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Abstract. Orthogonal 24-run 25 factorial designs derivable from saturated
two-symbol orthogonal arrays of strength 2, size 24 and index 6 by selecting
five columns are classsified computationally into 63 isomorphic classes with
respect to the permutation of factors and levels within factors. Specific features
of those 63 representative designs are considered.
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§0. Introduction

Orthogonal 2m factorial designs have widely been used in factor screening
and related experiments. Among others, such designs obtained by assigning
factors to the appropriate columns of a saturated orthogonal array (or so-
called an orthogonal table) have been recommended for practical use (see,
e.g., Taguchi [6,7], Box and Hunter [1,2]). Such kind of saturated orthogonal
arrays, however, have been restricted to those constructed by the standard
orthogonal polynomial models. Moreover, the size or the number of runs of
such a design is necessarily restricted to the power of two.

Although all of the saturated orthogonal arrays of size 4λ are isomorphic
to each other with respect to the permutation of 4λ− 1 columns (factors) and
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symbols (levels) in each case of λ = 1, 2 and 3, respectively, there are several
isomorphic classes of saturated orthogonal arrays of size 4λ since Hadamard
matrices of size 4λ which are not isomorphic to each other do exist for those in-
tegral λ ≥ 4. In fact, as it has been shown in our previous papers (Yamamoto,
Fujii, Hyodo and Yumiba [8,9,13]), there are 5, 3 and 130 isomorphic classes
of orthogonal arrays in those cases of λ = 4, 5 and 6, respectively. The possi-
bility, therefore, of obtaining so many useful orthogonal 2m factorial designs
from such saturated orthogonal arrays is expected as it has been illustrated in
our preceding paper (Yamamoto, Fujii, Hyodo and Yumiba [10]). The results
of the classification of orthogonal 25 and 26 factorial designs having 16 and 20
runs derivable from such representative saturated orthogonal arrays with re-
spect to the permutation of factors and levels have been given in Yamamoto,
Fujii, Hyodo and Yumiba [12]. Representative designs of those isomorphic
classes and their characteristic vectors have been given there.

In this paper, results of the classification of all orthogonal 24-run 25 factorial
designs derivable from two-symbol orthogonal arrays of size 24, strength 2,
23 (maximal) constraints and index 6 are given. Eventually, our number of
isomorphic classes is just the same with that of the orthogonal arrays having
size 24, 5 constraints and index 6 in general by Namikawa, Fujii and Yamamoto
[4]. Our results of the classification, therefore, imply the classification of all
orthogonal 24-run 25 factorial designs.

§1. 2m factorial designs

Consider a 2m factorial experiment with m factors, F (1), F (2), . . . , and
F (m), each at two levels 0 and 1. Let θ{φ}; θ{i}; and, in general, θ{K} K =
{i1, i2, . . . , ik} ⊂ Ω = {1, 2, . . . ,m}, be various factorial effects called the gen-
eral mean; the main effect of the factor F (i); and the k-factor interaction of
k(2 ≤ k ≤ m) factors F (i1), F (i2), . . ., and F (ik), respectively.

Let T be a fraction of the 2m factorial design of m factors composed of n

binary assemblies (j(α)
1 , j

(α)
2 , . . . , j

(α)
m ) with j

(α)
i = 1 or 0 for i = 1, 2, . . . ,m and

α = 1, 2, . . . , n, and suppose y(T ) be the corresponding vector of observations,
i.e.,

T =
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The vector of observations of this design T is expressed as

y(T ) = E(T )Θ + e,(1.2)

in terms of E(T ), Θ, and e, where E(T ) is the design matrix whose (α, θ{K})
element lying in the row corresponding to the αth observation and the column
corresponding to the factorial effect θ{K} is given by

∏
i∈K d(j(α)

i ), Θ is the
column vector of factorial effects, i.e.,

Θt =
(
θ{φ}; θ{1}, . . . , θ{m}; θ{1, 2}, . . . , θ{m − 1, m}; . . . ;

θ{1, 2, . . . , k}, . . . , θ{m − k + 1,m − k + 2, . . . ,m};
. . . ; θ{1, 2, . . . ,m}

)
,

(1.3)

and e is the error vector with a usual assumption that the components are
distributed independently with N(0, σ2).

Here, d(j) = −1 or 1 according as j = 0 or 1 (see, e.g., Yamamoto, Shi-
rakura and Kuwada [15]).

The expectation of the αth observation of y(T ) is expressed as:

η(j(α)
1 , j

(α)
2 , . . . , j(α)

m ) =
m∑

u=0

∑
U∈Ω(u)

∏
i∈U

d(j(α)
i )θ{U},(1.4)

where, Ω(u) denotes the collection of all subsets of Ω = Ω(m) having the
cardinality u each. In particular, Ω(0) = φ.

