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A new approach to generalized Berwald manifolds I
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Abstract. A large class of special Finsler manifolds can be endowed with
Finsler connections whose \h-part" does not depend on the directions. We call
these Finsler connections h-basic and present a systematic treatment of them,
using (in a simpli¯ed form) the FrÄolicher-Nijenhuis calculus. We provide an
axiomatic description of a distinguished class of h-basic Finsler connections,
the class of Ichijy¹o connections. With the help of an Ichijy¹o connection we
present new characterizations of generalized Berwald manifolds, as well as { in
particular { of Berwald manifolds and locally Minkowski manifolds.
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Introduction

\Through the author's several experiences the author became convinced
that there should exist the best Finsler connection for every theory of Finsler
spaces" { wrote Makoto Matsumoto in 1987 ([9]). We believe that the
present work will also be a manifestation of this remarkable and stimulating
principle.

There is a large and very important class of Finsler manifolds whose Finsler
structure, the energy { or the fundamental { function, is linked to a linear con-
nection of the carrying manifold in a natural manner: the parallel translations
with respect to the linear connection preserve the Finslerian length of the tan-
gent vectors. This is the class of generalized Berwald manifolds (for an equiv-
alent de¯nition see 4.1). Berwald manifolds and Wagner manifolds belong to
this class, whose importance lies (among others) in the fact that generalized
Berwald manifolds may have a rich isometry group (see [10]). We found that
to any generalized Berwald manifold a whole class of \best" Finsler connec-
tions can be attached in general. We call the members of this class Ichijy¹o
connections. One of our results is a purely intrinsic characterization of the
Ichijy¹o connections by means of simple axioms.
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Any Ichijy¹o connection is determined by a linear connection on the car-
rying manifold. Finsler connections arising from a \base linear connection"
were baptized \linear Finsler connections" in [5]. This terminology would
be ambiguous in our theoretical framework, so we tentatively introduce the
term \h-basic connection" (h as \horizontally") instead. Other choices for an
expressive (or a more expressive) term are also possible, of course. Finsler
manifolds whose structure is connected with a base linear connection were
called \point Finsler spaces" by L. Tam¶assy. As for his instructive geometric
approach, we refer to [13].

The paper is organized as follows. In Section 1 mainly background material
is presented about the basic tools, concentrating on horizontal endomorphisms
and general Finsler connections. The simple observation on the coincidence of
two horizontal endomorphisms in 1.5 will be repeatedly applied in our investi-
gations. Section 2 is devoted to a concise but systematic study of the h-basic
Finsler connections. The main result of this part characterizes the h-metrical
h-basic Finsler connections on a non-Riemannian Finsler manifold. In Section
3 we establish the existence and unicity of the Ichijy¹o connection on a Finsler
manifold endowed with a \basic" linear connection. A list of essential curva-
ture and torsion identities concerning the Ichijy¹o connection is also presented
here. The concluding Section 4 provides applications to generalized Berwald
manifolds. Using an Ichijy¹o connection, we obtain a simple characterization
of them, as well as of Berwald and locally Minkowski manifolds.

1. A review on horizontal endomorphisms and Finsler connections

1.1. The foundations of our present study were laid down by J. Grifone
in his pioneering works [3] and [4]. A systematic approach in this spirit to
Finsler manifolds, Finsler connections, and so on, was elaborated in detail
in the recent surveys [11], [12]. In our subsequent considerations we almost
completely adopt the conceptual and notational conventions of these papers.
With occasional but characteristic exceptions, we will stay entirely within the
category of C1 manifolds and mappings. So M always stands for a smooth
manifold which is supposed to be paracompact and of ¯nite dimension n ¸ 1.
¼ : TM !M is the tangent bundle of M , ¼0 : TM!M is the subbundle of
the nonzero tangent vectors to M . X(M) denotes the module of vector ¯elds
onM . The canonical objects of the tangent bundle TM ! TTM, namely the
vertical subbundle, the Liouville vector ¯eld and the vertical endomorphism (or
canonical almost tangent structure) are denoted by ¿v

TM , C and J , respectively.
Xv(TM) denotes the module of sections of ¿v

TM ; its elements are called vertical
vector ¯elds. We are going to use freely (and frequently) the notion and the
basic properties of the vertical lift Xv and the complete lift Xc of a vector
¯eld X 2 X(M). The most important relations concerning these liftings are
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concisely summarized in [11] and [12]; see also the monograph [14] (of course),
and [1]. A large part of our calculations is based on the following simple
observation:

if (Xi)ni=1 is a local basis for the module X(M), then (Xv
i ; Xc

i ) is a local
base for the module X(TM).

We are also going to use systematically the basic tools of the FrÄolicher-
Nijenhuis calculus (operators iK and dK attached to a vector-valued form
K , the FrÄolicher-Nijenhuis bracket [ , ] of vector forms and so on). The best
source for mastering this wonderful theory still remains the original paper [2];
see also [1] and [8]. Recall that the above operators reduce to the usual inser-
tion operator iX , the Lie derivative LX and the Lie bracket of vector ¯elds, in
particular. The operator of the exterior derivative will be denoted by d.
1.2. Semisprays and sprays. A vector ¯eld S : TM ! TTM is said to
be a semispray on the manifold M if it is of class C1 on TM, smooth on
TM , and satis¯es the relation JS = C . A semispray is called a spray if the
homogeneity condition [C;S] = S holds

The following formula, due to J. Grifone ([3], Prop. I.7) will be useful. {
Let S be a semispray on M . Then for any vertical vector ¯eld X on TM we
have
(1.2) J [X; S] = X:

1.3. Horizontal endomorphisms. The role of nonlinear connections is
played by the horizontal endomorphisms in our approach. Let us consider a
vector 1-form on TM, i.e., a type (1; 1) tensor ¯eld h : X(TM) ! X(TM),
whose smoothness is required only on TM. h is said to be a horizontal endo-
morphism on M , if it is a projector (i.e., h2 = h) and Kerh= Xv(TM). v :=
1X(TM) ¡h is called the vertical projector belonging to h. If Xh(TM) := Imh,
then we have the direct decomposition

X(TM) = Xv(TM)©Xh(TM);

the elements of Xh(TM) are called horizontal vector ¯elds. The mapping

X 2 X(M) 7!Xh := hXc 2 Xh(TM)
is the horizontal lifting with respect to h. The following \second local basis
principle" (c.f. 1.1.) will also be used systematically:

if (Xi)ni=1 is a local basis for the module X(M) and h is a horizontal
endomorphism on M, then (Xv

i ; Xh
i )ni=1 is a local basis for X(TM).

