3)

< O+ el + 2+ 30)( [ )| vpds) +<Clel + Ce)

+ (A +e)llzll(1 + M + M) /: [P(lt)

t1
< O+ o)|2||(1+ M + 1y) / bpbds + Cl|z|| + C(e)
0

t
wp(s)ds} dt
t1

to
+ O o)z (1 + M + Ml)/ Uphds.
t1

Using Am‘t > 0, (2.4) and (3.5) we then obtain
1

to
z(0) < z(t3) + A+ e)|=||(1 + M + Ml)/ Yphds + eC||z||
0
t1
(3.11) +Ce) + ()\+5)H:cH(1+M+M1)/ bphds.
0
If x(t5) = T, then the proof is complete by letting € be small enough. If
)

>
x(t2) > T and t5 = to we can get (3.11) for t5 = t2. Then inequalities similar
to (3.5)-(3.11) hold. Thus by induction we finally have

tg
z(0) < zx(tr)+AN+e)||z|l(1+ M + Ml)/ Yplds + eC||z||
0
ty
(3.12) +O(e) + (k- 1)(>\+a)\|x|](1+M+M1)/ bphds.
0
By (Hs) we can choose € small, and the required R exists.

(2) Suppose ||z|| = z(1), then v =1,§ = 0, and %in%p(t)a:'(t) = 0. The rest
of the proof is similar to step (1).
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(3) Suppose ||z|| = z(to), where tg € (tx_1,t;). First assume a = 0,5 > 0,
then z'(t9) = 0, and 6(s) = 71(s). So the proof is similar to case (1). If
8 =6 =0, =7 =1, then we can distinguish between two cases: tg < %
and tg > % Integration on [tg, 1] and [0, tg] respectively will yield the required
estimate.

(4) Suppose ||z|| = z(tx+0),1 < k < m. Then 2/(t;,+0) < 0, and 2/(t+0) <
0 for t € (t,1). If %i_r%p(t)a:’(t) = 0 we can prove as in case (1) that z(0) < R.
Thus condition (Hs) implies that ||z|| is bounded.

Now assume that 2’ has one zero to in [0, ¢x] ( including right limit zeros ).
From equation (3.1) and conditon (2.4), we know that 2/(¢) < 0 for ¢t € (o, 1)\
{t1,t2,...,t;m}. Then from the impulse conditions al—i>r—ri-10[$(tj +e)—a(tj—¢)] =

I;(z(t;)) for j =1,2,...,m and (3.8) we get
3.13)  [lz]l = x(tr + 0) < mellz]| + Ce) + 2(tex +0),  tux € [to, tr)-

By essentially the same way as in the proof of (3.12) of step (1), we get
tg
z(to+0) < z(ty) + (A +e)|=||(1+ M+ Ml)/ Yplds + eC||z|| + C(e)
0
tg
(3.14) +(k—l)()\+5)H:c||(1+M+M1)/ Vphds
0

where t}, satisfies t; = ty, or z(t;) = T and ¢t} € (to,t;). If z(t}) = T then
(3.14) becomes

tg
2(to+0) < T+()\+5)Hx\|(1+M+M1)/ bphds + =C||z| + C(2)
0

(3.15) + (k- 1)(>\—|—5)|:L‘||(1+M+M1)/Otk wplds.

Thus the inequalities (3.13) and (3.15) yield

(7%
2| < T+()\+5)Hx||(1+M+M1)/ wphds
0
+eC||z|| + C(e) + me||x||

(3.16) + (k- 1)()\+5)Ha;||(1+M+M1)/Otk wphds.

If on the other hand t; = tj, then let t,, = t; in (3.13), and together with
(3.14) we get that (3.16) holds. By letting € be small enough we know that
the required estimate holds.

Finally let 2’ have no zeros in [0, tx]. If 2/(tx, — 0) > 0, then from (2.4) and
(3.8) we have

(3.17) 0< —pa < —A(pa')

tr+0

, < Cellal +C),
k
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(3.18) 0 < —pa’

) < A

< Cellz|| + C(e).
tg

tp—
Since the proofs are similar we only consider the case of 8 > 0,6 = 0. Thus
v = 0and z(1) = 0. By integration, instead of %ir%p(t)x’(t) =0 (or 2/(tp) = 0),

