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Abstract. The basis number of a graph G is defined to be the least integer d
such that there is a basis B of the cycle space of G such that each edge of G is
contained in at most d members of B. We investigate the basis number of the
lexicographic product of two circular ladders, two Möbius ladders, a circular
ladder and a Möbius ladder, a Möbius ladder and a circular ladder, a ladder
and a circular ladder, a circular ladder and a ladder, a Möbius ladder and a
ladder, a ladder and a Möbius ladder, and two ladders.
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§1. Introduction

For a given graph G, we denote the vertex set of G by V (G) and the edge set
by E(G). Given a graph G, let e1, e2, . . . , e|E(G)| be an ordering of its edges.
Then a subset S of E(G) corresponds to a (0, 1)-vector (b1, b2, . . . , b|E(G)|) in
the usual way with bi = 1 if ei ∈ S, and bi = 0 if ei /∈ S. These vectors form
an |E(G)|-dimensional vector space, denoted by (Z2)|E(G)|, over the field of
integers modulo 2. The vectors in (Z2)|E(G)| which correspond to the cycles
in G generate a subspace called the cycle space of G denoted by C(G). We
shall say that the cycles themselves, rather than the vectors corresponding to
them, generate C(G). It is known that

dim C(G) = |E(G)| − |V (G)| + r(1)

where r is the number of connected components.
A basis B for C(G) is called a d−fold if each edge of G occurs in at most d of

the cycles in the basis B. The basis number b(G) of G is the least non-negative
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integer d such that C(G) has a d-fold basis. The basis number was introduced
by Schmeichel [12] in 1981, but already in 1937 MacLane [11] gave a criterion
for a graph to be planar. In fact, MacLane proved that a graph is planar if
and only if its basis number is less than or equal to 2.

In 1990, Hulsurkar [7] studied the graph structure of Weyl groups and
proved that most of the graphs Γ(W ) are non planar (b(Γ(W )) ≥ 3, (the exact
basis number for those graphs is still unknown) which plays an important role
in studying the modular representation on the semi-simple Lie algebra and
Chevalley groups[13]. The basis number of certain classes of non planar graphs
plays an important role in studying the graphs Γ(W ) where Γ(W ) is the graph
defined for Weyl groups which is compatible with the partial order introduced
earlier for the proof of Verma’s conjecture on Weyl’s dimension polynomial
[8].

In 1981, Schmeichel [12] proved that b(Kn) = 3 whenever n ≥ 5 and
b(Kn,m) ≤ 4 for each n and m. In 1982, Bank and Schmeichel [5] proved
that b(Qn) = 4 whenever n ≥ 7. Many papers appeared to investigate the
basis number of certain graphs, especially the graph products, see [1], [3], [4],
[9] and [10].

Let G = (V (G),E(G)) and H = (V (H), E(H)) be two graphs. The carte-
sian product G∗ = G × H has the vertex set V (G∗) = V (G) × V (H) and
the edge set E(G∗) = {(u1, v1)(u2, v2)|u1u2 ∈ E(G) and v1 = v2, or u1 =
u2 and v1v2 ∈ E(H)}. The lexicographic product G∗ = G[H] has the vertex
set V (G∗) = V (G) × V (H) and the edge set E(G∗) = {(u1, v1)(u2, v2)|u1u2 ∈
E(G), or u1 = u2 and v1v2 ∈ E(H)}.

The required basis of C(G) is a basis that is b(G)-fold. Let G and H be
two graphs and ϕ : G → H be an isomorphism and B be a (required) basis of
C(G). Then B′

= {ϕ(c)|c ∈ B} is called the corresponding (required) basis of
B in H. A graph is called perfect matching if the degree of each vertex is 1.

Throughout this work fB(e) stands for the number of cycles in B containing
e where B ⊂ C(G), BG stands for the required basis of G, and �x� stands for
the greatest integer less than or equal to x. Finally, if B is a set of cycles,
then E(B) = ∪c∈BE(c).

