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Abstract. Let t, k be integers with t ≥ 3 and k ≥ 1. For a graph G, a subset S
of V (G) with cardinality k is called a (t, k)-shredder if G−S consists of t or more
components. In this paper, we show that if t ≥ 3, 2(t−1) ≤ k ≤ 3t−5 and G is
a k-connected graph of order at least k8, then the number of (t, k)-shredders of
G is less than or equal to ((2t−1)(|V (G)|−f(|V (G)|)))/(2(t−1)2), where f(n)
denotes the unique real number x with x ≥ k−1 such that n = 2(t−1)2

(
x
k

)
+x.
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§1. Introduction

In this paper, we consider only finite, undirected, simple graphs with no loops
and no multiple edges.

Let G = (V (G), E(G)) be a graph. Let t, k be integers with t ≥ 3 and
k ≥ 1. A subset S of V (G) with cardinality k is called a (t,k)-shredder if
G−S consists of t or more components. In this paper, we are concerned with
the number of (t, k)-shredders in k-connected graphs.

Before stating our result, we make the following definitions. For a real
number x, we let

(
x

k

)
=


 ∏

0≤i≤k−1

(x− i)


/

k!.

For a real number n with n ≥ k − 1, we let ft,k(n) denote the unique real
number x with x ≥ k − 1 such that

n = 2(t− 1)2

(
x

k

)
+ x.

We start with known results concerning (3, k)-shredders. For 1 ≤ k ≤ 3,
the following result was proved by T. Jordán in [4].
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Theorem 1. Let k be an integer with 1 ≤ k ≤ 3, and let G be a k-connected
graph. Then unless k = 3 and G ∼= K3,3, the number of (3, k)-shredders of G
is less than or equal to (|V (G)| − k − 1)/2.

Subsequently the following two results were proved in [2].

Theorem 2. Let G be a 4-connected graph of order n ≥ 2200. Then the
number of (3, 4)-shredders of G is less than or equal to 5(n− f3,4(n))/8.

Theorem 3. Let k be an integer with k ≥ 5, and let G be a k-connected graph.
Then the number of (3, k)-shredders of G is less than 2|V (G)|/3.

In Theorems 1 and 2, the upper bound on the number of (3, k)-shredders
is best possible; as for Theorem 3, the bound itself is not best possible, but
the coefficient 2/3 of |V (G)| in the bound is best possible (see [2], [4], [5]).

In [6], Theorem 1 was generalized to (t, k)-shredders as follows.

Theorem 4. Let t, k be integers with t ≥ 3 and 1 ≤ k ≤ 2t− 3, and let G be
a k-connected graph of order n ≥ 2k + 1. Then the number of (t, k)-shredders
of G is less than or equal to (n− k − 1)/(t− 1).

Similarly the following generalization of Theorem 3 was proved by G. Liber-
man and Z. Nutov in [5].

Theorem 5. Let t, k be integers with t ≥ 3 and k ≥ 3t − 4, and let G be
a k-connected graph. Then the number of (t, k)-shredders of G is less than
2|V (G)|/(2t− 3).

The bound (n− k − 1)/(t− 1) in Theorem 4 is best possible. Also modifi-
cations of examples constructed in [2] show that in Theorem 5, the coefficient
2/(2t− 3) of |V (G)| in the bound is best possible. The purpose of this paper
is to generalize Theorem 2 to (t, k)-shredders as follows.

Main Theorem. Let t, k be integers with t ≥ 3 and 2(t− 1) ≤ k ≤ 3t− 5,
and let G be a k-connected graph of order n ≥ k8. Then the number of (t, k)-
shredders of G is less than or equal to

(
(2t− 1)(n− ft,k(n))

) /
(2(t− 1)2).

We here include a discussion concerning the condition 2(t−1) ≤ k ≤ 3t−5
on k. In view of Theorem 4, it is natural to assume k ≥ 2(t − 1). On the
other hand, the fact that the coefficient 2/(2t−3) in Theorem 5 is sharp shows
that the conclusion of the Main Theorem does not hold if k ≥ 3t − 4. Thus
the upper bound 3t− 5 on k in the assumption of the Main Theorem is best
possible.

