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Abstract. A large class of special Finsler manifolds can be endowed with
Finsler connections whose “h-part” does not depend on the directions. We call
these Finsler connections h-basic and present a systematic treatment of them,
using (in a simplified form) the Frolicher-Nijenhuis calculus. We provide an
axiomatic description of a distinguished class of h-basic Finsler connections,
the class of Ichijyo connections. With the help of an Ichijyd connection we
present new characterizations of generalized Berwald manifolds, as well as — in
particular — of Berwald manifolds and locally Minkowski manifolds.
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Introduction

“Through the author’s several experiences the author became convinced
that there should exist the best Finsler connection for every theory of Finsler
spaces” — wrote MAKOTO MATSUMOTO in 1987 ([9]). We believe that the
present work will also be a manifestation of this remarkable and stimulating
principle.

There is a large and very important class of Finsler manifolds whose Finsler
structure, the energy — or the fundamental — function, is linked to a linear con-
nection of the carrying manifold in a natural manner: the parallel translations
with respect to the linear connection preserve the Finslerian length of the tan-
gent vectors. This is the class of generalized Berwald manifolds (for an equiv-
alent definition see 4.1). Berwald manifolds and Wagner manifolds belong to
this class, whose importance lies (among others) in the fact that generalized
Berwald manifolds may have a rich isometry group (see [10]). We found that
to any generalized Berwald manifold a whole class of “best” Finsler connec-
tions can be attached in general. We call the members of this class Ichijyo
connections. One of our results is a purely intrinsic characterization of the
Ichijyo connections by means of simple axioms.
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Any Ichijyo connection is determined by a linear connection on the car-
rying manifold. Finsler connections arising from a “base linear connection”
were baptized “linear Finsler connections” in [5]. This terminology would
be ambiguous in our theoretical framework, so we tentatively introduce the
term “h-basic connection” (h as “horizontally”) instead. Other choices for an
expressive (or a more expressive) term are also possible, of course. Finsler
manifolds whose structure is connected with a base linear connection were
called “point Finsler spaces” by L. TAMASSY. As for his instructive geometric
approach, we refer to [13].

The paper is organized as follows. In Section I mainly background material
is presented about the basic tools, concentrating on horizontal endomorphisms
and general Finsler connections. The simple observation on the coincidence of
two horizontal endomorphisms in 1.5 will be repeatedly applied in our investi-
gations. Section 2 is devoted to a concise but systematic study of the h-basic
Finsler connections. The main result of this part characterizes the h-metrical
h-basic Finsler connections on a non-Riemannian Finsler manifold. In Section
3 we establish the existence and unicity of the Ichijyo connection on a Finsler
manifold endowed with a “basic” linear connection. A list of essential curva-
ture and torsion identities concerning the Ichijyo connection is also presented
here. The concluding Section 4 provides applications to generalized Berwald
manifolds. Using an Ichijyo connection, we obtain a simple characterization
of them, as well as of Berwald and locally Minkowski manifolds.

1. A review on horizontal endomorphisms and Finsler connections

1.1. The foundations of our present study were laid down by J. GRIFONE
in his pioneering works [3] and [4]. A systematic approach in this spirit to
Finsler manifolds, Finsler connections, and so on, was elaborated in detail
in the recent surveys [11], [12]. In our subsequent considerations we almost
completely adopt the conceptual and notational conventions of these papers.
With occasional but characteristic exceptions, we will stay entirely within the
category of C*° manifolds and mappings. So M always stands for a smooth
manifold which is supposed to be paracompact and of finite dimension n > 1.
m: TM — M is the tangent bundle of M, my : TM — M is the subbundle of
the nonzero tangent vectors to M. X (M) denotes the module of vector fields
on M. The canonical objects of the tangent bundle TM — TT M, namely the
vertical subbundle, the Liowville vector field and the vertical endomorphism (or
canonical almost tangent structure) are denoted by 73, C and J, respectively.
XY(T'M) denotes the module of sections of 7. ,,; its elements are called vertical
vector fields. We are going to use freely (and frequently) the notion and the
basic properties of the vertical lift XV and the complete lift X¢ of a vector
field X € X(M). The most important relations concerning these liftings are
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concisely summarized in [11] and [12]; see also the monograph [14] (of course),
and [1]. A large part of our calculations is based on the following simple
observation:
if (Xi)"_, is a local basis for the module X(M), then (XY, X¢) is a local
base for the module X(T'M).
We are also going to use systematically the basic tools of the Frélicher-
Nigenhuis calculus (operators iz and dg attached to a vector-valued form
K, the Frolicher-Nijenhuis bracket [ , | of vector forms and so on). The best
source for mastering this wonderful theory still remains the original paper [2];
see also [1] and [8]. Recall that the above operators reduce to the usual inser-
tion operator ix, the Lie derivative Lx and the Lie bracket of vector fields, in
particular. The operator of the exterior derivative will be denoted by d.

1.2. Semisprays and sprays. A vector field S : TM — TTM is said to
be a semispray on the manifold M if it is of class C' on T'M, smooth on
T M, and satisfies the relation JS = C. A semispray is called a spray if the
homogeneity condition [C,S] = S holds

The following formula, due to J. GRIFONE ([3], Prop. 1.7) will be useful. —
Let S be a semispray on M. Then for any vertical vector field X on TM we
have

(1.2) J[X, S = X.