§2. Main Results

In this section, we compute the basis number of the lexicographic product
of two circular ladders, two Möbius ladders, a circular ladder and a Möbius
ladder, a Möbius ladder and a circular ladder, a ladder and a circular ladder,
a circular ladder and a ladder, a Möbius ladder and a ladder, a ladder and a
Möbius ladder, and two ladders. Actually we show, under some restrictions
on their orders, the basis number is 4. Let u1, u2, ..., u2m and a1, a2, . . . , a2n
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be sets of vertices. For any edge e = ab one can easily see that e[N2m] is
isomorphic to K2m,2m where N2m is a null graph with 2m vertices. Moreover,
e[P2m] is decomposable into e[N2m]∪ (a × P2m) ∪ (b × P2m), where P2m is a
path of order 2m. Let

Aab = {(a, uj)(b, ul)(a, uj+1)(b, ul+1)(a, uj) : 1 ≤ j, l ≤ 2m − 1}.

Then Aab is the Schemeichel’s 4-fold basis of C(e[N2m]) (see Theorem 2.4
in [11]). Moreover, (1) if e = (a, u1)(b, u2m) or e = (a, u2m)(b, u1) or e =
(a, u1)(b, u1) or e = (a, u2m)(b, u2m), then fAab

(e) = 1. (2) If e = (a, u1)(b, ul)
or (a, uj)(b, u1) or (a, u2m)(b, ul) or (a, uj)(b, u2m), then fAab

(e) ≤ 2. (3) if
e ∈ E(e[N2m]) and is not of the above form, then fAab

(e) ≤ 4. Also, for any
edge e = ab, set

Da = {D(j)
a = (a, uj)(a, uj+1)(b, u2m)(a, uj) : 1 ≤ j ≤ 2m − 1},

Db = {D(j)
b = (b, uj)(b, uj+1)(a, u2m)(b, uj) : 1 ≤ j ≤ 2m − 1},

Dab = Da ∪ Db.

Lemma 2.1. For any edge e = ab, Bab = Aab ∪Dab is a linearly independent
set of cycles.

Proof. Since Aab is a basis of C(e[N2m]), Aab is a linearly dependent set of
cycles. Since each cycle D(j)

a contains (a, uj)(a, uj+1) which is not in any other
cycle of Da ∪ Aab, Da ∪ Aab is linearly independent. Similarly, each cycle
D(j)

b contains (b, uj)(b, uj+1) which is not in any other cycle of Da ∪Db ∪Aab.
Therefore, Bab is a linearly independent set of cycles. The proof is complete.

Lemma 2.2. Let A,B be sets of cycles of a graph G, and suppose that both
A and B are linearly independent, and E(A) ∩ E(B) induces a forest in G
(we allow the possibility that E(A) ∩ E(B) = φ). Then A ∪ B is linearly
independent.

Proof. Assume that A∪B is linearly independent. Then there are C1, C2, . . . ,
Cl ∈ A and D1,D2, . . . ,Dt ∈ B such that

∑l
1 Ci =

∑t
1 Di (mod 2). Hence,

E(C1 ⊕ C2 ⊕ · · · ⊕ Cl) = E(D1 ⊕ D2 ⊕ · · · ⊕ Dt) ⊆ E(A) ∩ E(B),

where ⊕ is the ring sum. So C1 ⊕ C2 ⊕ · · · ⊕ Cl and D1 ⊕ D2 ⊕ · · · ⊕ Dt are
subsets of a forest which contradicts the fact that any linear combination of
cycles of linearly independent set of cycles is a cycle or an edge disjoint union
of cycles. The proof is complete.
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Lemma 2.3. (∪2n−1
i=1 Baiai+1)∪(∪n−1

i=1 Ban−ian+i+1) is a linearly independent set.