The organization of the paper is as follows. In Section 2, we discuss the
sharpness of the bound

(
(2t−1)(n−ft,k(n))

)
/(2(t−1)2). Section 3 and Section

4 contain preliminary results. We prove the Main Theorem in Section 5.
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§2. Examples

In the Main Theorem, the bound
(
(2t − 1)(n − ft,k(n))

)
/(2(t − 1)2) is best

possible in the sense that there are infinitely many graphs which attain the
bound. To see this, let m ≥ k + 1 be an integer, and let W be a set of
cardinality m. Let R denote the set of all subsets of cardinality k of W , and
write R = {R1, . . . , R(mk )}. For each p with 1 ≤ p ≤ (mk

)
, write Rp = Up ∪ Vp

with |Up| = |Vp| = k − t+ 1. Define a graphs G of order

|W |+ 2(t− 1)2|R| = m+ 2(t− 1)2

(
m

k

)

by

V (G) = W ∪
( ⋃

1≤p≤(mk )
{ap,i,j | 1 ≤ i, j ≤ t− 1}

)

∪
( ⋃

1≤p≤(mk )
{bp,i,j | 1 ≤ i, j ≤ t− 1}

)
,

E(G) =
⋃

1≤p≤(mk )
{ap,h,ibp,h,j , ap,h,iu, bp,h,jv | 1 ≤ h, i, j ≤ t− 1,

u ∈ Up, v ∈ Vp} ∪ {xy | x, y ∈W, x 6= y}.

Then G is k-connected and, in addition to the members of R, G has 2(t−1)|R|
(t, k)-shredders

{ap,i,j | 1 ≤ j ≤ t− 1} ∪ Vp (1 ≤ i ≤ t− 1, 1 ≤ p ≤ (mk
)
),

{bp,i,j | 1 ≤ j ≤ t− 1} ∪ Up (1 ≤ i ≤ t− 1, 1 ≤ p ≤ (mk
)
).

Hence the total number of (t, k)-shredders of G is

(2(t− 1) + 1)
(
m

k

)
=
(
(2t− 1)(|V (G)| − ft,k(|V (G)|))) / (2(t− 1)2).

§3. Preliminary results

Throughout this section, let t, k be integers with t ≥ 3 and k ≥ 2(t − 1), let
G be a k-connected graph, and let S denote the set of (t, k)-shredders of G.

For each S ∈ S , we define K (S), L (S) and L(S) as follows. Let S ∈
S . We let K (S) denote the set of components of G − S. Write K (S) =
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{H1, . . . , Hs} (s = |K (S)|). We may assume |V (H1)| ≥ |V (H2)| ≥ · · · ≥
|V (Hs)| (any such labeling will do). Under this notation, we let L (S) =
K (S) − {H1} and L(S) =

⋃
2≤i≤s V (Hi); thus L(S) =

⋃
C∈L (S) V (C). Now

let L =
⋃
S∈S L (S). A member F of L is said to be saturated if there exists

a subset C of L − {F} such that V (F ) =
⋃
C∈C V (C).

Let S, T ∈ S with S 6= T . We say that S meshes with T if S intersects
with at least two members of K (T ). It is easy to see that if S meshes with T ,
then T intersects with all members of K (S), and hence T meshes with S and
S intersects with all members of K (T ) (see [1; Lemma 4.3 (1)]). We define
an auxiliary graph G by

V (G ) = S ,

E(G ) = {ST | S, T ∈ S , S 6= T, S and T mesh with each other}.

We start with easy observations.

Lemma 3.1. Let S ∈ S . Then for each x ∈ S and each C ∈ K (S), there is
an edge of G joining x and a vertex of C.

Proof. If xy /∈ E(G) for any y ∈ C, then G− (S−{x}) is disconnected, which
contradicts the assumption that G is k-connected.

Lemma 3.2. Let S, T ∈ S with S 6= T , and suppose that ST ∈ E(G ). Then
the following hold.

(i) For each C ∈ K (S) and each D ∈ K (T ), there is an edge of G joining
a vertex of C and a vertex of D.

(ii) The subgraph of G induced by L(S) ∪ L(T ) is connected.

Proof. Since ST ∈ E(G ), we have S ∩ V (D) 6= ∅. Hence (i) follows from
Lemma 3.1, and (ii) follows from (i).

