On certain bases for Ariki-Koike algebras arising from canonical bases for $U_{v}\left(\mathfrak{s l}_{m}\right)$

Kiyotaka Ohkura and Toshiaki Shoji

(Received July 30, 2002)

Abstract

Frenkel, Khovanov and Kirillov showed that the parabolic Kazhdan-Lusztig basis of Iwahori-Hecke algebra associated to \mathfrak{S}_{n} can be obtained as the canonical basis of a weight subspace of $V^{\otimes n}$, where V is the vector representation of the quantum group $U_{v}\left(\mathfrak{s l}_{m}\right)$. In this paper, a similar problem for the case of Ariki-Koike algebra $\mathcal{H}_{n, r}$ is discussed. We construct a certain basis of $\mathcal{H}_{n, r}$, which is fixed by the involution and is closely related to the canonical basis of $V^{\otimes n}$, by making use of the representation of $\mathcal{H}_{n, r}$ on $V^{\otimes n}$. In the case where $r=2$, i.e., in the case of Iwahori-Hecke algebra of type B_{n}, this gives a basis different from the Kazhdan-Lusztig basis of $\mathcal{H}_{n, r}$.

AMS 1991 Mathematics Subject Classification. 17B37, 16G99.
Key words and phrases. Ariki-Koike algebra, quantum group, canonical basis, Kazhdan-Lusztig basis.

Contents

0 . Introduction

1. Review on Ariki-Koike algebras
2. Involutions associated to $\mathcal{H}_{n, r}$ and $U_{v}\left(\mathfrak{s l}_{m}\right)$
3. Kazhdan-Lusztig basis and canonical basis
4. $\mathcal{H}_{n, r}$-submodules of $V^{\otimes n}$
5. The case of Iwahori-Hecke algebras of type B_{n}

§0. Introduction

Let $U_{v}=U_{v}\left(\mathfrak{s l}_{m}\right)$ be the quantum group associated to the Lie algebra $\mathfrak{s l}_{m}$, and V the vector representation of U_{v}. Let \mathcal{H}_{n} be the Iwahori-Hecke algebra associated to the symmetric group \mathfrak{S}_{n}. Then the n-fold tensor space $V^{\otimes n}$
turns out to be a $U_{v} \otimes \mathcal{H}_{n}$-module. Each weight subspace $V_{\lambda}^{\otimes n}$ of $V^{\otimes n}$ is $\mathcal{H}_{n^{-}}$ stable, and is naturally isomorphic to an induced module M_{J} from a linear representation of some parabolic subalgebra \mathcal{H}_{J} of \mathcal{H}_{n}. A parabolic KazhdanLusztig basis on M_{J} was defined by Deodhar [D], by generalizing the notion of Kazhdan-Lusztig basis of \mathcal{H}_{n} introduced by Kazhdan and Lusztig [KL].

The notion of canonical basis for highest weight modules of U_{v} was introduced by Lusztig [L], which is a union of canonical bases for each weight subspace. In the case of highest weight module $V^{\otimes n}$, Frenkel, Khovanov and Kirillov [FKK] showed that the canonical basis of the weight subspace $V_{\lambda}^{\otimes n}$ coincides with the Kazhdan-Lusztig basis of M_{J} under the above isomorphism. Note that \mathcal{H}_{n} has a standard basis $\left\{T_{\sigma} \mid \sigma \in \mathfrak{S}_{n}\right\}$, and the Kazhdan-Lusztig basis of \mathcal{H}_{n} is characterized by the property that the transition matrix between this basis and the standard basis is of the unitriangular shape, and that it is fixed by a certain involution on \mathcal{H}_{n}, called the bar involution. In turn, $V^{\otimes n}$ has also a standard basis consisting of the tensor product of the given basis of V, and the canonical basis on $V^{\otimes n}$ is characterized by a certain involution ψ on it, together with some additional property related to the standard basis. The important step for proving the result in $[\mathrm{FKK}]$ is to show that these two involutions coincide with under the isomorphism $M_{J} \simeq V_{\lambda}^{\otimes n}$.

Let $W_{n, r}$ be the complex reflection group $\mathfrak{S}_{n} \ltimes(\mathbb{Z} / r \mathbb{Z})^{n}$, and $\mathcal{H}_{n, r}$ the associated cyclotomic Hecke algebra, i.e., the Ariki-Koike algebra associated to $W_{n, r}$. In the case where $r=1, \mathcal{H}_{n, r} \simeq \mathcal{H}_{n}$, and $\mathcal{H}_{n, r}$ is isomorphic to the Iwahori-Hecke algebra of type B_{n} if $r=2 . \mathcal{H}_{n, r}$ contains \mathcal{H}_{n} as a subalgebra, and in [SS] the action of \mathcal{H}_{n} on $V^{\otimes n}$ was extended to the action of $\mathcal{H}_{n, r}$. Each weight space $V^{\otimes n}$ is again $\mathcal{H}_{n, r}$-stable. The aim of this paper is to extend the result of $[F K K]$ to the case of certain induced $\mathcal{H}_{n, r}$-modules. One of our main results is Theorem 2.4, which asserts that the bar involution of $\mathcal{H}_{n, r}$ is compatible with the involution ψ on $V^{\otimes n}$. By making use of this fact, one can show, in Theorem 4.3, that the weight subspace $V_{\lambda}^{\otimes n}$ is isomorphic to an $\mathcal{H}_{n, r}$-module M_{J} induced from a "non-parabolic" subalgebra \mathcal{H}_{J} of $\mathcal{H}_{n, r}$, and that the canonical basis of $V_{\lambda}^{\otimes n}$ determines a basis of M_{J} fixed by the bar involution of $\mathcal{H}_{n, r}$. This may be regarded as a non-parabolic analogue of the result of [FKK].

However, if one focuses on the $\mathcal{H}_{n, r}$-module M_{J} induced from the parabolic subalgebra \mathcal{H}_{J} of $\mathcal{H}_{n, r}$, for example $\mathcal{H}_{n, r}$ itself, the situation is much more complicated. There is no natural notion of standard basis nor Kazhdan-Lusztig basis of $\mathcal{H}_{n, r}$ for $r>2$. Moreover, M_{J} turns out to be a direct sum of various weight subspaces $V_{\lambda}^{\otimes n}$. In order to treat these cases, we make use of the new generators of $\mathcal{H}_{n, r}$ introduced by [S]. By using the direct sum decomposition $M_{J}=\bigoplus_{\lambda} V_{\lambda}^{\otimes n}$, one can define two bases of M_{J} inherited from the standard basis and the canonical basis of $\bigoplus_{\lambda} V_{\lambda}^{\otimes n}$. As a special case, we can construct two bases of $\mathcal{H}_{n, r}$ in Theorem 4.7 ; the one has a property that the action
of generators of $\mathcal{H}_{n, r}$ on this basis is explicitly described, and the other has a property that it is fixed by the bar involution on $\mathcal{H}_{n, r}$, and the transition matrix between these two bases is described by various parabolic KazhdanLusztig polynomials of type A.

We remark that even in the case where $r=2$ (i.e., the case of IwahoriHecke algebras of type B_{n}), our basis does not coincide with the KazhdanLusztig basis of $\mathcal{H}_{n, r}$. In section 5 , we discuss the relationship between these two bases, with the standard basis and the Kazhdan-Lusztig basis of $\mathcal{H}_{n, r}$. In particular we show in Proposition 5.2 that the parabolic Kazhdan-Lusztig polynomials of type B_{n} can be determined uniquely by various parabolic Kazhdan-Lusztig polynomials of type A, together with the information on the transition matrix between the standard basis of $\mathcal{H}_{n, r}$ and the standard basis of $\bigoplus_{\lambda} V_{\lambda}^{\otimes n}$.

§1. Review on Ariki-Koike algebras

1.1. Let $K=\mathbb{Q}\left(v, u_{1}, \ldots, u_{r}\right)$ be a field of rational functions in variables v, u_{1}, \ldots, u_{r}. Let $W=W_{n, r}$ be the complex reflection group $\mathfrak{S}_{n} \ltimes(\mathbb{Z} / r \mathbb{Z})^{n}$, and $\mathcal{H}_{n, r}$ the Ariki-Koike algebra associated to $W . \mathcal{H}_{n, r}$ is the associative algebra over K with generators a_{1}, \ldots, a_{n}, and relations

$$
\begin{array}{ll}
\left(a_{1}-u_{1}\right)\left(a_{1}-u_{2}\right) \cdots\left(a_{1}-u_{r}\right)=0, & \\
\left(a_{i}-v\right)\left(a_{i}+v^{-1}\right)=0 & (2 \leq i \leq n), \\
a_{1} a_{2} a_{1} a_{2}=a_{2} a_{1} a_{2} a_{1}, & (2 \leq i<n), \tag{1.1.1}\\
a_{i} a_{i+1} a_{i}=a_{i+1} a_{i} a_{i+1} & (|i-j| \geq 2) .
\end{array}
$$

It is known that the subalgebra \mathcal{H}_{n} of $\mathcal{H}_{n, r}$ generated by a_{2}, \ldots, a_{n} is isomorphic to the Hecke algebra associated to the symmetric group \mathfrak{S}_{n} with standard generators.
1.2. Let $U_{v}=U_{v}\left(\mathfrak{s l}_{m}\right)$ be the quantum group associated to the Lie algebra $\mathfrak{s l}_{m}$ with generators $E_{i}, F_{i}, K_{i}(1 \leq i \leq m-1)$ and standard relations. Apriori, U_{v} is an associative algebra over $\mathbb{Q}(v)$, but for later discussion, we regard them as an algebra over K by an extension of scalars.

Let V be an m-dimensional vector space over K with basis e_{1}, \ldots, e_{m}. The vector representation of U_{v} on V is defined by

$$
\begin{array}{lll}
E_{i} e_{i+1}=e_{i}, & E_{i} e_{j}=0 & j \neq i+1, \\
F_{i} e_{i}=e_{i+1}, & F_{i} e_{j}=0 & j \neq i,
\end{array}
$$

$$
K_{i} e_{j}= \begin{cases}v e_{i} & j=i, \\ v^{-1} e_{i+1} & j=i+1 \\ e_{j} & j \neq i, i+1\end{cases}
$$

It is known that U_{v} has a Hopf algebra structure with comultiplication Δ : $U_{v} \rightarrow U_{v} \otimes U_{v}$ given by

$$
\begin{aligned}
\Delta\left(K_{i}\right) & =K_{i} \otimes K_{i} \\
\Delta\left(E_{i}\right) & =E_{i} \otimes 1+K_{i} \otimes E_{i} \\
\Delta\left(F_{i}\right) & =F_{i} \otimes K_{i}^{-1}+1 \otimes F_{i} .
\end{aligned}
$$

For a positive integer n, we consider the tensor space $V^{\otimes n}$ on which $U_{v}^{\otimes n}$ acts naturally. We define inductively an algebra homomorphism $\Delta^{(k)}: U_{v} \rightarrow$ $U_{v}^{\otimes k}$, by starting from $\Delta^{(2)}=\Delta$ and by putting $\Delta^{(k)}=\left(\Delta^{(k-1)} \otimes \mathrm{id}\right) \circ \Delta$ for each $k \geq 3$. By using $\Delta^{(n)}$, one can define an action of U_{v} on $V^{\otimes n}$.
1.3. In [Ji], Jimbo constructed an action of \mathcal{H}_{n} on $V^{\otimes n}$, commuting with the action of $U_{v}\left(\mathfrak{s l}_{m}\right)$. Let us fix integers m_{1}, \ldots, m_{r} such that $\sum m_{i}=m$, and consider a Levi subalgebra $\mathfrak{g}=\mathfrak{s l}_{m_{1}} \oplus \cdots \oplus \mathfrak{s l}_{m_{r}}$ of $\mathfrak{s l}_{m}$. The action of \mathcal{H}_{n} was extended by [SS] to the action of $\mathcal{H}_{n, r}$ on $V^{\otimes n}$ so that it commutes with the action of the subalgebra $U_{v}(\mathfrak{g})$ of $U_{v}\left(\mathfrak{s l}_{m}\right)$. We consider the decomposition $V=\bigoplus_{i} V_{i}$ with $\operatorname{dim} V_{i}=m_{i}$. We assume that a basis $\left\{e_{j}^{(k)}\right\}\left(1 \leq j \leq m_{k}\right)$ of V_{k} is chosen for $k=1, \ldots, r$, and that

$$
e_{1}^{(1)}, \ldots, e_{m_{1}}^{(1)}, e_{1}^{(2)}, \ldots, e_{m_{2}}^{(2)}, \ldots, e_{1}^{(r)}, \ldots, e_{m_{r}}^{(r)}
$$

gives the basis e_{1}, \ldots, e_{m} of V in this order. The construction of the action of $\mathcal{H}_{n, r}$ on $V^{\otimes n}$ is given as follows. Let T be the element in $\operatorname{End}(V \otimes V)$ defined by

$$
T\left(e_{i} \otimes e_{j}\right)= \begin{cases}v e_{j} \otimes e_{i} & \text { if } i=j \tag{1.3.1}\\ e_{j} \otimes e_{i} & \text { if } i>j \\ e_{j} \otimes e_{i}+\left(v-v^{-1}\right) e_{i} \otimes e_{j} & \text { if } i<j\end{cases}
$$

Next we define a map $b:\{1,2, \ldots, m\} \rightarrow \mathbb{N}$ by $b(j)=k$ whenever $e_{j} \in V_{k}$. Let $w t: V \rightarrow V$ be a linear operator defined by $w t\left(e_{j}\right)=u_{b(j)} e_{j}$. Let us define linear operators, σ, S on $V^{\otimes 2}$ as follows.

$$
\begin{aligned}
& \sigma\left(e_{i} \otimes e_{j}\right)=e_{j} \otimes e_{i}, \\
& S\left(e_{i} \otimes e_{j}\right)= \begin{cases}T\left(e_{i} \otimes e_{j}\right) & \text { if } b(i)=b(j), \\
\sigma\left(e_{i} \otimes e_{j}\right) & \text { if } b(i) \neq b(j)\end{cases}
\end{aligned}
$$

Using these operators, we define operators $T_{i}, \sigma_{i}, S_{i}, \omega_{j} \in \operatorname{End} V^{\otimes n},(2 \leq i \leq$ $n),(1 \leq j \leq n)$, by the condition,

$$
\begin{align*}
T_{i} & =\mathrm{id}_{V}^{\otimes(i-2)} \otimes T \otimes \mathrm{id}_{V}^{\otimes(n-i)}, \\
\sigma_{i} & =\mathrm{id}_{V}^{\otimes(i-2)} \otimes \sigma \otimes \mathrm{id}_{V}^{\otimes(n-i)}, \tag{1.3.2}\\
S_{i} & =\mathrm{id}_{V}^{\otimes(i-2)} \otimes S \otimes \mathrm{id}_{V}^{\otimes(n-i)}, \\
\omega_{j} & =\mathrm{id}_{V}^{\otimes(j-1)} \otimes w t \otimes \mathrm{id}_{V}^{\otimes(n-j)} .
\end{align*}
$$

We now define an operator T_{1} on $V^{\otimes n}$ by

$$
\begin{equation*}
T_{1}=T_{2}^{-1} \cdots T_{n}^{-1} S_{n} \cdots S_{2} \omega_{1} \tag{1.3.3}
\end{equation*}
$$

Then it is shown in [SS, Th.3.2] that $\tau: a_{i} \mapsto T_{i}(1 \leq i \leq n)$ gives rise to a representation of $\mathcal{H}_{n, r}$ on $V^{\otimes n}$.

