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UNIFORM DISTRIBUTION OF THE WEIGHTS
OF THE KLOOSTERMAN CODES
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Abstract. Let C be the Kloosterman code over finite fields. In this paper, we
give some bound for the weights of codewords in C and show that the weights
of the code C are uniformly distributed with respect to the Sato-Tate measure
by using the result of Katz.
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§1. Kloosterman sums over finite fields and Kloosterman codes

Let p be a prime, and let q = pk for some positive integer k. We putG =
GF (q), G0 = GF (p) and G× = G− {0}. The Kloosterman sums K(a) over G
are defined by

K(a) =
∑

x∈G×

e

(
tr

(
ax +

1
x

))
, a ∈ G,

where e(z) = e2πiz/p, and tr denotes the trace of G over G0. The Kloosterman
code C(q) (= C) is of length n = q − 1 and dimension 2k, and is the image of
the map

ϕ : G 2 → G n

given by

ϕ(α, β) =
{

tr

(
αx +

β

x

)}
x∈G×

.

The code C is the dual of the Melas code. If y = (y1, . . . , yn) ∈ G n, the weight
of y is the number

w(y) = #{i|yi 6= 0}.
In the following, we give some bound for the weights of the nonzero words of
C.
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Theorem 1. For all α and β in G×, we have∣∣∣∣∣w(ϕ(α, β)) − (p − 1)(pk − 1)
p

∣∣∣∣∣ ≤ p − 1
p

· 2p
k
2 .

Proof. It is easy to check that w(ϕ(α, β)) = w(ϕ(αβ, 1)), and we put αβ =
a. Then, by Theorem 2 in Remijn and Tiersa ([5]) with the symbol xn(= ηi)
in Theorem 2 being replaced by a, we have firstly

w(ϕ(a, 1)) =
(p − 1)(pk − 1)

p
− 1

p

∑
b∈G0

×

K(b2a). (1)

Applying the Weil-Carlitz-Uchiyama inequality ([5], p.1350) on this, the proof
is complete. 2

§2. Uniform distribution of the weights of C(q)

Let A(ω) be the number of codewords of weight ω in C (= C(q)). Then
the sequence {A(0), A(1), . . . , A(n)} is called the weight distribution of C. In
the following we study some relation between the weight distribution of the
code C and uniform distribution for sequences in the sense of Sato-Tate.

Let H be a compact group and let X be the space of conjugacy classes of
H, i.e., X = H/ ∼, where x ∼ y if and only if there exists h ∈ H such that
x = h−1yh. Let µ be a Haar measure on H and use the same notation to
define its image in X. Then the sequence {xn} ⊂ X is uniformly distributed
if and only if for every irreducible character χ of H

lim
n→∞

1
n

n∑
i=1

χ(xi) =
∫

χ(h)dµ(h).

We denote by f a test function. Then∑
x∈C

f(w(x)) =
n∑

ω=0

A(ω)f(ω).

We put

Z(x) =
pw(x) − (p − 1)(pk − 1)

2(p − 1)pk/2
(x ∈ C).

Then Z(x) ∈ [−1, 1] by Theorem 1. The following theorem says that the
numbers Z(x) are uniformly distributed with respect to the density function
of total mass 1:

ρ(Z) =
2
π

√
1 − Z2

on [−1, 1], when q → ∞.
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Theorem 2. If f is a test function, then

1
q2

∑
x∈C

f(Z(x)) =
∫ 1

−1
f(Z)ρ(Z)dZ + O

(
1
√

q

)
as q → ∞.

Proof. From the equality (1) we have∑
x∈C

f(w(x)) =
∑

(α,β)∈G2

f(w(ϕ(α, β)))

= f(0) + 2(q − 1)f((p − 1)pk−1)

+(q − 1)
∑

a∈G×

f

(p − 1)(pk − 1)
p

− 1
p

∑
b∈G0

×

K(b2a)

 .

On the other hand, by the Weil-Carlitz-Uchiyama inequality we can put

K(b2a) = 2
√

q cos θ(b2a), 0 ≤ θ(b2a) ≤ π.

Therefore∑
x∈C

f(Z(x)) = f

(
−pk − 1

2pk/2

)
+ 2(q − 1)f

(
1

2
√

q

)
+ (q − 1)

∑
a∈G×

f(cos θ(b2a)).

From the result of Katz ([1], p.241), we know that the sequence {θ(b2a)} is
uniformly distributed in [0,π] with respect to the ‘Sato-Tate measure’ sin2 θdθ:
this means that

1
q − 1

∑
a∈G×

f(cos θ(b2a)) =
∫ 1

−1
f(Z)ρ(Z)dZ + O

(
1
√

q

)

as q → ∞. Hence we have

∑
x∈C

f(Z(x)) = (q − 1)2
∫ 1

−1
f(Z)ρ(Z)dZ + f

(
−pk − 1

2pk/2

)

+ 2(q − 1)f

(
1

2
√

q

)
+ O (q

√
q)

as q → ∞; and the theorem is thereby proved. 2

Remark. The case of p = 2 has been proved by Lachaud ([2]) using the
results of Lachaud and Wolfmann ([3] and [4]).



32 T. HIRAMATSU

Acknowledgment

It is a pleasure to express my sincere gratitude to the referee for his many
valuable critical comments.

References

[1] N. M. Katz, Gauss sums, Kloosterman sums, and monodromy groups, Ann. of
Math. Studies 116, Princeton Univ. Press, Princeton, 1988.

[2] G. Lachaud, Distribution of the weights of the dual of the Melas codes, Discrete
Math. 79 (1989/90), 103-106.

[3] G. Lachaud and J. Wolfmann, Sommes de Kloosterman, courbes elliptiques et
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