Lemma 3.3. Let S, T ∈ S with S 6= T , and suppose that ST ∈ E(G ). Then
|S ∩ L(T )| ≥ t− 1 and |L(S) ∩ T | ≥ t− 1.

Proof. Since ST ∈ E(G ), S ∩ V (D) 6= ∅ for all D ∈ K (T ). Since |L (T )| ≥
t−1, this implies |S∩L(T )| ≥ |L (T )| ≥ t−1. Similarly |L(S)∩T | ≥ t−1.

Note that a (t, k)-shredder is a (3, k)-shredder. Thus the following five
lemmas follow from [4; Lemmas 2.1 and 3.1] (see also [2; Lemmas 3.2 through
3.6]).

Lemma 3.4. Let S, T ∈ S with S 6= T , and suppose that ST ∈ E(G ). Then
the following hold.
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(i) S ⊇ L(T ) or T ⊇ L(S).

(ii) L(S) ∩ L(T ) = ∅.

Lemma 3.5. Let S, T ∈ S with S 6= T , and suppose that ST /∈ E(G ). Then
one of the following holds:

(i) L(S) ∩ L(T ) = ∅, (L(S) ∪ L(T )) ∩ (S ∪ T ) = ∅, and no edge of G joins
a vertex in L(S) and a vertex in L(T );

(ii) there exists C ∈ L (S) such that V (C) ⊇ L(T ) (so L(S) ⊇ L(T )); or

(iii) there exists D ∈ L (T ) such that V (D) ⊇ L(S) (so L(T ) ⊇ L(S)).

Lemma 3.6. Let S, T ∈ S with S 6= T , and suppose that ST /∈ E(G ) and
L(S) 6⊆ L(T ). Then S ∩ L(T ) = ∅.
Lemma 3.7. Let C, D ∈ L . Then one of the following holds:

(i) V (C) ∩ V (D) = ∅;
(ii) V (C) ⊇ V (D); or

(iii) V (D) ⊇ V (C).

Lemma 3.8. Let F ∈ L . Suppose that F is saturated, and let C be a subset
of L −{F} with minimum cardinality such that V (F ) =

⋃
C∈C V (C). Then

the following hold.

(i) C =
⋃
S∈T L (S) for some subset T of S (so V (F ) =

⋃
S∈T L(S)).

(ii) |T | ≥ 2, and the subgraph induced by T in G is connected.

We can prove the following lemma by arguing as in the proof of [3; Lemma
2.12].

Lemma 3.9. Let S, T ∈ S , and suppose that ST ∈ E(G ) and L(T ) 6⊆ S.
Then |S ∩ L(T )| ≥ 2t− 3.

Proof. Since L(T ) 6⊆ S, it follows form Lemma 3.4 (i) that L(S) ⊆ T which,
in particular, implies L(S) ∩ L(T ) = ∅. Hence (V (G) − S − L(S)) ∩ L(T ) 6=
∅. Write L (T ) = {F1, . . . , Fa} (a = |L (T )| ≥ t − 1). We may assume
(V (G) − S − L(S)) ∩ V (F1) 6= ∅. Then (S ∩ V (F1)) ∪ (T − L(S)) separates
(V (G)−S−L(S))∩V (F1) from the rest. Hence |(S∩V (F1))∪(T−L(S))| ≥ k,
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which implies |S ∩ V (F1)| ≥ k − |T − L(S)| = |T | − |T − L(S)| = |L(S) ∩ T |.
Therefore

|S ∩ V (F1)| ≥ t− 1(3.1)

by Lemma 3.3. Since S ∩ V (Fi) 6= ∅ for each i by the definition of meshing,
we now obtain |S ∩ L(T )| = ∑1≤i≤a |S ∩ V (Fi)| = |S ∩ V (F1)|+∑2≤i≤a |S ∩
V (Fi)| ≥ t− 1 + a− 1 ≥ 2t− 3.

Lemma 3.10. Suppose that 2(t−1) ≤ k ≤ 3t−5 and |V (G)| > (k2+6k+1)/4.
Let S, T ∈ S , and suppose that ST ∈ E(G ). Then the following hold.

(i) If we write K (S) − L (S) = {C} and K (T ) − L (T ) = {D}, then
V (C) ∩ V (D) 6= ∅.

(ii) L(S) ⊆ T, L(T ) ⊆ S.