Proof. By Lemma 2.1, Ban−ian+i+1 is a linearly independent set of cycles for
each i = 1, 2, . . . , n − 1. It is easy to see that the subgraph consisting of
{an−ian+i+1; i = 1, 2, . . . , n−1} is a perfect matching. Thus, E(Ban−ian+i+1)∩
E(Ban−ran+r+1) = φ for each i �= r. So, ∪n−1

i=1 Ban−ian+i+1 is a linearly indepen-
dent set. We now proceed using induction on n to show that ∪2n−1

i=1 Baiai+1 is
linearly independent. By Lemma 2.1, Baiai+1 is linearly independent for each
i = 1, 2, . . . , 2n − 1. Thus, the result is true for n = 2. Assume that n > 2
and the result is true for smaller values of n (i,e. ∪2n−3

i=1 Baiai+1 is linearly inde-
pendent). Since E(Ba2n−2a2n−1) ∩ E(Ba2n−1a2n) = {(a2n−1,uj)(a2n−1,uj+1)|j =
1, 2, . . . 2m−1}, which is an edge set of a path, then, by lemma 2.2, Ba2n−2a2n−1∪
Ba2n−1a2n is linearly independent. Similarly, E(∪2n−3

i=1 Baiai+1)∩E(Ba2n−2a2n−1∪
Ba2n−1a2n) = {(a2n−2,uj)(a2n−2,uj+1)|j = 1, 2, . . . 2m− 1} which is an edge set
of a path. Thus, by lemma 2.2, ∪2n−1

i=1 Baiai+1 is linearly independent. Finally,
note that E(∪2n−1

i=1 Baiai+1) ∩ E(∪n−1
i=1 Ban−ian+i+1) = {(an−i,uj)(an−i,uj+1)|i =

1, 2, . . . , n−1; j = 1, 2, . . . 2m−1}∪ {(an+i+1,uj)( an+i+1,uj+1)|i = 1, 2, . . . , n−
1; j = 1, 2, . . . 2m − 1} which forms edges of a forest. Thus, by Lemma 2.2,
(∪2n−1

i=1 Baiai+1) ∪ (∪n−1
i=1 Ban−ian+i+1) is a linearly independent set. The proof is

complete.

Now, for i = 1, 2, . . . , 2n and j = 1, 2, . . . ,m − 1, we set

F (ai)
m−j,m+j+1

= (ai, um−j)(ai, um+j+1)(ai, um+j)(ai, um−j+1)(ai, um−j),

for i = 1, 2, . . . , 2n − 1, 1 < s ≤ 2m − 1 and 1 ≤ t < 2m − 1, set

G(ai)
1,s = (ai, u1)(ai, us)(ai+1, u1)(ai, u2m)(ai, u1),

G(ai)
2m,t = (ai, ut+1)(ai, u2m)(ai+1, u1)(ai, ut+1).

Moreover,

G(a2n)
1,s = (a2n, u1)(a2n, us)(a1, u1)(a2n, u2m)(a2n, u1),

G(a2n)
2m,t = (a2n, ut+1)(a2n, u2m)(a1, u1)(a2n, ut+1),

F (ai) = ∪m−1
j=1 F (ai)

m−j,m+j+1
and G(ai)

s,t = G(ai)
1,s ∪ G(ai)

2m,t.

Lemma 2.4. (∪2n
i=1F (ai)) ∪ (∪2n

i=1G(ai)
s,t ) is a linearly independent set of cycles

whenever 3 ≤ s ≤ 2m − 1, 1 ≤ t ≤ 2m − 3 and |s − t| �= 1.
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Proof. Since

E(G(ai)
1,s ) ∩ E(G(ai)

2m,t) =

{
(ai, u2m)(ai+1, u1), if i �= 2n
(a2n, u2m)(a1, u1), if i = 2n,

which is an edge, and E(G(ai)
s,t ) ∩ E(G(ar)

s,t ) = φ for each i �= r, by lemma 2.2

we have ∪2n
i=1G(ai)

s,t is linearly independent. We now prove that ∪2n
i=1F (ai) is

linearly independent. Since E(F (ai)) ∩ E(F (al)) = φ for each i �= l, it suffices
to show that F (ai) is linearly independent for each i = 1, 2, . . . , 2n. To show
that, we proceed by induction on m. If m = 2, then F (ai) consists only of
one cycle F (ai)

1,4
which is linearly independent. Assume that m > 2 and the

result is true for smaller values of m. It is easy to see that F (ai)
1,2m

contains
(ai, um)(ai, u2m) which is not in ∪m−2

j=1 F (ai)
m−j,m+j+1

. Thus, by the inductive step
F (ai) is linearly independent for each i = 1, 2, . . . , 2n.