Let ${ }^{-}: K \rightarrow K$ be the unique \mathbb{Q}-algebra involution such that $\bar{v}=v^{-1}, \bar{u}_{i}=$ u_{i}^{-1} for $i=1, \ldots, r$. We say that a map ϕ on a K vector space X is antilinear if $\phi(\lambda x)=\bar{\lambda} \phi(x)$ for $\lambda \in K, x \in X$. One can check by (1.1.1) that there exists a unique antilinear \mathbb{Q}-algebra automorphism $a \mapsto \bar{a}$ on $\mathcal{H}_{n, r}$ such that $\bar{a}_{i}=a_{i}^{-1}(1 \leq i \leq n)$. We call this map the bar involution on $\mathcal{H}_{n, r}$.
1.4. Recall that $\mathcal{H}_{n, r}$ has an alternative presentation given in [S, Th.3.7] as follows. (However, we remark that this presentation only admits a specialization of the type $\varphi: K \rightarrow K^{\prime}$, where K^{\prime} is a field such that $\varphi\left(\xi_{i}\right)$ are all distinct.) $\mathcal{H}_{n, r}$ is generated by $\left\{a_{2}, \ldots, a_{n}, \xi_{1}, \ldots, \xi_{n}\right\}$, subject to the following relations.

$$
\begin{array}{rlrl}
\left(a_{i}-v\right)\left(a_{i}+v^{-1}\right) & =0 & & (2 \leq i \leq n) \\
\left(\xi_{i}-u_{1}\right) \cdots\left(\xi_{i}-u_{r}\right)=0 & & (1 \leq i \leq n) \\
a_{i} a_{i+1} a_{i}=a_{i+1} a_{i} a_{i+1} & & (2 \leq i \leq n) \\
a_{i} a_{j}=a_{j} a_{i} & & (|i-j| \geq 2) \\
\xi_{i} \xi_{j}=\xi_{j} \xi_{i} & & (1 \leq i, j \leq n), \\
a_{j} \xi_{j}=\xi_{j-1} a_{j}+\Delta^{-2} \sum_{c_{1}<c_{2}}\left(u_{c_{2}}-u_{c_{1}}\right)\left(v-v^{-1}\right) F_{c_{1}}\left(\xi_{j-1}\right) F_{c_{2}}\left(\xi_{j}\right), \\
a_{j} \xi_{j-1}=\xi_{j} a_{j}-\Delta^{-2} \sum_{c_{1}<c_{2}}\left(u_{c_{2}}-u_{c_{1}}\right)\left(v-v^{-1}\right) F_{c_{1}}\left(\xi_{j-1}\right) F_{c_{2}}\left(\xi_{j}\right), \\
a_{j} \xi_{k}=\xi_{k} a_{j} \quad(k \neq j-1, j), & \tag{1.4.4}
\end{array}
$$

where $\Delta=\prod_{i>j}\left(u_{i}-u_{j}\right)$ is the Vandermonde determinant with respect to the parameters u_{1}, \ldots, u_{r}, and the sum in (1.4.2) or (1.4.3) is taken for all integers $1 \leq c_{1}, c_{2} \leq r$. For each integer $1 \leq c \leq r, F_{c}(X)$ is a certain polynomial in a
variable X with coefficients in $\mathbb{Z}\left[u_{1}, \ldots, u_{r}\right]$, defined in $[\mathrm{S}, 3.3 .2]$. Note that the generators a_{2}, \ldots, a_{n} above may be identified with the generators appeared in 1.1.

Under the representation $\tau: \mathcal{H}_{n, r} \rightarrow$ End $V^{\otimes n}$, the generator ξ_{i} is mapped to ω_{i} for each i.

§2. Involutions associated to $\mathcal{H}_{n, r}$ and $U_{v}\left(\mathfrak{s l}_{m}\right)$

2.1 The operator T in (1.3.1) has its origin in the study of the universal R matrix Θ attached to U_{v}. Let E be the orthogonal complement of $\sum \varepsilon_{i}$ in the Euclidean space \mathbb{R}^{m} with the standard basis $\varepsilon_{1}, \ldots, \varepsilon_{m}$. The root system Φ of $\mathfrak{s l}_{m}$ is given by the set $\left\{\varepsilon_{i}-\varepsilon_{j} \mid 1 \leq i \neq j \leq m\right\}$ with $\Phi^{+}=\left\{\varepsilon_{i}-\varepsilon_{j} \mid i<j\right\}$. Thus the root lattice $\mathbb{Z} \Phi$ is given by the \mathbb{Z}-submodule of E consisting of integral vectors. Let (,) be the inner product of \mathbb{R}^{m}. The weight lattice Λ is given by the set of $\lambda \in E$ such that $(\lambda, \mu) \in \mathbb{Z}$ for any $\mu \in \Phi$. For $1 \leq i \leq m$, put $\bar{\varepsilon}_{i}=\varepsilon_{i}-\frac{1}{m} \sum_{j=1}^{m} \varepsilon_{j} \in \Lambda$. Then $\sum \bar{\varepsilon}_{i}=0$, and $\bar{\varepsilon}_{i}$ is a weight with weight vector e_{i}. The weight lattice Λ is identified with the set $\mathbb{Z}^{m} / \mathbb{Z}(1, \ldots, 1)$ by the correspondence $\lambda=\sum c_{i} \bar{\varepsilon}_{i} \leftrightarrow\left(c_{1}, \ldots, c_{m}\right)$. For a U_{v}-module M, we denote by M_{λ} the weight subspace of M corresponding to $\lambda \in \Lambda$.

Let U_{v}^{+}(resp. U_{v}^{-}) be the subalgebra of U_{v} generated by E_{i}, K_{i} (resp. $\left.F_{i}, K_{i}\right)$, respectively. For each $\mu \in \mathbb{Z} \Phi, \mu \geq 0$, we denote by $U_{\mu}^{+}, U_{-\mu}^{-}$the weight subspace of $U_{v}^{ \pm}$with respect to μ or $-\mu$, respectively. Then there exists an element $\Theta_{\mu} \in U_{-\mu}^{-} \otimes U_{\mu}^{+}$with $\Theta_{0}=1 \otimes 1$, for each μ, and $\Theta=\sum_{\mu \geq 0} \Theta_{\mu}$ (an element in a completion of $U_{v} \otimes U_{v}$, see [L, 4.1]) can be defined.

Let M and M^{\prime} be finite dimensional U_{v}-modules. We fix an m-th root $v^{1 / m}$ of v, and consider the extension field $K\left(v^{1 / m}\right)$ of K. (Accordingly, we regard U_{v} as the algebra over $K\left(v^{1 / m}\right)$ if needed). Following [Ja, 7.3, 7.9], we introduce a linear map $C^{\prime} \in \operatorname{End} M \otimes M^{\prime}(\tilde{f}$ in the notation of [Ja]). We define a map $f: \Lambda \times \Lambda \rightarrow K\left(v^{1 / m}\right)^{*}$ by

$$
f(\lambda, \mu)=\left(v^{1 / m}\right)^{-m(\lambda, \mu)}
$$

for all $\lambda, \mu \in \Lambda$. Note that $(\lambda, \mu) \in \frac{1}{m} \mathbb{Z}$. In particular, we have

$$
\begin{equation*}
f\left(\bar{\varepsilon}_{i}, \bar{\varepsilon}_{j}\right)=v^{1 / m-\delta_{i j}} . \tag{2.1.1}
\end{equation*}
$$

Now C^{\prime} is defined, for $\lambda, \mu \in \Lambda$, by

$$
C^{\prime}(x \otimes y)=f(\lambda, \mu) x \otimes y
$$

for all $x \in M_{\lambda}$ and $y \in M_{\mu}$.
The element Θ induces a well-defined map $\Theta_{M, M^{\prime}} \in \operatorname{End} M \otimes M^{\prime}$. It is known ([Ja, Th. 7.3]) that the map $\Theta_{M, M^{\prime}} C^{\prime} \sigma: M^{\prime} \otimes M \rightarrow M \otimes M^{\prime}$ gives
rise to an isomorphism of U_{v}-modules, where $\sigma: M^{\prime} \otimes M \rightarrow M \otimes M^{\prime}$ is the permutation of factors.
2.2 The bar involution on K can be extended obviously to an involution on $K\left(v^{1 / n}\right)$. The bar involution - on U_{v} is an antilinear \mathbb{Q}-algebra automorphism on U_{v} defined on the generators by

$$
\bar{E}_{i}=E_{i}, \quad \bar{F}_{i}=F_{i}, \quad \bar{K}_{i}=K_{i}^{-1} .
$$

The bar involution is extended to $U_{v} \otimes U_{v}$ by $\overline{x \otimes y}=\bar{x} \otimes \bar{y}$. Let $\bar{\Theta}={ }^{-} \circ \Theta \circ^{-}$ be the bar conjugate of Θ. Then it is known by $[L, 4.1]$ that $\Theta \bar{\Theta}=1 \otimes 1$.

We consider the special case where $M=M^{\prime}=V$, and write $\Theta_{V, V} \in$ $\operatorname{End}(V \otimes V)$ simply as Θ. Then as is well-known (cf. [FKK, Prop. 2.1]), we have

$$
\begin{equation*}
\left(\Theta C^{\prime} \sigma\right)^{-1}=v^{-1 / m} T . \tag{2.2.1}
\end{equation*}
$$

More precisely, the action of C^{\prime} and $\Theta=\sum \Theta_{\mu}$ on $V \otimes V$ are described as follows. Since $e_{i} \in V$ is a weight vector with weight $\bar{\varepsilon}_{i} \in \Lambda$, by the property of Θ_{μ} (cf. [Ja, Chap. 7]), we have

$$
\Theta_{\mu}\left(e_{i} \otimes e_{j}\right)= \begin{cases}\left(v^{-1}-v\right) e_{j} \otimes e_{i} & \text { if } \mu=\varepsilon_{i}-\varepsilon_{j} \text { with } i<j \tag{2.2.2}\\ e_{i} \otimes e_{j} & \text { if } \mu=0 \\ 0 & \text { otherwise }\end{cases}
$$

It follows that

$$
\Theta\left(e_{i} \otimes e_{j}\right)= \begin{cases}e_{i} \otimes e_{j} & \text { if } i \geq j \tag{2.2.3}\\ e_{i} \otimes e_{j}-\left(v-v^{-1}\right) e_{j} \otimes e_{i} & \text { if } i<j\end{cases}
$$

Put $C=v^{-1 / m} C^{\prime}$. Then by (2.1.1), we have

$$
C\left(e_{i} \otimes e_{j}\right)= \begin{cases}e_{i} \otimes e_{j} & i \neq j, \tag{2.2.4}\\ v^{-1} e_{i} \otimes e_{j} & i=j .\end{cases}
$$

We define an antilinear involution ψ on $V^{\otimes n}$ inductively as follows: First define ψ on V by

$$
\psi\left(\sum c_{i} e_{i}\right)=\sum \bar{c}_{i} e_{i} .
$$

Next let W_{1}, W_{2} be tensor powers of V, and assume that the involutions ψ on W_{1}, W_{2} are already defined. We define ψ on $W_{1} \otimes W_{2}$ by

$$
\psi\left(w_{1} \otimes w_{2}\right)=\Theta\left(\psi\left(w_{1}\right) \otimes \psi\left(w_{2}\right)\right)
$$

Then it is shown in $[\mathrm{L}, 4.2 .4,27.3 .6]$ that ψ on $V^{\otimes n}$ does not depend on the decomposition $V^{\otimes n}=W_{1} \otimes W_{2}$, and it is compatible with the U_{v}-module structure of $V^{\otimes n}$ in the following sense: $\psi(u x)=\bar{u} \psi(x)$ for $u \in U_{v}, x \in V^{\otimes n}$.

In [FKK], Frenkel, Khovanov and Kirillov studied the relationship between Kazhdan-Lusztig basis of \mathcal{H}_{n} and canonical basis of U_{v} by making use of the $\mathcal{H}_{n} \otimes U_{v}$-module $V^{\otimes n}$. In particular, they showed

Proposition 2.3 ([FKK, Prop. 2.4]). The bar involution of \mathcal{H}_{n} is compatible with the involution ψ on $V^{\otimes n}$, i.e., for any $a \in \mathcal{H}_{n}$, we have

$$
\psi \circ a=\bar{a} \circ \psi .
$$

The main objective in this section is to extend this result to the case of $\mathcal{H}_{n, r}$. We shall show that

Theorem 2.4. The bar involution on $\mathcal{H}_{n, r}$ is compatible with the involution ψ on $V^{\otimes n}$, i.e., for any $a \in \mathcal{H}_{n, r}$, we have

$$
\begin{equation*}
\psi \circ a=\bar{a} \circ \psi . \tag{2.4.1}
\end{equation*}
$$

2.5. The remainder of this section is devoted to the proof of Theorem 2.4. We denote by e_{I} with $I=\left(i_{1}, \ldots, i_{n}\right)$ the vector $e_{i_{1}} \otimes \cdots \otimes e_{i_{n}}$ of $V^{\otimes n}$. Hence $\left\{e_{I} \mid I \in[1, m]^{n}\right\}$ gives a basis of $V^{\otimes n}$. (Here $[1, m]$ means the set $\{1,2, \ldots, m\}$). The symmetric group \mathfrak{S}_{n} acts on $[1, m]^{n}$ by permuting the factors, compatible with the action on $V^{\otimes n}$, i.e. $\sigma\left(e_{I}\right)=e_{\sigma I}$ for $\sigma \in \mathfrak{S}_{n}$. If we denote by $m_{I}(i)$ the multiplicity of i occurring in $I=\left(i_{1}, \ldots, i_{n}\right)$, then e_{I} is a weight vector of U_{v}-module $V^{\otimes n}$ with weight $\sum_{i} m_{I}(i) \bar{\varepsilon}_{i}$.

We define an antilinear involution ${ }^{-}$on $V^{\otimes n}$ by $\bar{x}=\sum_{I} \bar{c}_{I} e_{I}$ for $x=$ $\sum_{I} c_{i} e_{I}$. Let Ψ_{i} be a linear map on $V^{\otimes n}$ defined by

$$
\left.\Psi_{i}=\left(\Delta^{(i-1)} \otimes 1\right) \Theta\right) \otimes 1^{\otimes(n-i)}
$$

Then it follows from the definition that the involution ψ can be expressed as

$$
\begin{equation*}
\psi=\Psi_{n} \Psi_{n-1} \cdots \Psi_{2} \circ^{-} . \tag{2.5.1}
\end{equation*}
$$

In order to describe the involution ψ, first we shall concentrate on the map $\Psi_{n}=\left(\Delta^{(n-1)} \otimes 1\right) \Theta$. We prepare some notation. By $z \mapsto z_{i j}$, we denote the embedding $U_{v}^{\otimes 2} \rightarrow U_{v}^{\otimes n}$ subject to the i-th and j-th factors, i.e., for $z=a \otimes b \in U_{v} \otimes U_{v}$, we put

$$
z_{i j}=x_{1} \otimes x_{2} \otimes \cdots \otimes x_{n}
$$

with $x_{i}=a, x_{j}=b$ and $x_{k}=1$ for $k \neq i, j$.

For $\alpha, \beta \in \mathbb{Z} \Phi$ with $\alpha \geq \beta \geq 0$, we define $X_{\alpha, \beta}^{i} \in U_{v}^{\otimes n}$ by

$$
\begin{equation*}
X_{\alpha, \beta}^{i}=\left(1^{\otimes(n-i)} \otimes K_{\alpha}^{-1} \otimes 1^{\otimes(i-1)}\right)\left(\Theta_{\alpha-\beta}\right)_{n-i, n} \quad(2 \leq i \leq n-1), \tag{2.5.2}
\end{equation*}
$$

where $K_{\alpha}=\prod K_{i}^{m_{i}}$ if $\alpha=\sum_{i} m_{i}\left(\varepsilon_{i}-\varepsilon_{i+1}\right)$. The following lemma is a generalization of [J, Lemma 7.4]. The proof is reduced to the case $n=3$ by making use of the relation $\Delta^{(n)} \otimes 1=\left(\Delta \otimes 1^{\otimes(n-1)}\right)\left(\Delta^{(n-1)} \otimes 1\right)$ (note that this relation is different from the defining relation for $\Delta^{(n)}$ in 1.2). The case $n=3$ follows from Lemma 7.4 in [J].

