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Abstract. The number of the solitons of the Korteweg-de Vries (KdV) equation is
considered when the initial value of the solution is given. Upper and lower bounds
for the number of solitons of this equation are obtained under some conditions on
the initial value of the solution.
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§1. Introduction

From the pioneering work of Gardner et al. [1], we know how to solve exactly the
KdV equation

ut − 6uux + uxxx = 0 (1.1)

by the inverse scattering method if we know the initial data u0(x) = u(x, t = 0),
under the condition that ∫ ∞

−∞
(1 + x2) |u0(x)| dx < ∞. (1.2)

This method shows rigorously that the solitons of equation (1.1) correspond to the
discrete eigenvalues of the associated ”Schrödinger equation”

Lψ(x, t) = λψ(x, t) for t ≥ 0 and −∞ < x < ∞ , (1.3)
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where the operator L is L = L(t) = − ∂2

∂x2
+ u(x, t) .

In (1.3), considered as a Schrödinger equation in one dimension, u(x, t) plays there-
fore the role of the potential in the Quantum Mechanical sense. Writing (1.1) in the
Lax form [2]

Lt = ML − LM, (1.4)

where M is a linear operator, one can easily show that the spectrum of (1.3) is
independent of t : λt = 0 and one has

ψt = Mψ for t > 0 (1.5)

which gives the time evolution of ψ(x, t).
Since the discrete eigenvalues are constant in time, to count the number of solitons

of (1.1) it is sufficient to count the number of discrete eigenvalues of (1.3), the so-
called bound states, with the potential u(x, 0). The direct and inverse problem for
the one dimentional Schrödinger equation has been thoroughly studied by Faddeev,
and Deifet and Trubovitz [3], who showed that the condition (1.2) is sufficient for
proving all what is needed for the inverse problem method to work, and also to show
that the number of bound states is finite. It was then shown by Segur [4] that a
bound on the number of solitons is given by

N ≤ 1 +
∫ ∞

−∞
|x| |V (x)| dx (1.6)

where

V (x) = u(x, 0) θ[−u(x, 0)], (1.7)

θ being the Heaviside function. The above bound is the extention to the whole R of
the well-known Bargmann bound [5] for the radial Schrödinger equation for the S-
wave (l = 0) : ϕ”(E, r)+Eϕ = V (r)ϕ, r ∈ [0,∞) with Dirichlet boundary condition
at r = 0 . Other types of bounds for the number of bound states have been found
for the radial case in arbitrary number of dimensions by Setô [6]. In one dimension
for the whole R, he shows that if the potential is negative (attractive) everywhere
and symmetric, the number of discrete spectrum corresponding to even or odd wave-
functions (Neumann or Dirichlet condition at x = 0), satisfy the bounds

N e
1 ≤ 1 +

1

2

∫ ∞

0

∫ ∞

0
|r − r′| |V (r)| |V (r′)| drdr′∫ ∞

0
|V (r)| dr

(1.8)

and

N o
1 ≤

∫ ∞

0
r |V (r)| dr.
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From these, we deduce, of course, a bound on Ntotal = N e
1 + N o

1 .
The purpose of the present paper is to show that one can improve the bound of Segur
and Setô if one assumes an additional condition on the potential u(x, 0), besides being
everywhere negative. The additional conditions turns out to be the monotonicity of
the potential for x > 0 and x < 0, or its generalization.

Remark 1. It is a well-known theorem that, for the Schrödinger equation in the
radial case, r ∈ [0,∞), the number of bound states is equal to the number of nodes
(zeros) of the solution at zero energy (E = 0). This nodal theorem, which was at
the basis of the original proof of Bargmann bound, will be systematically used in what
follows. It applies in all cases, whatever the b.c. may be, whether Dirichlet, Neumann
or mixed. In the Dirichlet case, one should not count the zero at r = 0.

§2. Calogero-type bounds

For the radial case r ∈ [0,∞), with Dirichlet boundary condition at r = 0, it has
been shown by Calogero [7], that if one assumes that the potential, being everywhere
negative, is also an increasing function (nondecreasing)

V (r) ≤ 0, V ′(r) ≥ 0, (2.1)

one has the bound

N ≤ 2

π

∫ ∞

0

√
|V (r)| dr. (2.2)

In order to apply this bound to our case: x ∈ (−∞,∞), we also assume that

V (−x) = V (x), x > 0. (2.3)

This means, since V (±∞) = 0 , that the potential is decreasing for x < 0, and
increasing for x > 0, and its absolute minimum is reached at x = 0. Since the
potential is symmetrical, we study separately the odd and even solutions. For the
odd solutions, we have ψodd(0) = 0, and we have therefore the Calogero bound (2.2)
on each side of x. By symmetry, since ψodd(−x) = −ψodd(x) for x > 0, it follows that
if ψodd is L2(0,∞), it is also L2(−∞, 0). The number of odd bound states admits
therefore the bound