E(∪2n
i=1G(ai)

s,t ) ∩ E(∪2n
i=1F (ai)) = {(ai, u2m)(ai, u1)|i = 1, 2, . . . , 2n}

which is an edge set of a perfect matching. Thus, by Lemma 2.2, (∪2n
i=1

F (ai)) ∪ (∪2n
i=1G(ai)

s,t ) is linearly independent. The proof is complete.
A circular ladder graph, CLm, is visualized as a two concentric m-cycles in

which each of the m pairs of the corresponding vertices is joined by an edge
(i,e; if we assume the two concentric cycles are u1u2 . . . umu1 and v1v2 . . . vmv1,
then E(CLm) = E(u1u2 . . . umu1) ∪ E(v1v2 . . . vmv1) ∪ { uivi : 1 ≤ i ≤ m}).
For simplicity, we identify the vertices of CLm as follows: um+1 = vm, um+2 =
vm−1, . . . , u2m = v1. Throughout this work CLm will be taken as a cycle
u1u2 . . . umum+1 . . . u2mu1, in addition to the following edge set {um−jum+j+1 :
j = 1, 2, 3, . . . ,m− 2} ∪ {u1um, um+1u2m}. Similarly, CLn will be the circular
ladder with a vertex set {a1, a2, . . . , a2n} and an edge set is as defined above.
Now we can look at CLn[CLm] as a graph that consists of 3n copies of K2m,2m

in addition to 2n copies of CLm. Note that each copy of K2m,2m is isomorphic
to e[N2m] where e ∈ E(CLn) and each copy of CLm is isomorphic to ai×CLm.

Noting that |E(CLn[CLm])| = 12m2n + 6mn and |V (CLn[CLm])| = 4mn
and by the aid of equation (1), we have the following result.

Lemma 2.5. dim C(CLn[CLm]) = 12m2n + 2mn + 1.

Note 2.1. For each n ≥ 3, b(CLn) = 2.

Theorem 2.1. For each n, m ≥ 3, we have b(CLn[CLm]) ≤ 4. Moreover, the
equality holds for (n ≥ 4 and m ≥ 3) and (n = 3 and m ≥ 7).
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Proof. To prove that b(CLn[CLm]) ≤ 4, it suffices to exhibit a 4-fold basis.
Define B(CLn[CLm]) = (∪2n−1

i=1 Baiai+1)∪(∪n−1
i=1 Ban−ian+i+1)∪Ba1an∪Ban+1a2n∪

(∪2n
i=1F (ai))∪(∪2n

i=1G(ai)
m,m)∪Bu1,CLn

where Bu1,CLn
is the corresponding required

basis of BCLn in CLn × u1. By Lemmas 2.3, 2.4 and being BCLn a basis, we
have each of (∪2n−1

i=1 Baiai+1)∪ (∪n−1
i=1 Ban−ian+i+1),Ba1an ,Ban+1a2n , (∪2n

i=1F (ai))∪
(∪2n

i=1G(ai)
m,m) and Bu1,CLn is linearly independent. By an argument similar to

that in Lemma 2.3, we can show that

(∪2n−1
i=1 Baiai+1) ∪ (∪n−1

i=1 Ban−ian+i+1) ∪ Ba1an ∪ Ban+1a2n

is linearly independent. For simplicity, let Be = Baiaj where e = aiaj(i < j),
and A = Bu1,CLn

. Also, let B∗ = (∪2n−1
i=1 Baiai+1)∪ (∪n−1

i=1 Ban−ian+i+1)∪Ba1an ∪
Ban+1a2n . We now show that B∗ ∪ Bu1,CLn

= (∪e∈E(CLn)Be) ∪ A is linearly in-
dependent. Suppose that (∪e∈E(CLn)Be)∪A is linearly dependent. Then there
exist C1, C2, . . . , Cp ∈ A and De,1,De,2, . . . ,De,qe ∈ Be such that

∑p
k=1 Ck =∑

e∈M⊆E(CLn)

∑qe

k=1 De,k (mod 2). Let f0 = (ai0 , u1)(aj0 , u1) be an edge which
occurs in

∑p
k=1 Ck (mod 2) and let e0 = ai0aj0. Since f0 /∈ E(Be) for each

e �= e0, f0 must occur in
∑qe0

k=1 De0,k (mod 2). Since the number of those edges
in E(Be0) which join {ai0} × {u1, u2, . . . , u2m} and {aj0} × {u1, u2, . . . , u2m}
and occur in

∑qe0
k=1 De0,k (mod 2) is even, there exists another edge f ∈ E(Be0).