Lemma 2.6. For all $\mu \in \mathbb{Z} \Phi$ with $\mu \geq 0$, we have

$$
\left(\Delta^{(n-1)} \otimes 1\right) \Theta_{\mu}=\sum\left(\Theta_{\mu-\nu_{1}}\right)_{n-1, n} X_{\nu_{1}, \nu_{2}}^{2} \cdots X_{\nu_{n-2}, \nu_{n-1}}^{n-1},
$$

where the sum is taken over all the sequences $\mu \geq \nu_{1} \geq \cdots \geq \nu_{n-1}=0$ such that $\nu_{i} \in \mathbb{Z} \Phi$.
2.7. We shall describe $\Psi_{n}=\left(\Delta^{(n-1)} \otimes 1\right) \Theta$. For $I=\left(i_{1}, \ldots, i_{n}\right)$, let $\left(\eta_{1}, \ldots, \eta_{n}\right)$ be the sequence defined by $\eta_{k}=\varepsilon_{i_{k}}$. Let us define a linear map $\Theta_{k, n}^{\sharp}$ on $V^{\otimes n}$, for $k=1, \ldots, n-1$, by

$$
\Theta_{k, n}^{\sharp}\left(e_{I}\right)= \begin{cases}e_{I} & \text { if } i_{k} \geq i_{n}, \\ e_{I}+v^{-\left(\eta_{k}-\eta_{n}, \eta_{k+1}+\cdots+\eta_{n-1}\right)}\left(v^{-1}-v\right) e_{I^{\prime}} & \text { if } i_{k}<i_{n},\end{cases}
$$

where $I^{\prime}=(k, n) I$. (In the case where $k=n-1$, we understand that the inner product in the second formula is equal to 0).

We have the following lemma.
Lemma 2.8. As operators on $V^{\otimes n}$, we have

$$
\begin{equation*}
\left(\Delta^{(n-1)} \otimes 1\right) \Theta=\Theta_{n-1, n}^{\sharp} \Theta_{n-2, n}^{\sharp} \cdots \Theta_{1, n}^{\sharp} . \tag{2.8.1}
\end{equation*}
$$

Proof. First we compute $X_{\alpha, \beta}^{n-k}\left(e_{I}\right)$ for $I=\left(i_{1}, \ldots, i_{n}\right)$. By (2.2.2) and (2.5.2), we see that
$X_{\alpha, \beta}^{n-k}\left(e_{I}\right)= \begin{cases}v^{-\left(\alpha, \eta_{k+1}\right)}\left(v^{-1}-v\right) e_{I^{\prime}} & \text { if } \alpha-\beta=\eta_{k}-\eta_{n}>0 \text { and } i_{k}<i_{n}, \\ v^{-\left(\alpha, \eta_{k+1}\right)} e_{I} & \text { if } \alpha=\beta, \\ 0 & \text { otherwise },\end{cases}$
with $I^{\prime}=(k, n) I$.
Next we compute $\left(\Delta^{(n-1)} \otimes 1\right) \Theta\left(e_{I}\right)$. For a fixed $I=\left(i_{1}, \ldots, i_{n}\right)$, let \mathcal{P}_{I} be the set of subsets $\mathbf{p}=\left\{p_{1}<\cdots<p_{k}\right\}$ of $\{1, \ldots, n-1\}$ such that $i_{p_{k}}<\cdots<i_{p_{2}}<i_{p_{1}}<i_{n}$. We put $k=|\mathbf{p}|$. For $\mathbf{p} \in \mathcal{P}_{I}$, let

$$
I(\mathbf{p})=\left(p_{k}, n\right) \cdots\left(p_{2}, n\right)\left(p_{1}, n\right) I=\left(n, p_{1}, p_{2}, \ldots, p_{k}\right) I .
$$

Then it follows from Lemma 2.6 and (2.8.2) that

$$
\left(\Delta^{(n-1)} \otimes 1\right) \Theta\left(e_{I}\right)=\sum_{\mathbf{p} \in \mathcal{P}_{I}} v^{-c_{\mathbf{p}}}\left(v^{-1}-v\right)^{|\mathbf{p}|} e_{I(\mathbf{p})}
$$

where

$$
\begin{aligned}
c_{\mathbf{p}} & =\left(\eta_{p_{1}}-\eta_{n}, \eta_{p_{1}+1}+\cdots+\eta_{p_{2}}\right) \\
& +\left(\eta_{p_{2}}-\eta_{n}, \eta_{p_{2}+1}+\cdots+\eta_{p_{3}}\right) \\
& +\cdots \cdots \\
& +\left(\eta_{p_{k}}-\eta_{n}, \eta_{p_{k}+1}+\cdots+\eta_{n-1}\right) .
\end{aligned}
$$

On the other hand, the right hand side of (2.8.1) is easily computed. We have

$$
\Theta_{n-1, n}^{\sharp} \Theta_{n-2, n}^{\sharp} \cdots \Theta_{1, n}^{\sharp}\left(e_{I}\right)=\sum_{\mathbf{p} \in \mathcal{P}_{I}} v^{-d_{\mathbf{p}}}\left(v^{-1}-v\right)^{|\mathbf{p}|} e_{I(\mathbf{p})}
$$

with

$$
\begin{aligned}
d_{\mathbf{p}} & =\left(\eta_{p_{1}}-\eta_{n}, \eta_{p_{1}+1}+\cdots+\eta_{n-1}\right) \\
& +\left(\eta_{p_{2}}-\eta_{p_{1}}, \eta_{p_{2}+1}+\cdots+\eta_{n-1}\right) \\
& +\cdots \cdots \\
& +\left(\eta_{p_{k}}-\eta_{p_{k-1}}, \eta_{p_{k}+1}+\cdots+\eta_{n-1}\right) .
\end{aligned}
$$

But then we have

$$
d_{\mathbf{p}}=\sum_{j=1}^{k}\left(\eta_{p_{j}}, \eta_{p_{j}+1}+\cdots+\eta_{p_{j+1}}\right)-\left(\eta_{n}, \eta_{p_{1}+1}+\cdots+\eta_{n-1}\right),
$$

where we use the convention that $p_{k+1}=n-1$. This implies that $c_{\mathbf{p}}=d_{\mathbf{p}}$ for any $\mathbf{p} \in \mathcal{P}_{I}$, and the lemma follows.
2.9. For a fixed $1 \leq i, j \leq n$ with $i \neq j$, we define an embedding End $V^{\otimes 2} \rightarrow \operatorname{End} V^{\otimes n}, x \mapsto x_{i j}$, in a similar way as in 2.5; $x_{i j}$ denotes the transformation on $V^{\otimes n}$ which acts on i-th and j-th factors of $V^{\otimes n}$ via the map x, and acts trivially on other factors. Then it is easy to see for any $\sigma \in \mathfrak{S}_{n}$ that

$$
\begin{equation*}
\sigma x_{i j} \sigma^{-1}=x_{\sigma(i) \sigma(j)} \tag{2.9.1}
\end{equation*}
$$

In later discussions, we consider the operators $\Theta_{i j}, C_{i j}, T_{i j}, S_{i j}$ for $\Theta, C, T, S \in$ End $V^{\otimes 2}$, respectively. In particular, we note that $T_{i-1, i}=T_{i}$ (resp. $S_{i-1, i}=$
$\left.S_{i}\right)$ for $i=2, \ldots, n$ in the notation of (1.3.2). We also note that $\Theta_{i-1, i}=\Theta_{i-1, i}^{\sharp}$ by (2.2.3) and 2.7. However, $\Theta_{i j}^{\sharp}$ does not mean the embedding in general.

Let $\bar{\Theta}_{i j}^{\sharp}$ be the linear transformation on $V^{\otimes n}$ defined by $\bar{\Theta}_{i j}^{\sharp}={ }^{-} \circ \Theta_{i j}^{\sharp} \circ^{-}$. Then $\bar{\Theta}_{i j}^{\sharp}$ coincides with the map defined in 2.7 , but by replacing v by v^{-1}. The bar operation on $V^{\otimes 2}$ is compatible with the bar operation on Θ. It follows that $\bar{\Theta}_{i j}={ }^{-} \circ \Theta_{i j} \circ^{-}$. The following relations are easily verified.

$$
\begin{align*}
-\circ \omega_{i} \circ^{-} & =\omega_{i}^{-1}, \\
-\circ C_{i j} \circ^{-} & =C_{i j}^{-1}, \tag{2.9.2}\\
-\circ T_{i j} \circ- & =T_{j i}^{-1}, \\
-\circ S_{i j} \circ^{-} & =S_{j i}^{-1} .
\end{align*}
$$

For a pair k, n such that $1 \leq k \leq n-1$, we put

$$
D_{k, n}=\sigma_{k, n} C_{k, n} C_{k+1, n} \cdots C_{n-1, n},
$$

where $\sigma_{k, n}$ denotes the cyclic permutation $(k, k+1, \ldots, n)$. We have the following lemma.

Lemma 2.10. For $1 \leq k \leq n-1$, we have

$$
\begin{equation*}
\bar{\Theta}_{k, n}^{\sharp} \bar{\Theta}_{k, n-1}^{\sharp} \cdots \bar{\Theta}_{k, k+1}^{\sharp}=D_{k, n} T_{n} T_{n-1} \cdots T_{k+1} . \tag{2.10.1}
\end{equation*}
$$

Proof. First consider the case where $k=n-1$. It follows from (2.2.1) that we have

$$
\begin{equation*}
T_{n}=(n-1, n) C_{n-1, n}^{-1} \bar{\Theta}_{n-1, n}^{\sharp} \tag{2.10.2}
\end{equation*}
$$

since $\Theta \bar{\Theta}=1$ and $\Theta_{n-1, n}=\Theta_{n-1, n}^{\sharp}$. Since $D_{n-1, n}=(n-1, n) C_{n-1, n}=$ $C_{n-1, n}(n-1, n)$, we have $\bar{\Theta}_{n-1, n}^{\sharp}=D_{n-1, n} T_{n}$ as asserted.

Next we show that

$$
\begin{equation*}
\bar{\Theta}_{k, n}^{\sharp} D_{k, n-1}=D_{k, n} T_{n} \quad \text { for } 1 \leq k \leq n-2 . \tag{2.10.3}
\end{equation*}
$$

By (2.9.1) we have

$$
\begin{aligned}
& (n-1, n) C_{k, n} C_{k+1, n} \cdots C_{n-1, n} T_{n} \\
& \quad=C_{k, n-1} C_{k+1, n-1} \cdots C_{n-2, n-1} C_{n-1, n}(n-1, n) T_{n} \\
& \quad=C_{k, n-1} C_{k+1, n-1} \cdots C_{n-2, n-1} \bar{\Theta}_{n-1, n}^{\sharp} .
\end{aligned}
$$

The last formula follows from (2.10.2). In order to show (2.10.3), we have only to check that

$$
\bar{\Theta}_{k, n}^{\sharp} \sigma_{k, n-1} C_{k, n-1} \cdots C_{n-2, n-1}=\sigma_{k, n-1} C_{k, n-1} \cdots C_{n-2, n-1} \bar{\Theta}_{n-1, n}^{\sharp} .
$$

It is easy to evaluate the maps on both sides at e_{I}. For e_{I} with $I=\left(i_{1}, \ldots, i_{n}\right)$, they have the common values

$$
v^{-\left(\eta_{k}+\eta_{k+1}+\cdots+\eta_{n-2}, \eta_{n-1}\right)} e_{I^{\prime}}
$$

if $i_{n-1} \geq i_{n}$, and

$$
v^{-\left(\eta_{k}+\eta_{k+1}+\cdots+\eta_{n-2}, \eta_{n-1}\right)} e_{I^{\prime}}+v^{-\left(\eta_{k}+\eta_{k+1}+\cdots+\eta_{n-2}, \eta_{n}\right)}\left(v-v^{-1}\right) e_{I^{\prime \prime}}
$$

if $i_{n-1}<i_{n}$, with $I^{\prime}=\sigma_{k, n-1} I$ and $I^{\prime \prime}=\sigma_{k, n} I^{\prime}$. This proves (2.10.3).
Now the lemma is immediate by substituting $\bar{\Theta}_{k, i}^{\sharp}=D_{k, i} T_{i} D_{k, i-1}^{-1}$ for $i \geq k+2$ by (2.10.3), and $\bar{\Theta}_{k, k+1}^{\sharp}=D_{k, k+1} T_{k+1}$ into the left hand side of (2.10.1).

By using Lemma 2.10, we can describe the involution ψ as follows.
Proposition 2.11. Let $\sigma_{0}=(1, n)(2, n-1) \cdots$ be the longest length element in \mathfrak{S}_{n}, and put

$$
\widehat{C}=\prod_{1 \leq i<j \leq n} C_{i j} .
$$

(Note that the operators $C_{i j}$ commute with each other). Then we have

$$
\psi=-\circ \sigma_{0} \widehat{C} T_{2}\left(T_{3} T_{2}\right) \cdots\left(T_{n} T_{n-1} \cdots T_{2}\right) .
$$

Proof. By (2.5.1) and Lemma 2.8, we have (cf. 2.9)

$$
\begin{aligned}
-\circ \psi & =-\circ\left(\Theta_{n-1, n}^{\sharp} \Theta_{n-2, n}^{\sharp} \cdots \Theta_{1, n}^{\sharp}\right)\left(\Theta_{n-2, n-1}^{\sharp} \Theta_{n-3, n-1}^{\sharp} \cdots \Theta_{1, n-1}^{\sharp}\right) \cdots\left(\Theta_{12}^{\sharp}\right) \circ- \\
& =\left(\bar{\Theta}_{n-1, n}^{\sharp} \bar{\Theta}_{n-2, n}^{\sharp} \cdots \bar{\Theta}_{1, n}^{\sharp}\right)\left(\bar{\Theta}_{n-2, n-1}^{\sharp} \bar{\Theta}_{n-3, n-1}^{\sharp} \cdots \bar{\Theta}_{1, n-1}^{\sharp}\right) \cdots\left(\bar{\Theta}_{12}^{\sharp}\right) .
\end{aligned}
$$

It is clear that $\bar{\Theta}_{i j}^{\sharp}$ and $\bar{\Theta}_{i^{\prime} j^{\prime}}^{\sharp}$ commute with each other when $\{i, j\} \cap\left\{i^{\prime}, j^{\prime}\right\}=\emptyset$. Hence we have

$$
\begin{aligned}
-\circ \psi & =\left(\bar{\Theta}_{n-1, n}^{\sharp}\right)\left(\bar{\Theta}_{n-2, n}^{\sharp} \bar{\Theta}_{n-2, n-1}^{\sharp}\right) \cdots\left(\bar{\Theta}_{1, n}^{\sharp} \bar{\Theta}_{1, n-1}^{\sharp} \cdots \bar{\Theta}_{12}^{\sharp}\right) \\
& =\left(D_{n-1, n} T_{n}\right)\left(D_{n-2, n} T_{n} T_{n-1}\right) \cdots\left(D_{1, n} T_{n} T_{n-1} \cdots T_{2}\right),
\end{aligned}
$$

where the second equality follows from Lemma 2.10. By definition of $D_{i j}$, and by using (2.9.1), the last formula is modified to

$$
\begin{equation*}
-\circ \psi=\sigma_{0}\left(C_{12} T_{2}\right)\left(C_{13} C_{23} T_{3} T_{2}\right) \cdots\left(C_{1, n} C_{2, n} \cdots C_{n-1, n} T_{n} T_{n-1} \cdots T_{2}\right) . \tag{2.11.1}
\end{equation*}
$$

Here we note that
(2.11.2) The product $C_{1, k} C_{2, k} \cdots C_{k-1, k}$ commutes with $T_{2}, T_{3}, \ldots, T_{k-1}$.