It follows easily from the de¯nitions that
(1.3a) h ± J = 0; J ± h= J;

and for any vector ¯elds X , Y on M ,
(1.3b) JXh = Xv; J [Xh ;Y h] = [X; Y ]v:
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1.4. Let a horizontal endomorphism h be given on the manifold M . If S0 is
an arbitrary semispray on M , then S := hS0 is also a semispray on M which
does not depend on the choice of S0. S is called the semispray associated to
h. In the spirit of Grifone's theory, we attach to h the following data:

H := [h;C ] ¡ the tension vector 1-form;(1.4a)

t := [J; h] ¡ the torsion vector 2-form or weak torsion;(1.4b)

T := iSt +H ¡ the torsion vector 1-form or strong torsion(1.4c)
(S is an arbitrary semispray);

 := ¡1
2
[h; h] ¡ the curvature vector 2-form;(1.4d)

F := h[S;h]¡ J ¡ the almost complex structure induced by h(1.4e)
(S is the semispray associated to h):

A horizontal endomorphism is said to be homogeneous , if its tension vanishes.
We recall that any linear connection r on the manifold M gives rise to a
homogeneous, everywhere smooth horizontal endomorphism hr. In this case
the data (1.4a){(1.4e) are denoted by Hr; : : : ; Fr.

1.5. Lemma. Suppose that h and eh are homogeneous horizontal endomor-
phisms on M . If for any vector ¯elds X, Y on M,

(1.5a)
£
Xh; Y v¤ =

h
Xeh; Y v

i
;

then h= eh.

Proof. We shall use the following simple observation:

(1.5b)
a vector ¯eld Z 2 X(TM) is a vertical lift
if and only if JZ = 0 and [J;Z] = 0:

Since
J
³
Xh ¡Xeh

´
= JXh ¡JXeh (1.3b)

= Xv ¡Xv = 0;

Xh¡Xeh is a vertical vector ¯eld. By the condition (1.5a) this vertical vector
¯eld commutes with any vertically lifted vector ¯eld. Using (1.5b) this implies
easily that Xh ¡Xeh is also a vertical lift. Thus (again by (1.5b))

h
J;Xh¡Xeh

i
= 0:
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Now take an arbitrary semispray S. Then

0 =
h
J;Xh ¡Xeh

i
S =

h
JS; Xh ¡Xeh

i
¡ J

h
S;Xh ¡Xeh

i

=
h
C;Xh ¡Xeh

i
¡ J

h
S;Xh ¡Xeh

i
:

The ¯rst term on the right hand side vanishes by the homogeneity of h and eh,
while J

h
S;Xh ¡Xeh

i
= Xeh¡Xh in view of (1.2a). Thus for each vector ¯eld

X on M , we have Xh = Xeh . This means that the horizontal endomorphisms
h and eh are identical. ¤

1.6. Finsler connections. A pair (D;h) is said to be Finsler connection
on the manifold M , if D is a linear connection on the tangent manifold TM
(or on the slit manifold TM), h is a horizontal endomorphism on M , and the
following conditions are satis¯ed:

D is reducible (i.e., Dh= 0);(1.6a)

D is almost complex (i.e., DF = 0)(1.6b)

(F is the almost complex structure associated to h by (1.4e)). The covariant
di®erential DC of the Liouville vector ¯eld is said to be the de°ection of
(D;h); h¤(DC) and v¤(DC) are called the h-de°ection and the v-de°ection ,
respectively.

Condition (1.6b) guarantees that

Y 2 Xv(TM) =) 8X 2 X(TM) : DXY 2 Xv(TM);

Y 2Xh(TM) =) 8X 2 X(TM) : DXY 2 Xh(TM):

To any Finsler connection (D;h) two \partial covariant di®erential operators"
Dh and Dv can naturally be associated as follows.

If A is a type (r; s) 6= (0; 0) tensor ¯eld on TM , then we de¯ne the (r;s+1)
tensor ¯elds DhA and DvA by the rules

iXDhA :=DhXA and iXDvA :=DvXA (X 2 X(TM)):

In particular, for any vector ¯eld Y on TM ,

(DhY )(X) = DhXY; (DvY )(X) =DvXY:
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1.7. Curvatures and torsions of a Finsler connection. Suppose that
(D;h) is a Finsler connection on the manifold M, and let us denote by K and
T the classical curvature and torsion tensor of D, respectively. K and T can
be determined by three \partial curvatures" and ¯ve \partial torsions", which
also have importance (but not the same importance) on their own right. These
data are summarized in the following table:

Curvature
horizontal (h) R(X; Y )Z := K(hX; hY )JZ
mixed (hv) P(X;Y )Z := K(hX;JY )JZ
vertical (v) Q(X;Y )Z := K(JX; JY )JZ

Torsion
h¡horizontal ((h)h) A(X;Y ) := hT(hX; hY )
h¡mixed ((h)hv) B(X;Y ) := hT(hX;JY )
v ¡horizontal ((v)h) R1(X; Y ) := vT(hX; hY )
v ¡mixed ((v)hv) P1(X;Y ) := vT(hX;JY )
v ¡vertical ((v)v) S1(X;Y ) := vT(JX;JY )