(iii) t− 1 ≤ |L(S)| ≤ k − t+ 1, t− 1 ≤ |L(T )| ≤ k − t+ 1.

Proof. In view of Lemma 3.4, we may assume L(S) ⊆ T . Then L(S)∩V (D) =
∅. To prove (i), suppose that V (C) ∩ V (D) = ∅. Then V (D) ⊆ S, and hence
|V (D)| = |S ∩ V (D)| ≤ |S| − |S ∩ L(T )|. By the definition of meshing,
|L (T )| ≤ |S ∩ L(T )|. Since D is the largest component in K (T ), we obtain
|L(T )| ≤ |L (T )||V (D)| ≤ |S ∩ L(T )|(k − |S ∩ L(T )|), and hence |V (G)| =
|V (D)|+ |T |+ |L(T )| ≤ −|S∩L(T )|2 +(k−1)|S∩L(T )|+2k = −(|S∩L(T )|−
(k−1)/2

)2+(k2+6k+1)/4 ≤ (k2+6k+1)/4. This contradicts the assumption
that |V (G)| > (k2 + 6k+ 1)/4. Thus (i) is proved. To prove (ii), suppose that
L(T ) 6⊆ S. By Lemma 3.9, |S ∩ L(T )| ≥ 2t − 3. Since V (C) ∩ V (D) 6= ∅ by
(i), we get

|S ∩ V (D)| ≥ t− 1(3.2)

by arguing as in the proof of (3.1). Consequently k ≥ |S∩L(T )|+|S∩V (D)| ≥
3t− 4, which contradicts the assumption that k ≤ 3t− 5. Thus (ii) is proved.
Now by (ii) and (3.2), t−1 ≤ |L (T )| ≤ |L(T )| ≤ |S|−|S∩V (D)| ≤ k−(t−1).
Similarly t−1 ≤ |L(S)| ≤ |T |−|V (C)∩T | ≤ k−(t−1), which proves (iii).

Lemma 3.11. Suppose that 2(t−1) ≤ k ≤ 3t−5 and |V (G)| > (k2+6k+1)/4.
Let T ∈ S , and suppose that degG (T ) ≥ 1, i.e., there exists T ′ ∈ S −{T}
such that TT ′ ∈ E(G ). Then there is no S ∈ S −{T} such that L(S) ⊆ L(T ).
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Proof. Suppose that there exists S ∈ S −{T} such that L(S) ⊆ L(T ). Then
ST 6∈ E(G ) by Lemma 3.4, and hence it follows Lemma 3.5 that there exists
M ∈ L (T ) such that L(S) ⊆ V (M). This implies

|L(T )| =
∑

F∈L (T )−{M}
|V (F )|+ |V (M)|

≥ (|L (T )| − 1) + |L(S)|
≥ (t− 1− 1) + (t− 1) = 2t− 3.

On the other hand, since degG (T ) ≥ 1, |L(T )| ≤ k− t+1 by Lemma 3.10 (iii).
Consequently 2t − 3 ≤ |L(T )| ≤ k − t + 1, which contradicts the assumption
k ≤ 3t− 5.

§4. Numerical results

In this section, we state preliminary lemmas, most of which are Numerical
results. Throughout this section, we let t, k be as in the Main Theorem. Also
for simplicity, we write f(n) for ft,k(n). The following lemma is easily verified,
and we omit its proof (see the proof of Lemma 4.2):

Lemma 4.1. Let a, x, x′ be real numbers such that a ≤ k + 2 and k + 1 ≤
x < x′. Then (

x

k

)
− ax <

(
x′

k

)
− ax′.

Let α denote the real number with k+2 < α ≤ k+3 such that
(
α
k

)
= (k+1)α.

The existence of α follows from the fact that we have
(
k + 2
k

)
< (k + 1)(k + 2) and

(
k + 3
k

)
≥ (k + 1)(k + 3).

Lemma 4.2. Let x, x′ be real numbers with α ≤ x < x′. Then

(t− 1)
(
x

k

)
− ((k + 1)(t− 1)(2t− 1) + 1

)
x

< (t− 1)
(
x′

k

)
− ((k + 1)(t− 1)(2t− 1) + 1

)
x′.