1.3. Horizontal endomorphisms. The role of nonlinear connections is
played by the horizontal endomorphisms in our approach. Let us consider a

vector 1-form on T'M, i.e., a type (1,1) tensor field h : X(TM) — X(TM),
whose smoothness is required only on T M. h is said to be a horizontal endo-
morphism on M, if it is a projector (i.e., h? = h) and Ker h = XV(T'M). v:=
Lx(rary — b is called the vertical projector belonging to h. If X" (T'M) := Imbh,
then we have the direct decomposition
X(TM)=X"(TM) &X"(TM);
the elements of X" (T'M) are called horizontal vector fields. The mapping
XeX(M)— X" :=hX® € X"(TM)
is the horizontal lifting with respect to h. The following “second local basis
principle” (c.f. 1.1.) will also be used systematically:
if (X;)™_, is a local basis for the module X(M) and h is a horizontal
endomorphism on M, then (XY, XM | is a local basis for X(T'M).
It follows easily from the definitions that
(1.3a) hod =0, Joh=J;
and for any vector fields X, Y on M,
(1.3b) JX =XV, JIX"Y" =[X,Y].
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1.4. Let a horizontal endomorphism A be given on the manifold M. If S’ is
an arbitrary semispray on M, then S := hS’ is also a semispray on M which
does not depend on the choice of S’. S is called the semispray associated to
h. In the spirit of GRIFONE’s theory, we attach to h the following data:

(1.4a) H := [h,C] — the tension vector 1-form;
(1.4b) t:=[J, k] — the torsion vector 2-form or weak torsion;
(14c) T:=ist+ H — the torsion vector 1-form or strong torsion
(S is an arbitrary semispray);
1
(1.4d) Q := —§[h, h) — the curvature vector 2-form;

(1.4e) F := h[S,h] —J — the almost complex structure induced by h

(S is the semispray associated to h).

A horizontal endomorphism is said to be homogeneous, if its tension vanishes.
We recall that any linear connection V on the manifold M gives rise to a

homogeneous, everywhere smooth horizontal endomorphism hAy. In this case
the data (1.4a)—(1.4e) are denoted by Hvy,..., Fy.

1.5. Lemma. Suppose that h and h are homogeneous horizontal endomor-
phisms on M. If for any vector fields X, Y on M,

(1.5a) (X" YY) = [XE,YV} :
then h = h.

Proof. We shall use the following simple observation:

a vector field Z € X(T M) is a vertical lift

1.
(1.5b) if and only if JZ =0 and [J,Z] = 0.

Since ~ ~
J (Xh - Xh> —gxt —gxt U2 xv _ xv —o,

X" — X" is a vertical vector field. By the condition (1.5a) this vertical vector

field commutes with any vertically lifted vector field. Using (1.5b) this implies
easily that X* — X" is also a vertical lift. Thus (again by (1.5b))

[J,Xh - Xﬁ] — 0.
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Now take an arbitrary semispray S. Then
0= [J,Xh - Xﬁ] S = [JS, X" —Xﬁ] —J [S, X" —Xﬁ]
- [C,X’l — Xﬂ —J [S,X" — Xﬁ] .

The first term on the right hand side vanishes by the homogeneity of h and ﬁ,
while J [S, X — Xh} = X" — X" in view of (1.2a). Thus for each vector field

X on M, we have X h — X" This means that the horizontal endomorphisms
h and h are identical. O

1.6. Finsler connections. A pair (D,h) is said to be Finsler connection
on the manifold M, if D is a linear connection on the tangent manifold T M
(or on the slit manifold 7M), h is a horizontal endomorphism on M, and the
following conditions are satisfied:

(1.6a) D is reducible (i.e., Dh = 0);
(1.6b) D is almost complex (i.e., DF = 0)

(F is the almost complex structure associated to h by (1.4e)). The covariant
differential DC' of the Liouville vector field is said to be the deflection of
(D,h); h*(DC) and v*(DC') are called the h-deflection and the v-deflection,

respectively.
Condition (1.6b) guarantees that

YeX'(TM) = VXeX(TM): DxY € X(TM),

Y € X"(TM) = VX € X(TM) : DxY € X"(TM).
To any Finsler connection (D, h) two “partial covariant differential operators”
Dy, and D, can naturally be associated as follows.

