(t, k)-Shredders in k-Connected Graphs

Masanori Takatou and Masao Tsugaki

(Received May 17, 2007)

Abstract. Let t, k be integers with $t \ge 3$ and $k \ge 1$. For a graph G, a subset S of V(G) with cardinality k is called a (t, k)-shredder if G-S consists of t or more components. In this paper, we show that if $t \ge 3$, $2(t-1) \le k \le 3t-5$ and G is a k-connected graph of order at least k^8 , then the number of (t, k)-shredders of G is less than or equal to $((2t-1)(|V(G)| - f(|V(G)|)))/(2(t-1)^2)$, where f(n) denotes the unique real number x with $x \ge k-1$ such that $n = 2(t-1)^2 {x \choose k} + x$.

AMS 2000 Mathematics Subject Classification. 05C40.

Key words and phrases. (t, k)-Shredder, Upper bound.

§1. Introduction

In this paper, we consider only finite, undirected, simple graphs with no loops and no multiple edges.

Let G = (V(G), E(G)) be a graph. Let t, k be integers with $t \ge 3$ and $k \ge 1$. A subset S of V(G) with cardinality k is called a (t,k)-shredder if G-S consists of t or more components. In this paper, we are concerned with the number of (t,k)-shredders in k-connected graphs.

Before stating our result, we make the following definitions. For a real number x, we let

$$\binom{x}{k} = \left(\prod_{0 \le i \le k-1} (x-i)\right) / k!.$$

For a real number n with $n \ge k - 1$, we let $f_{t,k}(n)$ denote the unique real number x with $x \ge k - 1$ such that

$$n = 2(t-1)^2 \binom{x}{k} + x.$$

We start with known results concerning (3, k)-shredders. For $1 \le k \le 3$, the following result was proved by T. Jordán in [4].

Theorem 1. Let k be an integer with $1 \le k \le 3$, and let G be a k-connected graph. Then unless k = 3 and $G \cong K_{3,3}$, the number of (3, k)-shredders of G is less than or equal to (|V(G)| - k - 1)/2.

Subsequently the following two results were proved in [2].

Theorem 2. Let G be a 4-connected graph of order $n \ge 2200$. Then the number of (3, 4)-shredders of G is less than or equal to $5(n - f_{3,4}(n))/8$.

Theorem 3. Let k be an integer with $k \ge 5$, and let G be a k-connected graph. Then the number of (3, k)-shredders of G is less than 2|V(G)|/3.

In Theorems 1 and 2, the upper bound on the number of (3, k)-shredders is best possible; as for Theorem 3, the bound itself is not best possible, but the coefficient 2/3 of |V(G)| in the bound is best possible (see [2], [4], [5]).

In [6], Theorem 1 was generalized to (t, k)-shredders as follows.

Theorem 4. Let t, k be integers with $t \ge 3$ and $1 \le k \le 2t - 3$, and let G be a k-connected graph of order $n \ge 2k + 1$. Then the number of (t, k)-shredders of G is less than or equal to (n - k - 1)/(t - 1).

Similarly the following generalization of Theorem 3 was proved by G. Liberman and Z. Nutov in [5].

Theorem 5. Let t, k be integers with $t \ge 3$ and $k \ge 3t - 4$, and let G be a k-connected graph. Then the number of (t,k)-shredders of G is less than 2|V(G)|/(2t-3).

The bound (n - k - 1)/(t - 1) in Theorem 4 is best possible. Also modifications of examples constructed in [2] show that in Theorem 5, the coefficient 2/(2t - 3) of |V(G)| in the bound is best possible. The purpose of this paper is to generalize Theorem 2 to (t, k)-shredders as follows.

Main Theorem. Let t, k be integers with $t \ge 3$ and $2(t-1) \le k \le 3t-5$, and let G be a k-connected graph of order $n \ge k^8$. Then the number of (t, k)-shredders of G is less than or equal to

$$((2t-1)(n-f_{t,k}(n))) / (2(t-1)^2).$$

We here include a discussion concerning the condition $2(t-1) \le k \le 3t-5$ on k. In view of Theorem 4, it is natural to assume $k \ge 2(t-1)$. On the other hand, the fact that the coefficient 2/(2t-3) in Theorem 5 is sharp shows that the conclusion of the Main Theorem does not hold if $k \ge 3t-4$. Thus the upper bound 3t-5 on k in the assumption of the Main Theorem is best possible.

The organization of the paper is as follows. In Section 2, we discuss the sharpness of the bound $((2t-1)(n-f_{t,k}(n)))/(2(t-1)^2)$. Section 3 and Section 4 contain preliminary results. We prove the Main Theorem in Section 5.

§2. Examples

In the Main Theorem, the bound $((2t-1)(n-f_{t,k}(n)))/(2(t-1)^2)$ is best possible in the sense that there are infinitely many graphs which attain the bound. To see this, let $m \ge k+1$ be an integer, and let W be a set of cardinality m. Let \mathscr{R} denote the set of all subsets of cardinality k of W, and write $\mathscr{R} = \{R_1, \ldots, R_{\binom{m}{k}}\}$. For each p with $1 \le p \le \binom{m}{k}$, write $R_p = U_p \cup V_p$ with $|U_p| = |V_p| = k - t + 1$. Define a graphs G of order

$$|W| + 2(t-1)^2 |\mathscr{R}| = m + 2(t-1)^2 {m \choose k}$$

by

$$V(G) = W \cup \left(\bigcup_{1 \le p \le \binom{m}{k}} \{a_{p,i,j} \mid 1 \le i, j \le t - 1\}\right)$$
$$\cup \left(\bigcup_{1 \le p \le \binom{m}{k}} \{b_{p,i,j} \mid 1 \le i, j \le t - 1\}\right),$$
$$E(G) = \bigcup_{1 \le p \le \binom{m}{k}} \{a_{p,h,i}b_{p,h,j}, a_{p,h,i}u, b_{p,h,j}v \mid 1 \le h, i, j \le t - 1,$$
$$u \in U_p, v \in V_p\} \cup \{xy \mid x, y \in W, x \ne y\}.$$

Then G is k-connected and, in addition to the members of \mathscr{R} , G has $2(t-1)|\mathscr{R}|$ (t,k)-shredders

$$\{a_{p,i,j} \mid 1 \le j \le t - 1\} \cup V_p \quad (1 \le i \le t - 1, 1 \le p \le \binom{m}{k}), \\ \{b_{p,i,j} \mid 1 \le j \le t - 1\} \cup U_p \quad (1 \le i \le t - 1, 1 \le p \le \binom{m}{k}).$$

Hence the total number of (t, k)-shredders of G is

$$(2(t-1)+1)\binom{m}{k} = \left((2t-1)(|V(G)| - f_{t,k}(|V(G)|))\right) / (2(t-1)^2).$$

§3. Preliminary results

Throughout this section, let t, k be integers with $t \ge 3$ and $k \ge 2(t-1)$, let G be a k-connected graph, and let \mathscr{S} denote the set of (t, k)-shredders of G.