In fact, (2.11.2) is reduced to showing that $C_{a-1, k} C_{a, k}$ commutes with T_{a}, and this follows from the fact that $C_{a-1, k} C_{a, k}$ acts on the subspace of $V^{\otimes n}$ generated by e_{I} and $e_{(a-1, a) I}$ by a scalar multiplication $v^{-\left(\eta_{a-1}+\eta_{a}, \eta_{k}\right)}$.

Now, by using (2.11.2), (2.11.1) is further modified to

$$
-\circ \psi=\sigma_{0} \cdot \prod_{i<j} C_{i j} \cdot T_{2}\left(T_{3} T_{2}\right) \cdots\left(T_{n} \cdots T_{2}\right)
$$

This proves the proposition.
2.12. We now proceed to the proof of Theorem 2.4. For the proof, it is enough to show (2.4.1) for the generators a_{1}, \ldots, a_{n}. By Proposition 2.3, we know already that (2.4.1) holds for a_{2}, \ldots, a_{n}. So, we have only to show it for a_{1}, i.e., to show that

$$
\begin{equation*}
\psi T_{1}=T_{1}^{-1} \psi . \tag{2.12.1}
\end{equation*}
$$

We shall show (2.12.1). Let $\widehat{C}=\prod C_{i j}$ be as in Proposition 2.11. First we note that
(2.12.2) \widehat{C} commutes with $T_{i j}, S_{i j}, \sigma$ for any $i \neq j$ and any $\sigma \in \mathfrak{S}_{n}$.

In fact, let $V_{I}^{\otimes n}$ be the subspace of $V^{\otimes n}$ generated by $\left\{e_{\sigma I} \mid \sigma \in \mathfrak{S}_{n}\right\}$ for a fixed $I=\left(i_{1}, \ldots, i_{n}\right)$. Then \widehat{C} acts on $V_{I}^{\otimes n}$ as a scalar multiplication by v^{-c} with $c=\sum_{i<j}\left(\eta_{i}, \eta_{j}\right)$. (2.12.2) follows from this.

By definition (1.3.3) and Proposition 2.11, we can write

$$
\begin{equation*}
\psi T_{1}=Z \omega_{1} \quad \text { with } Z={ }^{-} \circ \sigma_{0} \widehat{C} T_{2}\left(T_{3} T_{2}\right) \cdots\left(T_{n-1} \cdots T_{2}\right) S_{n} S_{n-1} \cdots S_{2} \tag{2.12.3}
\end{equation*}
$$

We show that

$$
\begin{equation*}
Z=Z^{-1} \tag{2.12.4}
\end{equation*}
$$

In fact, by (2.9.2), (2.9.1) and (2.12.2), we have

$$
\begin{aligned}
Z^{-1} & ={ }^{-} \circ\left(S_{21} S_{32} \cdots S_{n, n-1}\right)\left(T_{21} T_{32} \cdots T_{n-1, n-2}\right) \cdots\left(T_{21} T_{32}\right) T_{21} \widehat{C} \sigma_{0} \\
& =-\circ \sigma_{0} \widehat{C}\left(S_{n} S_{n-1} \cdots S_{2}\right)\left(T_{n} T_{n-1} \cdots T_{3}\right) \cdots\left(T_{n} T_{n-1}\right) T_{n} .
\end{aligned}
$$

It is known by [SS, Lemma 3.8] that

$$
\begin{equation*}
\left(S_{n} S_{n-1} \cdots S_{2}\right) T_{j}=T_{j-1}\left(S_{n} S_{n-1} \cdots S_{2}\right) \tag{2.12.5}
\end{equation*}
$$

for $j=3, \ldots, n$. Therefore we have

$$
Z^{-1}={ }^{-} \circ \sigma_{0} \widehat{C}\left(T_{n-1} \cdots T_{2}\right) \cdots\left(T_{n-1} T_{n-2}\right) T_{n-1}\left(S_{n} \cdots S_{2}\right)
$$

Now by using the relations

$$
\left(T_{n-1} T_{n-2} \cdots T_{n-a}\right) T_{i}=T_{i-1}\left(T_{n-1} T_{n-2} \cdots T_{n-a}\right)
$$

for $i \geq n-a+1$, which follows from the braid relations of \mathcal{H}_{n}, it is easy to see that

$$
\left(T_{n-1} \cdots T_{2}\right) \cdots\left(T_{n-1} T_{n-2}\right) T_{n-1}=T_{2}\left(T_{3} T_{2}\right) \cdots\left(T_{n-1} \cdots T_{2}\right) .
$$

Hence (2.12.4) holds.
Since ψ is an involution, by using (2.12.4), we have

$$
T_{1}^{-1} \psi=\left(\psi T_{1}\right)^{-1}=\omega_{1}^{-1} Z^{-1}=\omega_{1}^{-1} Z .
$$

Hence to prove (2.12.1), it is enough to show that $\omega_{1}^{-1} Z=Z \omega_{1}$. Note that $\sigma_{0} \omega_{1} \sigma_{0}^{-1}=\omega_{n}$ and that ω_{n} commutes with \widehat{C} and T_{2}, \ldots, T_{n-1}. Thus, by (2.9.2), we have

$$
\begin{equation*}
\omega_{1}^{-1} Z={ }^{-} \circ \sigma_{0} \widehat{C} T_{2}\left(T_{3} T_{2}\right) \cdots\left(T_{n-1} \cdots T_{2}\right) \omega_{n}\left(S_{n} \cdots S_{2}\right) \tag{2.12.6}
\end{equation*}
$$

Here we note the following formula.

$$
\begin{equation*}
\omega_{i} S_{i}=S_{i} \omega_{i-1} \quad \text { for } i=2, \ldots, n \tag{2.12.7}
\end{equation*}
$$

In fact, it is enough to see the formula for the case where $n=i=2$, and $S_{i}=S$. Now ω_{2} and ω_{1} act as a (common) scalar multiplication on $e_{j} \otimes e_{k}$ and $e_{k} \otimes e_{j}$ if $b(j)=b(k)$. S permutes $e_{j} \otimes e_{k}$ and $e_{k} \otimes e_{j}$ if $b(j) \neq b(k)$. (2.12.7) follows easily from these facts.

Now by applying (2.12.7), we have $\omega_{n}\left(S_{n} \cdots S_{2}\right)=\left(S_{n} \cdots S_{2}\right) \omega_{1}$. Hence (2.12.6) implies that $\omega_{1}^{-1} Z=Z \omega_{1}$, and (2.12.1) holds. The theorem is proved.
2.13. By making use of Theorem 2.4, combined with Proposition 2.11, one can describe the bar involution for generators $\left\{a_{2}, \ldots, a_{n}, \xi_{1}, \ldots, \xi_{n}\right\}$ of $\mathcal{H}_{n, r}$ given in 1.4.

Proposition 2.14. Let $\left\{a_{2}, \ldots, a_{n}, \xi_{1}, \ldots, \xi_{n}\right\}$ be the generators of $\mathcal{H}_{n, r}$ given in 1.4, and put $x=a_{2}\left(a_{3} a_{2}\right) \cdots\left(a_{n} a_{n-1} \cdots a_{2}\right)$. Then we have

$$
\begin{array}{ll}
\bar{a}_{i}=a_{i}^{-1} & (2 \leq i \leq n), \\
\bar{\xi}_{j}=x^{-1} \xi_{n-j+1}^{-1} x & (1 \leq j \leq n) .
\end{array}
$$

Proof. It is enough to show the formula for ξ_{j}. By Theorem 2.4, we have

$$
\bar{\omega}_{j}=\psi^{-1} \circ \omega_{j} \circ \psi
$$

Note that ${ }^{-} \circ \omega_{j} \circ^{-}=\omega_{j}^{-1}, \sigma_{0} \omega_{j} \sigma_{0}=\omega_{n-j+1}$, and that ω_{j} commutes with \widehat{C}. Then by Proposition 2.11, we see that

$$
\psi^{-1} \circ \omega_{j} \circ \psi=X^{-1} \omega_{n-j+1}^{-1} X
$$

with $X=T_{2}\left(T_{3} T_{2}\right) \cdots\left(T_{n} T_{n-1} \cdots T_{2}\right)$. Since the representation τ is faithful if we choose $m_{k} \geq n$ for $k=1, \ldots, r$, and since $\tau\left(\xi_{j}\right)=\omega_{j}, \tau(x)=X$, this gives the required formula for ξ_{j}.

§3. Kazhdan-Lusztig basis and Canonical basis

3.1. Let W be a Weyl group with a set of generators S. We denote by \mathcal{H} the Hecke algebra associated to W. It is an associative algebra over $\mathbb{Q}(v)$ defined by generators $a_{s}(s \in S)$ and relations

$$
\begin{equation*}
\left(a_{s}-v\right)\left(a_{s}+v^{-1}\right)=0 \tag{3.1.1}
\end{equation*}
$$

together with usual braid relations. \mathcal{H} has a basis $\left\{a_{w} \mid w \in W\right\}$, where $a_{w}=a_{s_{1}} \cdots a_{s_{q}}$ for a reduced expression $w=s_{1} \cdots s_{q}$.

For any subset J of S, we denote by W_{J} the parabolic subgroup in W generated by $s \in J$. Let W^{J} be the set of distinguished representatives in W / W_{J}. Hence W^{J} is the set of minimal elements w in $w W_{J}$ with respect to the length $l(w)$ of W. Let \mathcal{H}_{J} be the the subalgebra of \mathcal{H} generated by a_{s} with $s \in J$. Then \mathcal{H}_{J} is isomorphic to the Hecke algebra of W_{J}. Let φ be a homomorphism from \mathcal{H} to $\mathbb{Q}(v)$ defined by $a_{s} \mapsto v$ for any $s \in S$. We denote by φ_{J} the restriction of φ on \mathcal{H}_{J}. Let M_{J} be the induced \mathcal{H}-module $\operatorname{Ind}_{\mathcal{H}}^{\mathcal{H}} \mathcal{H}_{J} \varphi_{J}$. Then by Deodhar [D], it is known that M_{J} has a basis $\left\{m_{w} \mid w \in W^{J}\right\}$ with the following properties,

$$
a_{s} m_{w}= \begin{cases}m_{s w}+\left(v-v^{-1}\right) m_{w} & \text { if } l(s w)<l(w), \tag{3.1.2}\\ m_{s w} & \text { if } l(s w)>l(w), s w \in W^{J}, \\ v m_{w} & \text { if } l(s w)>l(w), s w \notin W^{J},\end{cases}
$$

and $a_{w} m_{1}=m_{w}$ for an identity element $1 \in W$ and $w \in W^{J}$. Note that $w \in W^{J}$ and $l(s w)<l(w)$ imply that $s w \in W^{J}$.

Let us define a bar involution on \mathcal{H} by $\bar{v}=v^{-1}$ and $\bar{a}_{s}=a_{s}^{-1}$ as in 1.3. We also define a bar involution on M_{J} by the condition that $\bar{m}_{e}=m_{e}$ and
that $\overline{h m}=\bar{h} \bar{m}$ for $h \in \mathcal{H}, m \in M_{J}$. Let \leq be the partial order on W^{J} induced from the Bruhat order on W. The Kazhdan-Lusztig basis $\left\{C_{w}^{J} \mid w \in W^{J}\right\}$ of M_{J} was introduced by Kazhdan-Lusztig $[\mathrm{KL}]$ for $M_{\emptyset} \simeq \mathcal{H}$, and then extended by Deodhar [D$]$ to the case M_{J}. They are characterized by the following two properties.

$$
\begin{align*}
& C_{w}^{J} \in m_{w}+\sum_{\substack{x \in W^{J} \\
x<w}} v^{-1} \mathbb{Z}\left[v^{-1}\right] m_{x} \tag{3.1.3}\\
& \bar{C}_{w}^{J}=C_{w}^{J} . \tag{3.1.4}
\end{align*}
$$

The parabolic Kazhdan-Lusztig polynomial $P_{x, w}^{J} \in \mathbb{Z}[q]$ is defined, following Deodhar, in terms of the coefficient $p_{x, w}$ of m_{x} in the expression of C_{w}^{J} as follows.

$$
p_{x, w}=q^{l(w)-l(x)) / 2} \overline{P_{x, w}^{J}}(q) \quad \text { with } v=q^{-1 / 2} .
$$

Note that in [KL], [D], \mathcal{H} is defined by the quadratic relation $\left(T_{s}-q\right)\left(T_{s}+1\right)$ for an indeterminate q instead of (3.1.1). Then the relationship with our situation is given as follows; $v=q^{-1 / 2}$, and our a_{s} corresponds to $-v T_{s}$ in their setup. In particular, our C_{σ}^{J} corresponds to $(-1)^{l(\sigma)} C_{\sigma}^{J}$ under the notation of [KL], [D], and our m_{w} corresponds to $(-v)^{l(w)} m_{w}$ of [D].
3.2. For $x, w \in W^{J}$ such that $x<w$, we denote by $\mu(x, w)$ the coefficient of $q^{(l(w)-l(x)-1) / 2}$ in $P_{x, w}^{J}(q)$. Note that $\operatorname{deg} P_{x, w}^{J} \leq \frac{1}{2}(l(w)-l(x)-1)$. Let $s \in S$ be such that $l(s w)<l(w)$ for $w \in W^{J}$. Then C_{w}^{J} is determined inductively, with respect to the Bruhat order, by

$$
\begin{equation*}
C_{w}^{J}=\left(a_{s}+v^{-1}\right) C_{s w}^{J}-\sum_{\substack{y \in W^{J}, y \leq s w \\ s y<y \text { or } s y \notin W^{J}}}(-1)^{l(w)-l(y)} \mu(y, s w) C_{y}^{J} \tag{3.2.1}
\end{equation*}
$$

Now the action of a_{s} on C_{w}^{J} is given as follows; for $s \in S$ and $w \in W^{J}$,

$$
a_{s} C_{w}^{J}=\left\{\begin{array}{l}
-v^{-1} C_{w}^{J}+C_{s w}^{J}-\sum_{\substack{y<w \\
s y \leq y \text { or } s y \notin W^{J}}}(-1)^{l(w)-l(x)} \mu(y, w) C_{y}^{J}, \tag{3.2.2}\\
v C_{w}^{J},
\end{array}\right.
$$

where the first equality occurs when $s w>w$ and $s w \in W^{J}$, and the second occurs when $s w<w$ or $s w \notin W^{J}$. In fact, (3.2.2) can be shown as in a similar way in [KL, 2.3] once we know that

$$
\begin{equation*}
a_{s} C_{w}^{J}=v C_{w}^{J} \quad \text { if } s w>w \text { and } s w \notin W^{J} . \tag{3.2.3}
\end{equation*}
$$

We show (3.2.3). By comparing the coefficients of m_{w} on both sides, we see that (3.2.3) is equivalent to the identities,

$$
\begin{equation*}
P_{s x, w}^{J}=P_{x, w}^{J} \quad \text { if } s x \in W^{J} . \tag{3.2.4}
\end{equation*}
$$

