UNIFORM DISTRIBUTION OF THE WEIGHTS OF THE KLOOSTERMAN CODES

Toyokazu HIRAMATSU

(Received October 3, 1994)

Abstract. Let C be the Kloosterman code over finite fields. In this paper, we give some bound for the weights of codewords in C and show that the weights of the code C are uniformly distributed with respect to the Sato-Tate measure by using the result of Katz.

AMS 1991 Mathematics Subject Classification. 10F40, 12C25, 94B05.

Key words and phrases. Kloosterman sums, code, uniform distribution.

§1. Kloosterman sums over finite fields and Kloosterman codes

Let p be a prime, and let $q = p^k$ for some positive integer k. We put G = GF(q), $G_0 = GF(p)$ and $G^{\times} = G - \{0\}$. The Kloosterman sums K(a) over G are defined by

$$K(a) = \sum_{x \in C^{\times}} e\left(tr\left(ax + \frac{1}{x}\right)\right), \ a \in G,$$

where $e(z) = e^{2\pi i z/p}$, and tr denotes the trace of G over G_0 . The Kloosterman code C(q) (= C) is of length n = q - 1 and dimension 2k, and is the image of the map

$$\varphi: G^2 \to G^n$$

given by

$$\varphi(\alpha, \beta) = \left\{ tr \left(\alpha x + \frac{\beta}{x} \right) \right\}_{x \in G^{\times}}.$$

The code C is the dual of the Melas code. If $y = (y_1, \ldots, y_n) \in G^n$, the weight of y is the number

$$w(y) = \#\{i | y_i \neq 0\}.$$

In the following, we give some bound for the weights of the nonzero words of C.

Theorem 1. For all α and β in G^{\times} , we have

$$\left| w(\varphi(\alpha,\beta)) - \frac{(p-1)(p^k-1)}{p} \right| \le \frac{p-1}{p} \cdot 2p^{\frac{k}{2}}.$$

Proof. It is easy to check that $w(\varphi(\alpha, \beta)) = w(\varphi(\alpha\beta, 1))$, and we put $\alpha\beta = a$. Then, by Theorem 2 in Remijn and Tiersa ([5]) with the symbol $x^n (= \eta^i)$ in Theorem 2 being replaced by a, we have firstly

$$w(\varphi(a,1)) = \frac{(p-1)(p^k - 1)}{p} - \frac{1}{p} \sum_{b \in G_0^{\times}} K(b^2 a).$$
 (1)

Applying the Weil-Carlitz-Uchiyama inequality ([5], p.1350) on this, the proof is complete. $\hfill\Box$

§2. Uniform distribution of the weights of C(q)

Let $A(\omega)$ be the number of codewords of weight ω in C (= C(q)). Then the sequence $\{A(0), A(1), \ldots, A(n)\}$ is called the weight distribution of C. In the following we study some relation between the weight distribution of the code C and uniform distribution for sequences in the sense of Sato-Tate.

Let H be a compact group and let X be the space of conjugacy classes of H, i.e., $X = H/\sim$, where $x \sim y$ if and only if there exists $h \in H$ such that $x = h^{-1}yh$. Let μ be a Haar measure on H and use the same notation to define its image in X. Then the sequence $\{x_n\} \subset X$ is uniformly distributed if and only if for every irreducible character χ of H

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \chi(x_i) = \int \chi(h) d\mu(h).$$

We denote by f a test function. Then

$$\sum_{x \in C} f(w(x)) = \sum_{\omega=0}^{n} A(\omega) f(\omega).$$

We put

$$Z(x) = \frac{pw(x) - (p-1)(p^k - 1)}{2(p-1)p^{k/2}} \quad (x \in C).$$

Then $Z(x) \in [-1,1]$ by Theorem 1. The following theorem says that the numbers Z(x) are uniformly distributed with respect to the density function of total mass 1:

$$\rho(Z) = \frac{2}{\pi} \sqrt{1 - Z^2}$$

on [-1,1], when $q \to \infty$.

Theorem 2. If f is a test function, then

$$\frac{1}{q^2} \sum_{x \in C} f(Z(x)) = \int_{-1}^1 f(Z) \rho(Z) dZ + O\left(\frac{1}{\sqrt{q}}\right)$$

as $q \to \infty$.

Proof. From the equality (1) we have

$$\begin{split} \sum_{x \in C} f(w(x)) &= \sum_{(\alpha,\beta) \in G^2} f(w(\varphi(\alpha,\beta))) \\ &= f(0) + 2(q-1)f((p-1)p^{k-1}) \\ &+ (q-1)\sum_{a \in G^\times} f\left(\frac{(p-1)(p^k-1)}{p} - \frac{1}{p}\sum_{b \in G^\times} K(b^2a)\right). \end{split}$$

On the other hand, by the Weil-Carlitz-Uchiyama inequality we can put

$$K(b^2a) = 2\sqrt{q}\cos\theta(b^2a), \ 0 \le \theta(b^2a) \le \pi.$$

Therefore

$$\sum_{x \in C} f(Z(x)) = f\left(-\frac{p^k - 1}{2p^{k/2}}\right) + 2(q - 1)f\left(\frac{1}{2\sqrt{q}}\right) + (q - 1)\sum_{a \in G^{\times}} f(\cos\theta(b^2a)).$$

From the result of Katz ([1], p.241), we know that the sequence $\{\theta(b^2a)\}$ is uniformly distributed in $[0,\pi]$ with respect to the 'Sato-Tate measure' $\sin^2\theta d\theta$: this means that

$$\frac{1}{q-1}\sum_{a\in G^\times}f(\cos\theta(b^2a))=\int_{-1}^1f(Z)\rho(Z)dZ+O\left(\frac{1}{\sqrt{q}}\right)$$

as $q \to \infty$. Hence we have

$$\sum_{x \in C} f(Z(x)) = (q-1)^2 \int_{-1}^1 f(Z)\rho(Z)dZ + f\left(-\frac{p^k - 1}{2p^{k/2}}\right) + 2(q-1)f\left(\frac{1}{2\sqrt{q}}\right) + O\left(q\sqrt{q}\right)$$

as $q \to \infty$; and the theorem is thereby proved.

Remark. The case of p=2 has been proved by Lachaud ([2]) using the results of Lachaud and Wolfmann ([3] and [4]).

Acknowledgment

It is a pleasure to express my sincere gratitude to the referee for his many valuable critical comments.

References

- [1] N. M. Katz, Gauss sums, Kloosterman sums, and monodromy groups, Ann. of Math. Studies 116, Princeton Univ. Press, Princeton, 1988.
- [2] G. Lachaud, Distribution of the weights of the dual of the Melas codes, Discrete Math. 79 (1989/90), 103-106.
- [3] G. Lachaud and J. Wolfmann, Sommes de Kloosterman, courbes elliptiques et codes cycliques en caractéristique 2, C. R. Acad. Sci. Paris (I) 305 (1987), 881-883.
- [4] G. Lachaud and J. Wolfmann, The weight of the orthogonals of the extended quadratic binary Goppa codes, IEEE, Trans. Inform. Theory **36** (1990), 686-692.
- [5] J. C. C. M. Remijn and H. J. Tiersma, A duality theorem for the weight distribution of some cyclic codes, IEEE, Trans. Inform. Theory **34** (1988), 1348-1351.

Toyokazu Hiramatsu Division of Mathematical Science, College of Engineering, Hosei University Koganei, Tokyo 184, Japan E-mail: hiramatu@hrmt.sc.hosei.ac.jp