For each $S \in \mathscr{S}$, we define $\mathscr{K}(S)$, $\mathscr{L}(S)$ and L(S) as follows. Let $S \in \mathscr{S}$. We let $\mathscr{K}(S)$ denote the set of components of G - S. Write $\mathscr{K}(S) =$

 $\{H_1, \ldots, H_s\}$ $(s = |\mathscr{K}(S)|)$. We may assume $|V(H_1)| \ge |V(H_2)| \ge \cdots \ge |V(H_s)|$ (any such labeling will do). Under this notation, we let $\mathscr{L}(S) = \mathscr{K}(S) - \{H_1\}$ and $L(S) = \bigcup_{2 \le i \le s} V(H_i)$; thus $L(S) = \bigcup_{C \in \mathscr{L}(S)} V(C)$. Now let $\mathscr{L} = \bigcup_{S \in \mathscr{S}} \mathscr{L}(S)$. A member F of \mathscr{L} is said to be *saturated* if there exists a subset \mathscr{C} of $\mathscr{L} - \{F\}$ such that $V(F) = \bigcup_{C \in \mathscr{C}} V(C)$.

Let $S, T \in \mathscr{S}$ with $S \neq T$. We say that S meshes with T if S intersects with at least two members of $\mathscr{K}(T)$. It is easy to see that if S meshes with T, then T intersects with all members of $\mathscr{K}(S)$, and hence T meshes with S and S intersects with all members of $\mathscr{K}(T)$ (see [1; Lemma 4.3 (1)]). We define an auxiliary graph \mathscr{G} by

$$\begin{split} V(\mathscr{G}) &= \mathscr{S}, \\ E(\mathscr{G}) &= \{ST \mid S, \, T \in \mathscr{S}, \, \, S \neq T, \, \, S \text{ and } T \text{ mesh with each other} \}. \end{split}$$

We start with easy observations.

Lemma 3.1. Let $S \in \mathscr{S}$. Then for each $x \in S$ and each $C \in \mathscr{K}(S)$, there is an edge of G joining x and a vertex of C.

Proof. If $xy \notin E(G)$ for any $y \in C$, then $G - (S - \{x\})$ is disconnected, which contradicts the assumption that G is k-connected.

Lemma 3.2. Let $S, T \in \mathcal{S}$ with $S \neq T$, and suppose that $ST \in E(\mathcal{G})$. Then the following hold.

- (i) For each $C \in \mathscr{K}(S)$ and each $D \in \mathscr{K}(T)$, there is an edge of G joining a vertex of C and a vertex of D.
- (ii) The subgraph of G induced by $L(S) \cup L(T)$ is connected.

Proof. Since $ST \in E(\mathcal{G})$, we have $S \cap V(D) \neq \emptyset$. Hence (i) follows from Lemma 3.1, and (ii) follows from (i).

Lemma 3.3. Let $S, T \in \mathscr{S}$ with $S \neq T$, and suppose that $ST \in E(\mathscr{G})$. Then $|S \cap L(T)| \geq t - 1$ and $|L(S) \cap T| \geq t - 1$.

Proof. Since $ST \in E(\mathscr{G}), S \cap V(D) \neq \emptyset$ for all $D \in \mathscr{K}(T)$. Since $|\mathscr{L}(T)| \ge t-1$, this implies $|S \cap L(T)| \ge |\mathscr{L}(T)| \ge t-1$. Similarly $|L(S) \cap T| \ge t-1$. \Box

Note that a (t, k)-shredder is a (3, k)-shredder. Thus the following five lemmas follow from [4; Lemmas 2.1 and 3.1] (see also [2; Lemmas 3.2 through 3.6]).

Lemma 3.4. Let $S, T \in \mathscr{S}$ with $S \neq T$, and suppose that $ST \in E(\mathscr{G})$. Then the following hold.

- (i) $S \supseteq L(T)$ or $T \supseteq L(S)$.
- (ii) $L(S) \cap L(T) = \emptyset$.

Lemma 3.5. Let $S, T \in \mathscr{S}$ with $S \neq T$, and suppose that $ST \notin E(\mathscr{G})$. Then one of the following holds:

- (i) $L(S) \cap L(T) = \emptyset$, $(L(S) \cup L(T)) \cap (S \cup T) = \emptyset$, and no edge of G joins a vertex in L(S) and a vertex in L(T);
- (ii) there exists $C \in \mathscr{L}(S)$ such that $V(C) \supseteq L(T)$ (so $L(S) \supseteq L(T)$); or
- (iii) there exists $D \in \mathscr{L}(T)$ such that $V(D) \supseteq L(S)$ (so $L(T) \supseteq L(S)$).

Lemma 3.6. Let $S, T \in \mathscr{S}$ with $S \neq T$, and suppose that $ST \notin E(\mathscr{G})$ and $L(S) \not\subseteq L(T)$. Then $S \cap L(T) = \emptyset$.

Lemma 3.7. Let $C, D \in \mathcal{L}$. Then one of the following holds:

- (i) $V(C) \cap V(D) = \emptyset$;
- (ii) $V(C) \supseteq V(D)$; or
- (iii) $V(D) \supseteq V(C)$.

Lemma 3.8. Let $F \in \mathcal{L}$. Suppose that F is saturated, and let \mathcal{C} be a subset of $\mathcal{L} - \{F\}$ with minimum cardinality such that $V(F) = \bigcup_{C \in \mathcal{C}} V(C)$. Then the following hold.

- (i) $\mathscr{C} = \bigcup_{S \in \mathscr{T}} \mathscr{L}(S)$ for some subset \mathscr{T} of \mathscr{S} (so $V(F) = \bigcup_{S \in \mathscr{T}} L(S)$).
- (ii) $|\mathcal{T}| \geq 2$, and the subgraph induced by \mathcal{T} in \mathcal{G} is connected.

We can prove the following lemma by arguing as in the proof of [3; Lemma 2.12].

Lemma 3.9. Let $S, T \in \mathcal{S}$, and suppose that $ST \in E(\mathcal{G})$ and $L(T) \not\subseteq S$. Then $|S \cap L(T)| \ge 2t - 3$.