(Note that $s x \in W^{J}$ if $s x<x$ and $x \in W^{J}$). Since we are in a setting $u=-1$ in the notation of $[\mathrm{D}]$, we have by [D, Prop. 3.4],

$$
\begin{equation*}
P_{x, w}^{J}=P_{x w_{J}, w w_{J}} \tag{3.2.5}
\end{equation*}
$$

for $x, w \in W^{J}$, where w_{J} is the longest element in W^{J}, and $P_{x, y}$ is the original Kazhdan-Lusztig polynomial for W. By our assumption, $s w>w$ and $s w \notin$ W^{J}. Then there exists $s^{\prime} \in W_{J}$ such that $s w=w s^{\prime}$ (e.g., [H, Lemma 7.2]), and we have $s w w_{J}<w w_{J}$. It follows that $a_{s} C_{w w_{J}}=v C_{w w_{J}}$ by [KL, 2.3] $\left(C_{w}\right.$ is a Kazhdan-Lusztig basis for \mathcal{H}). This induces similar identities for $P_{x w_{J}, w w_{J}}$ and $P_{s x w_{J}, w w_{J}}$ as in (3.2.4). Now (3.2.4) follows from these identities in view of (3.2.5).
3.3. We assume that $W \simeq \mathfrak{S}_{n}$, and consider the $U_{v} \otimes \mathcal{H}_{n}$-module $V^{\otimes n}$. The weights of U_{v} on $V^{\otimes n}$ are given by $\lambda=\left(\lambda_{1}, \cdots, \lambda_{m}\right) \in \mathbb{Z}_{\geq 0}^{m}$ with $\sum \lambda_{i}=n$. The weight subspace $V_{\lambda}^{\otimes n}$ has a basis $\left\{e_{I}\right\}$, with $I=\left(i_{1}, \ldots, i_{n}\right)$ such that $\sharp\left\{a \mid i_{a}=k\right\}=\lambda_{k}$. The involution ψ on $V^{\otimes n}$ stabilizes the subspace $V_{\lambda}^{\otimes n}$. Moreover $V_{\lambda}^{\otimes n}$ is an \mathcal{H}_{n}-submodule of $V^{\otimes n}$ generated by a single element $e_{I_{\lambda}}$, where

$$
\begin{equation*}
I_{\lambda}=(\underbrace{m, \ldots, m}_{\lambda_{m}-\text { times }}, \ldots, \underbrace{1, \ldots, 1}_{\lambda_{1}-\text { times }}) . \tag{3.3.1}
\end{equation*}
$$

Let $\mathfrak{S}_{\lambda} \simeq \mathfrak{S}_{\lambda_{m}} \times \cdots \times \mathfrak{S}_{\lambda_{1}}$ be the stabilizer of I_{λ} in \mathfrak{S}_{n}. Then \mathfrak{S}_{λ} is a parabolic subgroup W_{J} of \mathfrak{S}_{n}, and we denote by \mathcal{H}_{λ} the parabolic subalgebra \mathcal{H}_{J} corresponding to \mathfrak{S}_{λ}. It is easy to see that \mathcal{H}_{n}-module $V_{\lambda}^{\otimes n}$ is isomorphic to $M_{J}=\operatorname{Ind}_{\mathcal{H}_{\lambda}}^{\mathcal{H}_{n}} \varphi$.

Recall that $\left\{e_{I} \mid I \in[1, m]^{n}\right\}$ is the basis of $V^{\otimes n}$, which we call the standard basis of $V^{\otimes n}$. The canonical basis $\left\{b_{I} \mid I \in[1, m]^{n}\right\}$ of U_{v}-module $V^{\otimes n}$ is characterized by the following two properties ([L, Chap. 27]).

$$
\begin{align*}
b_{I} & \in e_{I}+\sum_{I^{\prime}} v^{-1} \mathbb{Z}\left[v^{-1}\right] e_{I^{\prime}}, \tag{3.3.2}\\
\psi\left(b_{I}\right) & =b_{I},
\end{align*}
$$

where the sum in the first formula is taken over all I^{\prime} having the same weight as I.

It is shown in [FKK] that the map $f: m_{\sigma} \mapsto e_{\sigma\left(I_{\lambda}\right)}$ gives an isomorphism $M_{J} \simeq V_{\lambda}^{\otimes n}$, which transfers the bar involution on M_{J} to the involution ψ on $V_{\lambda}^{\otimes n}$. We identify M_{J} with $V_{\lambda}^{\otimes n}$.

We define a partial order $I<I^{\prime}$ on $[1, m]^{n}$ as the transitive closure of the relation

$$
(\ldots, a, \ldots, b, \ldots)<(\ldots, b, \ldots, a, \ldots) \quad \text { if } a>b
$$

Then we have the following.
Lemma 3.4. Let $\sigma, \tau \in \mathfrak{S}_{n}^{J}$, and assume that $\sigma<\tau$. Then we have $\sigma\left(I_{\lambda}\right)<$ $\tau\left(I_{\lambda}\right)$.

Proof. The proof is reduced to the case where $\tau=\sigma s$ with a (not necessarily simple) reflection $s \in \mathfrak{S}_{n}$. So we assume that s is a transposition (p, q) with $1 \leq p<q \leq n$. Then it is easy to check that $\sigma^{-1}(p)<\sigma^{-1}(q)$ if $l\left(\sigma^{-1}\right)<$ $l\left(s \sigma^{-1}\right)$. If we write $I_{\lambda}=\left(i_{1}, \ldots, i_{n}\right)$, we have
$\sigma\left(I_{\lambda}\right)=\left(\ldots, i_{\sigma^{-1}(p)}, \ldots, i_{\sigma^{-1}(q)}, \ldots\right), \quad \sigma s\left(I_{\lambda}\right)=\left(\ldots, i_{\sigma^{-1}(q)}, \ldots, i_{\sigma^{-1}(p)}, \ldots\right)$.
Now by (3.3.1) and by our assumption, we have $i_{\sigma^{-1}(q)} \leq i_{\sigma^{-1}(p)}$. The lemma follows from this.

The following special case is worth mentioning.
Lemma 3.5 ([FKK, Lemma 2.1]). Let $\sigma \in W^{J}$ and $s \in S$ be a transposition $(i, i+1)$. Let a and b be i-th and $(i+1)$-th entries of $\sigma\left(I_{\lambda}\right)$, respectively. Then we have

$$
\begin{array}{ll}
\text { if } a>b, & \text { then } s \sigma>\sigma \text { and } s \sigma \in W^{J}, \\
\text { if } a=b, & \text { then } s \sigma>\sigma \text { and } s \sigma \notin W^{J}, \\
\text { if } a<b, & \text { then } s \sigma<\sigma .
\end{array}
$$

The following result shows that the Kazhdan-Lusztig basis is obtained as a special case of the canonical basis of $V^{\otimes n}$.

Theorem 3.6 ([FKK, Th. 2.5]). Assume that $W \simeq \mathfrak{S}_{n}$. Then, under the identification $M_{J} \simeq V_{\lambda}^{\otimes n}$, we have for each $\sigma \in W^{J}$,

$$
C_{\sigma}^{J}=b_{\sigma\left(I_{\lambda}\right)} .
$$

Combining Theorem 3.6 with Lemma 3.4, we have the following refinement of (3.3.2).

Corollary 3.7. Under the above notation, we have

$$
b_{I} \in e_{I}+\sum_{I^{\prime}<I} v^{-1} \mathbb{Z}\left[v^{-1}\right] e_{I^{\prime}}
$$

The following corollary is also immediate from (3.2.2), Lemma 3.5 and Theorem 3.6.

Corollary 3.8. Let $s=(a, a+1)$ be a transposition. Then for $I=\left(i_{1}, \ldots, i_{n}\right)$, we have

$$
T_{s} b_{I}=v b_{I} \quad \text { if } \quad i_{a} \leq i_{a+1} .
$$

§4. $\quad \mathcal{H}_{n, r}$-submodules of $V^{\otimes n}$

4.1. We now return to the setup in section 1 , and assume that $W=W_{n, r}$. We consider the $\mathcal{H}_{n, r}$-module $V^{\otimes n}$ with the graded vector space $V=\bigoplus_{i=1}^{r} V_{i}$ as before. We prepare some notation in addition to 3.1. Let $S=\left\{s_{1}, \ldots, s_{n}\right\}$ be the set of generators of $W_{n, r}$, where $t_{1}=s_{1}$ has order r, and s_{2}, \ldots, s_{n} are generators of \mathfrak{S}_{n} corresponding to transposition $(1,2), \ldots,(n-1, n)$. We define $t_{i} \in W_{n, r}$ by $t_{i}=s_{i} \cdots s_{2} t_{1} s_{2} \cdots s_{i}$ for $i=2, \ldots, n$. Then t_{1}, \ldots, t_{n} gives rise to a set of generators of the group $(\mathbb{Z} / r \mathbb{Z})^{n}$.

The basis vector of $V^{\otimes n}$ is given by e_{I} with $I=\left(i_{1}, \ldots, i_{n}\right)$ as before. By 1.3, e_{I} can also be written as $e_{j_{1}}^{\left(\varepsilon_{1}\right)} \otimes \cdots \otimes e_{j_{n}}^{\left(\varepsilon_{n}\right)}$. In this case, we write I as $I=\left(j_{1}^{\left(\varepsilon_{1}\right)}, \ldots, j_{n}^{\left(\varepsilon_{n}\right)}\right)$. The weight λ of U_{v} on $V^{\otimes n}$ is expressed as $\lambda=$ $\left(\lambda_{1}, \ldots, \lambda_{m}\right)$ as in 3.3. In our situation, I determines a multi-composition $\boldsymbol{\lambda}=$ $\left(\lambda^{(1)}, \ldots, \lambda^{(r)}\right)$, with $\lambda^{(k)}=\left(\lambda_{1}^{(k)}, \ldots, \lambda_{m_{k}}^{(k)}\right) \in \mathbb{Z}_{\geq 0}^{m_{k}}$, such that $\sum_{j, k} \lambda_{j}^{(k)}=n$; the correspondence is given by $\lambda_{j}^{(k)}=\sharp\left\{a \mid j_{a}=j, \varepsilon_{a}=k\right\}$. If one ignores the superscripts of $\lambda_{j}^{(k)}$, $\boldsymbol{\lambda}$ reduces to λ. We call $\boldsymbol{\lambda}$ the weight of e_{I}. We denote by $V_{\boldsymbol{\lambda}}^{\otimes n}$ the subspace of $V^{\otimes n}$ generated by e_{I} whose weight is $\boldsymbol{\lambda}$. It is easy to check that the action of $\mathcal{H}_{n, r}$ on $V^{\otimes n}$ stabilizes the subspace $V_{\lambda}^{\otimes n}$. For the weight $\boldsymbol{\lambda}$, put

$$
\begin{equation*}
e_{\lambda^{(k)}}=\underbrace{e_{m_{k}}^{(k)} \otimes \cdots \otimes e_{m_{k}}^{(k)}}_{\lambda_{m_{k}}^{(k)}-\text { times }} \otimes \cdots \otimes \underbrace{e_{1}^{(k)} \otimes \cdots \otimes e_{1}^{(k)}}_{\lambda_{1}^{(k)}-\text { times }} \tag{4.1.1}
\end{equation*}
$$

and define a vector $e_{\boldsymbol{\lambda}} \in V_{\boldsymbol{\lambda}}^{\otimes n}$ by

$$
\begin{equation*}
e_{\boldsymbol{\lambda}}=e_{\lambda^{(r)}} \otimes e_{\lambda^{(r-1)}} \otimes \cdots \otimes e_{\lambda^{(1)}} . \tag{4.1.2}
\end{equation*}
$$

The stabilizer of $e_{\boldsymbol{\lambda}}$ in \mathfrak{S}_{n} is isomorphic to

$$
\mathfrak{S}_{\boldsymbol{\lambda}}=\mathfrak{S}_{\lambda^{(r)}} \times \mathfrak{S}_{\lambda^{(r-1)}} \times \cdots \times \mathfrak{S}_{\lambda^{(1)}}
$$

with $\mathfrak{S}_{\lambda^{(k)}}=\mathfrak{S}_{\lambda_{m_{k}}^{(k)}} \times \cdots \times \mathfrak{S}_{\lambda_{1}^{(k)}}$. We define a subgroup $W_{\boldsymbol{\lambda}}$ of $W_{n, r}$ by $W_{\boldsymbol{\lambda}}=\mathfrak{S}_{\boldsymbol{\lambda}} \ltimes(\mathbb{Z} / r \mathbb{Z})^{n}$, i.e.,

$$
W_{\boldsymbol{\lambda}} \simeq W_{\lambda^{(r)}} \times W_{\lambda^{(r-1)}} \times \cdots \times W_{\lambda^{(1)}}
$$

with $W_{\lambda^{(k)}}=W_{\lambda_{m_{k}}^{(k)}, r} \times \cdots \times W_{\lambda_{1}^{(k)}, r}$. Let $\mathcal{H}_{\boldsymbol{\lambda}}$ be the Ariki-Koike algebra associated to $W_{\boldsymbol{\lambda}}$, i.e.,

$$
\begin{equation*}
\mathcal{H}_{\boldsymbol{\lambda}}=\mathcal{H}_{\lambda^{(r)}} \otimes \mathcal{H}_{\lambda^{(r-1)}} \otimes \cdots \otimes \mathcal{H}_{\lambda^{(1)}} \tag{4.1.3}
\end{equation*}
$$

with $\mathcal{H}_{\lambda^{(k)}}=\mathcal{H}_{\lambda_{m_{k}}^{(k)}, r} \otimes \cdots \otimes \mathcal{H}_{\lambda_{1}^{(k)}, r}$. One can regard $\mathcal{H}_{\boldsymbol{\lambda}}$ as a subalgebra of $\mathcal{H}_{n, r}$ in a natural way, by making use of generators $\left\{\xi_{1}, \ldots, \xi_{n}\right\}$ as discussed in [S, 4.2]. (For example, if $a+b=n$, then $\mathcal{H}_{a, r} \otimes \mathcal{H}_{b, r} \hookrightarrow \mathcal{H}_{n, r}$, where $\mathcal{H}_{a, r}$ (resp. $\mathcal{H}_{b, r}$) is the subalgebra of $\mathcal{H}_{n, r}$ generated by $s_{2}, \ldots, s_{a}, \xi_{1}, \ldots, \xi_{a}$, (resp. $\left.s_{a+2}, \ldots, s_{n}, \xi_{a+1}, \ldots, \xi_{n}\right)$, respectively.)

