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Abstract. We prove the Lp boundedness of a class of parametric
Marcinkiewicz integral operators Mρ

Ω,h when h satisfies a certain integra-

bility condition and Ω belongs to the block space B
(0,−1/2)
q (Sn−1) for some

q > 1, n ≥ 2. Also, we obtain the Lp boundedness for a class of rough parametric
Marcinkiewicz integral operators M∗,ρ

Ω,h,λ and Mρ
Ω,h,S related to the Littlewood-

Paley g∗
λ-function and the area integral S, respectively. Our results are essential

improvement and extension of some previously known results.
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§1. Introduction

Let Rn (n ≥ 2) be the n−dimensional Euclidean space and Sn−1 be the unit
sphere in Rn equipped with the normalized Lebesgue measure dσ = dσ(·). For
x ∈ Rn\{0}, let x′ = x/ |x| .

For a suitable C1 function Ψ on R+ and a measurable function h : R+ −→
C define the parametric Marcinkiewicz integral operator Mρ

Ω,Ψ,h by

Mρ
Ω,Ψ,hf(x) =

⎛⎝∫ ∞

0

∣∣∣∣∣ 1tρ
∫
|y|≤t

f(x − Ψ(|y|)y′)Ω(y/ |y|)
|y|n−ρ h(|y|)dy

∣∣∣∣∣
2

dt

t

⎞⎠1/2

,

(1.1)

where ρ = α+ iβ (α, β ∈ R with α > 0) and f ∈ S(Rn), the space of Schwartz
functions and Ω is defined on Sn−1, Ω ∈ L1(Sn−1) and satisfies the vanishing
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condition ∫
Sn−1

Ω
(
x′) dσ

(
x′) = 0.(1.2)

Throughout this article, we denote Mρ
Ω,Ψ,h by Mρ

Ω,h if Ψ(t) ≡ t, p′ will
denote the dual exponent to p, that is 1/p + 1/p′ = 1 and ∆γ (R+) (γ > 1)
will denote the set of all measurable functions h on R+ such that

sup
R>0

⎛⎝ 1
R

R∫
0

|h (t)|γ dt

⎞⎠1/γ

< ∞.

It is well-known that M1
Ω,1 is the classical Marcinkiewicz integral operator

of higher dimension, corresponding to the Littlewood-Paley g-function, intro-
duced by E. Stein in [St1]. In 1958, Stein showed that if Ω is continuous
and Ω ∈ Lipα(Sn−1) (0 < α ≤ 1), then M1

Ω,1 is of type (p, p) (1 < p ≤ 2)
and of weak type (1, 1). In [BCP], Benedek, Calderón, and Panzone proved
that M1

Ω,1 is of type (p, p) for p ∈ (1,∞) if Ω ∈ C1
(
Sn−1

)
. Very recently,

Al-Qassem and Al-Salman in [AA] showed that M1
Ω,1 is of type (p, p) for

p ∈ (1,∞) if Ω ∈ B
(0,−1/2)
q (Sn−1) and the condition Ω ∈ B

(0,−1/2)
q (Sn−1) is

optimal in the sense that there exists an Ω which lies in B
(0,υ)
q (Sn−1) for all

−1 < υ < −1/2 such that M1
Ω,1 is not bounded on L2(Rn). On the other

hand, in 1960, Hörmander [Ho] proved that the parametric Marcinkiewicz op-
erator Mρ

Ω,1 is of type (p, p) for p ∈ (1,∞) if ρ > 0 and Ω ∈ Lipα(Sn−1)
(0 < α ≤ 1). 1996, Sakamoto and Yabuta [SY] studied the Lp boundedness
of the parametric Marcinkiewicz integral operator Mρ

Ω,1 if ρ is complex and
proved that Mρ

Ω,1 is of type (p, p) for p ∈ (1,∞) if Re(ρ) = α > 0 and Ω ∈
Lipτ (Sn−1) (0 < τ ≤ 1).

In light of the above results, the question regarding the Lp boundedness of
Mρ

Ω,1 under a non smooth condition on Ω has remained unanswered. The main
purpose of this article is to show that the Lp boundedness of the parametric
Marcinkiewicz operator Mρ

Ω,h holds when Ω lacks regularity and even when
an extra rough function h appears in the kernel. In fact, we are able to prove
the following more general result.

Theorem 1.1. Let h ∈ ∆γ (R+) with γ > 1. Let Ψ be in C2([0,∞)),
convex, and increasing function with Ψ(0) = 0. If Ω ∈ B

(0,−1/2)
q (Sn−1) and

Re(ρ) = α > 0, then∥∥∥Mρ
Ω,Ψ,h(f)

∥∥∥
Lp(Rn)

≤ Cp ‖Ω‖
B

(0,−1/2)
q (Sn−1)

‖f‖Lp(Rn)(1.3)
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is bounded on Lp(Rn) for |1/p − 1/2| < min{1/γ′, 1/2}.