Proof. Since $L(T) \not\subseteq S$, it follows form Lemma 3.4 (i) that $L(S) \subseteq T$ which, in particular, implies $L(S) \cap L(T) = \emptyset$. Hence $(V(G) - S - L(S)) \cap L(T) \neq \emptyset$. Write $\mathscr{L}(T) = \{F_1, \ldots, F_a\}$ $(a = |\mathscr{L}(T)| \geq t - 1)$. We may assume $(V(G) - S - L(S)) \cap V(F_1) \neq \emptyset$. Then $(S \cap V(F_1)) \cup (T - L(S))$ separates $(V(G) - S - L(S)) \cap V(F_1)$ from the rest. Hence $|(S \cap V(F_1)) \cup (T - L(S))| \geq k$, which implies $|S \cap V(F_1)| \ge k - |T - L(S)| = |T| - |T - L(S)| = |L(S) \cap T|$. Therefore

$$(3.1) \qquad \qquad |S \cap V(F_1)| \ge t - 1$$

by Lemma 3.3. Since $S \cap V(F_i) \neq \emptyset$ for each i by the definition of meshing, we now obtain $|S \cap L(T)| = \sum_{1 \le i \le a} |S \cap V(F_i)| = |S \cap V(F_1)| + \sum_{2 \le i \le a} |S \cap V(F_i)| \ge t - 1 + a - 1 \ge 2t - 3$.

Lemma 3.10. Suppose that $2(t-1) \le k \le 3t-5$ and $|V(G)| > (k^2+6k+1)/4$. Let $S, T \in \mathscr{S}$, and suppose that $ST \in E(\mathscr{G})$. Then the following hold.

- (i) If we write $\mathscr{K}(S) \mathscr{L}(S) = \{C\}$ and $\mathscr{K}(T) \mathscr{L}(T) = \{D\}$, then $V(C) \cap V(D) \neq \emptyset$.
- (ii) $L(S) \subseteq T, L(T) \subseteq S$.
- (iii) $t-1 \le |L(S)| \le k-t+1, t-1 \le |L(T)| \le k-t+1.$

Proof. In view of Lemma 3.4, we may assume $L(S) \subseteq T$. Then $L(S) \cap V(D) = \emptyset$. To prove (i), suppose that $V(C) \cap V(D) = \emptyset$. Then $V(D) \subseteq S$, and hence $|V(D)| = |S \cap V(D)| \leq |S| - |S \cap L(T)|$. By the definition of meshing, $|\mathscr{L}(T)| \leq |S \cap L(T)|$. Since D is the largest component in $\mathscr{K}(T)$, we obtain $|L(T)| \leq |\mathscr{L}(T)||V(D)| \leq |S \cap L(T)|(k - |S \cap L(T)|)$, and hence $|V(G)| = |V(D)| + |T| + |L(T)| \leq -|S \cap L(T)|^2 + (k-1)|S \cap L(T)| + 2k = -(|S \cap L(T)| - (k-1)/2)^2 + (k^2 + 6k + 1)/4 \leq (k^2 + 6k + 1)/4$. This contradicts the assumption that $|V(G)| > (k^2 + 6k + 1)/4$. Thus (i) is proved. To prove (ii), suppose that $L(T) \not\subseteq S$. By Lemma 3.9, $|S \cap L(T)| \geq 2t - 3$. Since $V(C) \cap V(D) \neq \emptyset$ by (i), we get

$$(3.2) |S \cap V(D)| \ge t - 1$$

by arguing as in the proof of (3.1). Consequently $k \ge |S \cap L(T)| + |S \cap V(D)| \ge 3t - 4$, which contradicts the assumption that $k \le 3t - 5$. Thus (ii) is proved. Now by (ii) and (3.2), $t - 1 \le |\mathscr{L}(T)| \le |L(T)| \le |S| - |S \cap V(D)| \le k - (t - 1)$. Similarly $t - 1 \le |L(S)| \le |T| - |V(C) \cap T| \le k - (t - 1)$, which proves (iii). \Box

Lemma 3.11. Suppose that $2(t-1) \leq k \leq 3t-5$ and $|V(G)| > (k^2+6k+1)/4$. Let $T \in \mathscr{S}$, and suppose that $\deg_{\mathscr{G}}(T) \geq 1$, i.e., there exists $T' \in \mathscr{S} - \{T\}$ such that $TT' \in E(\mathscr{G})$. Then there is no $S \in \mathscr{S} - \{T\}$ such that $L(S) \subseteq L(T)$. *Proof.* Suppose that there exists $S \in \mathscr{S} - \{T\}$ such that $L(S) \subseteq L(T)$. Then $ST \notin E(\mathscr{G})$ by Lemma 3.4, and hence it follows Lemma 3.5 that there exists $M \in \mathscr{L}(T)$ such that $L(S) \subseteq V(M)$. This implies

$$\begin{aligned} |L(T)| &= \sum_{F \in \mathscr{L}(T) - \{M\}} |V(F)| + |V(M)| \\ &\geq (|\mathscr{L}(T)| - 1) + |L(S)| \\ &\geq (t - 1 - 1) + (t - 1) = 2t - 3. \end{aligned}$$

On the other hand, since $\deg_{\mathscr{G}}(T) \ge 1$, $|L(T)| \le k - t + 1$ by Lemma 3.10 (iii). Consequently $2t - 3 \le |L(T)| \le k - t + 1$, which contradicts the assumption $k \le 3t - 5$.

§4. Numerical results

In this section, we state preliminary lemmas, most of which are Numerical results. Throughout this section, we let t, k be as in the Main Theorem. Also for simplicity, we write f(n) for $f_{t,k}(n)$. The following lemma is easily verified, and we omit its proof (see the proof of Lemma 4.2):

Lemma 4.1. Let a, x, x' be real numbers such that $a \le k+2$ and $k+1 \le x < x'$. Then

$$\binom{x}{k} - ax < \binom{x'}{k} - ax'.$$

Let α denote the real number with $k+2 < \alpha \leq k+3$ such that $\binom{\alpha}{k} = (k+1)\alpha$. The existence of α follows from the fact that we have

$$\binom{k+2}{k} < (k+1)(k+2) \text{ and } \binom{k+3}{k} \ge (k+1)(k+3).$$

Lemma 4.2. Let x, x' be real numbers with $\alpha \leq x < x'$. Then

$$(t-1)\binom{x}{k} - ((k+1)(t-1)(2t-1)+1)x$$

< $(t-1)\binom{x'}{k} - ((k+1)(t-1)(2t-1)+1)x'$

 $1)^2(t-1)+1\big) > (t-1)\big((k+1)(k+3)\sum_{0 \le i \le k-1} \big(1/(k+3-i)\big) - \big((k+1)^2+1\big)\big).$ Thus it suffices to show

(4.1)
$$\sum_{0 \le i \le k-1} \frac{1}{(k+3-i)} > \frac{(k+1)}{(k+3)} + \frac{1}{((k+1)(k+3))}$$

It is easy to verify (4.1) for $4 \le k \le 6$. On the other hand, if $k \ge 7$, $\sum_{0\le i\le k-1} (1/(k+3-i)) \ge \sum_{4\le i\le 10} (1/i) > 1 > (k+1)/(k+3) + 1/((k+1)(k+3)))$. Hence (4.1) holds, and we therefore obtain $h'(\alpha) > 0$. Since we clearly have h''(x) > 0 for all $x \ge \alpha$, we now see that h'(x) > 0 for $x \ge \alpha$, and hence the desired inequality holds.