If Aisatype (r,s) # (0,0) tensor field on 7 M, then we define the (r,s+1)
tensor fields D, A and D, A by the rules
ixDpA:=DpxA and ixD,A:=D,xA (XE%(TM))

In particular, for any vector field Y on 7M,

(DhY)(X) = DnxY,  (D,Y)(X)=D,xY.
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1.7. Curvatures and torsions of a Finsler connection. Suppose that
(D, h) is a Finsler connection on the manifold M, and let us denote by K and
T the classical curvature and torsion tensor of D, respectively. K and T can
be determined by three “partial curvatures” and five “partial torsions”’, which
also have importance (but not the same importance) on their own right. These
data are summarized in the following table:

Curvature
horizontal (h) | R(X,Y)Z :=K(hX,hY)JZ
mixed (hv) P(X,Y)Z :=K(hX,JY)JZ
vertical (v) QX Y)Z :=K(JX,JY)JZ

Torsion
h —horizontal ((h)h) | A(X,Y) := hT(hX,RhY)
h —mixed ((W)hv) | B(X,Y) := hT(hX,JY)
v — horizontal ((v)h) |RYX,Y) :=vT(hX, hY)
v —mixed ((v)hv) PY(X,Y) = vT(hX,JY)
v — vertical ((v)v) SY(X,Y

) — vT(JX,JY)

1.8. The operator D’. Let ¥*(T'M) be the C*° (T'M )-module of the vector
1-forms, i.e., of the type (1,1) tensor fields on TM. First we consider the
canonical mapping

D, X¥(TM) — U (TM), JY s DLJY = [J,JY].

Using the property [J,JJ] =0 it can be easily seen that for any vector field X
on T'M we have

(1.8a) D}y JY = (D}JY) (X) = J[JX,Y].

Now we suppose that h is a horizontal endomorphism on M, v is the comple-
mentary projection to h, and F'is the almost complex structure belonging to
h. Since v = J o F', we can also consider the vector field

With the help of h and keepmg in mind the “Finslerian property” (1.6b), we
prolong the operator DY, to X"(T'M) so that for any vector field Y on TM,

Df,hY: Df]FJY::FDf]JY
Then
Df,XhY = (Df]hY) (X)= FDSXJY =FoJ[JX,Y] =h[JX,Y].

In the presence of a horizontal endomorphism, D’ will always denote this
extended operator.
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1.9. Definition and lemma. Let (D, h) be a Finsler connection on the
manifold M, and let us consider the (extended) operator DY. If

D:(X,Y) € X(TM) x X(TM) + DxY := DyxY + DixY,

then (1~7,h) is also a Finsler connection, called the associated Finsler connec-
tion to (D, h). For the mixed curvature P of (D, h) we have the expression

(1.9) B(X,Y)Z¢ = —[J, Dx» Z°]Y° (XY, Z € X(M)).

Proof. It may be seen immediately that (ﬁ, h) is indeed a linear connection.

If K is the curvature tensor of D, then for any vector fields X, Y, Z on M we
have

P(X¢,Y)Z¢ = K(X",Y¥)Z" = Dxn Dy~ Z" — Dy~DxnZ" — Dixn yn Z".

Here

(1.8a)

DyvZ¥ = Diyy.JZ¢ V=Y JIYY, Z¢ = JIY, Z)° =0;
E[Xh7YV]ZV = _5U[Xh’yv]ZV == Di[Xh’Yv]JZC
UED) 71X, YY), 2] = [J[X", YY), 29 - [J, Z°][ X", Y] =0,

since [X",YV] is vertical, while [J; Z¢] = 0 by (1.3c) of [12]. The remaining
second term can be formed as follows:
— DyvDx1 2" = —Dy~(Dxn Z*) = —Dips (Dxn Z°) = —Diyye (JFDx1 Z¥)
=— [Dﬂ(JFDXh Z Y= —[J,JFDx» 2" Y = ~[J, Dx»n Z"]Y*. O
1.10. Finsler manifolds. Vertical and prolonged metric. Let a function

E : TM — R be given. The pair (M, E) is said to be a Finsler manifold with
energy function E if the following conditions are satisfied:

1.10a) YaeTM: E(a) >0, E0)=0;
1.10b) E is of class C* on TM and smooth on TM;

(
(
(1.10c) CE =2F, i.e., E is homogeneous of degree 2;
(

1.10d) the fundamental form w := dd;E is symplectic.
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Then there is a spray Sy : T'M — TTM, uniquely determined on 7 M by the
relation

(1.10e) is,w=—dE

and prolonged to a C'-mapping of TM such that S;(0) = 0. This spray is
called the canonical spray of the Finsler manifold. The mapping

7: XV (TM) x X¥(TM) — C>=(TM),
(1.10f) B
(JX,JY) = g(JX,JY):=w(JX,Y)

is well-defined, nondegenerate symmetric bilinear form, which is said to be the
vertical metric of (M, E). Taking an arbitrary horizontal endomorphism h on
M, g can be prolonged to X(7TM) as follows: for any vector fields X,Y €
X(TM),

(1.10g) 9(X,)Y) =g(JX,JY)+g(vX,vY), v:=1x@m — h

Then g is a pseudo-Riemannian metric on 7 M, called the prolongation of g
along h.

1.11. The Cartan tensors. The first Cartan tensor
C:X(TM) xX(TM)— X(TM), (X,Y) —C(X,Y)
of the Finsler manifold (M, E) is defined by the rules

(1.11a) JoC:=0,

(L11b)  F(C(X,Y), JZ) = %(LJX I, 2)  (ZeX(TM)

The lowered tensor C, of C is given by the formula

(1.11c) C(X,Y,Z) =T(C(X,Y), JZ); X.,Y,Z€X(TM).
Let us note that
(1.11d) (M, E) is a Riemannian manifold if and only if C = 0.