The column vector d(K) of the design matrix E(T ) corresponding to the
factorial effect θ{K} is expressed as:

d(K)t =

( ∏
i∈K

d(j(1)
i ), . . . ,

∏
i∈K

d(j(α)
i ), . . . ,

∏
i∈K

d(j(n)
i )

)
.(1.5)

In particular, d(φ)t = jt = (1, 1, . . . , 1) for the general mean θ{φ}, and d(i)t =
(d(j(1)

i ), . . . , d(j(α)
i ), . . . , d(j(n)

i )) for the main effect θ{i}.

Definition 1.1. A column vector d(K) of the design matrix E(T ) is called
the loading vector of a factorial effect θ{K}.

Since d(j) = −1 or 1 according as j = 0 or 1, those loading vectors satisfy
the following:

d(U) ∗ d(V ) = d(U4V ),(1.6)

where x ∗ y denotes the so-called Schur product of two vectors x and y and
U4V denotes the symmetric difference of two subsets U and V of Ω.

Let ‖x‖ be a kind of magnitude called spur of the vector x being defined
by the sum of its elements.
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Definition 1.2. The spur of a loading vector d(K) is called the loading
coefficient of the factorial effect θ{K} to the general mean θ{φ} and is denoted
by γ(K).

The normal equation for estimating Θ is given by

M(T )Θ = E(T )ty(T ),(1.7)

where M(T ) = E(T )tE(T ) is the information matrix of the design T .
Under an a priori assumption that p + 1 (1 ≤ p ≤ m) or more higher order

interactions can be assumed to be zero, the observation vector y(T ) can be
expressed as

y(T ) = E(p, T )Θ(p) + e,(1.8)

in terms of E(p, T ), Θ(p), and e, where E(p, T ) is a restricted design matrix
composed of those column vectors of E(T ) corresponding up to p-factor inter-
actions, Θ(p) is the vector of factorial effects up to p-factor interactions, and
e is the error vector.

In such a situation, the normal equation for estimating Θ(q), a part of Θ(p)
up to q-factor interactions (q ≤ p), is given by

M(q, T )Θ(q) = E(q, T )ty(T ),(1.9)

where M(q, T ) = E(q, T )tE(q, T ) is a restricted information matrix called the
frontage of the design T relative to Θ(q) and the remainder part of M(p, T ) is
called the profile of the design T relative to Θ(p) (see Yamamoto, Fujii, Hyodo
and Yumiba [10]).

Let ε(U, V ) be (θ{U}, θ{V }) element of the information matrix lying in the
row corresponding to θ{U} and the column corresponding to θ{V }, respec-
tively. Then, since d(j) = ±1, it is given by

ε(U, V ) = ‖d(U) ∗ d(V )‖ = ‖d(U4V )‖ = γ(U4V ).(1.10)

This implies that the element ε(U, V ) is dependent on the design T through
the loading coefficient γ(U4V ) of the loading vector d(U4V ) corresponding
to the factorial effect θ{U4V }.

Let γ(T ) be the first row vector of the information matrix M(T ), i.e.,

γ(T ) = (γφ(T ), γ1(T ), . . . , γk(T ), . . . , γm(T )),(1.11)

where γk(T ) = (γ{1, 2, . . . , k}, . . . , γ{i1, i2, . . . , ik}, . . . , γ{m − k + 1,m − k +
2, . . . ,m}) is the (k+1)st

(m
k

)
dimensional component vector of γ(T ). Clearly,

both γφ(T ) and γm(T ) are scalars and γφ(T ) = γ(φ) = n. Hereafter,
(n
r

)
denotes the binomial coefficient with a usual convention.



ORTHOGONAL 24-RUN 25 FACTORIAL DESIGNS 43

Such a 2m dimensional vector γ(T ) is called the characteristic vector of
the information matrix M(T ) or the design T itself since it determines M(T )
completely (see Yamamoto, Fujii, Hyodo and Yumiba [11,12]). In fact, using
(1.10), every row of M(T ) can be determined easily.

The first member of the normal equation M(T )Θ = E(T )ty(T ) is given by
the spur of the Schur product of the loading vector d(φ) and the observation
vector y(T ), i.e.,

nθ{φ} +
m∑

u=1

∑
U∈Ω(u)

γ(U)θ{U} = ‖d(φ) ∗ y(T )‖

=
n∑

α=1

y(j(α)
1 , j

(α)
2 , . . . , j(α)

m ).

(1.12)

In general, the member of the normal equation in the row corresponding
to θ{K} is given by

nθ{K} +
m∑

u=0

∑
K 6=U∈Ω(u)

γ(K4U)θ{U} = ‖d(K) ∗ y(T )‖.(1.13)

Definition 1.3. The linear equation (1.13) is called the principal equation
for estimating the factorial effect θ{K}.

The left hand member of the equation (1.12) may be regarded as an ex-
tension of the so-called defining relation introduced by Box and Hunter [1,2]
in some sense. It, therefore, may be called a defining formula. The left hand
member of (1.13) can easily be derived from that of (1.12) by multiplying
θ{K} subject to the following symbolic operation ‘¯’, i.e.,

θ{K} ¯ θ{U} = θ{K4U},

and vice versa.
The left hand member of the equation (1.13) may, therefore, be regarded

as a derived relation introduced by Box and Hunter [1,2] in some sense and
may be called a derived formula.