For convenience, we restate Lemma 4.1 in the following form:

Lemma 4.3. Let a, m, b, b' be real numbers such that $a \le k+2, b' < b$ and $(t-1)b \le m - (k+1)$. Then

$$\binom{m - (t - 1)b}{k} + (t - 1)ab < \binom{m - (t - 1)b'}{k} + (t - 1)ab'.$$

Lemma 4.4. Let $n \ge k^8$ be a real number. Then the following hold.

(i) (a) f(n) > k + 6. (b) If k = 4, f(n) > 11.

(ii)
$$f(n) < n/((2(t-1)^2(k+1)+1)(2t-1)).$$

Proof. Statement (i) (a) follows from the inequality $2(t-1)^2 \binom{k+6}{k} + k + 6 \le (k^2 \binom{k+6}{k})/2 + k + 6 < k^8$. Similarly (i) (b) follows from the fact that $8\binom{11}{4} + 11 < 4^8$. Note that $n/((2(t-1)^2(k+1)+1)(2t-1)) - f(n) = ((2(t-1))/((2(t-1)^2(k+1)+1)(2t-1))) ((t-1)\binom{f(n)}{k} - ((k+1)(t-1)(2t-1)+1)f(n))$. Thus (ii) is equivalent to the inequality

(4.2)
$$(t-1)\binom{f(n)}{k} - ((k+1)(t-1)(2t-1)+1)f(n) > 0.$$

Assume for the moment that $k \ge 5$. By (i) (a) and Lemma 4.2, (4.2) follows if we prove $(t-1)\binom{k+6}{k} - ((k+1)(t-1)(2t-1)+1)(k+6) > 0$. In view of the assumption that $2(t-1) \le k$, it suffices to show $\binom{k+6}{k} - ((k+1)^2+1)(k+6) > 0$, which holds because $\binom{k+6}{k} = (k+1)(k+2)(k+6)((k+5)(k+4)(k+3)/720) \ge (k+1)(k+2)(k+6)$. Similarly if k = 4, then by (i) (b) and Lemma 4.2, (4.2) follows from the fact that $\binom{11}{4} - ((4+1)^2+1) \cdot 11 > 0$. **Lemma 4.5.** Let $n, m, b_j \ (0 \le j \le t-1)$ be nonnegative real numbers with $n \ge k^8$ such that

$$0 \leq \sum_{\substack{0 \leq j \leq t-2 \\ 1 \leq j \leq t-1}} (t-1-j)b_j \leq m - (k+1),$$
$$\sum_{\substack{1 \leq j \leq t-1 \\ k}} b_j \leq \binom{m - \sum_{\substack{0 \leq j \leq t-2 \\ k}} (t-1-j)b_j}{k} + (k+1) \sum_{\substack{0 \leq j \leq t-2 \\ 0 \leq j \leq t-2}} (t-1-j)b_j,$$
$$2(t-1) \sum_{\substack{1 \leq j \leq t-1 \\ 1 \leq j \leq t-1}} jb_j \leq n - m.$$

Then

$$(n-m)/(t-1) + \sum_{0 \le j \le t-1} b_j \le ((2t-1)(n-f(n)))/(2(t-1)^2).$$

Proof. If we let $c_0 = \sum_{0 \le i \le t-2} ((t-1-i)/(t-1))b_i$, $c_j = 0$ $(1 \le j \le t-2)$, $c_{t-1} = \sum_{1 \le i \le t-1} (ib_i)/(t-1)$, then the c_j $(0 \le j \le t-1)$ satisfy the assumptions of the lemma, and $\sum_{0 \le j \le t-1} b_j = \sum_{0 \le j \le t-1} c_j$. Thus we may assume $b_j = 0$ for every $1 \le j \le t-2$. Then we have

(4.3)
$$0 \le (t-1)b_0 \le m - (k+1)$$

(4.4)
$$b_{t-1} \le \binom{m - (t-1)b_0}{k} + (k+1)(t-1)b_0$$

(4.5)
$$2(t-1)^2 b_{t-1} \le n-m$$

Case 1. $m \leq f(n)$.

By (4.4),

$$b_0 + b_{t-1} \le \binom{m - (t-1)b_0}{k} + (t-1)(k+1 + 1/(t-1))b_0$$

Since k + 1 + 1/(t - 1) < k + 2 and since $0 \le (t - 1)b_0 \le m - (k + 1)$ by (4.3), we get

$$\binom{m - (t - 1)b_0}{k} + (t - 1)(k + 1 + 1/(t - 1))b_0 \le \binom{m}{k}$$

by applying Lemma 4.3 with a = k + 1 + 1/(t - 1), $b = b_0$ and b' = 0. Hence $b_0 + b_{t-1} \leq \binom{m}{k}$. Therefore we obtain

$$(n-m)/(t-1) + b_0 + b_{t-1} \le n/(t-1) + \binom{m}{k} - m/(t-1)$$
$$\le n/(t-1) + \binom{f(n)}{k} - f(n)/(t-1)$$
$$= \left((2t-1)(n-f(n))\right)/(2(t-1)^2)$$

by Lemma 4.1.

Case 2. m > f(n). Subcase 2.1. $b_{t-1} \le ((k+1)n)/(2(t-1)^2(k+1)+1)$. By (4.3), $(n-m)/(t-1) + b_0 + b_{t-1}$ $\le (n-m)/(t-1) + (m-(k+1))/(t-1)$ $+ ((k+1)n)/(2(t-1)^2(k+1)+1)$ $< n/(t-1) + ((k+1)n)/(2(t-1)^2(k+1)+1)$.

Since $((k+1)n)/(2(t-1)^2(k+1)+1) < ((n-(2t-1)f(n))/(2(t-1)^2))$ by Lemma 4.4 (ii), this implies $(n-m)/(t-1)+b_0+b_{t-1} < ((2t-1)(n-f(n)))/(2(t-1)^2)$. Subcase 2.2. $b_{t-1} > ((k+1)n)/(2(t-1)^2(k+1)+1)$.