We can define a linear character $\varphi_{n}^{(k)}: \mathcal{H}_{n, r} \rightarrow K$ by

$$
\begin{array}{lr}
\varphi_{n}^{(k)}\left(a_{i}\right)=v & (2 \leq i \leq n) \\
\varphi_{n}^{(k)}\left(\xi_{j}\right)=u_{k} & (1 \leq j \leq n)
\end{array}
$$

(cf. $[\mathrm{S},(3.3 .3), 5.2]$), and define $\varphi_{\lambda^{(k)}}: \mathcal{H}_{\lambda^{(k)}} \rightarrow K$ by $\varphi_{\lambda^{(k)}}=\varphi_{\lambda_{m_{k}}^{(k)}}^{(k)} \otimes \cdots \otimes \varphi_{\lambda_{1}^{(k)}}^{(k)}$. Then we define a linear character $\varphi_{\boldsymbol{\lambda}}: \mathcal{H}_{\boldsymbol{\lambda}} \rightarrow K$ by

$$
\begin{equation*}
\varphi_{\boldsymbol{\lambda}}=\varphi_{\lambda^{(r)}} \otimes \varphi_{\boldsymbol{\lambda}^{(r-1)}} \otimes \cdots \otimes \varphi_{\lambda^{(1)}} \tag{4.1.4}
\end{equation*}
$$

according to the embedding into $\mathcal{H}_{n, r}$ given in (4.1.3). Put $V_{\boldsymbol{\lambda}}^{\otimes n}=M_{\boldsymbol{\lambda}}$. Then we have the following result.
Proposition 4.2. Let the notations be as above.
(i) $M_{\boldsymbol{\lambda}}$ is generated by $e_{\boldsymbol{\lambda}}$ as $\mathcal{H}_{n, r}$-module, and we have

$$
M_{\boldsymbol{\lambda}}=\mathcal{H}_{n, r} e_{\boldsymbol{\lambda}} \simeq \operatorname{Ind}_{\mathcal{H}_{\boldsymbol{\lambda}}}^{\mathcal{H}_{n, r}} \varphi_{\boldsymbol{\lambda}}
$$

as $\mathcal{H}_{n, r}$-modules.
(ii) $M_{\boldsymbol{\lambda}}$ has a basis $\left\{e_{\sigma}\right\}$ indexed by the set \mathfrak{S}_{n}^{J} (here we regard $\mathfrak{S}_{\boldsymbol{\lambda}}$ as a parabolic subgroup $\left(\mathfrak{S}_{n}\right)_{J}$ of $\left.\mathfrak{S}_{n}\right)$. The action of $\mathcal{H}_{n, r}$ on this basis is given as follows:

$$
\begin{aligned}
& a_{s} e_{\sigma}= \begin{cases}e_{s \sigma}+\left(v-v^{-1}\right) e_{\sigma} & \text { if } l(s \sigma)<l(\sigma), \\
e_{s \sigma} & \text { if } l(s \sigma)>l(\sigma), s \sigma \in \mathfrak{S}_{n}^{J}, \\
v e_{\sigma} & \text { if } l(s \sigma)>l(\sigma), s \sigma \notin \mathfrak{S}_{n}^{J},\end{cases} \\
& \xi_{j} e_{\sigma}=u_{\varepsilon(j, \sigma)} e_{\sigma},
\end{aligned}
$$

where $\varepsilon(j, \sigma) \in\{1, \ldots, r\}$ is given as follows; write $e_{\boldsymbol{\lambda}}=e_{I}$ as in 4.1, and put $\varepsilon(j, \sigma)=\varepsilon_{j}$ for $\sigma(I)=\left(j_{1}^{\left(\varepsilon_{1}\right)}, \ldots, j_{n}^{\left(\varepsilon_{n}\right)}\right)$.
(iii) There exists an involution ${ }^{-}: M_{\boldsymbol{\lambda}} \rightarrow M_{\boldsymbol{\lambda}}$ satisfying the property that $\overline{h m}=\bar{h} \bar{m}$ for $h \in \mathcal{H}_{n, r}, m \in M_{\boldsymbol{\lambda}}$, and that $\bar{e}_{\sigma}=e_{\sigma}$ for $\sigma=1$.

Proof. Let λ be the weight of $e_{\boldsymbol{\lambda}}$ as U_{v}-module. Then $M_{\boldsymbol{\lambda}}$ coincides with $V_{\lambda}^{\otimes n}$ and $e_{\boldsymbol{\lambda}}$ is nothing but $e_{I_{\lambda}}$ given in (3.3.1). Then by [FKK, Prop. 2.1], $V_{\lambda}^{\otimes n}$ is generated by $e_{I_{\lambda}}$ as \mathcal{H}_{n}-module, and is isomorphic to M_{J} as in 3.3, for a parabolic subgroup $\mathfrak{S}_{\boldsymbol{\lambda}}=\mathfrak{S}_{n}^{J}$. In particular, we see that $M_{\boldsymbol{\lambda}}=\mathcal{H}_{n, r} e_{\boldsymbol{\lambda}}$, and that

$$
\operatorname{dim} V_{\boldsymbol{\lambda}}^{\otimes n}=\left|\mathfrak{S}_{n}^{J}\right|=\operatorname{dim} \operatorname{Ind}_{\mathcal{H}_{\lambda}}^{\mathcal{H}_{n, r}} \varphi_{\boldsymbol{\lambda}} .
$$

Since it is easy to see that $K e_{\boldsymbol{\lambda}}$ is a one-dimensional $\mathcal{H}_{\boldsymbol{\lambda}}$-module affording $\varphi_{\boldsymbol{\lambda}}$, the first assertion follows.

Now we define a basis $\left\{e_{\sigma} \mid \sigma \in \mathfrak{S}_{n}^{J}\right\}$ in $M_{\boldsymbol{\lambda}}$ by using the basis $\left\{m_{\sigma}\right\}$ in M_{J}. Then we have $e_{\sigma}=m_{\sigma}=e_{\sigma\left(I_{\lambda}\right)}$ by [FKK]. The first three formula in (ii) now follows from (3.1.2). The last formula in (ii) follows by considering the action of ω_{j} on $e_{\sigma\left(I_{\lambda}\right)} \in V^{\otimes n}$.

The involution ψ on $V^{\otimes n}$ stabilizes the subspace $V_{\lambda}^{\otimes n}$. We define the bar involution ${ }^{-}$on $M_{\boldsymbol{\lambda}}=V_{\boldsymbol{\lambda}}^{\otimes n}$ in terms of ψ. Then we have $\overline{h m}=\bar{h} \bar{m}$ by Theorem 2.4. Since $\psi\left(e_{\boldsymbol{\lambda}}\right)=e_{\boldsymbol{\lambda}}$, we have $\bar{e}_{1}=e_{1}$. The proposition is proved.

The following result is an analogue to the case of $\mathcal{H}_{n, r}$ of the result of Frenkel, Khovanov and Kirillov (cf. Theorem 3.6) concerning the KazhdanLusztig basis of \mathcal{H}_{n} and canonical basis of U_{q}, and also of the parabolic Kazhdan-Lusztig basis of Deodhar (cf. 3.1). But note that $\mathcal{H}_{\boldsymbol{\lambda}}$ is no longer a parabolic subalgebra of $\mathcal{H}_{n, r}$.

Theorem 4.3. Let $M_{\boldsymbol{\lambda}} \simeq \operatorname{Ind}_{\mathcal{H}_{\boldsymbol{\lambda}}}^{\mathcal{H}_{n, r}} \varphi_{\boldsymbol{\lambda}}$ be the induced $\mathcal{H}_{n, r}$-module. Then there exists a unique basis $\left\{b_{\sigma} \mid \sigma \in \mathfrak{S}_{n}^{J}\right\}$ in $M_{\boldsymbol{\lambda}}$ satisfying the following properties.

$$
\begin{aligned}
& b_{\sigma} \in e_{\sigma}+\sum_{\substack{\tau \in \mathfrak{S}_{n}^{J} \\
\tau<\sigma}} v^{-1} \mathbb{Z}\left[v^{-1}\right] e_{\tau}, \\
& \bar{b}_{\sigma}=b_{\sigma} .
\end{aligned}
$$

The coefficient $p_{\tau, \sigma}$ of e_{τ} in the expression of b_{σ} is given by the parabolic Kazhdan-Lusztig polynomial for the case of $\mathfrak{S}_{n}^{J} \subset \mathfrak{S}_{n}$ just as in 3.1.

Proof. By Theorem 3.6, canonical basis $\left\{b_{\sigma\left(I_{\lambda}\right)} \mid \sigma \in \mathfrak{S}_{n}^{J}\right\}$ gives rise to a basis of $V_{\lambda}^{\otimes n}$, which corresponds to the parabolic Kazhdan-Lusztig basis $\left\{C_{\sigma}^{J}\right\}$ in M_{J}. Hence, if we define the basis $\left\{b_{\sigma}\right\}$ in $M_{\boldsymbol{\lambda}}=V_{\lambda}^{\otimes n}$ in terms of $\left\{b_{\sigma\left(I_{\lambda}\right)}\right\}$, the assertions in the theorem follow from 3.1 and Proposition 4.2.
K. OHKURA AND T. SHOJI
4.4. We now pass to a more general situation. Take an integer $t \geq 0$ such that $t \leq m_{k}$ for $k=1, \ldots, r$. Let $\boldsymbol{\lambda}=\left(\lambda^{(1)}, \ldots, \lambda^{(r)}\right)$ be an r-tuple of compositions as in 4.1, but here we assume that $\lambda^{(k)}=\emptyset$ for $k \neq r$, and that $\lambda^{(r)}=\left(\lambda_{t+1}^{(r)}, \ldots, \lambda_{m_{r}}^{(r)}\right) \in \mathbb{Z}_{\geq 0}^{m_{r}-t}$. We consider a pair $(\boldsymbol{\lambda} ; \mathbf{c})$, with $\mathbf{c}=\left(c_{1}, \ldots, c_{t}\right) \in \mathbb{Z}_{>0}^{t}$ a composition such that $\sum_{j, k} \lambda_{j}^{(k)}+\sum_{i} c_{i}=n$. We put $c=\sum c_{i}$. We denote by $M_{\lambda, \mathbf{c}}$ the subspace of $V^{\otimes n}$ generated by e_{I} with $I=\left(j_{1}^{\left(\varepsilon_{1}\right)}, \ldots, j_{n}^{\left(\varepsilon_{n}\right)}\right)$ such that $\lambda_{j}^{(r)}=\sharp\left\{a \mid j_{a}=j, \varepsilon_{a}=r\right\}$ and that $c_{i}=\sharp\left\{a \mid j_{a}=i\right\}$. Then $M_{\lambda, \mathrm{c}}$ is a direct sum of various weight spaces $V_{\nu}^{\otimes n}$, and so has a structure of $\mathcal{H}_{n, r}$-module. The decomposition of $M_{\boldsymbol{\lambda}, \mathrm{c}}$ into $V_{\boldsymbol{\nu}}^{\otimes n}$ is described more precisely as follows. Let $\boldsymbol{\nu}$ be a pair $(\boldsymbol{\lambda} ; \boldsymbol{\mu})$, where $\boldsymbol{\lambda}$ is as above, and $\boldsymbol{\mu}=\left(\mu^{(1)}, \ldots, \mu^{(r)}\right)$ is an r-tuples of compositions $\mu^{(k)}=$ $\left(\mu_{1}^{(k)}, \ldots, \mu_{t}^{(k)}\right) \in \mathbb{Z}_{\geq 0}^{t}$ such that $\sum_{k=1}^{r} \mu_{i}^{(k)}=c_{i}$ for $1 \leq i \leq t$. We denote by $\mathcal{P}_{\boldsymbol{\lambda}, \mathrm{c}}$ the set of $\operatorname{such} \boldsymbol{\nu}=(\boldsymbol{\lambda} ; \boldsymbol{\mu})$. Note that $\boldsymbol{\nu}$ can be written, by rearranging the entries, as $\left(\nu^{(1)}, \ldots, \nu^{(r)}\right)$ with $\nu^{(r)}=\left(\mu_{1}^{(r)}, \ldots, \mu_{t}^{(r)}, \lambda_{t+1}^{(r)}, \ldots, \lambda_{m_{r}}^{(r)}\right)$, and $\nu^{(k)}=\left(\mu_{1}^{(k)}, \ldots, \mu_{t}^{(k)}, 0, \ldots, 0\right)$ for $k \neq r$. Hence it determines an $\mathcal{H}_{n, r^{-}}$ subspace $V_{\nu}^{\otimes n}$. It is easy to check that

$$
M_{\lambda, \mathrm{c}}=\bigoplus_{\nu \in \mathcal{P}_{\lambda, \mathrm{c}}} V_{\nu}^{\otimes n}
$$

We shall investigate the $\mathcal{H}_{n, r}$-module structure of $M_{\boldsymbol{\lambda}, \mathbf{c}}$. For each $\boldsymbol{\nu} \in \mathcal{P}_{\boldsymbol{\lambda}, \mathbf{c}}$, we define $e^{\boldsymbol{\nu}} \in V_{\boldsymbol{\nu}}^{\otimes n}$ by $e^{\boldsymbol{\nu}}=e_{\boldsymbol{\lambda}} \otimes e^{\boldsymbol{\mu}}$, where $e_{\boldsymbol{\lambda}}=e_{\boldsymbol{\lambda}^{(r)}}$ is defined just as in (4.1.1), by restricting the factors in between $e_{m_{r}}^{(r)}$ and $e_{t+1}^{(r)} \cdot e^{\mu} \in V^{\otimes c}$ is defined by $e^{\mu}=E_{1} \otimes E_{2} \otimes \cdots \otimes E_{t}$, with

$$
\begin{equation*}
E_{i}=\left(e_{t-i+1}^{(1)}\right)^{\mu_{i}^{(1)}} \otimes \cdots \otimes\left(e_{t-i+1}^{(r)}\right)^{\mu_{i}^{(r)}} \in V^{\otimes c_{i}} \tag{4.4.1}
\end{equation*}
$$

Now $e^{\boldsymbol{\nu}}$ can be written as $e^{\boldsymbol{\nu}}=e_{I}$ for some I, and we denote by $b^{\boldsymbol{\nu}}$ the canonical basis $b_{I} \in V_{\boldsymbol{\nu}}^{\otimes n}$ corresponding to e_{I}. We define $m_{\boldsymbol{\lambda}, \mathbf{c}} \in M_{\boldsymbol{\lambda}, \mathrm{c}}$ by

$$
\begin{equation*}
m_{\boldsymbol{\lambda}, \mathrm{c}}=\sum_{\boldsymbol{\nu} \in \mathcal{P}_{\boldsymbol{\lambda}, \mathrm{c}}} b^{\nu} . \tag{4.4.2}
\end{equation*}
$$

We define a subalgebra $\mathcal{H}_{\boldsymbol{\lambda}, \mathbf{c}}$ of $\mathcal{H}_{n, r}$ by $\mathcal{H}_{\boldsymbol{\lambda}, \mathrm{c}}=\mathcal{H}_{\boldsymbol{\lambda}} \otimes \mathcal{H}_{\mathbf{c}}$, where $\mathcal{H}_{\boldsymbol{\lambda}}=\mathcal{H}_{\boldsymbol{\lambda}^{(r)}}$ is defined as in (4.1.3), by modifying the definition of $\mathcal{H}_{\lambda^{(r)}}$ appropriately, and \mathcal{H}_{c} is defined by

$$
\begin{equation*}
\mathcal{H}_{\mathbf{c}}=\mathcal{H}_{c_{1}} \otimes \cdots \otimes \mathcal{H}_{c_{t}} . \tag{4.4.3}
\end{equation*}
$$

(Remember that \mathcal{H}_{i} is the Iwahori-Hecke algebra of type A_{i-1}). We define a linear character $\varphi_{\boldsymbol{\lambda}, \mathbf{c}}$ of $\mathcal{H}_{\boldsymbol{\lambda}, \mathbf{c}}$ by $\varphi_{\boldsymbol{\lambda}, \mathbf{c}}=\varphi_{\boldsymbol{\lambda}} \otimes \varphi_{\mathbf{c}}$, where $\varphi_{\boldsymbol{\lambda}}=\varphi_{\boldsymbol{\lambda}^{(r)}}$ is given as in (4.1.4). $\varphi_{\mathbf{c}}$ is given by $\varphi_{\mathbf{c}}=\varphi_{c_{1}} \otimes \cdots \otimes \varphi_{c_{t}}$, where φ_{n} is the linear character of \mathcal{H}_{n} defined by $\varphi_{n}\left(a_{j}\right)=v$ for all generators a_{j}.

Under these notations, we have the following result.