Nodd ≤ 2

π

∫ ∞

0

√
|V (x)| dx. (2.4)

As for the even bound states, they correspond to ψ′
even(0) = 0. Now, there is a

well-known theorem [8] according to which the zeros (nodes) of ψodd and ψeven are



96 K. CHADAN, R. KOBAYASHI AND K. OHTAKI

interlacing. Therefore, the number of the nodes of ψeven exceeds the number of the
nodes of ψodd at most by one, and so we have

Neven ≤ 1 +
2

π

∫ ∞

0

√
|V (x)| dx. (2.5)

Adding up these, we get the following theorem.

Theorem 1. If the initial data u0(x) = u(x, t = 0) is negative, is symmetric with
respect to the origin, and is an increasing function of x for x > 0, then the total
number of solitons admits the bound

N ≤ 1 +
4

π

∫ ∞

0

√
|V (x)| dx. (2.6)

In examples 1 and 2, we show the comparison between our bound, and those of
Segur and Setô.

Example 1.

u(x, 0) = −n (n + 1) sech2x.

n 1 2 3 4 5 upper bound

exact value 1 2 3 4 5 n

Segur’s bound 3.8 9.3 17.6 28.7 42.6 1 + 2n(n + 1) log 2

Setô’s bound 3.0 7.0 13.0 21.0 31.0 1 + n(n + 1)

Our bound 3.8 5.9 7.9 9.9 12.0 1 + 2
√

n(n + 1)

Example 2.

u(x, 0) =

−V0 (|x| ≤ a)

0 (|x| > a)
( V0 > 0, a > 0 ).

√
V0 a2 1

4
π 3

4
π 5

4
π 7

4
π 9

4
π upper bound

exact value 1 2 3 4 5 N (*)

Segur’s bound 1.6 6.6 16.4 31.2 51.0 1 + V0 a2

Setô’s bound 1.4 4.2 10.0 18.6 30.1 1 + 7
12

V0 a2

new bound 2.0 4.0 6.0 8.0 10.0 1 + 4
π

√
V0 a2
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(*) Number of discrete eigenvalues is N if[
2

π

√
V0 a2

]
= N − 1

where the symbol [ ] denotes the integral part.

As is obvious from (2.6) compared to (1.6) and (1.8), the larger u0(x) is (negative!),
the more the r.h.s. of the latter become too large. In fact, it is known that when
we consider a u0 of the form gV (x), V (x) having any sign, and g → ∞, we have the
asymptotic bound [9]

Ntotal ∼ 2

π
g

1
2

∫ ∞

0

√
|V−(x)| dx, (2.7)

where V− is the negative part of V (x). This is more in agreement with our bound
(2.6). Notice also that in this bound the extra 1 cannot be removed. Indeed, it is
well-known that in full one dimension, a negative potential, no matter how weak it
is, has always a bound state.

§3. More General Upper Bound

So far, we have assumed that the potential is symmetrical with respect to x = 0 ,
is negative everywhere, and is nondecreasing for x ≥ 0. We still keep the symmetry
now, but relax the monotonicity of the potential for x ≥ 0, and replace it by the
more general condition

d

dx
[x2p−1(−V (x))p−1] ≥ 0, x ≥ 0, (3.1)

where p ∈ [1/2, 1]. For p = 1, this condition imposes nothing on V , and we are back
to Segur and Seto. For p = 1/2, we get V ′(x) ≥ 0 , and we are back to (2.2). For p in
between, it is easily seen that the potential, altough everywhere negative, may have
oscillations (see below). But these oscillations are not too sharp, i.e. the derivative
of V cannot be too negative. It has been shown recently [10] that (3.1), in the radial
case r ∈ [0,∞), with Dirichlet b.c. at r = 0, leads to the bound :

n(V ) ≤ p(1 − p)p−1
∫ ∞

0
(−r2V )p dr

r
(3.2)

which is intermediate between the Bargmann bound and the Calogero bound. Argu-
ing as in the previous section by using the nodal theorem, we end up, for the entire
line x ∈ (−∞,∞), with
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Theorem 2. For an initial value u0(x) = u(x, t = 0) of the KdV equation, which is
negative everywhere, is symmetrical with respect to the origin x = 0, and satisfies the
condition (3.1), the number of solitons has the upper bound

N ≤ 1 + 2p(1 − p)p−1
∫ ∞

0
[−x2u0(x)]

p dx

x
. (3.3)

As an example of potentials that satisfy (3.1), we have

V (x) = −x(2p−1)/(1−p)[
∫ ∞

x
q(t)dt]1/(1−p), x ≥ 0, (3.4)

where q(x) is any positive function which is L1, goes to zero fast enough at infinity,
and is such that V (x) is less singular than x−1 at x = 0 in order to satisfy (1.2).
Taking for instance q(x) = exp(−x), one sees that V (x) vanishes at x = 0, and has a
minimum at some x0 (> 0) before going to zero at infinity. Other forms of q(x) can
lead to more oscillations.