Remarks. (a) We remark that on Sn−1, for any q > 1, 0 < τ ≤ 1 and −1 < υ,
the following inclusions hold and are proper:

C1(Sn−1) ⊂ Lipτ (Sn−1) ⊂ Lq(Sn−1) ⊂ L(log+ L)(Sn−1) ⊂ H1(Sn−1),(1.4)

⋃
r>1

Lr(Sn−1) ⊂ B(0,υ)
q (Sn−1).(1.5)

With regard to the relationship between B
(0,υ)
q (Sn−1) and H1(Sn−1) (for υ >

−1) remains open.
(b) We point out that the range of p given in Theorem 1.1 is the full

range (1, ∞) whenever γ ≥ 2. Also, the result in Theorem 1.1 extends the
result of Al-Qassem-Al-Salman [AA] who obtained Theorem 1.1 in the special
case h ≡ 1, ρ = 1 and Ψ(t) = t and also improves substantially the result of
Sakamoto and Yabuta [SY].

The paper is organized as follows. Section 2 contains the definition of the
block spaces B

(0,υ)
q (Sn−1) as well as some of their important properties. The

main estimates needed in the proofs of our results are established in Section
3. The proofs of Theorem 1.1 and additional results will be given in Sections
4–5. Throughout the rest of the paper the letter C will stand for a positive
constant not necessarily the same one at each occurrence.

Acknowledgment. The author would like to thank very much the referee
for his very valuable comments and suggestions.

§2. Some Definitions

The block spaces originated in the work of M. H. Taibleson and G. Weiss on the
convergence of the Fourier series in connection with the developments of the
real Hardy spaces. Below we shall recall the definition of block spaces on Sn−1.
For further background information about the theory of spaces generated by
blocks and its applications to harmonic analysis, see the book [LTW].

Definition 2.1. A q-block on Sn−1 is an Lq (1 < q ≤ ∞) function b(x) that
satisfies

(i) supp(b) ⊂ I; (ii) ‖b‖Lq ≤ |I|−1/q′ ,

where |I| = σ(I), and I = B(x′
0, θ0) = {x′ ∈ Sn−1 : |x′ − x′

0| < θ0} is a cap on
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Sn−1 for some x′
0 ∈ Sn−1 and θ0 ∈ (0, 1].

Jiang and Lu introduced (see [LTW]) the class of block spaces B
(0,υ)
q (Sn−1)

(for υ > −1) with respect to the study of homogeneous singular integral
operators.

Definition 2.2. The block space B
(0,υ)
q (Sn−1) is defined by

B(0,υ)
q (Sn−1) =

⎧⎨⎩Ω ∈ L1(Sn−1) : Ω =
∞∑

µ=1

λµbµ , M (0,υ)
q

({λµ}
)

< ∞
⎫⎬⎭ ,

where each λµ is a complex number; each bµ is a q-block supported on a cap

Iµ on Sn−1, υ > −1 and

M (0,υ)
q

({λµ}
)

=
∞∑

µ=1

∣∣λµ

∣∣ {1 + log(υ+1)(
∣∣Iµ

∣∣−1)
}

.(2.1)

Let ‖Ω‖
B

(0,υ)
q (Sn−1)

= inf{M (0,υ)
q

({λµ}
)
: Ω =

∑∞
µ=1 λµbµ and each bµ is a

q-block function supported on a cap Iµ on Sn−1}. Then ‖·‖
B

(0,υ)
q (Sn−1)

is a

norm on the space B
(0,υ)
q (Sn−1) and (B(0,υ)

q (Sn−1), ‖·‖
B

(0,υ)
q (Sn−1)

) is a Banach
space.

In their investigations of block spaces, Keitoku and Sato in [KS] showed
that these spaces enjoy the following properties:for any υ > −1 and q > 1,

B(0,υ2)
q (Sn−1) ⊂ B(0,υ1)

q (Sn−1) if υ2 > υ1 > −1;

B(0,υ)
q2

(Sn−1) ⊂ B(0,υ)
q1

(Sn−1) if 1 < q1 < q2;⋃
q>1B

(0,υ)
q (Sn−1) �

⋃
q>1L

q(Sn−1).