Clearly, (1.13) provides us BLUE of the θ{K} if γ(K4U) = 0 and/or
θ{U} = 0 by assumption for every U 6= K.

Definition 1.4. In a fractional 2m factorial design T having the character-
istic vector γ(T ), a factorial effect θ{K} is called

(a) orthogonal to the general mean θ{φ} if γ(K) = 0,
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(b) confounded or aliased (totally) with the general mean θ{φ}
if |γ(K)| = γ(φ) = n, and,

(c) partially confounded or partially aliased with the general mean θ{φ} if
0 < |γ(K)| < γ(φ) = n.

The fraction |γ(K)|/n is called the confounding coefficient of θ{K} to θ{φ}.

With respect to the general formula (1.13),

Definition 1.5. In a fractional 2m factorial design T having the character-
istic vector γ(T ), a factorial effect θ{U} is called

(a) orthogonal to a factorial effect θ{K} if γ(K4U) = 0,
(b) confounded or aliased (totally) with a factorial effect θ{K}

if |γ(K4U)| = n, and,
(c) partially confounded or partially aliased with a factorial effect θ{K} if

0 < |γ(K4U)| < n.

The fraction |γ(K4U)|/n is also called the confounding coefficient of θ{U}
to θ{K}.

The following proposition is immediate from the results given in Yamamoto,
Shirakura and Kuwada [15].

Proposition 1.6. The component vectors of the characteristic vector γ(T )
satisfy the following:

(a) Both γ1(T ) and γ2(T ) are null vectors if and only if T is a two-symbol
orthogonal array of strength 2.

(b) In general, every component vector γu(T ) is a null vector for every u =
1, 2, . . . , t if and only if T is a two-symbol orthogonal array of strength
t.

(c) Every component vector γu(T ) is a γu multiple of the vector (1, 1, . . . ,
1) for every u = 1, 2, . . . , t if and only if T is a two-symbol balanced
array of strength t with index set {µ0, µ1, . . . , µt}, where

γu =
t∑

j=0

u∑
p=0

(−1)p

(
u

p

)(
t − u

j − u + p

)
µj , u = 0, 1, . . . , t, and,

µv =
1
2t

t∑
i=0

i∑
p=0

(−1)p

(
v

i − p

)(
t − v

p

)
γi, v = 0, 1, . . . , t.
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§2. Orthogonal 24-run 25 factorial designs derivable from
saturated two-symbol orthogonal arrays of size 24, strength 2

and index 6

It has been shown in our previous paper (Yamamoto, Fujii, Hyodo and
Yumiba [13]) that there are 130 classes of two-symbol orthogonal arrays of
strength t = 2, size n = 24, m = 23 constraints and index λ = 6, i.e., 2-
OA(2,23,6)’s, isomorphic with respect to the permutation of columns (factors)
and symbols (levels) within factors. The complete list of 130 representatives
of such isomorphic classes of saturated orthogonal arrays can be seen in the
above mentioned paper.

In order to classify all orthogonal 24-run 25 factorial designs derivable from
saturated two-symbol orthogonal arrays of size 24, strength 2 and index 6 iso-
morphic with respect to the permutation of factors and levels within factors,
all orthogonal designs obtained by assigning factors to the five columns of the
above 130 representative arrays (

(23
5

)
× 130 in all) have been classified compu-

tationally into isomorphic classes. The concept of the modular representation
of orthogonal arrays given in Yamamoto, Fujii, Namikawa and Mitsuoka [14]
has play an important roll in our computation.

Those results are summarized in the Table 1.

Table 1. Selected columns of 2-OA(2,23,6) and characteristic
vectors of representative 24-run 25 designs
(Since γ1 and γ2 are null, they are omitted)

(Here ‘.’ indicates ‘0’ in this table)

γ{·} 1
1 1 1 1 2 2

Rep. 1 1 1 1 1 1 2 2 2 3 2 2 2 3 3 3 Res-
Rep. of Columns 2 2 2 3 3 4 3 3 4 4 3 3 4 4 4 4 olu-
des. 2-OA selected φ 3 4 5 4 5 5 4 5 5 5 4 5 5 5 5 5 tion
(1) [1] 1 2 3 4 5 24 24 . . . . 24 . . . . . . . . 24 .
(2) [1] 1 2 3 4 6 24 24 . . . . . . . 8 . . . . 8 . .
(3) [1] 1 2 4 6 8 24 . . . . . . 8 8 8 8 . . . . 8 . V
(4) [1] 1 2 4 6 9 24 . . . . . . 8 . . . . 8 8 8 . 8 V
(5) [1] 1 2 4 7 9 24 . . . . . . . . 8 8 8 8 . . 8 . V

(6) [1] 1 2 5 7 9 24 . . . . . . 8 8 8 . . . . 8 . 8 V
(7) [1] 1 3 5 7 9 24 . . . . . . . . . . 8 8 8 8 8 . V
(8) [1] 2 3 4 5 6 24 . . . . 8 . . . 8 . 24 . . . . . IV
(9) [1] 2 3 4 6 9 24 . . . 8 . . . 8 8 . . . . . 8 8 V

(10) [1] 2 3 4 7 9 24 . . . . . 8 8 8 . 8 . . . 8 . . V

(11) [1] 2 4 6 8 10 24 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 -16
(12) [1] 2 4 6 8 12 24 8 8 8 8 8 -8 8 -8 -8 8 8 -8 8 -8 8 .
(13) [1] 2 4 6 9 11 24 8 . . . . 8 . . 8 8 . . 8 8 8 -16
(14) [1] 2 4 6 9 13 24 8 . . . . -8 . . -8 8 . . 8 -8 8 . V
(15) [1] 2 4 7 9 11 24 . . . 8 8 8 8 8 8 . 8 8 8 . . .