Remark 2. The bound (3.2) (and therefore Theorem 2) is not quite optimal. For
p = 1, we get indeed the Bargmann bound, but for p = 1/2, we do not recover the
Calogero bound since the coefficient in front of the integral of (2.2) is 1.111 (2/π)
instead of (2/π). However, (3.2) is the only bound actually known for p ∈ [1/2, 1].
Nevertheless, it leads again to a substantial improvement of previous bounds for large
initial data if we make the mild assumption (3.1) on u0(x).

§4. Lower Bounds

We assume again the same conditions on the potential u0(x): it is negative every-
where, is symmetrical with respect to x = 0, and is nondecreasing for x ≥ 0 . Of
course, it satisfies (1.2).

To obtain the number of the discrete eigenvalues, we count the zeros of each solution
for x > 0 as in the preceding sections, separately for ψodd(x) and ψeven(x).
As for ψodd(x) for x ≥ 0 with ψodd(0) = 0 and ψ′

odd(0) = 1 , the nondecreasing of u0

for x ≥ 0 allows us to apply the lower bound for the number of the bound states of the
Schrödinger equation, which was obtained by Calogero [7]. As for the ψeven(x), the
initial condition at the origin is chosen as ψeven(0) = 1 and ψ′

even(0) = 0. Interlacing
theorem [8] tells that the zeros of ψodd(x) and ψeven(x) with the above boundary
condition are interlacing each other. Thus, we obtain the lower bound for the total
number Ntotal of the discrete spectra as

Ntot ≥ Max(2Nodd, 1), (4.1)
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where Nodd is the number of the nodes of ψodd(x) for x > 0. Calogero’s lower bound
[7] for Nodd leads now

Nodd ≥ [[1/2 + (1/π)
∫ ∞

0
dx Min(q,−V (x)/q)]] (4.2)

where q is an arbitrary positive constant. It can be rewritten as

Nodd ≥ [[1/2 + (qx∗)/π + (1/π)
∫ ∞

x∗
dx|V (x)|/q]] (4.3)

where q2 + V (x∗) = 0. The double bracket [[ ]] notes the integral part. The lower
bounds for the number of the solitons in the exactly solvable cases are calculated as
follows.

Example 3.

u0(x) = −n (n + 1) sech2x

In this case, the exact number of the discrete spectra is n. The lower bound is
calculated as

N ≥ Max(2[[1/2 + (2/π)
√

n(n + 1)
√

2x∗ − 1]], 1) (4.4)

where

(1 − 2x∗)exp(2x∗) + 1 = 0. (4.5)

We can easily show that 5/8 < x∗ < 3/4 . Using the approximate value x∗ = 5/8,
we have

N ≥ Max(2[[1/2 + (1/π)
√

n(n + 1)]], 1). (4.6)

The easier way to get this non-optimal evaluation is to put q =
√

n(n + 1) as V (x) ≥
−n(n + 1). Substituting this value for q into eq.(4.3) gives,

Nodd ≥ [[1/2 +
√

n(n + 1)/π]]. (4.7)

Example 4.

u0(x) =

−V0 (|x| ≤ a)

0 (|x| > a)
( V0 > 0, a > 0 ).

In this case, the integral is easily carried out and q =
√

V0 . The result does not
depend on x∗ and we get,

N ≥ Max(2[[1/2 +
√

V0a2/π]], 1). (4.8)

These lower bounds (though non-optimal values for the case (i)) for the number of
the solitons of the KdV equation are given in the tables together with the upper
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bound obtained in the section 2.
Finally, we note that the asymptotic behaviour of the lower bound is g1/2 as g→∞
when we consider a u0 of the form gV (x).

V (x) = u(x, 0) = −n (n + 1) sech2x.

n 1 2 3 4 5

exact value 1 2 3 4 5

upper bound 3.8 5.9 7.9 9.9 12.0

lower bound 1 2 2 2 4
(non-optimal)

Table 1

V (x) = u(x, 0) =

−V0 (|x| ≤ a)

0 (|x| > a)
( V0 > 0, a > 0 ).

√
V0 a2 1

4
π 3

4
π 5

4
π 7

4
π 9

4
π

exact value 1 2 3 4 5

upper bound 2.0 4.0 6.0 8.0 10.0

lower bound 1 2 2 4 4

Table 2
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