1.8. The operator Di
J . Let ª1(TM) be the C1(TM)-module of the vector

1-forms, i.e., of the type (1; 1) tensor ¯elds on TM . First we consider the
canonical mapping

Di
J : Xv(TM) ! ª1(TM); JY 7! Di

JJY := [J;JY ]:

Using the property [J;J ] = 0 it can be easily seen that for any vector ¯eld X
on TM we have

(1.8a) Di
JXJY :=

¡
Di
JJY

¢
(X) = J [JX;Y ]:

Now we suppose that h is a horizontal endomorphism onM , v is the comple-
mentary projection to h, and F is the almost complex structure belonging to
h. Since v = J ± F , we can also consider the vector ¯eld

(1.8b) Di
vXJY =Di

JFXJY = J [vX;Y ]:

With the help of h and keeping in mind the \Finslerian property" (1.6b), we
prolong the operator Di

J to Xh(TM) so that for any vector ¯eld Y on TM ,

Di
JhY = Di

JFJY := FDi
JJY:

Then

Di
JXhY :=

¡
Di
J hY

¢
(X) = FDi

JXJY = F ± J [JX; Y ] = h[JX; Y ]:

In the presence of a horizontal endomorphism, Di
J will always denote this

extended operator.
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1.9. De¯nition and lemma. Let (D; h) be a Finsler connection on the
manifold M, and let us consider the (extended) operator Di

J . If

eD : (X; Y ) 2 X(TM)£ X(TM) 7! eDX Y := DhXY +Di
vXY;

then (eD;h) is also a Finsler connection, called the associated Finsler connec-
tion to (D; h). For the mixed curvature eP of ( eD; h) we have the expression

(1.9) eP(Xc;Y c)Zc =¡[J; DXhZv]Y c (X;Y;Z 2 X(M)):

Proof. It may be seen immediately that ( eD; h) is indeed a linear connection.
If eK is the curvature tensor of eD, then for any vector ¯elds X , Y , Z on M we
have

eP(Xc; Y c)Zc = eK(Xh ;Y v)Zv = eDXh eDY vZv ¡ eDY v eDXhZv ¡ eD[Xh ;Y v ]Zv:

Here

eDY vZv = Di
JY cJZc

(1:8a)
= J[Y v;Zc] = J[Y; Z]v = 0;

eD[Xh ;Y v ]Zv = eDv[Xh ;Y v ]Zv = Di
v[Xh ;Y v ]JZ

c

(1.8b)= J
£
[Xh ;Y v];Zc

¤
= [J [Xh ;Y v];Zc]¡ [J;Zc][Xh ;Y v] = 0;

since [Xh ;Y v] is vertical, while [J; Zc] = 0 by (1.3c) of [12]. The remaining
second term can be formed as follows:

¡ eDY v eDXhZv = ¡eDY v (DXhZv) =¡Di
Y v (DXhZv) =¡Di

JY c (JFDXhZv)

=¡ £Di
J(JFDXhZv)

¤
Y c = ¡[J;JFDXhZv]Y c =¡[J; DXhZv]Y c: ¤

1.10. Finsler manifolds. Vertical and prolonged metric. Let a function
E : TM! R be given. The pair (M;E) is said to be a Finsler manifold with
energy function E if the following conditions are satis¯ed:

8a 2 TM : E(a) > 0; E(0) = 0;(1.10a)

E is of class C1 on TM and smooth on TM ;(1.10b)

CE = 2E; i.e., E is homogeneous of degree 2;(1.10c)

the fundamental form ! := ddJE is symplectic:(1.10d)
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Then there is a spray S0 : TM ! TTM , uniquely determined on TM by the
relation

(1.10e) iS0! = ¡dE
and prolonged to a C1-mapping of TM such that S0(0) = 0. This spray is
called the canonical spray of the Finsler manifold. The mapping

(1.10f)
g : Xv(TM)£ Xv(TM)!C1(TM);
(JX; JY ) 7! g(JX;JY ):= !(JX; Y )

is well-de¯ned, nondegenerate symmetric bilinear form, which is said to be the
vertical metric of (M;E). Taking an arbitrary horizontal endomorphism h on
M , g can be prolonged to X(TM) as follows: for any vector ¯elds X;Y 2
X(TM),

(1.10g) g(X;Y ) := g(JX;JY )+ g(vX; vY ); v := 1X(TM) ¡ h:
Then g is a pseudo-Riemannian metric on TM , called the prolongation of g
along h.

1.11. The Cartan tensors. The ¯rst Cartan tensor

C : X(TM)£X(TM)! X(TM); (X;Y ) 7! C(X;Y )

of the Finsler manifold (M;E) is de¯ned by the rules

J ± C := 0;(1.11a)

g(C(X; Y ); JZ) :=
1
2

(LJX J¤g) (Y; Z) (Z 2 X(TM)):(1.11b)

The lowered tensor C[ of C is given by the formula

(1.11c) C[(X; Y; Z) := g(C(X; Y ); JZ); X;Y; Z 2 X(TM):

Let us note that

(1.11d) (M;E) is a Riemannian manifold if and only if C = 0:

Now we consider a horizontal endomorphism h on M , and the prolongation
g of the vertical metric g along h. The second Cartan tensor C0 of (M;E)
(belonging to h) is given by the condition

(1.11c) J ± C 0 := 0

and the formula

(1.11f) g(C0(X; Y ); JZ) :=
1
2

(LhXg) (JY;JZ):

For the basic properties of C0 we refer to [12].
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1.12. The Barthel endomorphism. If (M;E) is a Finsler manifold then
there exists a unique horizontal endomorphism h0 on M such that

h0 is conservative, i.e.; dh0E = 0;(1.12a)

h0 is homogeneous;(1.12b)

the weak torsion of h0 vanishes:(1.12c)

This fundamental discovery is due to J. Grifone [3]. The horizontal en-
domorphism characterized by (1.12a){(1.12c) will be called the Barthel endo-
morphism of the Finsler manifold. It can be explicitly given by the formula

(1.12d) h0 = 1
2
¡
1X(TM) + [J;S0 ]

¢
;

where S0 is the canonical spray of (M;E). Note that conditions (1.12b){
(1.12c) can be replaced by the single condition of the vanishing of the strong
torsion.