we can use inequality (3.17). Then similar to (3.3)—(3.12) we can easily obtain

1
x|l < T—I—()\+5)||:n|\(1—|—M+M1)/ Yphds + eC||z|| + C(e)
tg

1
4 mCelzl + (m— k)M + )|z (1 + M + M) / bplds.
173

Consequently our lemma is ture. Next from the boundary condition, we have
az(0) = ﬁ%inép(t)x’(t). If « =0, then 8 > 0 and %irr(l)p(t)a:’(t) = 0. Thus from
equation (3.1) and condition (2.4) we know that ||z| = x(0), and this is exactly
case (1). If & > 0,2(0) = 0, then }/in%p(t)x’(t) > 0. When 71in%p(t)ac'(1t) =0,
this is again case (1). Now we need to consider the case of }irr(l) p(t)x'(t) > 0. If
on the other hand « > 0,2(0) > 0, then § > 0, and %ir%p(t)x’(t) > 0. In both
cases we finally know that 2/(t) > 0 when ¢ belongs to some neighbourhood of
zero. Therefore we can choose t; with 1 < j <k — 1 such that :c’(tj +0)<0
and z/(t; —0) > 0 (Notice that we have already assumed that 2’(¢) has no
zeros). Moreover z'(t) < 0 for t € (tj,1) \ {t1,2,...,tm}. Note that we can
use inequalities (3.17) and (3.18) instead of the condition a'(¢y) = 0. Let
to = t; in inequality (3.13). Then by essentially the same way as in the proof
of inequalities (3.13)—(3.16), we can prove that (3.13)-(3.16) still hold. The
only difference is using ?y instead of ¢;. The proof is complete. a

Lemma 3.2. Let (H;)—(Hg) hold. Then there exists x* such that x*(t) > 0
fort € (0,1) and z(t) > z*(t),t € (0,1), where x is any solution of the problem

(3.1).
Proof.  From (2.5), Lemma 3.1 and (Hg), let h =1+ R+ M + M; and

1
¥ (t) = / G(t,s)y(s)ds.
0
Then it is easy to show that z* is the required function. O

Now we assume that (H;)—(Hg) hold, and ¢(x,y,z) > 1 without loss of
generality. Let a(x,y,z) = M, and
x

b(u) = sup{a(x,y,z):x € (u, R+ 1],y,z € [0, (R+ 1)(1 + M + M)]}.
T(u) = /u b(lv)dv'
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Lemma 3.3. Let 2 be a solution of (3.1). Denote by t2 the zeros of z'(t).
Then there exists 1 independent of n such that

(i) t9<1-mn,when>0,0=0.

(ii) t9>n, when § > 0,3 = 0.

(iii) n<t)<1-n, when3=39=0.
where n is any integer.

Proof.  The proof of this lemma is essentially the same as that of Lemma
4.4 of [5]. Thus it is omitted. O

Lemma 3.4. Assume (Hy)—(Hg) hold. Then there exists w(t) € L'(0,1)
such that

d
‘%T(x(t))’ <w(t), t#tpk=12..,m
where x is any solution of (3.1).

Proof.  From the proof of Lemma 3.1 we know that there are only three cases
of z(t) to be considered.

(1) }inép(t):n’(t) =0or %m% p(t)z'(t) = 0. Since the proofs of two cases are
similar, we only consider the case of %in% p(t)x'(t) = 0, hence o = 0, 5 > 0, and

x decreases on (tg_1,tk), k = 1,2,...,m. Integration on (0,¢;) yields
t t
—px’ < C/ pYb(x)ds < C’b(a;)/ Ypds.
0 0
Let z(t) = T(x(t)). Then from (H;) we know

/ c [t
12 (1)] < p(t)/o bpds € LY0, 1),

From (2.4) we have —pz’ o < C, hence for t € (t1,t2) we have

t1+

t
po'| < C+ [ vgpds < C
1

Similarly |2/| < C for t € [t1,ty] and |2/| < C. For t € (ty, 1), we have (Notice
that b > =)

t t
Ipz’| < C + C/t Yopds < C + Cb(x) Ypds,

tm

/ i i ! 1
1< 5t o /tmwpdseL (0,1).
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(2) 2’ has one zero t° in (0,1), including limit zeros. According to the
boundary conditions, we have the following three cases to be considered:

(i) #>0,0=0,
(i) 6 >0,8=0,
(i) B=0=0.

However, proofs of the lemma in these three cases are similar. So for brevity
we only consider the third case, i.e., the case of 3 =6 =0 and a = v = 1.
Then Lemma 3.3 yields n < t° < 1—7 . Now we can assume 1 < t1,1—n > t,,
for convenience. By integration and condition (3.4) we get C' > 0 independent
of n such that

(3.19) l2'(t)] < C, ten1-—n.
Since b decreases and x increases, integration of (3.1) on (t,t1] yields:
p(t)a'(t) — p(t1)z'(t)
< [ Do) max{ o)) almax( (), (Ho)(s), (S2)(s))ds
320) < R+1) [ plpps)nias)ds.
Thus from (3.19) we have
(3.21) pz'| < C +C /t " upb(z)ds < C + Cb(a) /t " ypds.
Let z(t) = T'(z(t)), then
(3.22) |2/ < C + C; /ttl Ypds € LY(0,t1).
Similarly we can get
(3.23) 2| < C+ C; /:n Ypds € L (tm, 1).

(3) There exists tg, 1 < k < m, such that 2/(tx +0) < 0,2'(tx —0) > 0. As
in the proof of Lemma 3.1, we know in this case that

(3.24) ! (1, £ 0)| < C.

where C' is independent of n. Thus we can also prove that (3.19) is true.
Following the above steps (3.20)-(3.23), it is easy to get the required estimate.
The proof is complete. g

Now we come to our main theorem of this section.
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Theorem 3.5. Suppose (H;)—(Hg) hold. Then problem (1.1) has a positive
solution satisfying (2.4).