Definition 2.3. For a suitable C1 function Ψ on R+, a measurable function
h : R+ −→ C and a suitable function b̃µ on Sn−1 we define the family of
measures {σb̃µ ,t : t ∈ R+} and the maximal operator σ∗

b̃µ
on Rn by∫

Rn

fdσb̃µ ,t =
1
tρ

∫
1
2
t<|y|≤t

f(Ψ(|y|)y′)h(|y|) b̃µ(y′)
|y|n−ρ dy,

and

σ∗
b̃µ

f (x) = sup
t∈R+

∣∣∣∣∣∣σb̃µ ,t

∣∣∣ ∗ f(x)
∣∣∣ ,

where
∣∣∣σb̃µ ,t

∣∣∣ is defined in the same way as σb̃µ ,t, but with b̃µ replaced by
∣∣∣b̃µ

∣∣∣
and h replaced by |h| .
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§3. Main Estimates

Lemma 3.1. Let µ ∈ N and h ∈ ∆γ (R+) for some γ with 1 < γ ≤ 2.

Let b̃µ be a function on Sn−1 satisfying (i)
∫
Sn−1 b̃µ(y)dσ(y) = 0; (ii)

∥∥∥b̃µ

∥∥∥
q
≤∣∣Iµ

∣∣−1/q′ for some q > 1 and for some cap Iµ on Sn−1 with
∣∣Iµ

∣∣ < e−1; and

(iii)
∥∥∥b̃µ

∥∥∥
1
≤ 1. Assume that Ψ is in C2([0,∞)), convex, and an increasing

function with Ψ(0) = 0. Then there exist constants C and 0 < υ < 1/q′ such
that for all k ∈ Z and ξ ∈ Rn we have∥∥∥σb̃µ ,t

∥∥∥ ≤ C;(3.1) ∫ ωk+1
µ

ωk
µ

∣∣∣σ̂b̃µ ,t(ξ)
∣∣∣2 dt

t
≤ C log(

∣∣Iµ

∣∣−1)
∣∣∣Ψ(ωk−1

µ
)ξ
∣∣∣− 2υ

γ′ log(|Iµ |−1
) ;(3.2)

∫ ωk+1
µ

ωk
µ

∣∣∣σ̂b̃µ ,t(ξ)
∣∣∣2 dt

t
≤ C log(

∣∣Iµ

∣∣−1)
∣∣∣Ψ(ωk+1

µ
)ξ
∣∣∣ 2υ

γ′ log(|Iµ |−1
) ,(3.3)

where ωµ = 2
log(|Iµ |−1

)

and
∥∥∥σb̃µ ,t

∥∥∥ stands for the total variation of σb̃µ ,t. The
constant C is independent of k, µ, ξ and Ψ (·).

Proof. By (iii) and the definition of σb̃µ ,t, one can easily see that (3.1) holds
with a constant C independent of t and µ. Next we prove (3.2). By definition,

σ̂b̃µ ,t(ξ) =
1
tρ

∫ t

1
2
t

∫
Sn−1

e−iΨ(s)ξ·xb̃µ(x)
h(s)
s1−ρ

dσ (x) ds.

By Hölder’s inequality, a change of variable, the assumption 1 < γ ≤ 2 and
since ∣∣∣∣∫

Sn−1

e−iΨ(s)ξ·xb̃µ(x)dσ (x)
∣∣∣∣ ≤ 1,

we obtain

∣∣∣σ̂b̃µ ,t(ξ)
∣∣∣ ≤

(∫ t

1
2
t
|h(s)|γ ds

s

)1/γ
⎛⎝∫ t

1
2
t

∣∣∣∣∫
Sn−1

e−iΨ(s)ξ·xb̃µ(x)dσ (x)
∣∣∣∣γ

′
ds

s

⎞⎠1/γ′

≤ C

(∫ t

1
2
t

∣∣∣∣∫
Sn−1

e−iΨ(s)ξ·xb̃µ(x)dσ (x)
∣∣∣∣2 ds

s

)1/γ′

= C

(∫
Sn−1×Sn−1

b̃µ(x)b̃µ(y)Iµ,t(ξ, x, y)dσ (x) dσ(y)
)1/γ′

,(3.4)
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where

Iµ,t(ξ, x, y) =
∫ 1

1/2
e−iΨ(ts)ξ·(x−y) ds

s
.

Write Iµ,t(ξ, x, y) as

Iµ,t(ξ, x, y) =
∫ 1

1/2
G′

t(s)
ds

s
,

where

Gt(s) =
∫ s

1/2
e−iΨ(tw)ξ·(x−y)dw, 1/2 ≤ s ≤ 1.

By the assumptions on Ψ and using the mean value theorem we have

d

dw
(Ψ(tw)) = tΨ′(tw) ≥ Ψ(tw)

w
≥ Ψ(t/2)

s
for 1/2 ≤ w ≤ s ≤ 1.