Thus f remains in
∑

e∈M⊆E(CLn)

∑qe

k=1 De,k (mod 2). But f /∈ E(A) and so f
cannot belong to

∑p
k=1 Ck (mod 2). This is a contradiction. Now any linear

combination of cycles of (∪2n
i=1F (ai)) ∪ (∪2n

i=1G(ai)
m,m) must contain at least one

edge of (ai, um−j)(ai, um+j+1),(ai, u1)(ai, um) and (ai, um+1)(ai, u2m) which is
not in any cycle of (∪e∈E(CLn)Be) ∪ A for some i, j. Thus, B(CLn[CLm]) is
linearly independent. Let e

′
= ab. Since

|Be′ | = |Bab| = |Aab| + |Dab|
= (2m − 1)2 + 2(2m − 1)
= 4m2 − 1,

and
|F (ai)| + |G(ai)

s,t | = m + 1,

hence

|B(CLn[CLm])| = | ∪e∈E(CLn) Be| + | ∪2n
i=1 F (ai)| + | ∪2n

i=1 G(ai)
m,m| + |Bu1,CLn

|

=
3n∑
i=1

(4m2 − 1) +
2n∑
i=1

(m + 1) + dim C(CLn)

= 3n(4m2 − 1) + 2n(m + 1) + (n + 1)
= 12m2n + 2mn + 1
= dim C(CLn[CLm]).
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Thus, B(CLn[CLm]) is a basis of C(CLn[CLm]). We now show that
B(CLn[CLm]) is of fold 4. For simplicity, assume that F = (∪2n

i=1F (ai)) and
G = (∪2n

i=1G(ai)
m,m). Let e ∈ E(CLn[CLm]). (1) If e ∈ E(CLn × u1), then

fB∗(e) = 1, fF (e) = 0, fG(e) = 0, fA(e) ≤ 2. (2) If e = (ai, uj)(ai, uj+1), then
fB∗(e) ≤ 3, fF (e) ≤ 1, fG(e) = 0, fA(e) = 0. (3) If e = (ai, um−j)(ai, um+j+1),
then fB∗(e) = 0, fF (e) ≤ 2, fG(e) = 1, fA(e) = 0. (4) if e = (ai, u1)(ai, um), or
(ai, um+1)(ai, u2m) then fB∗(e) = 0, fF (e) = 0, fG(e) ≤ 2, fA(e) = 0. (5) If e =
(ai, um)(ai+1, u1) or (ai, um+1)(ai+1, u1), then fB∗(e) ≤ 2, fF (e) = 0, fG(e) =
0, fA(e) = 0. (6) If e = (ai, u2m)(ai+1, u1), then fB∗(e) = 2, fF (e) = 1, fG(e) =
1, fA(e) = 0. (7) If e = (ai, u2m)(ai+1, u2m) then fB∗(e) = 3, fF (e) = 1, fG(e) =
0, fA(e) = 0. (8) If e ∈ E(CLn[CLm]) and is not of any form above, then
fB∗(e) ≤ 4, fF (e) = 0, fG(e) = 0, fA(e) = 0.
On the other hand, to show that b(CLn[CLm]) ≥ 4 for any n, m as they were
stated in the theorem, we have to exclude any possibility for the cycle space
C(CLn[CLm]) to have a 3-fold basis for any n, m as they are stated in the
theorem.. To this end, suppose that B is a 3-fold basis of the cycle space, then
we have the following three cases:
Case 1. Suppose that B consists only of 3-cycles. We now consider two
subcases:

Subcase1. n ≥ 4. Then |B| ≤ 18mn because any 3-cycle must contain
an edge of ai × CLm for some 1 ≤ i ≤ 2n and each edge is of fold at most
3. This is equivalent to the inequality that 12m2n + 2mn + 1 ≤ 18mn which
implies that 12m2n + 1 ≤ 16mn and so 12m ≤ 16. Thus m ≤ 1. This is a
contradiction.