Proposition 4.5. $M_{\boldsymbol{\lambda}, \mathrm{c}}$ is generated by $m_{\boldsymbol{\lambda}, \mathrm{c}}$ as $\mathcal{H}_{n, r}$-module, and we have

$$
M_{\boldsymbol{\lambda}, \mathrm{c}}=\mathcal{H}_{n, r} m_{\boldsymbol{\lambda}, \mathrm{c}} \simeq \operatorname{Ind}_{\mathcal{H}_{\boldsymbol{\lambda}, \mathrm{c}}}^{\mathcal{H}_{n, r}} \varphi_{\boldsymbol{\lambda}, \mathrm{c}}, \quad \psi\left(m_{\boldsymbol{\lambda}, \mathrm{c}}\right)=m_{\boldsymbol{\lambda}, \mathrm{c}} .
$$

Proof. It is clear that $m_{\boldsymbol{\lambda}, \mathrm{c}}$ is fixed by ψ. We show the first two equalities. First we note that

$$
\begin{equation*}
h m_{\boldsymbol{\lambda}, \mathbf{c}}=\varphi_{\boldsymbol{\lambda}, \mathbf{c}}(h) m_{\boldsymbol{\lambda}, \mathbf{c}} \quad \text { for } h \in \mathcal{H}_{\boldsymbol{\lambda}, \mathbf{c}} . \tag{4.5.1}
\end{equation*}
$$

In fact to show (4.5.1), it is enough to see, for each $\boldsymbol{\nu} \in \mathcal{P}_{\boldsymbol{\lambda}, \mathbf{c}}$, that

$$
h b^{\nu}= \begin{cases}\varphi_{\boldsymbol{\lambda}}(h) b^{\nu} & \text { if } h \in \mathcal{H}_{\boldsymbol{\lambda}}, \tag{4.5.2}\\ \varphi_{\mathbf{c}}(h) b^{\nu} & \text { if } h \in \mathcal{H}_{\mathbf{c}} .\end{cases}
$$

We show (4.5.2). In view of (4.4.1) and Corollary 3.8, we see that $a_{j} b^{\nu}=$ $v b^{\nu}$ for all generators $a_{j} \in \mathcal{H}_{c_{i}}$. This implies the second equality in (4.5.2). Next we consider the first equality. By (modified form of) (4.1.1), (4.1.2), together with (4.4.1), we see that $e^{\boldsymbol{\nu}}=e_{I}$, where I is of the form $I=\left(i_{1}, \ldots, i_{n}\right)$ with $i_{1} \geq i_{2} \geq \cdots \geq i_{n-c}$, and with $i_{n-c}>i_{k}$ for all $c+1 \leq k \leq n$. Then by Corollary $3.7, b^{\nu}$ is written as a linear combination of $e_{I^{\prime}}$, where $e_{I^{\prime}}$ is of the form $e_{\boldsymbol{\lambda}} \otimes e^{\boldsymbol{\mu}^{\prime}}$, for some $e^{\boldsymbol{\mu}^{\prime}} \in V^{\otimes c}$. Then as in the case of Proposition 4.2, one can check that $h e_{I^{\prime}}=\varphi_{\boldsymbol{\lambda}}(h) e_{I^{\prime}}$ for $h \in \mathcal{H}_{\boldsymbol{\lambda}}$. The first equality follows from this, and so (4.5.2) holds.

Next we show that

$$
\begin{equation*}
M_{\boldsymbol{\lambda}, \mathrm{c}}=\mathcal{H}_{n, r} m_{\boldsymbol{\lambda}, \mathrm{c}} \tag{4.5.3}
\end{equation*}
$$

Let ζ be a primitive r-th root of unity. By the specialization $v \mapsto 1, u_{i} \mapsto \zeta^{i}$, $\mathcal{H}_{n, r}$ turns out to be the group algebra $\mathbb{C} W_{n, r}$. (Note that in order to apply the specialization argument, one has to replace $\mathcal{H}_{n, r}$ by its "integral form" defined over a subring $R_{1}=\mathbb{Z}\left[v, v^{-1}, u_{1}, \ldots, u_{r}, \Delta^{-1}\right]$ of K as in $[\mathrm{S}, 3.6]$. Accordingly one needs to replace V by its R_{1}-lattice with basis e_{i}. All the ingredients up to now make sense for this setup, and we use them freely without referring R_{1} in the discussion below.)

Let $\bar{V}=\bigoplus \bar{V}_{i}$ be the \mathbb{C}-vector space with $\operatorname{dim} \bar{V}_{i}=m_{i}$. We denote by $\left\{\bar{e}_{j}^{(i)}\right\}$ the basis of V_{i}. Then the $\mathcal{H}_{n, r}$-module $V^{\otimes n}$ is specialized to the $\mathbb{C} W_{n, r}$-module $\bar{V}^{\otimes n}$. Let t_{i} be as in 4.1. Then the action of t_{i} on $\bar{V}^{\otimes n}$ is given by $t_{i} e_{I}=\zeta^{\varepsilon_{i}} e_{I}$ for $I=\left(j_{1}^{\left(\varepsilon_{1}\right)}, \ldots, j_{n}^{\left(\varepsilon_{n}\right)}\right)$, which is the specialization of ξ_{i} on $V^{\otimes n}$. The previous construction for $M_{\lambda, \mathbf{c}}=\bigoplus_{\nu} V_{\nu}^{\otimes n}$ makes sense, and by the specialization we have a $W_{n, r}$-module $\bar{M}_{\lambda, \mathrm{c}}=\bigoplus_{\nu} \bar{V}_{\nu}^{\otimes n}$. Let $\bar{e}^{\nu}, \bar{b}^{\nu}, \bar{m}_{\lambda, \mathrm{c}}$ be the elements in $\bar{M}_{\boldsymbol{\lambda}, \mathrm{c}}$ obtained from $e^{\nu}, b^{\nu}, m_{\boldsymbol{\lambda}, \mathrm{c}}$ by the specialization.

To show (4.5.3), it is enough to see that

$$
\begin{equation*}
\bar{M}_{\boldsymbol{\lambda}, \mathbf{c}}=\mathbb{C} W_{n, r} \bar{m}_{\boldsymbol{\lambda}, \mathbf{c}} \tag{4.5.4}
\end{equation*}
$$

We show (4.5.4). We prepare some notation. For $I=\left(j_{1}^{\left(\varepsilon_{1}\right)}, \ldots, j_{n}^{\left(\varepsilon_{n}\right)}\right)$, we call $\boldsymbol{\varepsilon}=\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)$ the signature of e_{I}, and $\mathbf{j}=\left(j_{1}, \ldots, j_{n}\right)$ the foot of e_{I}. Put $\mathcal{U}=\mathbb{C} W_{n, r} \bar{m}_{\boldsymbol{\lambda}, \mathbf{c}}$. Now $\bar{m}_{\boldsymbol{\lambda}, \mathbf{c}}$ can be written as $\bar{m}_{\boldsymbol{\lambda}, \mathbf{c}}=\sum_{\boldsymbol{\varepsilon} \in[1, r]^{n}} \bar{m}(\varepsilon)$, where $\bar{m}(\varepsilon)$ is a linear combination of vectors \bar{e}_{I} whose signature is ε. Note that t_{1}, \ldots, t_{n} are generators of the subgroup $(\mathbb{Z} / r \mathbb{Z})^{n}$ of $W_{n, r}$, and $e_{j_{1}}^{\left(\varepsilon_{1}\right)} \otimes \cdots \otimes e_{j_{n}}^{\left(\varepsilon_{n}\right)}$ generates a one dimensional representation φ_{ε} of $(\mathbb{Z} / r \mathbb{Z})^{n}$ given by $t_{i} \mapsto \zeta^{\varepsilon_{i}}$. It follows that each $\bar{m}(\varepsilon)$ belongs to \mathcal{U}.

Let us consider the partial order $<$ on $[1, m]^{n}$ defined in 3.3. Let $F(\varepsilon)$ be the set of vectors in $\bar{M}_{\boldsymbol{\lambda}, \mathrm{c}}$ consisting of \bar{e}_{I} with signature $\boldsymbol{\varepsilon}$, together with the vectors $e_{I^{\prime}}$ obtained from those e_{I} by permuting the factors. Clearly $\bigcup_{\varepsilon} F(\varepsilon)$ gives rise to a basis of $\bar{M}_{\lambda, \mathbf{c}}$. We show, by backward induction on the partial order of the set of signatures, that $F(\varepsilon) \subset \mathcal{U}$. Take $\boldsymbol{\varepsilon}=\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)$ and assume that $F\left(\varepsilon^{\prime}\right) \subset \mathcal{U}$ holds for any $\varepsilon^{\prime}>\varepsilon$. Now $\bar{m}(\varepsilon)$ can be written as

$$
\begin{equation*}
\bar{m}(\varepsilon) \in \bar{e}_{I}+\sum_{I^{\prime}} \mathbb{C} \bar{e}_{I^{\prime}}, \tag{4.5.5}
\end{equation*}
$$

where the foot \mathbf{j} of I is given by

$$
\begin{equation*}
\mathbf{j}=(\underbrace{m_{r}, \ldots, m_{r}}_{\lambda_{m_{r}}^{(r)}-\text { times }}, \cdots, \underbrace{t+1, \ldots, t+1}_{\lambda_{t+1}^{(r)}-\text { times }}, \underbrace{t, \ldots, t}_{c_{1}-\text { times }}, \ldots, \underbrace{1, \ldots, 1}_{c_{t} \text {-times }}), \tag{4.5.6}
\end{equation*}
$$

and $e_{I^{\prime}}$ is a summand of some $b^{\boldsymbol{\nu}}=b_{I^{\prime \prime}}$, not equal to $e^{\boldsymbol{\nu}}$. Thus $e_{I^{\prime}}$ is obtained from $e_{I^{\prime \prime}}$ by permuting the factors. Note that $e_{I^{\prime \prime}}$ has the same foot as (4.5.6), and we have $I^{\prime}<I^{\prime \prime}$ by Corollary 3.7. Let $\varepsilon^{\prime \prime}$ be the signature of $I^{\prime \prime}$. As in the proof of (4.5.2), one can write $e_{I^{\prime \prime}}=e_{\boldsymbol{\lambda}} \otimes e^{\boldsymbol{\mu}}$ and $e_{I^{\prime}}=e_{\boldsymbol{\lambda}} \otimes e^{\boldsymbol{\mu}^{\prime}}$. Since $(t, \ldots, t, \ldots, 1, \ldots, 1)$ is ordered decreasingly, the condition that $I^{\prime}<I^{\prime \prime}$ implies that $\varepsilon<\varepsilon^{\prime \prime}$. It follows, by induction, that $e_{I^{\prime \prime}} \in \mathcal{U}$. By operating \mathfrak{S}_{n}, we see that $e_{I^{\prime}} \in \mathcal{U}$ also. This implies that e_{I} and all its permutations of factors belong to \mathcal{U}. Hence we have $F(\varepsilon) \subset \mathcal{U}$. Thus (4.5.4), and so (4.5.3) holds.

It is easy to see that $\operatorname{dim} M_{\boldsymbol{\lambda}, \mathbf{c}}=\operatorname{dim} \bar{M}_{\boldsymbol{\lambda}, \mathbf{c}}=\left|W_{n, r}\right| /\left|W_{\boldsymbol{\lambda}, \mathbf{c}}\right|$, where $W_{\boldsymbol{\lambda}, \mathbf{c}}$ is the subgroup of $W_{n, r}$ corresponding to the subalgebra $\mathcal{H}_{\lambda, \mathrm{c}}$ of $\mathcal{H}_{n, r}$. Then (4.5.1) and (4.5.3) implies that $M_{\boldsymbol{\lambda}, \mathrm{c}} \simeq \operatorname{Ind}_{\mathcal{H}_{\boldsymbol{\lambda}, \mathrm{c}}}^{\mathcal{H}_{n, r}} \varphi_{\boldsymbol{\lambda}, \mathrm{c}}$. The proposition is proved.
4.6. The space $M_{\boldsymbol{\lambda}, \mathrm{c}}$ can be decomposed into a direct sum of weight spaces $V_{\boldsymbol{\nu}}^{\otimes n}$. Hence in view of Proposition 4.2 and Theorem 4.3, $M_{\boldsymbol{\lambda}, \mathrm{c}}$ have bases inherited from the basis $\left\{e_{I}\right\}$ and $\left\{b_{I}\right\}$ of various $V_{\nu}^{\otimes n}$. In particular, a bar involution on $M_{\boldsymbol{\lambda}, \mathbf{c}}$ can be defined, and one obtains a basis invariant under the bar involution.

Here we consider the special case where $M_{\boldsymbol{\lambda}, \mathrm{c}}$ is isomorphic to the regular representation of $\mathcal{H}_{n, r}$. Hence we assume that $\boldsymbol{\lambda}=\emptyset$, and $\mathbf{c}=\left(1^{n}\right)$. So
$\mathcal{H}_{\boldsymbol{\lambda}, \mathbf{c}} \simeq K$ and $\varphi_{\boldsymbol{\lambda}, \mathrm{c}}=1_{K} . \mathcal{P}_{\boldsymbol{\lambda}, \mathrm{c}}$ is in bijection with the set $[1, r]^{n}$, and the vector $e^{\boldsymbol{\nu}} \in V_{\boldsymbol{\nu}}^{\otimes n}$ corresponding to $\boldsymbol{\nu} \in \mathcal{P}_{\boldsymbol{\lambda}, \mathrm{c}}$ in 4.4 is given by

$$
\begin{equation*}
e^{\nu}=e_{n}^{\left(\varepsilon_{1}\right)} \otimes e_{n-1}^{\left(\varepsilon_{2}\right)} \otimes \cdots \otimes e_{1}^{\left(\varepsilon_{n}\right)} \tag{4.6.1}
\end{equation*}
$$

under the correspondence $\boldsymbol{\nu} \leftrightarrow \varepsilon=\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right) \in[1, r]^{n}$. The basis of $V_{\boldsymbol{\nu}}^{\otimes n}$ is obtained by permuting the factors of e^{ν}. If we write $e^{\nu}=e_{I}$ and $e_{\sigma(I)}=e_{\sigma, \varepsilon}$, then $\left\{e_{\sigma, \varepsilon} \mid \sigma \in \mathfrak{S}_{n}\right\}$ forms a basis of $V_{\nu}^{\otimes n}$, and

$$
\left\{e_{\sigma, \varepsilon} \mid \sigma \in \mathfrak{S}_{n}, \varepsilon \in[1, r]^{n}\right\}
$$

gives rise to a basis of $M_{\boldsymbol{\lambda}, \mathbf{c}}$. We define a partial order on the set $\{(\sigma, \varepsilon) \mid \sigma \in$ $\left.\mathfrak{S}_{n}\right\}$ (for a fixed ε) as follows. Let $\tau_{0} \in \mathfrak{S}_{n}$ be an element such that $e^{\nu}=e_{\tau_{0}(I)}$, where $I=\left(i_{1}, \ldots, i_{n}\right)$ with $i_{1} \geq \cdots \geq i_{n}$. Then we put $(\tau, \varepsilon)<(\sigma, \varepsilon)$ if $\tau \tau_{0}<\sigma \tau_{0}$.