Now we consider a horizontal endomorphism h on M, and the prolongation
g of the vertical metric g along h. The second Cartan tensor C' of (M, E)
(belonging to h) is given by the condition

(1.11c) JoC =0
and the formula

(1.11) 9(C(X,Y),JZ) == (Lnxg) (JY, I Z).

N —

For the basic properties of C' we refer to [12].
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1.12. The Barthel endomorphism. If (M, E) is a Finsler manifold then
there exists a unique horizontal endomorphism hy on M such that

(1.12a) ho is conservative, i.e., dp, E =0;
(1.12b) ho is homogeneous;
(1.12¢) the weak torsion of hy vanishes.

This fundamental discovery is due to J. GRIFONE [3]. The horizontal en-
domorphism characterized by (1.12a)—(1.12c) will be called the Barthel endo-
morphism of the Finsler manifold. It can be explicitly given by the formula

1
(1.12d) ho = 5 (Lxeran + [4:5)) »

where Sy is the canonical spray of (M, E). Note that conditions (1.12b)-
(1.12c) can be replaced by the single condition of the vanishing of the strong
torsion.

1.13. The Hashiguchi connection. We have an abundance of nice Finsler
connections on any Finsler manifold (but see MATSUMOTO’s principle from the
Introduction!); for recent surveys we again refer to [11] and [12]. In our forth-
coming considerations we need only one of them, the Hashiguchi connection

H
<D, h) characterized by the following axioms:

H
(1.13a) the v-mized torsion of D vanishes;
H H
(1.13b) D is v-metrical, i.e.,D,g = 0;
H
(1.13c) the v-vertical torsion of D vanishes

(g is the prolongation of the vertical metric along h).

H
The covariant derivatives with respect to D can be calculated by the fol-
lowing formulas:

H H
(1.13d, ) Dyx JY = J[JX,Y]+C(X,Y); DunxJY =v[hX,JY];

H H
(1.13f, g) DyxhY =h[JX,Y] + FC(X,Y); DpxhY =hF[hX,JY]

27
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(X,Y € X(TM), F is the almost complex structure induced by h). If, in
addition,

(1.13h) h is conservative;
H
(1.13i) the h-horizontal torsion of D vanishes;
H
(1.13j) the h-deflection of D vanishes,

H
then h becomes the Barthel endomorphism. In this case (D, h) is said to be
the standard Hashiguchi connection of (M, E).

The method of an intrinsic proof can be found in [11].

2. h-basic Finsler connections

2.1. Definition. A Finsler connection (D, h) is said to be an h-basic Finsler
connection if there exists a linear connection V on the manifold M such that
for any vector fields X, Y on M, we have

DYV =(VxY)".
Then V is called the base connection belonging to (D, h).

2.2. Remark. The base connection of an h-basic connection is clearly unique.

2.3. Lemma (cf. [5], Proposition 1.1). A Finsler connection (D,h) is h-
basic if and only if the mixed curvature of the associated Finsler connection

(D, h) vanishes.

Proof. — Suppose that the mixed curvature P of the associated Finsler con-
nection vanishes. Then, taking into account (1.9), for any vector fields X, Y,
Z on M we have

0=1[J,Dxs 2] Y= [Y¥,Dxn Z°] = J [Y*, Dx» Z%] = [Y",Dxn Z"].

This means that the vertical vector field Dx» YY commutes with any vertically
lifted vector field. Hence, by the same argument as in 1.5, Dx»Y" is also a
vertical lift. Using this fact we can see easily that the mapping

Vo X(M)xX(M) = X(M); V(X,Y)eX(M)xX(M): (VxY) :=DxrY"

is a well-defined linear connection on M, and so (D,h) is an h-basic Finsler
connection.
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Conversely, if (D, h) is an h-basic Finsler connection with the base connec-
tion V, then for any vector fields X, Y, Z on M we have

P(X°,Y%)Z¢ = K(X",Y") 2" = Dxn Dy Z* — Dy Dxn 2" — Dixn 3 Z°
=D\ Dy Z" = —Di, (Vx Z)" =0,

hence the mixed curvature of the associated Finsler connection vanishes. [

2.4. Lemma. Suppose that (D, h) is an h-basic Finsler connection with the

base connection V, and let hy be the horizontal endomorphism induced by h.
Then

(2.4a) DxnC=X"-X" (X eX(M)),

therefore hy coincides with h if and only if the h-deflection of (D, h) vanishes.

Proof. Let (U, (u*)™_,) be a chart on M. Then over 7=}(U) the Liouville
vector field can be represented in the form

at the steps (1) and (2) using the fact that hy arises from a linear connection
on M. U
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2.5 Remark. Consider a Finsler connection (D, h) with vanishing h-deflec-
tion. By the lemma just proved, in order that (D,h) be h-basic it is neces-
sary that h be smooth on the whole tangent manifold and should satisfy the
homogeneity condition H := [h,C] = 0.