Proof.  Let z,, be solutions of (3.1), and 2z, = T'(z,,). From the above Lemma
3.1, Lemma 3.4 and the Arzela-Ascoli theorem we may assume z, converges.
Thus we know z, — z in C[0,1]. Because p(t) is positive on (0,1) we can
assume without loss of generality that x,, — x in PC'[e, 1—¢], where ¢ € (0, 1)
is arbitrary, and where PCl[e,1 — ] = {x : x is continuously differentiable at
t # ty, and left continuous at t = t, and x(tx+0), 2(tx —0), 2’ (t,+0), 2’/ (tx —0)
exist for k = 1,2,...,m}, equipped with the norm

]|y = max{]lz, ']},

Hence z satisfies (2.4) and the impulsive conditions. If 5 =§ =0,a =y =1,
then x satisfies the boundary conditions and by integration we have

() = () (0) = | " p(5) o (5. s Hit, San)ds.

From the continuity of f we obtain
t
pn)a’ () = p0)a'()) = | p(s)f (5.2, Ha, Sw)ds.
7

Thus z is a solution of (1.1). If # > 0,0 = 0, then similar to [5] we can prove
x is a solution of (1.1). O

Remark 3.6. Our conditions are weaker than those of [5], [7] even in the
non-impulsive cases.

APPENDIX

In this appendix, we will give detailed proof of Lemma 2.2, and will prove that
the oprator A in page 70 is continuous and maps bounded sets into bounded
sets.
Proof of Lemma 2.2. First from the definiton of u(t),v(t) , and the condition
1
/ ——dt < oo, we know that u(t) is decreasing and v(t) is increasing, and
0

p(t)
u,v € C[0,1]. Thus from the definition of G(t, s) we have that

(A1) G(t,s) < u(s)v(s)p(s), for t,s€[0,1].
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Case (1). Suppose that 5 > 0,5 = 0. Then

2 ﬁ 11

=07+« / —dt,
Y W0

vy 1
u(s) = —7i(s), wv(s)=-—
p p
and 6(s) = 7(s). Thus from (A;) we have that

[6 + aTo(s)];

1
G(t,s) < ?[ﬁ + ato(s)]y71(s)p(s) < p(s)6(s).
Case (2). Suppose that 8 = 0,5 > 0. Proof of this case is similar to that
of the case (1).
Case (3). Suppose that =3 = 0. Then

E |
2 g o
=« dt, u(s)=—-71(s),v(s) = —19(s),
p 7/()p(t) (s) pl()() po()
and 6(s) = 7o(s), for s € (0,3);0(s) = 71(s), for s € (3,1). Thus from (A;)
we have that

Gt.5) < orm(s)m(s)p(s) < p(s)O(s).

The proof is complete.
Proof of the properties of the oprator A in page 70: Now we shall prove that
the oprator A in page 70 is continuous and maps bounded sets into bounded
sets, where the domain of A is P*, and the range of A is P; both have induced
topology from PC(J). Let the oprators Aj, A2 be the same as those in the
proof of Lemma 2.3. We will give the whole proof in the following three steps:
(1) A; maps P* into P.
In fact, let x € P*,y1(t) = (A1z)(t). Because ¢(x,y,z) is bounded on
(0,1) x [0, M] x [0, M], where M is arbitrary, we can choose constant C' such
that

(A2) G(t,5)f (s, (s), (Hz)(s), (Sz)(s)) < CO(s)p(s)u(s) € L'(0,1).

It is clear that G(t,s) is continuous on [0,1] x [0,1]. Thus from Lebesgue’s
convergence theorem of dominance we know that y;(¢) is continuous, and thus
belongs to P.

(2) A; is continuous and maps bounded sets into bounded sets.

In fact, let E be a bounded set in P*. Then we can choose a constant C as
in step (1) such that the estimate (Ag) holds, which immediately yields that
A1(F) is a bounded set in P. Next let xy € P* be fixed and x € P* such that
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|z — 20| < 1. Let € € (0, 5). Then for t € (0,1) there exists constant C' such
that

[(Arx

l—¢

)(#) -
/ s)ds + C 1 p(s)0(s)(s)ds
/ U(s) |F (s, Ha, S2) — f(5,0, Hao, S ds.

Since f(s,z,y,z) is continuous on (0,1) x (0,00) x (0,00) X [0, 00), it is easy
to show that A; is continuous.

(3) Clearly A2 maps P* into P, and from the continuity of I, k = 1,2,...,m
we know that there are constants such that for x,xy € P* the following esti-
mates hold:

|(A27)(t) — (A2z0)(t)| < C Z |13 (2 — Ir(zo(tr))]

’AQI |<CZ’Ik

Hence it is easy to show that A, is continuous and maps bounded sets into
bounded sets. The proof is complete.
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