1.13. The Hashiguchi connection. We have an abundance of nice Finsler
connections on any Finsler manifold (but see Matsumoto's principle from the
Introduction!); for recent surveys we again refer to [11] and [12]. In our forth-
coming considerations we need only one of them, the Hashiguchi connection³H
D;h

´
characterized by the following axioms:

the v-mixed torsion of
H
D vanishes;(1.13a)

H
D is v-metrical, i.e.;

H
Dvg = 0;(1.13b)

the v-vertical torsion of
H
D vanishes(1.13c)

(g is the prolongation of the vertical metric along h).

The covariant derivatives with respect to
H
D can be calculated by the fol-

lowing formulas:

H
DJXJY = J[JX; Y ] +C(X;Y );

H
DhXJY = v[hX;JY ];(1.13d, e)

H
DJXhY = h[JX; Y ] +FC(X; Y );

H
DhXhY = hF [hX;JY ](1.13f, g)
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(X;Y 2 X(TM), F is the almost complex structure induced by h). If, in
addition,

h is conservative;(1.13h)

the h-horizontal torsion of
H
D vanishes;(1.13i)

the h-de°ection of
H
D vanishes;(1.13j)

then h becomes the Barthel endomorphism. In this case
³H
D;h

´
is said to be

the standard Hashiguchi connection of (M;E).

The method of an intrinsic proof can be found in [11].

2. h-basic Finsler connections

2.1. De¯nition. A Finsler connection (D; h) is said to be an h-basic Finsler
connection if there exists a linear connection r on the manifold M such that
for any vector ¯elds X, Y on M , we have

DXhY v = (rXY )v :

Thenr is called the base connection belonging to (D;h).

2.2. Remark. The base connection of an h-basic connection is clearly unique.

2.3. Lemma (c.f. [5], Proposition 1.1). A Finsler connection (D;h) is h-
basic if and only if the mixed curvature of the associated Finsler connection
( eD;h) vanishes.

Proof. { Suppose that the mixed curvature eP of the associated Finsler con-
nection vanishes. Then, taking into account (1.9), for any vector ¯elds X, Y ,
Z onM we have

0 = [J; DXhZv] Y c = [Y v; DXhZv]¡J [Y c;DXhZv] = [Y v;DXhZv] :

This means that the vertical vector ¯eldDXhY v commutes with any vertically
lifted vector ¯eld. Hence, by the same argument as in 1.5, DXhY v is also a
vertical lift. Using this fact we can see easily that the mapping

r : X(M)£X(M)! X(M); 8 (X;Y ) 2X(M)£X(M) : (rXY )v :=DXhY v

is a well-de¯ned linear connection on M , and so (D;h) is an h-basic Finsler
connection.
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Conversely, if (D; h) is an h-basic Finsler connection with the base connec-
tion r, then for any vector ¯elds X, Y , Z on M we have

eP(Xc; Y c)Zc = eK(Xh ;Y v)Zv = DXhDi
Y vZv ¡Di

Y vDXhZv ¡Di
[Xh ;Y v ]Z

v

=¡Di
Y vDXhZv = ¡Di

Y v (rXZ)v = 0;

hence the mixed curvature of the associated Finsler connection vanishes. ¤
2.4. Lemma. Suppose that (D; h) is an h-basic Finsler connection with the
base connection r, and let hr be the horizontal endomorphism induced by h.
Then

(2.4a) DXhC =Xh ¡Xhr (X 2 X(M));

therefore hr coincides with h if and only if the h-de°ection of (D;h) vanishes.

Proof. Let (U; (ui)ni=1) be a chart on M. Then over ¼¡1(U ) the Liouville
vector ¯eld can be represented in the form

C ¹ ¼¡1(U ) = (ui)c
µ
@
@ui

¶v

:

So in the neighborhood ¼¡1(U ) we have:

DXhC = DXh (ui)c
µ
@
@ui

¶v

=
¡
Xh(ui)c

¢µ @
@ui

¶v

+ (ui)cDXh

µ
@
@ui

¶v

=
¡
Xh(ui)c

¢µ @
@ui

¶v

+ (ui)c
µ
rX

@
@ui

¶v

(1)=
¡
Xh(ui)c

¢µ @
@ui

¶v

+ (ui)c
·
Xhr ;

µ
@
@ui

¶v¸

=
¡
Xh(ui)c

¢µ @
@ui

¶v

+
·
Xhr; (ui)c

µ
@
@ui

¶v¸
¡
¡
Xhr (ui)c

¢µ @
@ui

¶v

=
¡
Xh¡Xhr )(ui)c

µ
@
@ui

¶v

+ [Xhr; C]

(2)
= Xh¡Xhr ;

at the steps (1) and (2) using the fact that hr arises from a linear connection
on M. ¤
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2.5 Remark. Consider a Finsler connection (D; h) with vanishing h-de°ec-
tion. By the lemma just proved, in order that (D;h) be h-basic it is neces-
sary that h be smooth on the whole tangent manifold and should satisfy the
homogeneity condition H := [h; C] = 0.