2.6. Corollary. If (D, h) is an h-basic Finsler connection with vanishing
h-deflection, then for any vector fields X, Y on T M we have the rules for
calculation

(2.6a) Dy, xJY =v[hX,JY],
(2.6b) DuxhY = hF[hX, JY]. 0
2.7. Proposition. Let (D,h) be an h-basic Finsler connection and suppose

that the horizontal endomorphism h is homogeneous. Then the h-deflection
of (D, h) vanishes if and only if the v-mixed torsion of D vanishes, i.e.,

(2.7a) under the homogeneity condition, h* DC < P' = 0.

Proof. For any vector fields X, Y on M we have
PHX", V") = oT(X", YY) =v (Dxn YV — Dy X" —[X", YY)
= Dyn YV — [X",Y7].
If V is the base connection of (D, h), then
DYV =(VxY)' = [XhV,Y"}
by the conditions. So it follows that
PY(X",Y") =0 & [X"7,Y"] =[X" Y]

In view of Lemma 1.5 the last relation holds if and only if h = hy, which (by
Lemma 2.4) is equivalent to the vanishing of the h-deflection of (D,h). O

2.8. Proposition. Let us consider an h-basic Finsler connection (D, h) with
the base connection V. Suppose that the horizontal endomorphism h is smooth
on the whole tangent manifold. Then the h-deflection of (D, h) coincides with
the tension of h if and only if the v-mixed torsion of D vanishes, i.e.,

(2.8a) h*(DC) = H < P* =0, if h is smooth everywhere.

Proof of P = 0 = h*DC = H. - We have just seen that under the
condition P! = 0, for any vector fields X, Y on M we can write

Dy YV = [X" Y],
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From this the general rule for calculation
(2.8b) DypxJY =v[hX,JY]; X, Y eX(TM)

can be deduced easily. Taking an arbitrary semispray S on M, for each vector
field X on M we obtain

Dy C = Dy JS “2Y p[X", 7S] = o[X", C] = H(X).

This means that h*DC = H.

Proof of h*(DC) = H — P! =0. — Let X € X(M) be arbitrary. On the
one hand, Dx»C = [X" C]. On the other hand, in view of 2.4, Dx»C =
X" — X"v_ Thus, taking into account the homogeneity of hyv, it follows that

[C, X" — X"] =[C,X"] = — (X" — X"7).

This relation implies in a well-known manner that the vertical vector field
X" — X"v is homogeneous of degree 0. Since h is smooth on the whole
tangent manifold, we can conclude that X* — X"V is a vertical lift. Hence for
any vector field Y on M we have

0= [X"—X"v, V"] = X", V"] - [X"v,Y"];
therefore
PH(X"M V") = (VxY)" — [X" Y] = [X"7, Y] — [X", Y] =0,
and the implication is verified. O

2.9. Theorem. Let (D,h) be an h-basic Finsler connection on the non-
Riemannian Finsler manifold (M, E). (D,h) is h-metrical if and only if h is
conservative and the h-deflection of (D, h) vanishes. That is,

(29&) Dhg=0&dy,E=0A h*DC =0

(g is the prolongation of the vertical metric along h).

Proof of Dpg =0 — d,E =0Ah*DC = 0. — We do this in several steps.
First step. Let V be the base connection of (D, h). We show that the horizon-

tal endomorphism hvy is conservative, i.e., d,, E = 0. — Taking an arbitrary
semispray S and a vector field X on M, we have

2X"E = X"(2F) = X"[g(C, C)]=29(C, Dx+.C) =29(C, JDx1S)
= 20)(0, _DXh S) = Qij(DXh S) = 2(dJE)(DXh S) = 2(dE)(DXh C)
=2(Dx1O)E,
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by the condition D;,g = 0 and using some well-known relations concerning the
fundamental form w. So we conclude that

(Dx»C)E = X"E.

On the other hand,

(DxrC) E P27 (X" — X"¥) E= X"E — X"VE,

and the last two relations imply that for any vector field X on M, X"v E = 0.
This means that d,, E = 0, as we claimed.

Second step. Let X, Y, Z be arbitrary vector fields on M. Using (3.4b) of
[12], we obtain

X" g(V¥,2) - g((VxY)¥,2) —g(Y",(Vx Z)Y)
= X" [YY(Z2YE)] - (VxY)"(2'E) =Y ((Vx Z)"E)
= X"V [YY(2'E)] - [X"7,Y'](2'E) - Y ([X"%,2"] E)
=Y [2¥ (X"YE)] =0,

since hy is conservative, as we have just seen. Thus we obtain the relation
(2.9b)

X" g(Y,2%)=g(VxY)",Z") + g(Y",(Vx2)"); X,Y,Z e X(M).

Third step. Let X,Y,Z € X(M) be arbitrary again. By the condition Dy, g = 0
we get

0= (Dxng)(Y",2") = X" [g(YVaZV)] —g(Dxn Y, Z%) — g(Y",Dxn Z")
=X"[g(Y",2)] —g(VxY)", Z2") — g(Y",(Vx 2)")
(2.99)

X" (Y™, 27)] = X" [g(¥V,27)] = (X" = X"7)g(Y™, 2Z").