Let α be as in the paragraph preceding Lemma 4.2. By (4.5) and the assumption of this subcase, $m < n/(2(t-1)^2(k+1)+1)$, and hence $b_{t-1} > (k+1)m$, which implies

$$\binom{m - (m - \alpha)}{k} + (k + 1)(m - \alpha) = (k + 1)m$$

< b_{t-1}
 $\leq \binom{m - (t - 1)b_0}{k} + (k + 1)(t - 1)b_0.$

We here consider the function $g(x) = {\binom{m-(t-1)x}{k}} + (t-1)(k+1)x$. Then the above inequality is written in the form

(4.6)
$$g((m-\alpha)/(t-1)) < b_{t-1} \le g(b_0);$$

in particular,

(4.7)
$$g((m-\alpha)/(t-1)) < g(b_0).$$

Since $\alpha > k+2$ by the definiton of α , we have

(4.8)
$$m - \alpha < m - (k+1).$$

Since the function g(x) is monotonely decreasing in the interval $x \leq (m - (k+1))/(t-1)$ by Lemma 4.3, it follows from (4.7), (4.8) and (4.3) that $b_0 < (m-\alpha)/(t-1)$. Hence it follows from (4.6) that there exists b'_0 with $b_0 \leq b'_0 < (m-\alpha)/(t-1)$ such that $g(b'_0) = b_{t-1}$, i.e.,

$$b_{t-1} = \binom{m - (t-1)b'_0}{k} + (k+1)(t-1)b'_0.$$

276

Thus by replacing the number b_0 in the statement of the lemma by b'_0 , we may assume that equality holds in (4.4); that is to say, we have

(4.9)
$$b_{t-1} = \binom{m - (t-1)b_0}{k} + (k+1)(t-1)b_0$$

and

(4.10)
$$m - (t-1)b_0 > \alpha$$
.

Since $m > f(n), b_{t-1} < (n - f(n))/(2(t-1)^2) = {f(n) \choose k}$ by (4.5), and hence

$$\binom{m-(t-1)b_0}{k} < \binom{f(n)}{k}$$

by (4.9), which implies

(4.11)
$$m - (t-1)b_0 < f(n).$$

Now by (4.9) and (4.5),

$$b_{t-1} + 2(t-1)^2(k+1)b_{t-1} \\ \leq \binom{m - (t-1)b_0}{k} + (k+1)(t-1)b_0 + (k+1)(n-m) \\ = \binom{m - (t-1)b_0}{k} - (k+1)(m - (t-1)b_0) + (k+1)n,$$

and hence

$$b_{t-1} \le \left(\binom{m - (t-1)b_0}{k} - (k+1)(m - (t-1)b_0) + (k+1)n \right) / (2(t-1)^2(k+1) + 1),$$

which implies

$$\begin{aligned} &(n-m)/(t-1) + b_0 + b_{t-1} \\ &\leq (n-m)/(t-1) + b_0 \left(\binom{m-(t-1)b_0}{k} \right) \\ &- (k+1)(m-(t-1)b_0) + (k+1)n \right) / (2(t-1)^2(k+1)+1) \\ &= \left(((k+1)(t-1)(2t-1)+1)n + (t-1)\binom{m-(t-1)b_0}{k} \right) \\ &- ((k+1)(t-1)(2t-1)+1)(m-(t-1)b_0) \right) / ((2(t-1)^2(k+1)+1)(t-1)). \end{aligned}$$

Consequently it follows from Lemma 4.2 and (4.10) and (4.11) that

$$(n-m)/(t-1) + b_0 + b_{t-1}$$

$$< \left(\left((k+1)(t-1)(2t-1) + 1 \right)n + (t-1) \binom{f(n)}{k} \right) - \left((k+1)(t-1)(2t-1) + 1 \right) f(n) \right) / \left((2(t-1)^2(k+1) + 1)(t-1) \right)$$

$$= \left((2t-1)(n-f(n)) \right) / (2(t-1)^2).$$

Lemma 4.6. Let x, y, x', y' be real numbers such that $k \le x' < x \le y < y'$ and x + y = x' + y'. Then

$$\binom{x}{k} + \binom{y}{k} < \binom{x'}{k} + \binom{y'}{k}.$$

Proof. The function $\varphi(x) = \binom{x}{k}$ is strictly convex in the interval $x \ge k$. Hence $\binom{x}{k} - \binom{x'}{k}/(x-x') < \binom{y'}{k} - \binom{y}{k}/(y'-y)$. Since x - x' = y' - y, this implies $\binom{x}{k} + \binom{y}{k} < \binom{x'}{k} + \binom{y'}{k}$.

Repeated applications of Lemma 4.6 yield:

Lemma 4.7. Let x_1, \ldots, x_{b+1} be real numbers such that $x_i \ge k+1$ for all $1 \le i \le b+1$, and let $x = \sum_{1 \le i \le b+1} x_i$. Then

$$\sum_{1 \le i \le b+1} \binom{x_i}{k} \le b \binom{k+1}{k} + \binom{x-(k+1)b}{k} = \binom{x-(k+1)b}{k} + (k+1)b.$$

Proof. We proceed by induction on b. If b = 0, the lemma clearly holds. We may assume $b \ge 1$. Then by the induction hypothesis,

$$\sum_{1 \le i \le b} \binom{x_i}{k} + \binom{x_{b+1}}{k} \le (b-1)\binom{k+1}{k} + \binom{\sum_{1 \le i \le b} x_i - (k+1)(b-1)}{k} + \binom{x_{b+1}}{k}.$$

Note that $k + 1 \leq \sum_{1 \leq i \leq b} x_i - (k+1)(b-1) \leq x - (k+1)b$ and $k + 1 \leq x_{b+1} \leq x - (k+1)b$. Hence, whether $\sum_{1 \leq i \leq b} x_i - (k+1)(b-1) \leq x_{b+1}$ or $x_{b+1} \leq \sum_{1 \leq i \leq b} x_i - (k+1)(b-1)$, we obtain

$$\binom{\sum\limits_{1\leq i\leq b} x_i - (k+1)(b-1)}{k} + \binom{x_{b+1}}{k} \leq \binom{k+1}{k} + \binom{x - (k+1)b}{k}$$

by Lemma 4.6. Therefore

$$\sum_{1 \le i \le b} \binom{x_i}{k} + \binom{x_{b+1}}{k} \le (b-1)\binom{k+1}{k} + \binom{k+1}{k} + \binom{x-(k+1)b}{k} = b\binom{k+1}{k} + \binom{x-(k+1)b}{k}.$$

Lemma 4.8. Let $b \ge 0$ be an integer (we allow the possibility that b = 0). Let W be a finite set. Let Z_1, \ldots, Z_b ; Q_1, \ldots, Q_b be subsets of W such that $Z_i \cap Z_j = \emptyset$ for all i, j with $1 \le i < j \le b$ and such that $|Q_i| \le k$ for all $1 \le i \le b$. Let \mathscr{R} be a family of subsets of cardinality k of W such that for each $R \in \mathscr{R}$ and for each $1 \le i \le b$, we have either $R \cap Z_i = \emptyset$ or $R \cap (W - (\bigcup_{1 \le j \le i} Z_j) - Q_i) = \emptyset$. Then the following hold.