2.6. Corollary. If (D; h) is an h-basic Finsler connection with vanishing
h-de°ection, then for any vector ¯elds X, Y on TM we have the rules for
calculation

DhXJY = v[hX;JY ];(2.6a)

DhXhY = hF [hX; JY ]: ¤(2.6b)

2.7. Proposition. Let (D;h) be an h-basic Finsler connection and suppose
that the horizontal endomorphism h is homogeneous. Then the h-de°ection
of (D; h) vanishes if and only if the v-mixed torsion of D vanishes, i.e.,

(2.7a) under the homogeneity condition; h¤DC, P1 = 0:

Proof. For any vector ¯elds X, Y on M we have

P1(Xh ;Y h) = vT(Xh; Y v) = v
¡
DXhY v ¡DY vXh ¡ [Xh; Y v]

¢

= DXhY v ¡ [Xh ;Y v]:

If r is the base connection of (D; h), then

DXhY v = (rXY )v =
£
Xhr ;Y v¤

by the conditions. So it follows that

P1(Xh ;Y h) = 0 , £
Xhr ;Y v¤ = [Xh; Y v]:

In view of Lemma 1.5 the last relation holds if and only if h= hr, which (by
Lemma 2.4) is equivalent to the vanishing of the h-de°ection of (D; h). ¤
2.8. Proposition. Let us consider an h-basic Finsler connection (D;h) with
the base connectionr. Suppose that the horizontal endomorphismh is smooth
on the whole tangent manifold. Then the h-de°ection of (D;h) coincides with
the tension of h if and only if the v-mixed torsion of D vanishes, i.e.,

(2.8a) h¤(DC) = H , P1 = 0; if h is smooth everywhere:

Proof of P1 = 0 =) h¤DC = H. { We have just seen that under the
condition P1 = 0, for any vector ¯elds X, Y on M we can write

DXhY v = [Xh ;Y v]:
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From this the general rule for calculation

(2.8b) DhXJY = v[hX;JY ]; X; Y 2X(TM)

can be deduced easily. Taking an arbitrary semispray S onM , for each vector
¯eld X on M we obtain

DXhC = DXhJS
(2:8b)
= v[Xh ;JS] = v[Xh; C] =H(X c):

This means that h¤DC =H.

Proof of h¤(DC) = H =) P1 = 0. { Let X 2 X(M) be arbitrary. On the
one hand, DXhC = [Xh; C]. On the other hand, in view of 2.4, DXhC =
Xh¡Xhr . Thus, taking into account the homogeneity of hr , it follows that

£
C;Xh ¡Xhr

¤
= [C;Xh ] =¡

¡
Xh ¡Xhr

¢
:

This relation implies in a well-known manner that the vertical vector ¯eld
Xh ¡ Xhr is homogeneous of degree 0. Since h is smooth on the whole
tangent manifold, we can conclude that Xh¡Xhr is a vertical lift. Hence for
any vector ¯eld Y on M we have

0 =
£
Xh ¡Xhr ;Y v¤ = [Xh; Y v]¡ £Xhr ;Y v¤ ;

therefore

P1(Xh; Y h) = (rXY )v ¡ [Xh; Y v] =
£
Xhr ;Y v¤¡ [Xh; Y v] = 0;

and the implication is veri¯ed. ¤
2.9. Theorem. Let (D;h) be an h-basic Finsler connection on the non-
Riemannian Finsler manifold (M;E). (D;h) is h-metrical if and only if h is
conservative and the h-de°ection of (D; h) vanishes. That is,

(2.9a) Dhg = 0, dhE = 0^ h¤DC = 0

(g is the prolongation of the vertical metric along h).

Proof of Dhg = 0 =) dhE = 0 ^h¤DC = 0. { We do this in several steps.
First step. Let r be the base connection of (D; h). We show that the horizon-
tal endomorphism hr is conservative, i.e., dhrE = 0. { Taking an arbitrary
semispray S and a vector ¯eld X on M , we have

2XhE =Xh(2E) = Xh[g(C; C)]=2g(C;DXhC)=2g(C; JDXhS)

= 2!(C;DXhS) = 2iC!(DXhS) = 2(dJE)(DXhS) = 2(dE)(DXhC)

= 2(DXhC)E;
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by the condition Dhg = 0 and using some well-known relations concerning the
fundamental form !. So we conclude that

(DXhC)E =XhE:

On the other hand,

(DXhC)E
(2:4a)
=

¡
Xh ¡Xhr

¢
E =XhE ¡XhrE;

and the last two relations imply that for any vector ¯eld X on M, XhrE = 0.
This means that dhrE = 0, as we claimed.
Second step. Let X, Y , Z be arbitrary vector ¯elds on M . Using (3.4b) of
[12], we obtain

Xhrg(Y v;Zv)¡ g
¡
(rXY )v;Zv¢¡ g

¡
Y v; (rXZ)v

¢

= Xhr [Y v(ZvE)]¡ (rX Y )v(ZvE)¡Y v¡(rXZ)vE
¢

= Xhr [Y v(ZvE)]¡
£
Xhr ;Y v¤ (ZvE)¡ Y v ¡£Xhr ;Zv¤E

¢

= Y v £Zv ¡XhrE
¢¤

= 0;

since hr is conservative, as we have just seen. Thus we obtain the relation
(2.9b)

Xhrg(Y v; Zv) = g
¡
(rXY )v;Zv¢+ g

¡
Y v; (rXZ)v

¢
; X;Y;Z 2 X(M):

Third step. Let X;Y;Z 2 X(M) be arbitrary again. By the conditionDhg = 0
we get

0 = (DXhg) (Y v;Zv) =Xh£g(Y v;Zv)
¤
¡ g (DXhY v; Zv)¡ g(Y v;DXhZv)

=Xh£g(Y v; Zv)
¤
¡ g
¡
(rXY )v; Zv¢¡ g

¡
Y v; (rXZ)v

¢

(2:9b)
= Xh£g(Y v;Zv)

¤
¡Xhr

£
g(Y v;Zv)

¤
=
¡
Xh ¡Xhr

¢
g(Y v;Zv):