(16) [1] 2 4 7 9 13 24 . . . 8 8 -8 8 -8 -8 . 8 -8 8 . . .
(17) [1] 2 5 7 9 11 24 8 8 8 8 8 8 . . . . . . . . 8 -16
(18) [1] 2 5 7 9 13 24 8 8 8 8 8 -8 . . . . . . . . 8 . V
(19) [2] 2 4 6 8 12 24 8 8 8 8 . . 8 . -8 . 8 -8 . . 8 . V
(20) [2] 2 4 6 8 13 24 8 8 . 8 8 -8 8 -8 . 8 8 . 8 -8 . .
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(21) [2] 2 4 6 9 12 24 8 . 8 . . -8 . . . 8 . -8 8 -8 . . V
(22) [2] 2 4 6 12 14 24 8 8 . . -8 8 . . 8 8 -8 8 . . 8 .
(23) [2] 2 4 6 12 15 24 8 8 8 . . . . -8 . . -8 . 8 -8 . . V
(24) [2] 2 4 6 12 16 24 8 8 . . . . . 8 8 . -8 -8 8 8 8 . V
(25) [2] 2 4 6 12 17 24 8 8 8 . -8 8 . . . -8 -8 . . . . . V

(26) [2] 2 4 6 13 15 24 8 . 8 8 . 8 -8 -8 8 8 . . . . 8 . V
(27) [2] 2 4 7 8 14 24 . 8 . . . . . -8 . . . . . 8 . . V
(28) [2] 2 4 7 9 21 24 . . -8 8 8 -8 8 . . -8 8 -8 8 8 -8 .
(29) [2] 2 4 8 12 16 24 8 8 . . . . -8 . 8 8 . . 8 . . 8 V
(30) [2] 2 4 8 12 17 24 8 8 8 . 8 8 -8 -8 . . . -8 . -8 8 -8 V

(31) [2] 2 4 8 13 16 24 8 . . -8 . 8 . . . . 8 . . -8 8 -8 V
(32) [2] 2 4 9 12 16 24 . 8 . -8 8 . . -8 8 . 8 -8 8 -8 8 -8 V
(33) [11] 1 2 4 12 16 24 8 . . . . . . . . 16 . . 8 -8 -8 -8 V
(34) [11] 1 2 4 12 18 24 8 . . . . . . . . 8 . . 8 16 . . V
(35) [11] 1 2 4 12 21 24 8 . . . . . . . . 8 . . 8 . . 16 V

(36) [11] 1 2 4 13 16 24 8 . . . . . . . 8 -8 . . . 16 -8 -8 V
(37) [11] 1 2 4 13 18 24 8 . . . . . . . 8 16 . . . 8 . . V
(38) [11] 1 2 4 15 21 24 8 . . . . 8 . . 8 -16 . . -8 . . 8 V
(39) [11] 1 4 5 14 21 24 8 . . . . 8 . . . 16 . . 16 . -8 .
(40) [11] 1 4 12 13 16 24 . . . 24 . . . 16 -8 . . -8 16 . . .

(41) [11] 1 4 12 14 16 24 . . . . . 8 . 16 -8 . 8 -8 -8 . . . V
(42) [11] 1 4 12 14 23 24 . . . . . 8 . 8 16 . 8 . . . . . V
(43) [11] 1 4 12 17 18 24 . . . . . -8 -8 8 8 . . 16 -8 . . . V
(44) [11] 1 4 14 15 21 24 . . . -8 8 8 8 . -16 . -8 16 . . . .
(45) [11] 1 4 14 15 23 24 . . . -8 8 -8 8 16 . . -8 . . . . . V

(46) [11] 4 5 12 16 17 24 . . . 16 -8 . -8 16 . . . . 24 . . .
(47) [11] 4 5 12 16 20 24 . . . 16 . 8 -8 . 16 . . 8 . . . .
(48) [11] 4 5 13 14 23 24 . . . 8 . 16 8 16 . . 8 8 8 . . .
(49) [11] 4 12 13 14 16 24 . . 16 8 -8 -8 . . . . . . . . 8 -8 V
(50) [12] 1 6 7 12 14 24 24 . . . . 8 . . -8 8 . . 8 -8 8 .