Thus by van der Corput’s lemma, |Gt(s)| ≤
∣∣∣∣Ψ(t/2)ξ

s

∣∣∣∣−1

|ξ′ · (x − y)|−1 . By

integration by parts, we get

|Iµ,t(ξ, x, y)| ≤ C |Ψ(t/2)ξ|−1
∣∣ξ′ · (x − y)

∣∣−1
,

which when combined with the trivial estimate |Iµ,t(ξ, x, y)| ≤ log 2 and choos-
ing τ such that 0 < τ < 1/q′ yields to

|Iµ,t(ξ, x, y)| ≤ |Ψ(t/2)ξ|−τ
∣∣ξ′ · (x − y)

∣∣−τ
.(3.5)

By Hölder’s inequality and (ii) we get∣∣∣σ̂b̃µ ,t(ξ)
∣∣∣ ≤ C |Ψ(t/2)ξ|−τ/γ′ ∥∥∥b̃µ

∥∥∥2/γ′

q

×
(∫

Sn−1×Sn−1

∣∣ξ′ · (x − y)
∣∣−τq′

dσ (x) dσ(y)
)1/(q′γ′)

≤ C |Ψ(t/2)ξ|−τ/γ′ ∣∣Iµ

∣∣−2/(q′γ′)
.

Therefore,∫ ωk+1
µ

ωk
µ

∣∣∣σ̂b̃µ ,t(ξ)
∣∣∣2 dt

t

≤ C min{log(
∣∣Iµ

∣∣−1), log(
∣∣Iµ

∣∣−1)
∣∣∣∣Ψ(

1
2
ωk

µ
)ξ
∣∣∣∣−2τ/γ′ ∣∣Iµ

∣∣−4/(q′γ′)}

≤ C log(
∣∣Iµ

∣∣−1)
∣∣∣Ψ(ωk−1

µ
)ξ
∣∣∣− 2τ

γ′ log(|Iµ |−1
) ,
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which proves (3.2). To prove (3.3), we use the cancellation condition of b̃µ to
get ∣∣∣σ̂b̃µ ,t(ξ)

∣∣∣ ≤ ∫
Sn−1

∫ t

1
2
t

∣∣∣e−iΨ(s)ξ·x − 1
∣∣∣ |h(s)|

∣∣∣b̃µ(x)
∣∣∣ ds

s
dσ(x).

Hence, by (iii) and since Ψ is increasing we get∣∣∣σ̂b̃µ ,t(ξ)
∣∣∣ ≤ C |Ψ(t)ξ| .

By using the same argument as above we get (3.3). The lemma is proved.

By the same argument as in [St3, p. 57] we get

Lemma 3.2. Let ϕ be a nonnegative, decreasing function on [0,∞) with∫
[0,∞) ϕ(t)dt = 1. Then∣∣∣∣∣

∫
[0,∞)

f(x− ty′)ϕ(t)dt

∣∣∣∣∣ ≤ My′f(x),

where

My′f(x) = sup
R∈R

1
R

∫ R

0

∣∣f(x − sy′)
∣∣ ds

is the Hardy-Littlewood maximal function of f in the direction of y′.

Lemma 3.3. Let µ ∈ N, h ∈ ∆γ (R+) for some γ > 1. Assume that
b̃µ ∈ L1(Sn−1) and Ψ is in C2([0,∞)), convex, and increasing function with
Ψ(0) = 0. Then, for γ′ < p < ∞, there exists a positive constant Cp such that∥∥∥σ∗

b̃µ
(f)
∥∥∥

Lp(Rn)
≤ Cp

∥∥∥b̃µ

∥∥∥
L1(Sn−1)

‖f‖Lp(Rn) .(3.6)

Proof. By Hölder’s inequality, we have∣∣∣∣∣∣σb̃µ ,t

∣∣∣ ∗ f(x)
∣∣∣

≤
(∫ t

1
2
t
|h(s)|γ ds

s

)1/γ (∫ t

1
2
t

∣∣∣∣∫
Sn−1

b̃µ(y′)f(x − Ψ(s)y′)dσ(y′)
∣∣∣∣γ′

ds

s

)1/γ′

≤ C

(∫ t

1
2
t

∫
Sn−1

∣∣∣b̃µ(y′)
∣∣∣ ∣∣f(x − Ψ(s)y′)

∣∣γ′
dσ(y′)

ds

s

)1/γ′

.
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Thus

σ∗
b̃µ

f(x) ≤ C

(∫
Sn−1

∣∣∣b̃µ(y′)
∣∣∣MΨ,y′(|f |γ′

)(x)dσ(y′)
)1/γ′

,(3.7)

where

MΨ,y′f(x) = sup
t∈R+

1
t

∣∣∣∣∫ t

0
f(x − Ψ(s)y′)ds

∣∣∣∣ .
Without loss of generality, we may assume that Ψ(t) > 0 for all t > 0. By a
change of variable we have

MΨ,y′f(x) ≤ sup
t∈R+

(
1
t

∫ Ψ(t)

0

∣∣f(x− sy′)
∣∣ ds

Ψ′(Ψ−1(s))

)
.