On the other hand, using the well-known symmetries of the first Cartan tensor,
we can write

2 (C(Y*,Z°),X" — X"v) = 2 (C(F(X" — X"7),Y*), Z")
(1-1:117) (E(Xh_th)v]*g) (chzc) — (Xh _XhV)g(Yv, ZV)

—g (JIX" = X"%,Y),2) — g (V" J[X" — X7, 2

= (X"~ X"%)g(Y, 7).
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Comparing the last two results it follows that for any vector fields X, Y, Z
on M
g(C(Ye,z9),X" — X"v) = 0.

This implies that X" — X*v =0 and hence h = hy, since g is nondegenerate
and C does not vanish identically by the condition and (1.11d). Thus & is also
conservative and, in view of 2.4, h*DC = 0.

Proof of (dyE = 0N h*DC = 0) = Dpg = 0. — The condition h*DC =
0 implies by 2.4 the coincidence of h and hy. Then hy is automatically
conservative. Using this fact we obtain by the calculation of the previous
third step that

(Dxng) (Y¥,2%) = (X" = X"")g(Y", Z2") =0 (XY, Z € X(M));

thus the desired relation D, g = 0 is true. U

3. The Ichijyo connection

3.1. Theorem. Suppose that (M, E) is a Finsler manifold and V is a linear
connection on M. Let hy be the horizontal endomorphism induced by V, and
let us consider the prolongation g of the vertical metric along hv. There exists

v
a unique Finsler connection (D, hv) on M such that

v v
(3.1a) D is v-metrical, i.e., D,g= 0;
V. Vv
(3.1b) the v-vertical torsion S of D vanishes;
(3.1¢) the mixed curvature of the associated

Finsler connection (DV, hv) vanishes;

v
(3.1d) the h-deflection of (D, hv) vanishes.

v
The covariant derivatives with respect to D can be calculated explicitly by
the following formulas:

v
(3.1e) DyxJY = J[JX,Y]+C(X,Y);

v
(Blf) thXJYZUV [hVXv JY])
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v
(3.1g) DyxhvY =hy[JX, Y] + FvC(X,Y);
v
(3.1h) DyoxhyY =hyFylhy X, JY]

(X,Y € X(TM)).

Proof of the unicity. — We show that axioms (3.1a)—(3.1d) force the rules for
calculation (3.1e) and (3.1f), from these (3.1g) and (3.1h) immediately follow
by (1.6b). We do this in two steps.

v
First step. Since D is v-metrical, the relations

v v
XY, Z2")=g (DXVYV, ZV) +9g (YV, Dx+ ZV) :

v v
YVg(Z7, X)) =g (DYVZV,XV> +9 (ZV,DYVXV> :

v v

—Z2Vg(XV,YV)=—g (DZVX", Y") —g (X", DZVYV)

hold for any vector fields X, Y, Z on M. Adding the corresponding sides of
v

these three equations and using the vanishing of S*,we obtain
g<2lv)Xva, ZV> = XYY", Z%) + YV g(Z¥, X") — Z¥g(X¥,YY).
Taking into account (3.7a) of [12], here the right hand side is just
2C,(X°, Y, Z°) =2g(C(X°,Y),Z).
Consequently

_leXVYV = C(XC,YC) - C(th,YhV),

so rule (3.1e) is verified for vertically lifted vector fields. Having obtained this
result, we can immediately deduce the general form (3.1e).

Second step. Now we conclude (3.1f) from (3.1c) and (3.1d). In view of
v
Lemma 2.3, the latter condition implies that (D,hv> is an h-basic Finsler

connection. So there exists a unique linear connection V on M such that for
any vector fields X, Y on M,

~ v \Y%4
(VXY> = Dyng Vv,
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Using condition (3.1d) and Lemma 2.4, we infer immediately that V coincides
with the given linear connection V. Thus

v

Dxno YV = (VXY)V = [tha Yv]a

from which the formula (3.1f) can be derived easily.

Proof of the existence. — Define the mapping

D : X(TM) x X(TM) — X(TM)

by the rule

\Y% v \Y% v \v4
(X,Y) — DxY = vax(UvY) +D’UVX (th) —I—thx(’vv Y) +thx(hvy),

where the terms of the right hand side are determined by (3.1e)—(3.1h). Then
v
it can be checked by a straightforward calculation that D is a linear connection

v
on TM, <D, hv> is a Finsler connection on M, and axioms (3.1a)—(3.1d) are
satisfied. t

3.2. Remarks.

(i) We propose to call the Finsler connection described in 3.1 the Ichijyo con-
nection induced by V in honour of Y. ICHIJYO, who used its coordinate
version effectively in his excellent papers [6], [7].

(ii) Rules (3.1e)—(3.1h) take the following more convenient form for the verti-
cally and horizontally lifted vector fields:

v v
(3.2, b) Dxv Y¥ =C(X"¥, Y9); Dyne YV = (VxY)';

v v
(3.2c, ) D+ Y™V = FoC(X"Y Y"v);, Do YV = (VyY)hv

(X,Y € X(M)).
3.3. Proposition. Let (M, E) be a Finsler manifold, V a linear connection

v
on M, and consider the Ichijyo connection (D, hv) induced by V. Then

(3.3a) (LVDJXC)(Y, Z) = (BJYC> (X, 2),

where X, Y, Z are any vector fields in TM.