On the other hand, using the well-known symmetries of the ¯rst Cartan tensor,
we can write

2g
¡C(Y c;Zc);Xh ¡Xhr

¢
= 2g

¡C¡F¡Xh ¡Xhr
¢
;Y c¢; Zv¢

(1:11b)=
³
L(Xh¡Xhr)J

¤g
´

(Y c;Zc) =
¡
Xh ¡Xhr

¢
g(Y v; Zv)

¡ g
¡
J[Xh¡Xhr ;Y c];Zv¢¡ g

¡
Y v;J [Xh ¡Xhr ;Zc]

¢

= (Xh ¡Xhr )g(Y v; Zv):
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Comparing the last two results it follows that for any vector ¯elds X, Y , Z
on M

g
¡C(Y c;Zc);Xh ¡Xhr

¢
= 0:

This implies that Xh¡Xhr = 0 and hence h= hr, since g is nondegenerate
and C does not vanish identically by the condition and (1.11d). Thus h is also
conservative and, in view of 2.4, h¤DC = 0.

Proof of (dhE = 0 ^ h¤DC = 0) =) Dhg = 0. { The condition h¤DC =
0 implies by 2.4 the coincidence of h and hr . Then hr is automatically
conservative. Using this fact we obtain by the calculation of the previous
third step that

(DXhg) (Y v;Zv) = (Xh ¡Xhr )g(Y v; Zv) = 0 (X;Y; Z 2 X(M));

thus the desired relation Dhg = 0 is true. ¤

3. The Ichijy¹o connection

3.1. Theorem. Suppose that (M;E) is a Finsler manifold and r is a linear
connection onM . Let hr be the horizontal endomorphism induced by r, and
let us consider the prolongation g of the vertical metric along hr. There exists

a unique Finsler connection
³r
D; hr

´
on M such that

r
D is v-metrical, i.e.;

r
Dvg = 0;(3.1a)

the v-vertical torsion
r
S1 of

r
D vanishes;(3.1b)

the mixed curvature of the associated(3.1c)

Finsler connection
³gDr; hr

´
vanishes;

the h-de°ection of
³r
D;hr

´
vanishes:(3.1d)

The covariant derivatives with respect to
r
D can be calculated explicitly by

the following formulas:

r
DJXJY = J [JX;Y ] + C(X; Y );(3.1e)

r
DhrXJY = vr [hrX; JY ];(3.1f)
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r
DJXhrY = hr[JX; Y ] +FrC(X; Y );(3.1g)

r
DhrXhrY = hrFr[hrX; JY ](3.1h)

(X;Y 2X(TM)).

Proof of the unicity. { We show that axioms (3.1a){(3.1d) force the rules for
calculation (3.1e) and (3.1f), from these (3.1g) and (3.1h) immediately follow
by (1.6b). We do this in two steps.

First step. Since
r
D is v-metrical, the relations

Xvg(Y v; Zv) = g
µ
r
DXvY v; Zv

¶
+ g

µ
Y v;

r
DXvZv

¶
;

Y vg(Zv; Xv) = g
µ
r
DY vZv;Xv

¶
+ g

µ
Zv;

r
DY vXv

¶
;

¡Zvg(Xv;Y v) = ¡g
µ
r
DZvXv; Y v

¶
¡ g

µ
Xv;

r
DZvY v

¶

hold for any vector ¯elds X, Y , Z on M . Adding the corresponding sides of

these three equations and using the vanishing of
r
S1 ,we obtain

g
³
2
r
DXvY v; Zv

´
= Xvg(Y v; Zv) +Y vg(Zv;Xv)¡ Zvg(Xv;Y v):

Taking into account (3.7a) of [12], here the right hand side is just

2C[(Xc;Y c;Zc) = 2g(C(Xc;Y c);Zv):

Consequently
r
DX vY v = C(Xc;Y c) = C

¡
Xhr ;Y hr

¢
;

so rule (3.1e) is veri¯ed for vertically lifted vector ¯elds. Having obtained this
result, we can immediately deduce the general form (3.1e).
Second step. Now we conclude (3.1f) from (3.1c) and (3.1d). In view of

Lemma 2.3, the latter condition implies that
³r
D;hr

´
is an h-basic Finsler

connection. So there exists a unique linear connection er on M such that for
any vector ¯elds X, Y on M,

³
erXY

v́
=

r
DXhr Y hr :
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Using condition (3.1d) and Lemma 2.4, we infer immediately that er coincides
with the given linear connection r. Thus

r
DXhrY v = (rXY )v = [Xhr; Y v];

from which the formula (3.1f) can be derived easily.

Proof of the existence. { De¯ne the mapping

r
D : X(TM)£X(TM) !X(TM)

by the rule

(X;Y ) 7!
r
DXY :=

r
DvrX(vrY )+

r
DvrX (hrY )+

r
DhrX(vrY )+

r
DhrX(hrY );

where the terms of the right hand side are determined by (3.1e){(3.1h). Then

it can be checked by a straightforward calculation that
r
D is a linear connection

on TM ,
³r
D;hr

´
is a Finsler connection on M , and axioms (3.1a){(3.1d) are

satis¯ed. ¤
3.2. Remarks.

(i) We propose to call the Finsler connection described in 3.1 the Ichijy¹o con-
nection induced by r in honour of Y. Ichijy¹o, who used its coordinate
version e®ectively in his excellent papers [6], [7].

(ii) Rules (3.1e){(3.1h) take the following more convenient form for the verti-
cally and horizontally lifted vector ¯elds:

r
DXvY v = C(Xhr; Y hr );

r
DXhr Y v = (rXY )v;(3.2a, b)

r
DXvY hr = FrC(Xhr ;Y hr );

r
DXhr Y hr = (rX Y )hr(3.2c, d)

(X;Y 2 X(M)).