Since the function 1
tΨ′(Ψ−1(s))

is non-negative, decreasing and its integral over
[0, Ψ(t)] is equal to 1, by Lemma 3.2 we obtain

MΨ,y′f(x) ≤ My′f(x).(3.8)

By (3.7)-(3.8) and Minkowski’s inequality for integrals we get

∥∥∥σ∗
b̃µ

(f)
∥∥∥

Lp(Rn)
≤ C

(∫
Sn−1

∣∣∣b̃µ(y′)
∣∣∣ ∥∥∥My′(|f |γ′

)
∥∥∥

Lp/γ′ (Rn)
dσ(y′)

)1/γ′

.(3.9)

Since My′ is bounded Lp(Rn) with bound independent of y′, we immediately
get (3.6). This completes the proof of the lemma.

Lemma 3.4. Let µ ∈ N, h ∈ ∆γ (R+) for some γ ∈ (1, 2]. Assume that
b̃µ ∈ L1(Sn−1) and Ψ is in C2([0,∞)), convex, and increasing function with
Ψ(0) = 0. Then, for any p satisfying |1/p − 1/2| < 1/γ′, there exists a positive
constant Cp such that∥∥∥∥∥∥

(∑
k∈Z

∫ ωk+1
µ

ωk
µ

∣∣∣σb̃µ ,t ∗ gk

∣∣∣2 dt

t

)1/2
∥∥∥∥∥∥

Lp(Rn)

≤ Cp(log
∣∣Iµ

∣∣−1)1/2
∥∥∥b̃µ

∥∥∥
L1(Sn−1)

∥∥∥∥∥(∑
k∈Z

|gk|2)1/2

∥∥∥∥∥
Lp(Rn)

(3.10)

holds for arbitrary functions {gk(·)}k∈Z on Rn. The constant Cp is independent
of µ.
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Proof. Assume first that 2 ≤ p < 2γ
2−γ . We use a similar argument as in the

proof of Theorem 7.5 in [FP]. By duality there exists a nonnegative function
f in L(p/2)′(Rn) with ‖f‖(p/2)′ ≤ 1 such that∥∥∥∥∥∥

(∑
k∈Z

∫ ωk+1
µ

ωk
µ

∣∣∣σb̃µ ,t ∗ gk

∣∣∣2 dt

t

)1/2
∥∥∥∥∥∥

2

Lp(Rn)

=
∑
k∈Z

∫
Rn

∫ ωk+1
µ

ωk
µ

∣∣∣σb̃µ ,t ∗ gk(x)
∣∣∣2 dt

t
f(x)dx.

By Schwarz’s inequality we get

∣∣∣σb̃µ ,t ∗ gk(x)
∣∣∣2 ≤

(∫ t

1
2
t

∫
Sn−1

|gk(x − Ψ(s)y)| |h(s)|
∣∣∣b̃µ(y)

∣∣∣ dσ(y)
ds

s

)2

≤ C
∥∥∥b̃µ

∥∥∥
L1(Sn−1)

(∫ t

1
2
t

∫
Sn−1

|gk(x − Ψ(s)y)|2
∣∣∣b̃µ(y)

∣∣∣ |h(s)|2−γ dσ(y)
ds

s

)
.

Therefore, by a change of variable we have∥∥∥∥∥∥
(∑

k∈Z

∫ ωk+1
µ

ωk
µ

∣∣∣σb̃µ ,t ∗ gk

∣∣∣2 dt

t

)1/2
∥∥∥∥∥∥

2

Lp(Rn)

≤ C
(
log
∣∣Iµ

∣∣−1
)∥∥∥b̃µ

∥∥∥
L1(Sn−1)

∫
Rn

(∑
k∈Z

|gk(x)|2
)

M̃|h|2−γ ,b̃µ
f(x)dx,(3.11)

where

M̃|h|2−γ ,b̃µ
f(x) = sup

t∈R+

⎛⎝∫
1
2
t<|y|≤t

∣∣f(x + Ψ(|y|)y′)∣∣ |h(|y|)|2−γ

∣∣∣b̃µ(y)
∣∣∣

|y|n dy

⎞⎠ .

By Lemma 3.3 and noticing that |h(·)|2−γ ∈ ∆
γ/(2−γ)

(R+) and (p/2)′ >(
γ

2−γ

)′
we obtain

∥∥∥M̃|h|2−γ ,b̃µ
f
∥∥∥

L(p/2)′(Rn)
≤ Cp

∥∥∥b̃µ

∥∥∥
L1(Sn−1)

‖f‖L(p/2)′ (Rn) ≤ Cp

∥∥∥b̃µ

∥∥∥
L1(Sn−1)

.