The proof parallels that of (A.16) in [4] and is omitted.
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v
3.4. Lemma. Let (D, hv) be an Ichijyo connection with the base connection

vV VvV
V. The torsion T of D satisfies the identities

\Y
(34a)  T(X",Y") = (Te(X,Y))" +Qu(X"7,Y"v);

v v
(34b,c) T(X"Y,YV)=—FC(X"7,Yhv),  T(X",Y")=0,

where Ty denotes the torsion tensor of V; Qv and Fy are the curvature and
the associated almost complex structure of hvy, respectively; while X and Y
are arbitrary vector fields on M.

The proof is very straightforward so we omit it.
3.5. Corollary. For the partial curvatures and torsions of an Ichijyo connec-

v
tion (D, hv) we have the following representation:

Curvature | (X,Y, Z € X(TM))

horizontal HVQ(X, Y)Z =[J,Qv(X,Y)hvZ +C(FQv(X,Y), Z)
mixed P(X,Y)Z = (f)hv xC) (hyY;hy 2)

vertical | Q(X,Y)Z = C(FC(X, 2),Y) — C(X, FC(Y, 7))

Torsion (X,Y € X(M))
h— horizontal | A(X"v ,Yhv) = (Tg(X, Y))hv
h—mixed |B(X",YY) = —FyC(X"v,Y"v)

v
v
v
v — horizontal | RN (X" YV ) = Qg (Xhv,Yhv)
v
v
S

v — mixed P!
1

0
0

v — vertical

(F is an arbitrary almost complex structure on T'M).

Applying our previous results including (3.3a), these formulas can be ob-
tained by a routine but lengthy calculation that we will not present here.

3.6. Corollary. The horizontal curvature of an Ichijyo connection vanishes
if and only if the curvature of the base connection V, or — what is essentially
the same — the curvature of hy — vanishes.

v
Proof. 1t is clearly enough to show that the vanishing of R is equivalent to the
v

vanishing of {)y. The implication 2y = 0 = R = 0 is evident from 3.5.
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v
Conversely, suppose that R = 0, and let Sy be the semispray associated to
hv. For any vector fields X, Y, on M, we have

0 = R(X",Y"v)Sy &5 (7,909 (X", Y49)| S + C(Fg(X"%,Y"7), S5
- [J,QV(XhV,YhV)]SV = [C, Qv (X’W,Y’W)} —J[SV,QV(XhV,YhV)].

Using the graded Jacobi identity and taking into consideration the homogene-
ity of hy, we readily obtain that the first term of the right hand side vanishes,
while the second term is just —Qy (X", Y"v) by (1.2a).

Thus 0y vanishes, which ends the proof. O

v
3.7. Corollary. The mixed curvature of an Ichijyo connection ( D, hy | van-
ishes if and only if the h-covariant derivative of the first Cartan tensor with

v
respect to D vanishes, i.e.,

\Y4 \Y4
P=0 < D, ,C=0. O

v
3.8. Corollary. The h-horizontal torsion of an Ichijyé connection (D, hv

and the torsion tensor of V (or the weak torsion of hy) vanish at the same
time.

Proof. The assertion is clear from the relations

AXMYh%) = (To (X, Y))'° = (Fo o t¢)(X", YY) (XY € X(M)),

where the latter equality can be obtained in the same way as Corollary 2/(ii)
in [11]. O

4. Generalized Berwald manifolds

4.1. Definition. Suppose that (M, FE) is a Finsler manifold and let V be
a linear connection on M. The triplet (M, E,V) is said to be a generalized
Berwald manifold if the horizontal endomorphism hy is conservative, i.e.,
drno E = 0. A generalized Berwald manifold (M, E,V) is called a Berwald
manifold if V is a torsion-free linear connection. If, in addition, V is flat, then
we speak of a locally Minkowski Finsler manifold.

37
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4.2. Remark. Generalized Berwald manifolds were introduced by V. V.
WAGNER in 1943. Their systematic investigation, within the framework of
MATSUMOTO’s theory, was initiated by M. HASHIGUCHI and Y. ICHIJYO in
the middle of the seventies. Our definition was inspired by SZABO’s paper [10].
— It can easily be seen that in the particular case of Berwald manifolds the
horizontal endomorphism hy coincides with the Barthel endomorphism, hence
the linear connection V is unique. Then we speak of the linear connection of
the Berwald manifold and write (M, E') rather than (M, E, V).

4.3. Proposition. Let (M, E) be a Finsler manifold and suppose that V is
a linear connection on M. The following conditions are equivalent:

(a) (M,E,V) is a generalized Berwald manifold;
(b) the second Cartan tensor Ct; belonging to hy vanishes;

v v
(c¢) the Ichijy6 connection (D, hv) is hy-metrical, i.e., Dpog = 0.