3.3. Proposition. Let (M;E) be a Finsler manifold, r a linear connection

on M, and consider the Ichijy¹o connection
³r
D;hr

´
induced by r. Then

(3.3a)
³r
DJXC

´
(Y; Z) =

³r
DJY C

´
(X;Z);

where X, Y , Z are any vector ¯elds in TM .

The proof parallels that of (A.16) in [4] and is omitted.
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3.4. Lemma. Let
³r
D;hr

´
be an Ichijy¹o connection with the base connection

r. The torsion
r
T of

r
D satis̄ es the identities

r
T(Xhr ;Y hr ) =

¡
Tr(X; Y )

¢hr +r(Xhr ;Y hr );(3.4a)

r
T(Xhr ;Y v) = ¡FrC(Xhr ;Y hr );

r
T(Xv; Y v) = 0;(3.4b, c)

where Tr denotes the torsion tensor of r; r and Fr are the curvature and
the associated almost complex structure of hr, respectively; while X and Y
are arbitrary vector ¯elds on M .

The proof is very straightforward so we omit it.

3.5. Corollary. For the partial curvatures and torsions of an Ichijy¹o connec-

tion
³r
D;hr

´
we have the following representation:

Curvature (X;Y; Z 2 X(TM))

horizontal
r
R(X; Y )Z = [J;r(X;Y )]hrZ + C

¡
Fr(X;Y ); Z

¢

mixed
r
P(X; Y )Z =

³r
DhrXC

´
(hrY;hrZ)

vertical
r
Q(X;Y )Z = C(FC(X; Z); Y )¡ C

¡
X; FC(Y;Z)

¢

Torsion (X;Y 2 X(M))

h¡ horizontal
r
A(Xhr ;Y hr) = (Tr(X; Y ))hr

h¡mixed
r
B(Xhr ;Y v) =¡FrC(Xhr ; Y hr )

v ¡horizontal
r
R1(Xhr ; Y hr ) = r(Xhr ;Y hr )

v ¡mixed
r
P1 = 0

v ¡vertical
r
S1 = 0

(F is an arbitrary almost complex structure on TM).

Applying our previous results including (3.3a), these formulas can be ob-
tained by a routine but lengthy calculation that we will not present here.

3.6. Corollary. The horizontal curvature of an Ichijy¹o connection vanishes
if and only if the curvature of the base connection r, or { what is essentially
the same { the curvature of hr { vanishes.

Proof. It is clearly enough to show that the vanishing of
r
R is equivalent to the

vanishing of r . The implication r = 0 =)
r
R = 0 is evident from 3.5.
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Conversely, suppose that
r
R = 0, and let Sr be the semispray associated to

hr. For any vector ¯elds X, Y , on M , we have

0 =
r
R(Xhr ;Y hr )Sr

3.5=
h
J;r(Xhr ; Y hr )

i
Sr + C

³
Fr(Xhr ;Y hr ); Sr

´

=
h
J;r(Xhr ;Y hr )

i
Sr =

h
C;r(Xhr ;Y hr )

i
¡J

h
Sr ;r(Xhr ;Y hr)

i
:

Using the graded Jacobi identity and taking into consideration the homogene-
ity of hr, we readily obtain that the ¯rst term of the right hand side vanishes,
while the second term is just ¡r(Xhr; Y hr ) by (1.2a).

Thus r vanishes, which ends the proof. ¤

3.7. Corollary. The mixed curvature of an Ichijy¹o connection
³r
D;hr

´
van-

ishes if and only if the h-covariant derivative of the ¯rst Cartan tensor with

respect to
r
D vanishes, i.e.,

r
P = 0 ()

r
DhrC = 0: ¤

3.8. Corollary. The h-horizontal torsion of an Ichijy¹o connection
³r
D;hr

´

and the torsion tensor of r (or the weak torsion of hr) vanish at the same
time.

Proof. The assertion is clear from the relations

r
A(Xhr ; Y hr ) = (Tr(X;Y ))hr = (Fr ± tr)(Xhr; Y hr ) (X;Y 2 X(M));

where the latter equality can be obtained in the same way as Corollary 2/(ii)
in [11]. ¤

4. Generalized Berwald manifolds

4.1. De¯nition. Suppose that (M;E) is a Finsler manifold and let r be
a linear connection on M . The triplet (M;E;r) is said to be a generalized
Berwald manifold if the horizontal endomorphism hr is conservative, i.e.,
dhrE = 0. A generalized Berwald manifold (M;E;r) is called a Berwald
manifold if r is a torsion-free linear connection. If, in addition, r is °at, then
we speak of a locally Minkowski Finsler manifold.
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4.2. Remark. Generalized Berwald manifolds were introduced by V. V.
Wagner in 1943. Their systematic investigation, within the framework of
Matsumoto's theory, was initiated by M. Hashiguchi and Y. Ichijy¹o in
the middle of the seventies. Our de¯nition was inspired by Szab¶o's paper [10].
{ It can easily be seen that in the particular case of Berwald manifolds the
horizontal endomorphism hr coincides with the Barthel endomorphism, hence
the linear connection r is unique. Then we speak of the linear connection of
the Berwald manifold and write (M;E) rather than (M;E;r).

4.3. Proposition. Let (M;E) be a Finsler manifold and suppose that r is
a linear connection on M . The following conditions are equivalent:

(a) (M;E;r) is a generalized Berwald manifold;
(b) the second Cartan tensor C 0r belonging to hr vanishes;

(c) the Ichijy¹o connection
³r
D;hr

´
is hr-metrical, i.e.,

r
Dhrg = 0.