Subcase2. n = 3. Then |B| ≤ 3(18m + 8m2) because each edge of
CL3[CLm] is of fold at most 3 and if C is a 3-cycle not containing an edge of
ai×CLm for 1 ≤ i ≤ 6, then it contains an edge of {(a1, uj)(a3, uk), (a4, uj)(a6,
uk)|1 ≤ j, k ≤ 2m}. This is equivalent to the inequality 36m2 + 6m + 1 ≤
54m + 24m2 which implies that 12m2 + 1 ≤ 48m and so m ≤ 4 − 1/(12m).
Thus m < 4. This is a contradiction.
Case 2. Suppose that B consists only of cycles of length greater than or
equals to 4. Then 4|B| ≤ 3|E(CLn[CLm])| because the length of each cycle
of B greater than or equal to 4 and each edge is of fold at most 3. Thus,
4(12m2n + 2mn + 1) ≤ 3(12m2n + 6mn) which is equivalent to 12m2n + 4 ≤
10mn. which has no solution. This is a contradiction.
Case 3. Suppose that B consists of s 3-cycles and t cycles of length greater
than or equal to 4. Then t ≤ ⌊

(3(12m2n + 6mn) − 3s)/4
⌋

because the length
of each cycle of s is 3 and each cycle of t is at least 4 and the fold of each
edge is at most 3. Hence, |B| = s + t ≤ s +

⌊
(3(12m2n + 6mn) − 3s)/4

⌋
this

implies that 4(12m2n+2mn+1) ≤ 4s+3(12m2n+6mn)−3s. By simplifying
the inequality we have 12m2n + 4 ≤ s + 10mn. To this end, we consider two
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subcases:
Subcase1. n ≥ 4. Then as in Subcase 1 of Case 1 s ≤ 18mn, thus12m2n+

4 ≤ 28mn and so 12m ≤ 28. Therefore, m ≤ 2. This is a contradiction.
Subcase2. n = 3. Then as in Subcase 2 of Case 1 s ≤ 54m + 24m2, thus

36m2 + 4 ≤ 24m2 + 84m which implies that m ≤ 7 − 4/(12m). Thus m < 7.
This is a contradiction. The proof the theorem is complete.

The Möbius ladder MLm is obtained by deleting from the circular ladder
CLm two of its parallel curved edge and replacing them with two edges that
cross-match their endpoints

Note 2.2. b(MLn) =

{
2, if n = 2
3, if n ≥ 3.

Theorem 2.2. For each n, m ≥ 2, we have b(MLn[MLm]) ≤ 4. Moreover,
the equality holds for n ≥ 3 and m ≥ 3.

Proof. By the definition of the Möbius ladder, one may assume that MLm

and MLn are obtained from the circular ladders CLm and CLn by deleting
umu1 and u2mum+1 from CLm and ana1 and a2nan+1 from CLn and replacing
them by um+1u1 and u2mum, and an+1a1 and a2nan. Thus, MLn[MLm] is ob-
tained from CLn[CLm] by deleting all the following edges {(ai, u1)(ai, um), (ai,
um+1)(ai, u2m)|1 ≤ i ≤ 2n} ∪ E(Aa1an) ∪ E(Aan+1a2n) and replacing them by
{(ai, u1)(ai, um+1), (ai, um)(ai, u2m)|1 ≤ i ≤ 2n} ∪ E(Aa1an+1) ∪ E(Aana2n).
Define B(MLn[MLm]) = (∪2n−1