(i)
$$|\mathscr{R}| \leq \left(\sum_{1 \leq i \leq b} \binom{|Z_i| + k}{k}\right) + \left(\frac{|W| - \left|\bigcup_{1 \leq i \leq b} Z_i\right|}{k}\right)$$

(ii) If $Z_i \neq \emptyset$ for all $1 \leq i \leq b$ and $|W| - |\bigcup_{1 \leq i \leq b} Z_i| \geq k+1$, then $|\mathscr{R}| \leq \binom{|W| - b}{k} + (k+1)b.$

Proof. We first prove (i). If b = 0, (i) clearly holds. Thus we may assume $b \ge 1$. We proceed by induction on b. Set

$$\mathscr{R}' = \{ R \in \mathscr{R} \mid R \cap Z_1 = \emptyset \},$$

$$\mathscr{T} = \{ R \in \mathscr{R} \mid R \cap (W - Z_1 - Q_1) = \emptyset \}.$$

By assumption, $\mathscr{R} = \mathscr{R}' \cup \mathscr{T}$. Hence

$$|\mathscr{R}| \le |\mathscr{T}| + |\mathscr{R}'| \le \binom{|Z_1| + k}{k} + \binom{|W| - |Z_1|}{k},$$

which shows that (i) holds for b = 1. Thus we may assume $b \ge 2$. Set $W' = W - Z_1$, and set $Z'_i = Z_{i+1}$ and $Q'_i = Q_{i+1} - Z_1$ for each $1 \le i \le b - 1$. Then \mathscr{R}' , W', the Z'_i and the Q'_i satisfy the assumptions of the lemma with b replaced by b - 1. Hence by the induction hypothesis,

$$|\mathscr{R}'| \leq \left(\sum_{1 \leq i \leq b-1} \binom{|Z_i| + k}{k}\right) + \binom{|W'| - \left|\bigcup_{1 \leq i \leq b-1} Z_i'\right|}{k}$$
$$= \left(\sum_{2 \leq i \leq b} \binom{|Z_i| + k}{k}\right) + \binom{|W - Z_1| - \left|\bigcup_{2 \leq i \leq b} Z_i\right|}{k}.$$

Therefore

$$\begin{aligned} |\mathscr{R}| &\leq |\mathscr{T}| + |\mathscr{R}'| \\ &\leq \binom{|Z_1| + k}{k} + \left(\sum_{2 \leq i \leq b} \binom{|Z_i| + k}{k}\right) + \binom{|W - Z_1| - \left|\bigcup_{2 \leq i \leq b} Z_i\right|}{k}. \end{aligned}$$

This proves (i). Since $(\sum_{1 \le i \le b} (|Z_i| + k)) + (|W| - |\bigcup_{1 \le i \le b} Z_i|) = |W| + kb$, (ii) follows from (i) and Lemma 4.7.

§5. Proof of the main theorem

In this section, we let t, k, G, n be as in the Main Theorem, and follow the notation introduced in Section 3. Also as in Section 4, we write f(n) for $f_{t,k}(n)$. Since $((2t-1)(n-f(n)))/(2(t-1)^2) > n/(t-1)$ by Lemma 4.4 (ii), we may assume $|\mathscr{S}| > n/(t-1)$.

Let $\mathscr{H}_1, \ldots, \mathscr{H}_a$ be the nontrivial components of \mathscr{G} . For each $1 \leq p \leq a$, write $V(\mathscr{H}_p) = \{T_{p,1}, \ldots, T_{p,|V(\mathscr{H}_p)|}\}$ (here $V(\mathscr{H}_p)$ denotes the vertex set of \mathscr{H}_p , so $V(\mathscr{H}_p) \subseteq \mathscr{S}$ by the definition of \mathscr{G}), and let F_p denote the subgraph of G induced by $\bigcup_{1 \leq i \leq |V(\mathscr{H}_p)|} L(T_{p,i})$. Let $W = V(G) - \bigcup_{1 \leq p \leq a} V(F_p)$.

The following claim follows immediately from Lemma 3.2.

Claim 5.1. F_p is connected for all p with $1 \le p \le a$.

Claim 5.2. $V(F_p) \cap V(F_q) = \emptyset$ and $E(V(F_p), V(F_q)) = \emptyset$ for all p, q with $1 \le p < q \le a$.

Proof. Take $T_{p,i} \in \mathscr{H}_p$ and $T_{q,j} \in \mathscr{H}_q$. Then $T_{p,i}T_{q,j} \notin E(\mathscr{G})$, and hence $L(T_{p,i}) \cap L(T_{q,j}) = \emptyset$ and $E(L(T_{p,i}), L(T_{q,j})) = \emptyset$ by Lemmas 3.5 and 3.11. Since $T_{p,i}$ and $T_{q,j}$ are arbitrary, this means

$$V(F_p) \cap V(F_q) = \emptyset$$
 and $E(V(F_p), V(F_q)) = \emptyset$.

For each $1 \leq p \leq a$, $|V(F_p)| = \sum_{1 \leq i \leq |V(\mathscr{H}_p)|} |L(T_{p,i})|$ by Lemmas 3.4, 3.5 and 3.11, and hence $(t-1)|V(\mathscr{H}_p)| \leq |V(F_p)|$ by Lemma 3.10 (iii). Consequently

(5.1)
$$(t-1)\sum_{1\le p\le a} |V(\mathscr{H}_p)| \le \sum_{1\le p\le a} |V(F_p)|.$$

280

By Claim 5.2,

(5.2)
$$|W| = n - \sum_{1 \le p \le a} |V(F_p)|$$

By (5.1) and (5.2),

(5.3)
$$\sum_{1 \le p \le a} |V(\mathscr{H}_p)| \le (n - |W|)/(t - 1).$$

Since $|V(\mathcal{H}_p)| \geq 2$ for each p, it follows from (5.3) that

(5.4)
$$a \le (n - |W|)/(2(t - 1)).$$

Set $\mathscr{R} = \mathscr{S} - \bigcup_{1 \leq p \leq a} V(\mathscr{H}_p).$

Claim 5.3. Let $S \in \mathscr{S} - V(\mathscr{H}_p)$. Then $S \cap V(F_p) = \emptyset$.

Proof. Let $T \in V(\mathscr{H}_p)$. Then $ST \notin E(\mathscr{G})$. Hence $S \cap L(T) = \emptyset$ by Lemmas 3.6 and 3.11. Thus $S \cap V(F_p) = S \cap (\bigcup_{T \in V(\mathscr{H}_p)} L(T)) = \emptyset$. \Box

Claim 5.4. Let $S \in \mathscr{R}$. Then $S \subseteq W$.