(3.12)

Thus, by (3.11)–(3.12) and Hölder’s inequality we get (3.10) for 2 ≤ p < 2γ
2−γ .
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Now we need to prove (3.11) for the case 2γ
3γ−2 < p < 2. Let Eµ,k =

[ωk
µ
, ωk+1

µ
). By a duality argument, there exist functions f = fk(x, t) defined

on Rn × R+ with
∥∥∥∥∥∥‖fk‖L2(Eµ,k,dt/t)

∥∥∥
l2

∥∥∥
Lp′

≤ 1 such that∥∥∥∥∥∥
(∑

k∈Z

∫ ωk+1
µ

ωk
µ

∣∣∣σb̃µ ,t ∗ gk

∣∣∣2 dt

t

)1/2
∥∥∥∥∥∥

p

=
∫
Rn

∑
k∈Z

∫
Eµ,k

(
σb̃µ ,t ∗ gk(x)

)
fk(x, t)

dt

t
dx

≤ Cp(log
∣∣Iµ

∣∣−1)1/2

∥∥∥∥∥(∑
k∈Z

|gk|2)1/2

∥∥∥∥∥
p

∥∥∥(S(f))1/2
∥∥∥

p′
,(3.13)

where

S(f)(x) =
∑
k∈Z

∫
Eµ,k

∣∣∣σb̃µ ,t ∗ fk(x, t)
∣∣∣2 dt

t
.

Now, since p′ > 2, there exists a function q ∈ L(p′/2)′(Rn) such that

‖S(f)‖p′/2 =
∑
k∈Z

∫
Rn

∫
Eµ,k

∣∣∣fk(x, t) ∗ σb̃µ ,t

∣∣∣2 dt

t
q(x)dx.

By the same argument as above, we have

‖S(f)‖p′/2

≤ C
∥∥∥b̃µ

∥∥∥
L1(Sn−1)

∫
Rn

M̃|h|2−γ ,b̃µ
q(x)

(∑
k∈Z

∫
Eµ,k

|fk(x, t)|2 dt

t

)
dx

≤ C
∥∥∥b̃µ

∥∥∥
L1(Sn−1)

∥∥∥∥∥
(∑

k∈Z

∫
Eµ,k

|fk(·, t)|2 dt

t

)∥∥∥∥∥
p′/2

∥∥∥M̃|h|2−γ ,b̃µ
q
∥∥∥

(p′/2)′
.

By invoking Lemma 3.3 we obtain∥∥∥M̃|h|2−γ ,b̃µ
(q)
∥∥∥

(p′/2)′
≤ Cp

∥∥∥b̃µ

∥∥∥
L1(Sn−1)

‖q‖(p′/2)′ ≤ Cp

∥∥∥b̃µ

∥∥∥2

L1(Sn−1)
.

Thus by our choice of fk(x, t) we have

‖S(f)‖p′/2 ≤ Cp

∥∥∥b̃µ

∥∥∥2

L1(Sn−1)

∥∥∥∥∥
(∑

k∈Z

∫
Eµ,k

|fk(·, t)|2 dt

t

)∥∥∥∥∥
p′/2

≤ Cp

∥∥∥b̃µ

∥∥∥2

L1(Sn−1)

which in turn along with (3.13) gives (3.10) for 2γ
3γ−2 < p < 2. The proof is

complete.
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§4. Conclusion

Assume that Ω ∈ B
(0,−1/2)
q (Sn−1) for some q > 1 and satisfies (1.2). Thus Ω

can be written as Ω =
∞∑

µ=1
λµbµ , where λµ ∈ C, bµ is a q-block supported on

a cap Iµ on Sn−1 and M
(0,−1/2)
q

({λµ}
)

< ∞. To each block function bµ(·), let

b̃µ(·) be a function defined by

b̃µ(x) = bµ(x) −
∫
Sn−1

bµ(u)dσ(u).(4.1)

Let J =
{
µ ∈ N :

∣∣Iµ

∣∣ < e−1
}

. Let b̃0 = Ω−
∞∑

µ∈J

λµ b̃µ . Then for some positive

constant C, the following holds for all µ ∈ J ∪ {0}:∫
Sn−1

b̃µ (u) dσ (u) = 0,(4.2) ∥∥∥b̃µ

∥∥∥
q

≤ C
∣∣Iµ

∣∣−1/q′
,(4.3) ∥∥∥b̃µ

∥∥∥
1

≤ C,(4.4)

Ω =
∑

µ∈J∪{0}
λµ b̃µ ,(4.5)

where |I0 | = e−1.