i=1 Baiai+1) ∪ (∪n−1
i=1 Ban−ian+i+1) ∪ (∪2n

i=1F (ai)) ∪
(∪2n

i=1G(ai)
m+1,m−1)∪Ba1an+1 ∪Bana2n ∪Bu1,MLn

, where Bu1,MLn
is the correspond-

ing required basis of BMLn in the copy MLn × u1. Using the same argument
as in the proof of Theorem 2.1 taking into account b(MLn) ≤ 3, we can prove
that B(MLn[MLm]) is a 4-fold basis.
On the other hand, to show that b(MLn[MLm]) ≥ 4 for any m,n as they were
stated in the Theorem, we argue more or less as in the proof of the three cases
in Theorem 2.1, replacing CLn and CLm by MLn and MLm, respectively,
and taking only Subcase 1 of Case 1 and of Case 3 for n ≥ 3. The proof is
complete.

Now, CLn[MLm] is obtained from CLn[CLm] by replacing {(ai, u1)(ai, um),
(ai, um+1)(ai, u2m)|1 ≤ i ≤ 2n} with {(ai, u1)(ai, um+1), (ai, um)(ai, u2m)|1 ≤
i ≤ 2n}. Similarly, MLn[CLm] is obtained from CLn[CLm] by replacing
E(Aa1an) ∪ E(Aan+1a2n) with E(Aa1an+1) ∪ E(Aana2n).

Theorem 2.3. For each n ≥ 3 and m ≥ 2, we have b(CLn[MLm]) ≤ 4.
Moreover, the equality holds for (n ≥ 4 and m ≥ 3) and (n = 3 and m ≥ 7).
Also, for each n ≥ 2 and m ≥ 3, we have b(MLn[CLm]) ≤ 4. Moreover, the
equality holds for n ≥ 3 and m ≥ 3.
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Proof. Define B(CLn[MLm]) = (∪2n−1
i=1 Baiai+1) ∪ (∪n−1

i=1 Ban−ian+i+1) ∪
(∪2n

i=1F (ai)) ∪(∪2n
i=1G(ai)

m+1,m−1)∪Ba1an ∪Ban+1a2n ∪Bu1,CLn
and B(MLn[CLm])

= (∪2n−1
i=1 Baiai+1) ∪(∪n−1

i=1 Ban−ian+i+1) ∪ (∪2n
i=1F (ai)) ∪ (∪2n

i=1G(ai)
m,m) ∪ Ba1an+1 ∪

Bana2n ∪ Bu1,MLn
. By the same argument as in the above Theorems with the

above replacements, we can prove that B(CLn[MLm]) and B(MLn[CLm]) are
the required basis. The proof is complete.

The ladder, Lm, is obtained by deleting from the circular ladder CLm

two of its parallel curved edges. Let, Lm be obtained from CLm by deleting
u1um and um+1u2m. Also, let Ln be obtained from CLn by deleting a1an and
an+1a2n. Then, Ln[CLm] is a subgraph of CLn[CLm] obtained by deleting
E(Aa1an) ∪ E(Aan+1a2n).

Lemma 2.6. dim C(Ln[CLm]) =dim C(Ln[MLm]) = 12m2n−8m2 +2mn+1
and dim C(CLn[Lm]) =dim C(MLn[Lm]) = 12m2n + 2mn − 4n + 1.

Theorem 2.4. For each n ≥ 2 and m ≥ 3, we have b(Ln[CLm]) ≤ 4. More-
over, the equality holds for n ≥ 2 and m ≥ 4.

Proof. Define, B(Ln[CLm]) = (∪2n−1
i=1 Baiai+1)∪(∪n−1

i=1 Ban−ian+i+1)∪(∪2n
i=1G(ai)

m,m)
∪ (∪2n

i=1F (ai)) ∪ Bu1,Ln . Note that B(Ln[CLm]) ⊂ B(CLn[CLm]). Thus,
B(Ln[CLm ]) is a linearly independent set of fold 4. Since |B(Ln[CLm])| =
dim C(Ln[CLm ]), B(Ln[CLm]) is a 4-fold basis of C(Ln[CLm]). On the other
hand, to show that b(Ln[CLm]) ≥ 4 for all n ≥ 2 and m ≥ 4, we suppose that
B is a 3-fold basis of the cycle space C(Ln[CLm]), then we argue more or less
as in the proof of Theorem 2.1 taking into account that in Cases 1 and 3 we
deal only with one subcase for n ≥ 2. The proof is complete.