We write $m_{0}=m_{\boldsymbol{\lambda}, \mathbf{c}}=\sum b^{\nu}$ as in (4.4.2). Then the map $h \mapsto h m_{0}$ gives an isomorphism $\mathcal{H}_{n, r} \simeq M_{\boldsymbol{\lambda}, \mathbf{c}}$. We denote by the same symbol the basis of $\mathcal{H}_{n, r}$ obtained from the basis $\left\{e_{\sigma, \varepsilon}\right\}$ of $M_{\boldsymbol{\lambda}, \mathbf{c}}$. Since m_{0} is ψ-invariant, it follows from Theorem 2.4 that the bar involution on $\mathcal{H}_{n, r}$ can be identified, under the above isomorphism, with the involution ψ on $M_{\boldsymbol{\lambda}, \mathbf{c}}$. Let $\left\{b_{\sigma, \varepsilon}\right\}$ be the basis of $\mathcal{H}_{n, r}$ obtained by transferring the canonical basis of $M_{\boldsymbol{\lambda}, \mathrm{c}}$ attached to $\left\{e_{\sigma, \varepsilon}\right\} \subset M_{\boldsymbol{\lambda}, \mathbf{c}}$. Then the following result is immediate from Theorem 4.3.

Theorem 4.7. There exists a unique basis $\left\{b_{\sigma, \varepsilon} \mid \sigma \in \mathfrak{S}_{n}, \varepsilon \in[1, r]^{n}\right\}$ of $\mathcal{H}_{n, r}$ satisfying the following properties.

$$
\begin{aligned}
& b_{\sigma, \varepsilon} \in e_{\sigma, \varepsilon}+\sum_{\substack{\tau \in \mathfrak{S}_{n} \\
(\tau, \varepsilon)<(\sigma, \varepsilon)}} v^{-1} \mathbb{Z}\left[v^{-1}\right] e_{\tau, \varepsilon}, \\
& \bar{b}_{\sigma, \varepsilon}=b_{\sigma, \varepsilon} .
\end{aligned}
$$

The coefficient $p_{(\tau, \varepsilon),(\sigma, \varepsilon)}$ of $e_{\tau, \varepsilon}$ in the expression of $b_{\sigma, \varepsilon}$ is described by the parabolic Kazhdan-Lusztig polynomials of type A for the weight space $V_{\nu}^{\otimes n}$ under the correspondence $\boldsymbol{\nu} \leftrightarrow \varepsilon$ in (4.6.1).

§5. The case of Iwahori-Hecke algebras of type B_{n}

5.1. We consider the case where $W=W_{n, 2}$ is the Weyl group of type B_{n}. We specify the parameters of $\mathcal{H}_{n, 2}$ by putting $u_{1}=-v^{-1}, u_{2}=v$, so that $\mathcal{H}_{n, 2}$ is the Hecke algebra \mathcal{H} of W as given in 3.1. We discuss the relationship between Kazhdan-Lusztig basis of \mathcal{H} and the previous basis.

Let us consider the subalgebra $\mathcal{H}_{\boldsymbol{\lambda}, \mathbf{c}}$ of \mathcal{H} as in 4,4 , and assume that $\mathcal{H}_{\boldsymbol{\lambda}, \mathbf{c}}$ is the subalgebra \mathcal{H}_{J} associated to a parabolic subgroup W_{J} of W. We also assume that the linear character $\varphi_{\boldsymbol{\lambda}, \mathbf{c}}: \mathcal{H}_{J} \rightarrow K$ in 4.4 is of the form φ_{J} in 3.1 (hence $\boldsymbol{\lambda}=\left(\lambda^{(1)} ; \lambda^{(2)}\right)=(-; k)$ for some $\left.k \geq 0\right)$. Then the \mathcal{H}-submodule $M_{\boldsymbol{\lambda}, \mathbf{c}}=\bigoplus V_{\boldsymbol{\nu}}^{\otimes n}$ of $V^{\otimes n}$ can be identified with M_{J} in 3.1, where $m_{\boldsymbol{\lambda}, \mathbf{c}} \in M_{\boldsymbol{\lambda}, \mathbf{c}}$ corresponds to $m_{e} \in M_{J}$. By Theorem 2.4 and Proposition 4.5, the bar involution on M_{J} given in 3.1 coincides with the involution ψ on $M_{\boldsymbol{\lambda}, \mathbf{c}}$. We shall compare various bases on M_{J}. Put $m_{\sigma}=T_{\sigma} m_{e}$ for $\sigma \in W^{J}$. Then $\mathcal{M}=\left\{m_{\sigma} \mid \sigma \in W^{J}\right\}$ gives a basis of M_{J}. Let $\mathcal{C}=\left\{C_{\sigma}^{J} \mid \sigma \in W^{J}\right\}$ be the Kazhdan-Lusztig basis of M_{J} given in 3.1. We also put $\mathcal{E}=\left\{e_{I} \mid I \in \mathcal{I}_{J}\right\}$ and $\mathcal{B}=\left\{b_{I} \mid I \in \mathcal{I}_{J}\right\}$ the bases of M_{J} arising from the standard basis and the canonical basis of $\bigoplus_{\nu} V_{\nu}^{\otimes n}$. For a two bases $X=\left(x_{i}\right)$ and $Y=\left(y_{j}\right)$ of M_{J} indexed by the set $\mathcal{I}_{J} \simeq W^{J}$, we denote by $M(X, Y)=\left(a_{i j}\right)$ the transition matrix from X to Y given by

$$
y_{i}=\sum_{j \in \mathcal{I}} a_{j i} x_{j} .
$$

Put

$$
P_{B}=M(\mathcal{M}, \mathcal{C}), \quad P_{A}=M(\mathcal{E}, \mathcal{B}), \quad X=M(\mathcal{B}, \mathcal{C}), \quad Y=M(\mathcal{E}, \mathcal{M})
$$

We define a total order on W^{J} which is compatible with the converse of the Bruhat order on W^{J}, and consider the matrix $P_{B}=\left(p_{\tau, \sigma}\right)_{\tau, \sigma \in W^{J}}$ with respect to this order. Then P_{B} is a lower unitriangular matrix. Moreover, $p_{\tau, \sigma} \in$ $v^{-1} \mathbb{Z}\left[v^{-1}\right]$, and $p_{\tau, \sigma}$ represents the parabolic Kazhdan-Lusztig polynomials of type B_{n} associated to W_{J} up to a power of v. If we fix a total order on the set \mathcal{I}_{J} compatible with the weight decomposition $M_{J}=\bigoplus_{\nu} V_{\boldsymbol{\nu}}^{\otimes n}$, the matrix P_{A} is a block-wise diagonal matrix, and diagonal blocks correspond to the weights on M_{J}. The diagonal block P_{A}^{ν} corresponding to the weight $\boldsymbol{\nu}$ is the matrix of the parabolic Kazhdan-Lusztig polynomials of type A associated to the parabolic subgroup $\mathfrak{S}_{\boldsymbol{\nu}}$ (up to powers of v), where $\mathfrak{S}_{\boldsymbol{\nu}}$ is the stabilizer of $e^{\boldsymbol{\nu}}$ in \mathfrak{S}_{n}.

We have the following.
Proposition 5.2. The matrices P_{A}, P_{B}, X, Y satisfy the following relation.

$$
\begin{equation*}
P_{B}=Y^{-1} P_{A} X \tag{5.2.1}
\end{equation*}
$$

Moreover, the matrices P_{B} and X are determined uniquely by P_{A} and Y. In other words, the parabolic Kazhdan-Lusztig polynomials of type B_{n} can be determined by various parabolic Kazhdan-Lusztig polynomials of type A and by the matrix Y.

Proof. It is clear that P_{A}, P_{B}, X, Y satisfy (5.2.1). We show that P_{A} and Y determine P_{B} and X uniquely. Write the equation (5.2.1) as

$$
\begin{equation*}
P_{B} X^{-1}=Y^{-1} P_{A} \tag{5.2.2}
\end{equation*}
$$

and consider (5.2.2) as the matrix equation with unknown matrices P_{B} and X. We fix a bijection $W^{J} \simeq \mathcal{I}_{J}$, and write the matrices as $P_{B}=\left(p_{i j}\right), X^{-1}=\left(x_{i j}\right)$ with $i, j \in \mathcal{I}_{J}$ along the order inherited from the order on W^{J}. Here $p_{i j} \in$ $v^{-1} \mathbb{Z}\left[v^{-1}\right]$ and $x_{i j} \in \mathbb{Q}(v)$ such that $\bar{x}_{i j}=x_{i j}$. We determine the matrices P_{B} and X^{-1} row wisely. Suppose that the first $(i-1)$-rows of P_{B} and X^{-1} are determined. Since P_{B} is lower unitriangular, one can write

$$
\begin{equation*}
\sum_{j=1}^{i-1} p_{i j} \mathbf{x}_{j}+\mathbf{x}_{i}=\boldsymbol{\alpha}_{i} \tag{5.2.3}
\end{equation*}
$$

where $\mathbf{x}_{j}\left(\right.$ resp. $\left.\boldsymbol{\alpha}_{j}\right)$ denotes the j-th row of $X^{-1}\left(\right.$ resp. $\left.Y^{-1} P_{A}\right)$, respectively. By applying the bar involution on (5.2.3), and by subtracting each other, one has

$$
\begin{equation*}
\sum_{j=1}^{i-1}\left(p_{i j}-\bar{p}_{i j}\right) \mathbf{x}_{j}=\boldsymbol{\alpha}_{i}-\overline{\boldsymbol{\alpha}}_{i} . \tag{5.2.4}
\end{equation*}
$$

Here $\mathbf{x}_{1}, \ldots, \mathbf{x}_{i-1}, \boldsymbol{\alpha}_{i}-\overline{\boldsymbol{\alpha}}_{i}$ are known vectors. Since $\mathbf{x}_{1}, \ldots, \mathbf{x}_{i-1}$ are linearly independent, (5.2.4) determines $d_{i j}=p_{i j}-\bar{p}_{i j}$ uniquely. But since $p_{i j} \in$ $v^{-1} \mathbb{Z}\left[v^{-1}\right], d_{i j}$ determines $p_{i j}$ uniquely. Thus the i-th row of P_{B} is determined. By substituting $p_{i j}$ into (5.2.3), the i-th row \mathbf{x}_{i} is also determined. Thus the matrices P_{B} and X^{-1} are determined.
5.3. The bases $\left\{e_{\sigma, \varepsilon}\right\}$ and $\left\{b_{\sigma, \varepsilon}\right\}$ appeared in Theorem 4.7 are nothing but the bases \mathcal{E} and \mathcal{B}, respectively. In order to relate these bases to the Kazhdan-Lusztig basis, it is essential to know about the matrix X since the matrix Y is more or less simpler than X. It would be an interesting problem to study the matrix X. One might expect that X has a relatively simple form compared to the matrix P_{B}. We give below a simple example of the matrix X, i.e., the relation between parabolic Kazhdan-Lusztig basis and the canonical basis.

Assume that W is the Weyl group of type B_{n}, and let W_{J} be the parabolic subgroup of type B_{n-1}. We put $J=\left\{t_{1}, s_{2}, \ldots, s_{n-1}\right\}$. Then the distinguished representatives W^{J} are given as

$$
W^{J}=\left\{s_{i} \cdots s_{n} \mid 2 \leq i \leq n+1\right\} \cup\left\{s_{i} \cdots s_{2} t_{1} s_{2} \cdots s_{n} \mid 1 \leq i \leq n\right\}
$$

under the convention that $s_{1}=s_{n+1}=1$. Assume that $V=V_{1} \oplus V_{2}$ with $\operatorname{dim} V_{1}=1, \operatorname{dim} V_{2}=2$. We fix bases $e_{1}^{(1)}$ of V_{1} and $e_{1}^{(2)}, e_{2}^{(2)}$ of V_{2}, respectively.

We also write $e_{3}=e_{2}^{(2)}, e_{2}=e_{1}^{(2)}, e_{1}=e_{1}^{(1)}$. Let us consider $M_{\boldsymbol{\lambda}, \mathbf{c}}$ as in 4.4, where $\boldsymbol{\lambda}=\left(\lambda^{(1)}, \lambda^{(2)}\right)=(-; n-1)$ and $\mathbf{c}=(1)$ (i.e., $t=1$). Then $M_{\lambda, \mathrm{c}}$ is isomorphic to the induced representation $\operatorname{Ind}_{\mathcal{H}}^{J} \boldsymbol{\mathcal { H }}, \varphi_{J}$, where \mathcal{H}_{J} is the parabolic subalgebra of $\mathcal{H}=\mathcal{H}_{n, 2}$ of type B_{n-1} and φ_{J} is as in 3.1. It can be decomposed into the direct sum of weight spaces $M_{\boldsymbol{\lambda}, \mathrm{c}}=V_{\boldsymbol{\nu}}^{\otimes n} \bigoplus V_{\nu^{\prime}}^{\otimes n}$, where $\boldsymbol{\nu}=(0,1, n-1), \boldsymbol{\nu}^{\prime}=(1,0, n-1)$ as weights for U_{v}. We define, for $1 \leq i \leq n$, I_{i}, I_{i}^{\prime} by

$$
\begin{aligned}
& I_{i}=(\underbrace{2^{(2)}, \ldots, 2^{(2)}}_{i-1 \text {-times }}, 2^{(1)}, 2^{(2)}, \ldots, 2^{(2)}), \\
& I_{i}^{\prime}=(\underbrace{2^{(2)}, \ldots, 2^{(2)}}_{i-1 \text {-times }}, 1^{(1)}, 2^{(2)}, \ldots, 2^{(2)}) .
\end{aligned}
$$

Then $b^{\nu}=b_{I_{n}}=e_{I_{n}}$ and $b^{\nu^{\prime}}=b_{I_{n}^{\prime}}=e_{I_{n}^{\prime}}$, and we have $m_{\boldsymbol{\lambda}, \mathrm{c}}=b_{I_{n}}+b_{I_{n}^{\prime}}$. The Kazhdan-Lusztig basis C_{σ}^{J} for $\sigma \in W^{J}$ can be expressed in terms of canonical basis, as

$$
C_{\sigma}^{J}= \begin{cases}b_{I_{i-1}}+b_{I_{i-1}} & \text { if } \sigma=s_{i} \cdots s_{n} \\ \left(v^{i}+v^{-i}\right) b_{I_{1}}-b_{I_{i+1}}+b_{I_{i+1}^{\prime}} & \text { if } \sigma=s_{i} \cdots s_{2} t s_{2} \cdots s_{n}\end{cases}
$$

This determines the matrix X completely.

References

[D] V.V. Deodhar; On some geometric aspects of Bruhat orderings II. The parabolic analogue of Kazhdan-Lusztig polynomials, J. Algebra, 111, (1987), 483-506.
[FKK] I. B. Frenkel, M. G. Khovanov, and A. A. Kirillov, Jr; Kazhdan-Lusztig polynomials and canonical basis, Transformation Groups, 3, No.4, (1998), 321-336.
[H] J. E. Humphreys; Reflection groups and Coxeter groups, Cambridge University Press, Cambridge 1990.
[Ja] J. C. Jantzen; Lectures on quantum groups, Graduate Studies in Math., 6, AMS, 1995.
[Ji] M. Jimbo, A q-analogue of $U(\mathfrak{g l}(N+1))$, Hecke algebra and the Yang-Baxter equation, Lett. Math. Phys. 11, (1986), 247-252.
[KL] D. Kazhdan and G. Lusztig; Representations of Coxeter groups and Hecke algebras, Invent. Math. 53, (1979), 165-184.
[L] G. Lusztig, Introduction to Quantum Groups, Progress in Math. 110, Birkhäuser, Boston 1993.
[S] T. Shoji; A Frobenius formula for the characters of Ariki-Koike algebras. J. Algebra 226, (2000), 818-856.
[SS] M. Sakamoto and T. Shoji; Schur-Weyl reciprocity for Ariki-Koike algebras, J. Algebra 221, (1999), 293-314.

Kiyotaka Ohkura
Department of Mathematics, Science University of Tokyo
Noda, Chiba 278-8510, Japan

Toshiaki Shoji
Department of Mathematics, Science University of Tokyo
Noda, Chiba 278-8510, Japan