By (4.5) we have

Mρ
Ω,Ψ,h(f) ≤

∑
µ∈J∪{0}

∣∣λµ

∣∣Mρ

b̃µ ,Ψ,h
(f).(4.6)

Therefore, Theorem 1.1 is proved if we can show that∥∥∥∥Mρ

b̃µ ,Ψ,h
(f)
∥∥∥∥

Lp(Rn)

≤ Cp(log
∣∣Iµ

∣∣−1)1/2 ‖f‖Lp(Rn)(4.7)

for µ ∈ J ∪ {0} and for p satisfying |1/p − 1/2| < min{1/γ′, 1/2}.
Since ∆γ (R+) ⊆ ∆2 (R+) for γ ≥ 2, we may assume that 1 < γ ≤ 2.

Therefore, it suffices to prove (4.7) for p satisfying |1/p − 1/2| < 1/γ′. For
k ∈ Z and µ ∈ N, let aµ,k = Ψ(ωk

µ
). We notice that {aµ,k : k ∈ Z} is a

lacunary sequence with aµ,k+1/aµ,k ≥ ωµ . As in [AP], let {Λk,µ}∞−∞ be a
smooth partition of unity in (0, ∞) adapted to the interval Ik,µ = [a−1

µ,k+1,
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a−1
µ,k−1]. To be precise, we require the following:

Λk,µ ∈ C∞, 0 ≤ Λk,µ ≤ 1,
∑

k

Λk,µ (t) = 1;

supp Λk,µ ⊆ Ik,µ,

∣∣∣∣dsΛk,µ (t)
dts

∣∣∣∣ ≤ Cs

ts
,

where Cs is independent of the lacunary sequence {aµ,k : k ∈ Z}. Let Ψ̂k,µ(ξ) =
Λk,µ(|ξ|).

By Minkowski’s inequality we have

Mρ

b̃µ ,Ψ,h
f(x) =

⎛⎝∫ ∞

0

∣∣∣∣∣
∞∑

k=0

2−kρσb̃µ ,2−kt ∗ f(x)

∣∣∣∣∣
2

dt

t

⎞⎠1/2

≤
∞∑

k=0

2−kα

(∫ ∞

0

∣∣∣σb̃µ ,2−kt ∗ f(x)
∣∣∣2 dt

t

)1/2

=
(

1
1 − 2−α

)(∫ ∞

0

∣∣∣σb̃µ ,t ∗ f(x)
∣∣∣2 dt

t

)1/2

.

Decompose

f ∗ σb̃µ ,t(x) =
∑
j∈Z

∑
k∈Z

(Ψk+j,µ ∗ σb̃µ ,t ∗ f)(x)χ
[ωk

µ,ωk+1
µ )

(t) :=
∑
j∈Z

Yj,µ(x, t)

and define

Sj,µf(x) =
(∫ ∞

0
|Yj,µ(x, t)|2 dt

t

)1/2

.

Then

Mρ

b̃µ ,Ψ,h
(f) ≤

(
1

1 − 2−α

)∑
j∈Z

Sj,µ(f)

holds for f ∈ S(Rn).
Thus, to prove (4.7), it is enough to show that

‖Sj,µ(f)‖Lp(Rn) ≤ C(log
∣∣Iµ

∣∣−1)1/22−αp|j| ‖f‖Lp(Rn)(4.8)

for some αp > 0 and for p satisfying |1/p − 1/2| < 1/γ′.
To prove (4.8), let us first compute the L2-norm of Sj,µ(f). By using

Plancherel’s theorem, we have

‖Sj,µ(f)‖2
L2(Rn) =

∑
k∈Z

∫
Rn

∫ ωk+1
µ

ωk
µ

∣∣∣Ψk+j,µ ∗ σb̃µ ,t ∗ f(x)
∣∣∣2 dt

t
dx

≤
∑
k∈Z

∫
Γk+j,µ

(∫ ωk+1
µ

ωk
µ

∣∣∣σ̂b̃µ ,t(ξ)
∣∣∣2 dt

t

)∣∣∣f̂(ξ)
∣∣∣2 dξ,
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where

Γk,µ = {ξ ∈ Rn : |ξ| ∈ Ik,µ} .

Thus, by Lemma 3.1 we have

‖Sj,µ(f)‖L2(Rn) ≤ C(log
∣∣Iµ

∣∣−1)1/2 2−
α
2
|j| ‖f‖L2(Rn) .(4.9)

Next, let us compute the Lp boundedness of the operator Sj,µ. For
|1/p − 1/2| < 1/γ′, we have

‖Sj,µ(f)‖Lp(Rn) ≤ Cp(log
∣∣Iµ

∣∣−1)1/2

∥∥∥∥∥∥
(∑

k∈Z

|Ψk+j,µ ∗ f |2
)1/2

∥∥∥∥∥∥
Lp(Rn)

≤ Cp(log
∣∣Iµ

∣∣−1)1/2 ‖f‖Lp(Rn) .(4.10)

The last two inequalities are obtained by applying Lemma 3.4 and applying the
Littlewood-Paley theory and Theorem 3 along with the remark that follows
its statement in ([St2], p. 96).