Observe that CLn[Lm] is a subgraph of CLn[CLm] obtained by deleting
{(ai, u1)(ai, um), (ai, um+1)(ai, u2m)|1 ≤ i ≤ 2n}.

Theorem 2.5. For each n ≥ 3 and m ≥ 2, we have b(CLn[Lm]) ≤ 4. More-
over, the equality holds for (n ≥ 4 and m ≥ 3) and (n = 3 and m ≥ 7).

Proof. Let B(CLn[Lm]) = (∪2n−1
i=1 Baiai+1) ∪ (∪n−1

i=1 Ban−ian+i+1) ∪ Ba1an+1 ∪
Ban+1a2n ∪ (∪2n

i=1F (ai)) ∪ Bu1,CLn . Since B(CLn[Lm]) ⊂ B(CLn[CLm]) and
B(CLn[CLm]) is a linearly independent set of fold 4, and |B(Ln[CLm])| =
dim C(CLn[Lm]), B(CLn[Lm]) is a 4-fold basis of C(CLn[Lm]). On the other
hand, the inequality b(CLn[Lm]) ≥ 3 follows by the same argument of the
three cases of Theorem 2.1. We omit the detail. The proof is complete.

Now, we consider Ln[MLm] and MLn[Lm] as subgraphs obtained from
Ln[CLm] and CLn[Lm] by deleting {(ai, u1)(ai, um), (ai, um+1)(ai, u2m)|1 ≤
i ≤ 2n} and E(Aa1an)∪E(Aan+1a2n) and replacing them with the following sets
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{(ai, u1)(ai, um+1), (ai, um)(ai, u2m)|1 ≤ i ≤ 2n} and E(Aa1an+1)∪E(Aana2n),
respectively.

Theorem 2.6. For each n, m ≥ 2, we have b(MLn[Lm]), b(Ln[MLm]) ≤ 4.
Moreover, b(MLn[Lm]) = 4 whenever n ≥ 3 and m ≥ 4 and b(Ln[MLm]) = 4
whenever n ≥ 2 and m ≥ 4.

Proof. Following the above replacements of edges, we can repeat the proof of
Theorems 2.4 and 2.5 to show that the following sets of cycles are bases and
satisfy the fold stated in the theorem.

B(MLn[Lm]) = (∪2n−1
i=1 Baiai+1) ∪ (∪n−1

i=1 Ban−ian+i+1) ∪ Ba1am+1 ∪ Bama2m ∪
(∪2n

i=1F (ai)) ∪ Bu1,Ln

B(Ln[MLm]) = (∪2n−1
i=1 Baiai+1)∪(∪n−1

i=1 Ban−ian+i+1)∪(∪2n
i=1G(ai)

m+1,m−2)∪(∪2n
i=1

F (ai)) ∪ Bu1,Ln . The proof is complete.

Finally, Ln[Lm] is obtained by deleting the following set of edges {(ai, u1)(ai,
um), (ai, um+1)(ai, u2m)|1 ≤ i ≤ 2n} from Ln[CLm].

Theorem 2.7. For each n, m ≥ 2, we have b(Ln[Lm]) ≤ 4. Moreover, the
equality holds for n ≥ 2 and m ≥ 4.

Proof. Let B(Ln[Lm]) = (∪2n−1
i=1 Baiai+1) ∪ (∪n−1

i=1 Ban−ian+i+1) ∪ (∪2n
i=1F (ai)) ∪

Bu1,Ln . Note that B(Ln[Lm]) ⊂ B(Ln[CLm]). Thus, B(Ln[Lm]) is a linearly in-
dependent set of fold 4. It is easy to see that |B(Ln[CLm])| = dim C(CLn[Lm]),
then B(Ln[Lm]) is a basis of C(Ln[Lm]). On the other hand, to show that
b(CLn[Lm]) ≥ 4, we use argument similar to that in Theorem 2.1 taking into
account that in Case 1 and Case 3 we deal only with one subcase for n ≥ 2.
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