Proof. This is because $S \cap V(F_p) = \emptyset$ for each $1 \le p \le a$ by Claim 5.3.

Claim 5.5. Let $S \in \mathcal{R}$, and let $C \in \mathcal{K}(S) - \{F_1, \ldots, F_a\}$. Then the following holds.

- (i) If $C \in \mathscr{L}(S)$, then C is not saturated.
- (ii) If we let $A = \{p \mid V(F_p) \cap V(C) \neq \emptyset\}$, then $V(C) W = \bigcup_{p \in A} V(F_p)$.

Proof. Let A be as in (ii). Then by Claims 5.1 and 5.3, $V(F_p) \subseteq V(C)$ for each $p \in A$, and hence $\bigcup_{p \in A} V(F_p) \subseteq V(C) - W$. Thus (ii) is proved. Now let $C \in \mathscr{L}(S)$, and suppose that C is saturated. By Lemma 3.8, there exists $\mathscr{T} \subseteq \mathscr{S}$ with $|\mathscr{T}| \geq 2$ such that $V(C) = \bigcup_{M \in \mathscr{T}} L(M)$ and such that the subgraph induced by \mathscr{T} in \mathscr{G} is connected. Then there exists p such that $\mathscr{T} \subseteq V(\mathscr{H}_p)$, and hence $V(C) \subseteq V(F_p)$. By (ii), this implies $V(C) = V(F_p)$, which contradicts the assumption that $C \notin \{F_1, \ldots, F_a\}$.

Set

$$\mathcal{Q}_i = \{ S \in \mathscr{R} \mid |\mathscr{K}(S) \cap \{F_1, \dots, F_a\}| = i \} \quad (0 \le i \le t-2),$$
$$\mathcal{Q}_{t-1} = \{ S \in \mathscr{R} \mid |\mathscr{K}(S) \cap \{F_1, \dots, F_a\}| \ge t-1 \}$$

and let $b_i = |\mathcal{Q}_i|$ for each *i*. Since $\mathscr{K}(S) \cap \mathscr{K}(T) = \emptyset$ for any $S, T \in \mathscr{S}$ with $S \neq T$, we have

(5.5)
$$\sum_{1 \le i \le t-1} ib_i \le a.$$

By (5.4) and (5.5)

(5.6)
$$2(t-1)\sum_{1\le i\le t-1}ib_i\le n-|W|.$$

If $|W| \leq k$, then $\binom{|W|}{k} \leq |W|/k \leq |W|/(t-1)$, and hence it follows from (5.3) and Claim 5.4 that $|\mathscr{S}| \leq (n - |W|)/(t-1) + \binom{|W|}{k} \leq n/(t-1)$, which contradicts the assumption that $|\mathscr{S}| > n/(t-1)$. Thus

$$(5.7) |W| \ge k+1$$

Now label the members of $\bigcup_{0 \le i \le t-2} \mathcal{Q}_i$ as Q_1, \ldots, Q_h $(h = \sum_{0 \le i \le t-2} b_i)$ so that

(5.8)
$$L(Q_j) \not\subseteq L(Q_i)$$
 for any i, j with $1 \le i < j \le h$

(it is possible that h = 0). In the case where $h \ge 2$, if possible, we choose our labeling so that $L(Q_{h-1}) \not\subseteq L(Q_h)$. For each $1 \le i \le h$, let j_i $(0 \le j_i \le t-2)$ be the index such that $Q_i \in \mathcal{Q}_{j_i}$, and take $C_{i,1}, \ldots, C_{i,t-1-j_i} \in \mathcal{L}(Q_i) - \{F_1, \ldots, F_a\}$ (the existence of such components follows from the definition of \mathcal{Q}_{j_i}). Let $W_0 = \emptyset$. For i with $1 \le i \le h$, we define $X_{i,l}$ $(1 \le l \le t - 1 - j_i)$ and W_i inductively as follows: $X_{i,l} = (V(C_{i,l}) \cap W) - W_{i-1}, W_i = W_{i-1} \cup (\bigcup_{1 \le l \le t-1-j_i} X_{i,l})$. Then

(5.9)
$$W \supseteq W_h = \bigcup_{1 \le i \le h} \left(\bigcup_{1 \le l \le t-1-j_i} X_{i,l} \right)$$
 (disjoint union).

Arguing as in [2; Claims 6.3 and 6.4 and 6.5], we obtain the following three claims. We include sketches of their proofs for the convenience of the reader.

Claim 5.6. $X_{i,l} \neq \emptyset$ for every i, l with $1 \leq i \leq h$ and $1 \leq l \leq t - 1 - j_i$.

Proof. Set $A = \{p \mid V(F_p) \cap V(C_{i,l}) \neq \emptyset\}$. By Claim 5.5 (ii), $V(C_{i,l}) - W = \bigcup_{p \in A} V(F_p)$. Set $J = \{j \mid 1 \leq j \leq i-1, L(Q_j) \subseteq V(C_{i,l})\}$. Suppose that $X_{i,l} = \emptyset$. Then $(V(C_{i,l}) \cap W) - W_{i-1} = \emptyset$, and hence $V(C_{i,l}) \cap W \subseteq W_{i-1} \subseteq \bigcup_{1 \leq j \leq i-1} L(Q_j)$. On the other hand, for each $1 \leq j \leq i-1$ with $j \notin J$, $L(Q_j) \cap V(C_{i,l}) = \emptyset$ by (5.8) and Lemma 3.5 (note that $\{Q_\alpha \mid 1 \leq \alpha \leq h\} \subseteq \mathscr{R}$, and thus $Q_i Q_j \notin E(\mathscr{G})$ by the definition of \mathscr{R}). Consequently $V(C_{i,l}) \cap W \subseteq \bigcup_{j \in J} L(Q_j)$. Since $V(F_p) = \bigcup_{T \in V(\mathscr{H}_p)} L(T)$ for each $p \in A$, this means that $V(C_{i,l})$ is saturated, which contradicts Claim 5.5 (i). □

Claim 5.7. Suppose that either $h \ge 2$ and $L(Q_{h-1}) \subseteq L(Q_h)$, or h = 1, and let $C \in \mathscr{K}(Q_h) - \{C_{h,1}, \ldots, C_{h,t-1-j_h}, F_1, \ldots, F_a\}$. Then $(V(C) \cap W) - W_h \ne \emptyset$.