(51) [12] 1 6 12 14 22 24 . . . 8 . 8 -8 8 8 . 8 . 8 -8 . 8 V
(52) [12] 1 7 12 14 19 24 . . . 8 8 . 8 8 . -8 -8 8 8 . . 8 V
(53) [12] 2 5 6 13 15 24 . 8 . 8 -8 . . -8 16 . -8 8 . -8 . .
(54) [12] 2 5 6 13 21 24 . 8 . 8 8 . . -8 . 8 -8 8 . . 8 8 V
(55) [12] 2 5 6 15 17 24 . . 8 -8 -8 . -8 -8 . 8 8 . 16 . . .

(56) [12] 2 5 7 12 14 24 8 . 8 8 -8 . -8 8 . 8 . -8 16 . . 8
(57) [12] 2 5 7 12 23 24 8 . -8 8 . . -8 . 8 8 . 8 8 8 . . V
(58) [12] 2 5 7 14 16 24 8 8 . -8 -8 . 8 . 16 . -8 -8 . 8 . -8
(59) [12] 3 6 10 12 14 24 . 8 -8 -8 -8 . 8 . -8 8 . 8 . . . 8 V
(60) [12] 3 6 12 13 18 24 8 . 8 16 . . . 8 -8 . . . 8 -8 8 .

(61) [12] 7 12 14 21 23 24 8 8 8 8 8 8 . . . . . . . . 24 .
(62) [14] 3 12 13 14 15 24 8 . . . . 16 8 -8 . . -8 8 -8 8 8 8
(63) [30] 4 5 12 17 18 24 . . . -8 . 16 16 8 . . . 16 -8 . . .

Significant portions of our results given in the Table 1 will be listed in the
following:

(a) The number of isomorphic classes of the orthogonal 24-run 25 factorial
designs derived from saturated 2-OA(2,23,6) is 63.

(b) This number is just the same with that of all orthogonal 24-run 25

factorial designs or 2-OA(2,5,6)’s given in Namikawa, Fujii and Yamamoto [4].
This means that our 63 representative designs are the representatives of the
isomorphic classes of all orthogonal 24-run 25 factorial designs.

(c) These representative designs are obtainable from only six saturated or-
thogonal arrays, i.e., [A1], [A2], [A11], [A12], [A14], and [A30] listed in the
Appendix.

(d) The first saturated 2-OA(2,23,6), labeled [A1], yields (1) through (18)
representatives of the isomorphic classes of orthogonal 24-run 25 factorial de-
signs. In addition, the second [A2] yields (19) through (32) designs, the 11th
[A11] yields (33) through (49) designs, the 12th [A12] yields (50) through (61)
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designs, the 14th [A14] yields (62) design and the 30th [A30] yields the last
(63) representative design. No remaining saturated 2-OA(2,23,6) yields a new
class of design.

(e) The selected five columns and the characteristic vectors of those 63
representative designs can be seen in this Table 1. The formulas (1.5) and
(1.10) may be used for obtaining the normal equation of each design.

(f) Those 36 representative designs among 63 marked V are of resolution
five, i.e., every effect up to two-factor interactions can be estimated under the
assumption that three or more factor interactions are negligible.

(g) Although the design (8) is not of resolution V, it can be shown that this
is a unique design of resolution IV among such a class of orthogonal designs.

(h) The design (7) is an orthogonal array of strength 3 and a simple bal-
anced array of strength 5 having the index set {2,0,1,1,0,2}. The property of
this design is main-effect optimal under the assumption that three or more
factor interactions can be neglected.

(i) The design (7) is isomorphic to an example given in Hedayat [3]. Though
the latter is not composed of a balanced array, it can be reduced to the former
only by the symbol permutation within a factor.

(j) The design (35) is A-optimal among the resolution V orthogonal 24-
run 25 factorial designs. This is superior to the A-optimal balanced 24-run
25 fractional factorial design of resolution V given in Srivastava and Chopra
[5] in that our design (35) attains their minimums not only in the total sum
of the variances of the estimates up to two-factor interactions but also in the
partial sum of the variances of main effects and that of two-factor interactions,
respectively.

§3. An illustrative example

As a guide to the use of the Table 1, the design (35) will be treated in this
section.

The design T of (35) can be obtained from the saturated array [A11] in the
Appendix by arranging its 1st, 2nd, 4th, 12th and 21st columns. The design
matrix E(T ) can be obtained from the T by arranging (i) a column d(φ) = j,
the loading vector corresponding to the general mean θ{φ}, (ii) every loading
vector d(i) of the main effect θ{i} obtained by converting every 0 (indicated
by ‘.’ in this paper) in the column of T into −1, and then (iii) every loading
vector d(K) corresponding to the factorial effect θ{K} obtained by calculating
the Schur products of related d(i)’s using the formula (1.5). The characteristic
vector γ(T ) in the Table 1 can be obtained easily from E(T ) by calculating
the spur of every column vector.
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The design T , the design matrix E(T ) and the characteristic vector γ(T )
of the design (35) are given in the following:

1

T E(T ) 1 1 1 1 2 2

1 1 1 1 1 1 2 2 2 3 2 2 2 3 3 3

θ 1 1 1 1 2 2 2 3 3 4 2 2 2 3 3 4 3 3 4 4 3 3 4 4 4 4

1 2 4 12 21 α φ 1 2 3 4 5 2 3 4 5 3 4 5 4 5 5 3 4 5 4 5 5 4 5 5 5 4 5 5 5 5 5

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 . . 2 1 1 1 1 -1 -1 1 1 -1 -1 1 -1 -1 -1 -1 1 1 -1 -1 -1 -1 1 -1 -1 1 1 -1 -1 1 1 1 1

1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 . . 4 1 1 1 1 -1 -1 1 1 -1 -1 1 -1 -1 -1 -1 1 1 -1 -1 -1 -1 1 -1 -1 1 1 -1 -1 1 1 1 1

1 1 . 1 . 5 1 1 1 -1 1 -1 1 -1 1 -1 -1 1 -1 -1 1 -1 -1 1 -1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 1 1

1 1 . . 1 6 1 1 1 -1 -1 1 1 -1 -1 1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 -1 -1 1 1 -1 -1 1 1 1

1 . 1 1 . 7 1 1 -1 1 1 -1 -1 1 1 -1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 -1 1 1 -1 -1 1 1 -1 1 1

1 . 1 . 1 8 1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 -1 1 -1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 1

1 . . 1 1 9 1 1 -1 -1 1 1 -1 -1 1 1 1 -1 -1 -1 -1 1 1 -1 -1 -1 -1 1 1 1 -1 -1 1 1 -1 -1 1 1

1 . . . . 10 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1

1 . . 1 . 11 1 1 -1 -1 1 -1 -1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 1 1 -1 1 1 -1 -1

1 . . . 1 12 1 1 -1 -1 -1 1 -1 -1 -1 1 1 1 -1 1 -1 -1 1 1 -1 1 -1 -1 -1 1 1 1 -1 1 1 1 -1 -1

. 1 1 1 . 13 1 -1 1 1 1 -1 -1 -1 -1 1 1 1 -1 1 -1 -1 -1 -1 1 -1 1 1 1 -1 -1 -1 -1 1 1 1 -1 1

. 1 1 . 1 14 1 -1 1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 -1 -1 1 -1 1 1 -1 1

. 1 . 1 1 15 1 -1 1 -1 1 1 -1 1 -1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 -1 1 -1 1 1 -1 1 -1 1

. 1 . . . 16 1 -1 1 -1 -1 -1 -1 1 1 1 -1 -1 -1 1 1 1 1 1 1 -1 -1 -1 1 1 1 -1 -1 -1 -1 1 -1 1

. 1 . 1 . 17 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 1 -1 1 -1 1 -1 1 1 -1 1 -1 1 -1

. 1 . . 1 18 1 -1 1 -1 -1 1 -1 1 1 -1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 1 -1 -1 1 -1 1 1 -1 1 -1

. . . 1 . 19 1 -1 -1 -1 1 -1 1 1 -1 1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 1 -1 1 1 -1 1 -1 -1 -1 1

. . . . 1 20 1 -1 -1 -1 -1 1 1 1 1 -1 1 1 -1 1 -1 -1 -1 -1 1 -1 1 1 -1 1 1 1 1 -1 -1 -1 -1 1

. . 1 1 1 21 1 -1 -1 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 1 1 -1 -1 1

. . 1 . . 22 1 -1 -1 1 -1 -1 1 -1 1 1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 1 1 -1 1 -1 -1 1 -1 -1 1

. . 1 1 1 23 1 -1 -1 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 1 1 -1 -1 1

. . 1 . . 24 1 -1 -1 1 -1 -1 1 -1 1 1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 1 1 -1 1 -1 -1 1 -1 -1 1

γ(T ): (24 . . . . . . . . . . . . . . . 8 . . . . . . . . 8 . . 8 . . 16)

The defining formula of this design may be expressed as:

24{I} + 8{123} + 8{345} + 8{1245} + 16{12345}.

The coefficient matrices of the restricted normal equation, i.e.,
M(2, T )Θ(2) = E(2, T )ty(T ), assuming that three or more higher
order interactions are negligible, can be obtained using (1.10) as follows:

M(2, T ) E(2, T )t

1 1 1 1 2 2 2 3 3 4

φ 1 2 3 4 5 2 3 4 5 3 4 5 4 5 5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

φ 24 . . . . . . . . . . . . . . . 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 . 24 . . . . . . . . 8 . . . . . 1 1 1 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

2 . . 24 . . . . 8 . . . . . . . . 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1

3 . . . 24 . . 8 . . . . . . . . 8 1 1 1 1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 -1 -1 -1 -1 1 1 1 1

4 . . . . 24 . . . . . . . . . 8 . 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1

5 . . . . . 24 . . . . . . . 8 . . 1 -1 1 -1 -1 1 -1 1 1 -1 -1 1 -1 1 1 -1 -1 1 -1 1 1 -1 1 -1

12 . . . 8 . . 24 . . . . . . . . 8 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1