Proof of (a) =) (b). { Starting from the de¯nition of C0r and using (3.4b) of
[12], we obtain for any vector ¯elds X , Y , Z on M that

2(C0r)[(Xc;Y c;Zc) := 2g(C0r(Xc;Y c)JZc) =
³
LhrX cg

´
(JY c;JZc)

=Xhrg(Y v; Zv)¡ g
¡
[Xhr ; Y v]; Zv¢¡ g(Y v; [Xhr ;Zv])

=Xhr [Y v(ZvE)]¡ [Xhr ;Y v](ZvE)¡Y v([Xhr ; Zv]E)

= Y v[Zv(XhrE)] = 0;

since hr is conservative. Thus C 0r = 0.

Proof of (b) () (c). { For any vector ¯elds X, Y , Z on M, we have
³r
DXhr g

´
(Y v; Zv) = Xhrg(Y v;Zv)¡ g

³r
DXhrY v;Zv

´
¡ g
³
Y v;

r
DXhrZv

´

= Xhrg(Y v;Zv)¡ g([Xhr ;Y v];Zv)¡ g(Y v[Xhr ;Zv])

= 2g
³
C0r(Xc;Y c);Zv

´
;

so it is obvious that assertions (b) and (c) are equivalent.

Proof of (c) =) (a). { Since the h-de°ection of
³r
D; hr

´
vanishes by axiom

(3.1d), we obtain that

0
(c)
=
³r
DXhr g

´
(C; C) =Xhrg(C;C)¡ 2g

³r
DXhrC;C

´

= 2XhrE = 2dhrE(Xc);

for any vector ¯eld X on M. This means that dhrE = 0. ¤
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4.4. Proposition. If (M;E;r) is a generalized Berwald manifold, then the

mixed curvature of the Ichijy¹o connection
³r
D;hr

´
vanishes.

Proof. Taking into account 3.5, it is enough to check the vanishing of
r
DhrC.

This requires only a quite immediate (but lengthy) calculation which we omit.
¤
4.5. A counterexample. Suppose that (M;E;r) is a generalized Berwald
manifold, and let ¾ be a non-constant smooth function on M . Then

hr := hr¡ d¾v  C (¾v := ¾ ± ¼)

is an everywhere smooth, homogeneous horizontal endomorphism, so hr gen-
erates a linear connection r on M . It can be checked by a direct calculation
that the mixed curvature of the corresponding Ichijy¹o connection vanishes.
However, (M;E;r) is not a generalized Berwald manifold, since hr is obvi-
ously non-conservative. Thus the converse of 4.4 is not true in general.

4.6. Lemma. (c.f. [12], 6.5.) Let (M;E) be a Finsler manifold and let its
Barthel endomorphism be denoted by h0 . (M;E) is a Berwald manifold if and
only if there is a linear connectionr onM such that for any vector ¯elds X,
Y , on M ,

(4.6 a) (rXY )v = [Xh0;Y v]:

Thenr is just the linear connection of the Berwald manifold.

Proof. In view of 4.2, the necessity of the condition is obvious. Conversely, if
a linear connection r satis¯es (4.6a) then we obtain that

[Xh0 ;Y v] = [Xhr ;Y v]

for any vector ¯elds X, Y on M . This implies by Lemma 1.5 the coincidence
of h0 and hr . Then it follows at once that (M;E) is a Berwald manifold. ¤
4.7. Theorem. A Finsler manifold is a Berwald manifold if and only if its
Hashiguchi connection is an Ichijy¹o connection.

Proof. Consider a Finsler manifold (M;E). Let the Barthel endomorphism be

denoted by h0 , and let
³H
D;h0

´
be the Hashiguchi connection (1.13) on M .

Neccessity. Suppose that (M;E) is a Berwald manifold with the linear
connection r. Then hr = h0. We show that the Hashiguchi connection³H
D;h0

´
is just the Ichijy¹o connection

³r
D;hr

´
=
³r
D;h0

´
. We have only
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to check that
³H
D; h0

´
satis¯es the axioms formulated in 3.1. { (3.1a) and

(3.1b) are just the axioms (1.13b) and (1.13c) of the Hashiguchi connection.
The vanishing of the mixed curvature of the associated Finsler connection to³H
D;h0

´
follows at once from 4.6 and 2.3, hence (3.1c) is satis¯ed. Finally,

the h-de°ection of
³H
D;h0

´
also vanishes, as the following simple calculation

shows: for any semispray S on M and any vector ¯eld X on TM ,

h¤0
³H
DC

´
(X) =

H
DC(h0X) =

H
Dh0XC =

H
Dh0XJS

(1.13e)= v0 [h0X;C] = 0;

since h0 is homogeneous.
Su±ciency. Suppose that there is a linear connectionr onM such that the

Ichijy¹o connection
³r
D; hr

´
coincides with the Hashiguchi connection

³H
D;h0

´
.

Then h0 = hr , therefore (4.6a) is satis¯ed and consequently (M;E) is a
Berwald manifold. ¤
4.8. Theorem. A Finsler manifold (M;E) is a locally Minkowski manifold
if and only if there exists a torsion-free, °at linear connection r on M such

that the Ichijy¹o connection
³r
D;hr

´
is \hr-metrical", i.e.,

r
Dhrg = 0.

Proof of the necessity. { If (M;E) is a locally Minkowski manifold, then {
of course { it is a Berwald manifold at the same time. By the assumption
the linear connectionr of this Berwald manifold is torsion-free and °at. But
(M;E;r) is a generalized Berwald manifold as well, so the Ichijy¹o connection³r
D;hr

´
is h-metrical by Proposition 4.3.

Proof of the su±ciency. { Ifr is a torsion-free, °at linear connection onM and

the Ichijy¹o connection
³r
D;hr

´
is hr-metrical then Proposition 4.3 assures

that (M;E;r) is a generalized Berwald manifold, hence hr is conservative.
Since hr arises from a symmetric linear connection, its tension and its weak
torsion vanish. Thus, by the unicity statement of 1.12, hr is just the Barthel
endomorphism and consequently (M;E) is a locally Minkowski manifold. ¤
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