Proof of (a) => (b). — Starting from the definition of C{ and using (3.4b) of
[12], we obtain for any vector fields X, Y, Z on M that

2Ce)y(X7,Y*,2°) 1= 29(Co (XYW Z%) = (Lnex-g) (JY*, T 2°)
— XPT (Y, 2%) — g (XM7Y, 2) — oYY, (X", 2Y))
= X" [YY(ZVE)] - [ X"V, Y|(ZYE) - YV ([ X"v, Z']E)
=Y"[2"(X"V E)] =0,
since hy is conservative. Thus Cg = 0.
Proof of (b) <= (c). — For any vector fields X, Y, Z on M, we have
(%XW g) (Y, 2Y) = X" g(v",2") - g(zv)XhVYV, ZV> - g(YV, Dine ZV)
= X"vg(YV,2") — g([X", Y], 2") —g(Y¥[X"v, Z7))
- 2g<(," (X<, Y°) ZV)
so it is obvious that assertions (b) and (c) are equivalent.

Proof of (¢c) = (a). — Since the h-deflection of (D, hv) vanishes by axiom
(3.1d), we obtain that

0 (DX,W g) (C,C) = X" ¢(C,C) — 29 (f)xhv c, C)

= 2X"VE =2d;, F(X°),
for any vector field X on M. This means that d;,, F = 0. U
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4.4. Proposition. If (M, E, V) is a generalized Berwald manifold, then the

v
mixed curvature of the Ichijyo connection (D, hv) vanishes.

v
Proof. Taking into account 3.5, it is enough to check the vanishing of D, C.

This requires only a quite immediate (but lengthy) calculation which we omit.
O

4.5. A counterexample. Suppose that (M, E, V) is a generalized Berwald
manifold, and let o be a non-constant smooth function on M. Then

hy :=hy—do*®@C  (¢":=0com)

is an everywhere smooth, homogeneous horizontal endomorphism, so hy gen-
erates a linear connection V on M. It can be checked by a direct calculation
that the mixed curvature of the corresponding Ichijyo connection vanishes.

However, (M, E, V) is not a generalized Berwald manifold, since h is obvi-
ously non-conservative. Thus the converse of 4.4 is not true in general.

4.6. Lemma. (cf. [12], 6.5.) Let (M, E) be a Finsler manifold and let its
Barthel endomorphism be denoted by hy. (M, E) is a Berwald manifold if and
only if there is a linear connection V on M such that for any vector fields X,
Y, on M,

(4.6 a) (VxY) = [X",YV].

Then V is just the linear connection of the Berwald manifold.
Proof. In view of 4.2, the necessity of the condition is obvious. Conversely, if
a linear connection V satisfies (4.6a) then we obtain that

X", Y] = [X"% Y]
for any vector fields X, Y on M. This implies by Lemma 1.5 the coincidence
of hy and hy. Then it follows at once that (M, E) is a Berwald manifold. [J

4.7. Theorem. A Finsler manifold is a Berwald manifold if and only if its
Hashiguchi connection is an Ichijyo connection.

Proof. Consider a Finsler manifold (M, E). Let the Barthel endomorphism be
H
denoted by hg, and let (D, ho> be the Hashiguchi connection (1.13) on M.

Neccessity. Suppose that (M, F) is a Berwald manifold with the linear
connection V. Then hy = hg. We show that the Hashiguchi connection

H v v
(D,ho) is just the Ichijyo connection (D,hv) = (D, ho). We have only

39
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H

to check that (D, hg ) satisfies the axioms formulated in 3.1. — (3.1a) and
(3.1b) are just the axioms (1.13b) and (1.13c) of the Hashiguchi connection.
The vanishing of the mixed curvature of the associated Finsler connection to

H
(D,ho) follows at once from 4.6 and 2.3, hence (3.1c) is satisfied. Finally,

H
the h-deflection of (D, hg) also vanishes, as the following simple calculation
shows: for any semispray S on M and any vector field X on T M,

H H H H (1.13e)
he (DC) (X) = DC(hoX) = Dy, xC = Dy, xJS "L vy [ho X, C] = 0,

since hg is homogeneous.

Sufficiency. Suppose that there is alinear connection V on M such that the

v H
Ichijyo connection ( D, hy ) coincides with the Hashiguchi connection (D, hq ).

Then hy = hy, therefore (4.6a) is satisfied and consequently (M,E) is a
Berwald manifold. t

4.8. Theorem. A Finsler manifold (M, E) is a locally Minkowski manifold
if and only if there exists a torsion-free, flat linear connection V on M such

v v
that the Ichijyo connection <D,hv) is “hvy-metrical”, i.e., D_g = 0.

Proof of the necessity. — If (M, E) is a locally Minkowski manifold, then —
of course — it is a Berwald manifold at the same time. By the assumption
the linear connection V of this Berwald manifold is torsion-free and flat. But
(M, E, V) is a generalized Berwald manifold as well, so the Ichijyo connection

v
<D,hv> is h-metrical by Proposition 4.3.

Proof of the sufficiency. —If V is atorsion-free, flat linear connection on M and

v
the Ichijyo connection (D,hvy ) is hy-metrical then Proposition 4.3 assures

that (M, E, V) is a generalized Berwald manifold, hence hy is conservative.
Since hy arises from a symmetric linear connection, its tension and its weak
torsion vanish. Thus, by the unicity statement of 1.12, hy is just the Barthel
endomorphism and consequently (M, F) is a locally Minkowski manifold. [J
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