13 . . 8 . . . . 24 . . . . . . . . 1 1 1 1 -1 -1 1 1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1 -1 -1 -1 -1

14 . . . . . . . . 24 . . . 8 . . . 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1

15 . . . . . . . . . 24 . 8 . . . . 1 -1 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1 -1 1

23 . 8 . . . . . . . . 24 . . . . . 1 1 1 1 -1 -1 -1 -1 1 1 1 1 1 1 -1 -1 -1 -1 1 1 -1 -1 -1 -1

24 . . . . . . . . . 8 . 24 . . . . 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1

25 . . . . . . . . 8 . . . 24 . . . 1 -1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 -1 1

34 . . . . . 8 . . . . . . . 24 . . 1 -1 1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 -1 1 -1 1 -1 1 1 -1 1 -1

35 . . . . 8 . . . . . . . . . 24 . 1 -1 1 -1 1 -1 -1 1 -1 1 1 -1 -1 1 -1 1 1 -1 1 -1 1 -1 1 -1

45 . . . 8 . . 8 . . . . . . . . 24 1 1 1 1 -1 -1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 -1 -1 1 1 1 1



ORTHOGONAL 24-RUN 25 FACTORIAL DESIGNS 49

The normal equation of estimation can be solved by the elementary trans-
formation of rows as M∗(2, T )Θ(2) = E∗(2, T )ty(T ). The coefficient matrices
of the above equation and the variances of estimated effects after recovery
from confounding are as follows:

M∗(2, T )

1 1 1 1 2 2 2 3 3 4

φ 1 2 3 4 5 2 3 4 5 3 4 5 4 5 5

φ 24 . . . . . . . . . . . . . . .

1 . 32 . . . . . . . . . . . . . .

2 . . 32 . . . . . . . . . . . . .

3 . . . 40 . . . . . . . . . . . .

4 . . . . 32 . . . . . . . . . . .

5 . . . . . 32 . . . . . . . . . .

12 . . . . . . 40 . . . . . . . . .

13 . . . . . . . 32 . . . . . . . .

14 . . . . . . . . 32 . . . . . . .

15 . . . . . . . . . 32 . . . . . .

23 . . . . . . . . . . 32 . . . . .

24 . . . . . . . . . . . 32 . . . .

25 . . . . . . . . . . . . 32 . . .

34 . . . . . . . . . . . . . 32 . .

35 . . . . . . . . . . . . . . 32 .

45 . . . . . . . . . . . . . . . 40

E∗(2, T )t

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Variance/σ2

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.04166667

1 1 1 1 2 2 2 2 1 1 1 1 -2 -2 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 0.04687500

1 1 1 1 2 2 -2 -2 -1 -1 -1 -1 2 2 1 1 1 1 -2 -2 -1 -1 -1 -1 0.04687500

1 1 1 1 -2 -2 3 3 -2 -2 -1 -1 3 3 -2 -2 -1 -1 -2 -2 1 1 1 1 0.05000000

1 -1 1 -1 1 -1 2 -2 2 -2 1 -1 2 -2 2 -2 1 -1 1 -1 1 -1 1 -1 0.04687500

1 -1 1 -1 -1 1 -2 2 2 -2 -1 1 -2 2 2 -2 -1 1 -1 1 1 -1 1 -1 0.04687500

1 1 1 1 3 3 -2 -2 -2 -2 -1 -1 -2 -2 -2 -2 -1 -1 3 3 1 1 1 1 0.05000000

1 1 1 1 -2 -2 2 2 -1 -1 -1 -1 -2 -2 1 1 1 1 2 2 -1 -1 -1 -1 0.04687500

1 -1 1 -1 2 -2 1 -1 2 -2 1 -1 -1 1 -2 2 -1 1 -2 2 -1 1 -1 1 0.04687500

1 -1 1 -1 -2 2 -1 1 2 -2 -1 1 1 -1 -2 2 1 -1 2 -2 -1 1 -1 1 0.04687500

1 1 1 1 -2 -2 -2 -2 1 1 1 1 2 2 -1 -1 -1 -1 2 2 -1 -1 -1 -1 0.04687500

1 -1 1 -1 2 -2 -1 1 -2 2 -1 1 1 -1 2 -2 1 -1 -2 2 -1 1 -1 1 0.04687500

1 -1 1 -1 -2 2 1 -1 -2 2 1 -1 -1 1 2 -2 -1 1 2 -2 -1 1 -1 1 0.04687500

1 -1 1 -1 -1 1 2 -2 -2 2 -1 1 2 -2 -2 2 -1 1 -1 1 1 -1 1 -1 0.04687500

1 -1 1 -1 1 -1 -2 2 -2 2 1 -1 -2 2 -2 2 1 -1 1 -1 1 -1 1 -1 0.04687500

1 1 1 1 -2 -2 -2 -2 3 3 -1 -1 -2 -2 3 3 -1 -1 -2 -2 1 1 1 1 0.05000000
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Appendix

Table of saturated orthogonal arrays giving 63 representative designs
(‘.’ indicates ‘0’ in this Table)