Proof. Since C and the $C_{h,l}$ $(1 \leq l \leq t - 1 - j_h)$ are distinct members of $\mathscr{K}(Q_h)$, $(V(C) \cap W) \cap (W_h - W_{h-1}) = \emptyset$. Thus it suffices to show that $(V(C) \cap W) - W_{h-1} \neq \emptyset$. Suppose that

(5.10)
$$(V(C) \cap W) - W_{h-1} = \emptyset.$$

If $C \in \mathscr{L}(Q_h)$, we can get a contradiction by arguing as in the proof of Claim 5.6. Thus we may assume $C \notin \mathscr{L}(Q_h)$. Then

(5.11)
$$V(C) \cap L(Q_h) = \emptyset.$$

Assume for the moment that $h \geq 2$ and $L(Q_{h-1}) \subseteq L(Q_h)$. Then by the choice of our labeling mentioned immediately after (5.8), we have $L(Q'_{h-1}) \subseteq L(Q'_h)$ for any labeling Q'_1, \ldots, Q'_h of $\bigcup_{0 \leq i \leq t-2} \mathcal{Q}_i$ which satisfies (5.8). This implies $L(Q_i) \subseteq L(Q_h)$ for all $1 \leq i \leq h-1$. Hence by (5.11), $V(C) \cap L(Q_i) = \emptyset$ for all $1 \leq i \leq h-1$ which, in view of (5.10), implies that

(5.12)
$$V(C) \cap W = (V(C) \cap W) - W_{h-1} = \emptyset.$$

Note that if h = 1, then (5.10) immediately implies (5.12). Thus (5.12) holds. But in view of Claim 5.5 (ii) and Claim 5.2, (5.12) implies that $C = F_p$ for some p with $1 \le p \le a$, which contradicts the assumption that $C \notin \{F_1, \ldots, F_a\}$. \Box

Claim 5.8. $|W_h| \le |W| - (k+1)$.

Proof. If h = 0, the claim immediately follows from (5.7). Thus we may assume $h \ge 1$. By (5.8) and Lemma 3.6, $Q_h \cap L(Q_i) = \emptyset$ for all i, and hence

Assume first that $h \ge 2$ and $L(Q_{h-1}) \not\subseteq L(Q_h)$. Then by (5.8) and Lemma 3.6, we obtain $Q_{h-1} \cap W_h = \emptyset$. Since $Q_{h-1}, Q_h \subseteq W$ by Claim 5.4, this together with (5.13) implies that $|W_h| \le |W| - |Q_h \cup Q_{h-1}| \le |W| - (k+1)$. Assume now that $h \ge 2$ and $L(Q_{h-1}) \subseteq L(Q_h)$ or h = 1. Let C be as in Claim 5.7. Then since $Q_h \subseteq W$ by Claim 5.4, Claim 5.7 and (5.13) imply that $|W_h| \le |W| - |Q_h| - |(V(C) \cap W) - W_h| \le |W| - (k+1)$.

Claim 5.9. $\sum_{0 \le j \le t-2} (t-1-j)b_j \le |W| - (k+1).$

Proof. Recall that for each $1 \le i \le h$, j_i denotes the index such that $Q_i \in \mathcal{Q}_{j_i}$, and thus $b_j = |\{i \mid 1 \le i \le h, j_i = j\}|$ for each $0 \le j \le t - 2$. Therefore by (5.9) and Claims 5.6 and 5.8,

$$\sum_{0 \le j \le t-2} (t-1-j)b_j = \sum_{1 \le i \le h} (t-1-j_i)$$
$$\leq \sum_{1 \le i \le h} \left(\sum_{1 \le l \le t-1-j_i} |X_{i,l}| \right)$$
$$= \left| \bigcup_{1 \le i \le h} \left(\bigcup_{1 \le l \le t-1-j_i} X_{i,l} \right) \right|$$
$$= |W_h| \le |W| - (k+1).$$

Claim 5.10. For any *i*, *l* with $1 \le i \le h$ and $1 \le l \le t - 1 - j_i$, no member of $\bigcup_{0 \le j \le t-1} \mathcal{Q}_j$ intersects with both $X_{i,l}$ and $W - W_{i-1} - X_{i,l} - Q_i$.

Proof. Recall that $\{Q_{\alpha} \mid 1 \leq \alpha \leq h\} = \bigcup_{0 \leq j \leq t-2} \mathcal{Q}_{j} \subseteq \bigcup_{0 \leq j \leq t-1} \mathcal{Q}_{j} = \mathscr{R}$. Also note that a vertex in $X_{i,l}$ and a vertex in $W - W_{i-1} - X_{i,l} - Q_{i}$ belong to distinct components of $G - Q_{i}$. Since no two members of \mathscr{R} mesh with each other by the definition of \mathscr{R} , this means that no member of $\bigcup_{0 \leq j \leq t-1} \mathcal{Q}_{j}$ intersects with both $X_{i,l}$ and $W - W_{i-1} - X_{i,l} - Q_{i}$.

In view of Lemma 4.8 (ii), Claim 5.10 together with Claims 5.6 and 5.8 implies

(5.14)
$$\sum_{0 \le j \le t-1} b_j \le \binom{|W| - \sum_{0 \le j \le t-2} (t-1-j)b_j}{k} + (k+1) \sum_{0 \le j \le t-2} (t-1-j)b_j.$$

We now obtain

$$\begin{split} |\mathscr{S}| &= \sum_{1 \le p \le a} |V(\mathscr{H}_p)| + \sum_{0 \le i \le t-1} b_i \\ &\le (n - |W|)/(t - 1) + \sum_{0 \le i \le t-1} b_i \quad (\text{by } (5.3)) \\ &\le \left((2t - 1)(n - f(n)) \right) / (2(t - 1)^2) \\ &\qquad (\text{by } (5.6), \ (5.14), \ \text{Claim } 5.9 \ \text{and Lemma } 4.5). \end{split}$$

This completes the proof of the Main Theorem.

References

- [1] J. Cheriyan and R. Thurimella, Fast algorithms for k-shredders and k-node connectivity augmentation, Proc. 28th ACM STOC, 1996, pp. 37–46.
- [2] Y. Egawa, k-Shredders in k-connected graphs, J. Graph Theory, to appear.
- [3] Y. Egawa, Y. Okadome and M. Takatou, 5-Shredders in 5-connected graphs, Discrete Math., to appear.
- [4] T. Jordán, On the number of shredders, J. Graph Theory **31** (1999), 195–200.
- [5] G. Liberman and Z. Nutov, On shredders and vertex connectivity augmentation, J. Discrete Algorithms 5 (2007), 91–101.
- [6] Z. Nutov and M. Tsugaki, On (t, k)-shredders in k-connected graphs, Ars Combin. 83 (2007), 213–219.

Masanori Takatou Department of Mathematical Information Science, Tokyo University of Science Shinjuku-ku, Tokyo 162-8601, Japan *Email* : j1105704@ed.kagu.tus.ac.jp

Masao Tsugaki Department of Mathematical Information Science, Tokyo University of Science Shinjuku-ku, Tokyo 162-8601, Japan *Email*: tsugaki@hotmail.com