Now by interpolation between (4.9) and (4.10) we get (4.8). This completes
the proof of Theorem 1.1.

§5. Further results

As an application of Theorem 1.1, we get the Lp boundedness for a class
of parametric Marcinkiewicz operators M∗,ρ

Ω,Ψ,h,λ and Mρ
Ω,Ψ,h,S related to the

Littlewood-Paley g∗λ-function and the area integral S, respectively. The def-
inition and the precise statement of the results regarding of these operators
are given as follows:

Theorem 5.1. Let h ∈ ∆γ (R+) for some γ > 1. Let Ψ be in C2([0,∞)),
convex, and increasing function with Ψ(0) = 0. If Ω ∈ B

(0,−1/2)
q (Sn−1), there

exists Cp > 0 such that∥∥∥Mρ
Ω,Ψ,h,S(f)

∥∥∥
Lp(Rn)

+
∥∥∥Mρ,∗

Ω,Ψ,h,λ(f)
∥∥∥

Lp(Rn)
≤ Cp

(1 − 2−α)
‖f‖Lp(Rn)(5.1)

for 2 ≤ p < ∞. Here α = Reρ > 0, Mρ
Ω,Ψ,h,S and Mρ,∗

Ω,Ψ,h,λ are defined by

Mρ
Ω,Ψ,h,Sf(x) =

(∫
Γ(x)

∣∣∣F ρ
Ω,Ψ,hf(t, y)

∣∣∣2 dydt

tn+1

)1/2

,

Mρ,∗
Ω,Ψ,h,λf(x) =

(∫
Rn+1

+

(
t

t + |x − y|
)nλ ∣∣∣F ρ

Ω,Ψ,hf(t, y)
∣∣∣2 dydt

tn+1

)1/2

,
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where λ > 1, Γ(x) =
{
(y, t) ∈ Rn+1

+ : |x − y| < t
}

and

F ρ
Ω,Ψ,hf(t, x) =

1
tρ

∫
|u|≤t

f(x − Ψ(|u|)u′)
Ω(u′)
|u|n−ρ h(|u|)du.

The proof of theorem 5.1 is based on the following lemma.

Lemma 5.2. Let λ > 1. Then, for any nonnegative locally integrable function
g, we have∫

Rn

(
Mρ,∗

Ω,Ψ,h,λf(x)
)2

g(x)dx ≤ C

(1 − 2−α)

∫
Rn

|f(x)|2 Mg(x)dx,(5.2)

where M denotes the usual Hardy-Littlewood maximal operators on Rn.

A proof of this lemma can be obtained by Theorem 1.1 and following a
similar argument as in the proof of Theorem 5 in Torchinsky and Wang [TW].

Proof of Theorem 5.1. Since Mρ
Ω,Ψ,h,Sf(x) ≤ 2nλMρ,∗

Ω,Ψ,h,λf(x), we only
consider the operator Mρ,∗

Ω,Ψ,h,λ. Let g ≡ 1 in (5.2). The by the L∞ bounded-
ness of M we have∫

Rn

(
Mρ,∗

Ω,Ψ,h,λf(x)
)2

dx ≤ C

(1 − 2−α)

∫
Rn

|f(x)|2 dx,(5.3)

and hence we get Mρ,∗
Ω,Ψ,h,λ is bounded on L2. When 2 < p < ∞, choose

g ∈ L(p/2)′ with ‖g‖(p/2)′ ≤ 1 such that∥∥∥Mρ,∗
Ω,Ψ,h,λf

∥∥∥2

p
=
∣∣∣∣∫

Rn

(
Mρ,∗

Ω,Ψ,h,λf(x)
)2

g(x)dx

∣∣∣∣ .
Thus, by Lemma 5.2 and Hölder’s inequality we get∥∥∥Mρ,∗

Ω,Ψ,h,λf
∥∥∥2

p
≤ C

(1 − 2−α)

∫
Rn

|f(x)|2 Mg(x)dx

≤ C

(1 − 2−α)
‖f‖2

p ‖Mg‖(p/2)′

≤ C

(1 − 2−α)
‖Ω‖

B
(0,−1/2)
q (Sn−1)

‖f‖2
p

which ends the proof of Theorem 5.1.

Remark. We point out that Theorem 5.1 extends and improves the corre-
sponding results in [KY] where the authors of [KY] obtained that the operators
Mρ,∗

Ω,Ψ,h,λ and Mρ
Ω,Ψ,h,S are bounded on Lp(Rn) (2 ≤ p < ∞) if Ψ(y) ≡ y,

h ≡ 1 and Ω ∈ Lipτ (Sn−1) (0 < τ ≤ 1).
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