[A1] [A2]
11111111111111111111111 11111111111111111111111
11111111111............ 11111111111............
11111......111111...... 11111......111111......
1....1111..1111..11.... 1....1111..1111..11....
111..11....11......1111 111..11....11......1111
111......11..11..1111.. 111......11..11..1111..
1..1111........111111.. 1..1111........111111..
111....11......1111..11 111....11......1111..11
1......111111..11..11.. 1......111111..11..11..
1..11..11....11....1111 1..11..11....11....1111
1....11..11..1111....11 1....11..11..1111....11
1..11....1111....11..11 1..11....1111....11..11
.1.1.1.1.1.1.1.1.1.1.1. .1.1.1.1.1.1.1.1.1.1.1.
.1.1.1.1.1..1.1.1.1.1.1 .1.1.1.1.1..1.1.1.1.1.1
.1.1..1.1.11.1.1..1.1.1 ..11.1..1.11.1.1..1.1.1
..1.11.1..11.1..11..1.1 .1..1.11..11.1..11..1.1
.1..11..1.11..1.1.11.1. .1.1..1.1.11..1.1.11.1.
.1..1.1.11..11..11.1..1 ..11..1.11..11..11.1..1
..11.1..1.1.1.11.1.1..1 .1..11..1.1.1.11.1.1..1
.1..1.11..1.1.11.1..11. ..11..11..1.1.11.1..11.
..1.1.11.1.1..11..11..1 ..1.1.11.1.1..11..11..1
..11..11..1.11..1.11.1. ..1.11.1..1.11..1.11.1.
..1.11..11..11.1..1.11. .1..1.1.11..11.1..1.11.
..11..1.11.1..1.11..11. ..1.11..11.1..1.11..11.

[A11] [A12]
11111111111111111111111 11111111111111111111111
11111111111............ 11111......111111......
11.11.1....111...1..1.1 11111111111............
11.11.1.......111.11.1. 111..11....11....1111..
11...1..1.1111.11.1.... 111....11....11..11..11
11...1..1.1...1..1.1111 111......11....11..1111
1.11.1...1.11.11.1...1. 1..1111......1.1.1.1.11
1.11.1...1...1..1.111.1 1..11..11..1....1.1111.
1.1...111..11.1...111.. 1..11....11.1.1..11.1.1
1.1...111....1.111...11 1....1111...1.111...1.1
1...1..1.1111...1..1.11 1....11..111.11.1.1..1.
1...1..1.11..111.11.1.. 1......1111111.1.1.1...
.111...1..11.111...1..1 .1.1.1.1.1.1..11.1..11.
.111...1..1.1...111.11. .1.1.1.1.1..11..1.11..1
.11.1...11.1.11.1...11. .1.1..1.1.11..11..11..1
.11.1...11..1..1.111..1 .1..11..1.1.11.1..1.11.
.1...111.1.1.1...111.1. .1..1.11..1.1.1.11.1.1.
.1...111.1..1.111...1.1 .1..1.1.11.1.1..11..1.1
..1.111...11..1.111...1 ..11.1..1.1..11.11.11..
..1.111...1.11.1...111. ..11..11..1111......111
...111.11..1...111.11.. ..11..1.11..1..1111..1.
...111.11...111...1..11 ..1.1.11.1...111..111..
...1..1.1111...1..1.111 ..1.11..11.11.1....1.11
...1..1.111.111.11.1... ..1.11.1..11...1111...1
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[A14] [A30]
11111111111111111111111 11111111111111111111111
11111......111111...... 11111111111............
11111111111............ 11.11.1....111...1..1.1
111..11....11....1111.. 11.11.1.......111.11.1.
111....11....11..11..11 11...1..1.1111.11.1....
111......11....11..1111 11...1..1.1...1..1.1111
1..1111......1.1.1.1.11 1.11.1...1.11.1...111..
1..11..11..1....1.1111. 1.11.1...1...1.111...11
1..11....11.1.1..11.1.1 1.1...111..11.11.1...1.
1....1111...1.111...1.1 1.1...111....1..1.111.1
1....11..111.11.1.1..1. 1...1..1.1111...1..1.11
1......1111111.1.1.1... 1...1..1.11..111.11.1..
.1.1.1.1.1.1..11.1..11. .111...1..11.111...1..1
.1.1.1.1.1..11..1.11..1 .111...1..1.1...111.11.
.1.1..1.1.1111......111 .11.1...11.1.11.1...11.
.1..11..1.1.1.11..11.1. .11.1...11..1..1.111..1
.1..1.11..1..1.1111.1.. .1...111.1.1.1...111.1.
.1..1.1.11.1..1.11.1..1 .1...111.1..1.111...1.1
..11.1..1.1..11.11.11.. ..1.111...11..1.111...1
..11..11..11..11..11..1 ..1.111...1.11.1...111.
..11..1.11..1..1111..1. ...111.11..1...111.11..
..1.1.11.1..111....111. ...111.11...111...1..11
..1.11..11.1.1.1..1.1.1 ...1..1.1111...1..1.111
..1.11.1..111...11...11 ...1..1.111.111.11.1...