Proof. We define h(x) by h(x) = (t−1)
(
x
k

)−((k+1)(t−1)(2t−1)+1
)
x. Then

h′(α) = (t−1)(k+1)α
∑

0≤i≤k−1

(
1/(α−i))−((k+1)(t−1)(2t−1)+1

)
. We show

that h′(α) > 0. Since α/(α− i) ≥ (k+3)/(k+3− i) for each 0 ≤ i ≤ k−1 and
since 2(t−1) ≤ k, h′(α) ≥ (t−1)(k+1)(k+3)

∑
0≤i≤k−1

(
1/(k+3− i))−((k+
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1)2(t−1)+1
)
> (t−1)

(
(k+1)(k+3)

∑
0≤i≤k−1

(
1/(k+3−i))−((k+1)2 +1

))
.

Thus it suffices to show
∑

0≤i≤k−1

1/(k + 3− i) > (k + 1)/(k + 3) + 1/
(
(k + 1)(k + 3)

)
.(4.1)

It is easy to verify (4.1) for 4 ≤ k ≤ 6. On the other hand, if k ≥ 7,∑
0≤i≤k−1

(
1/(k + 3 − i)) ≥ ∑4≤i≤10(1/i) > 1 > (k + 1)/(k + 3) + 1/

(
(k +

1)(k + 3)
)
. Hence (4.1) holds, and we therefore obtain h′(α) > 0. Since we

clearly have h′′(x) > 0 for all x ≥ α, we now see that h′(x) > 0 for x ≥ α, and
hence the desired inequality holds.

For convenience, we restate Lemma 4.1 in the following form:

Lemma 4.3. Let a, m, b, b′ be real numbers such that a ≤ k + 2, b′ < b and
(t− 1)b ≤ m− (k + 1). Then

(
m− (t− 1)b

k

)
+ (t− 1)ab <

(
m− (t− 1)b′

k

)
+ (t− 1)ab′.

Lemma 4.4. Let n ≥ k8 be a real number. Then the following hold.

(i) (a) f(n) > k + 6.

(b) If k = 4, f(n) > 11.

(ii) f(n) < n/
((

2(t− 1)2(k + 1) + 1
)
(2t− 1)

)
.

Proof. Statement (i) (a) follows from the inequality 2(t− 1)2
(
k+6
k

)
+ k + 6 ≤

(k2
(
k+6
k

)
)/2+k+6 < k8. Similarly (i) (b) follows from the fact that 8

(
11
4

)
+11 <

48. Note that n/((2(t − 1)2(k + 1) + 1)(2t − 1)) − f(n) = ((2(t − 1))/
(
(2(t −

1)2(k+ 1) + 1)(2t− 1))
)(

(t− 1)
(f(n)
k

)−((k+ 1)(t− 1)(2t− 1) + 1
)
f(n)

)
. Thus

(ii) is equivalent to the inequality

(t− 1)
(
f(n)
k

)
− ((k + 1)(t− 1)(2t− 1) + 1

)
f(n) > 0.(4.2)

Assume for the moment that k ≥ 5. By (i) (a) and Lemma 4.2, (4.2) follows
if we prove (t−1)

(
k+6
k

)− ((k+ 1)(t−1)(2t−1) + 1
)
(k+ 6) > 0. In view of the

assumption that 2(t−1) ≤ k, it suffices to show
(
k+6
k

)−((k+1)2+1)(k+6) > 0,
which holds because

(
k+6
k

)
= (k+1)(k+2)(k+6)

(
(k+5)(k+4)(k+3)/720

) ≥
(k+ 1)(k+ 2)(k+ 6). Similarly if k = 4, then by (i) (b) and Lemma 4.2, (4.2)
follows from the fact that

(
11
4

)− ((4 + 1)2 + 1
) · 11 > 0.
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Lemma 4.5. Let n, m, bj (0 ≤ j ≤ t − 1) be nonnegative real numbers with
n ≥ k8 such that

0 ≤
∑

0≤j≤t−2

(t− 1− j)bj ≤ m− (k + 1),

∑

1≤j≤t−1

bj ≤
(
m− ∑

0≤j≤t−2
(t− 1− j)bj
k

)
+ (k + 1)

∑

0≤j≤t−2

(t− 1− j)bj ,

2(t− 1)
∑

1≤j≤t−1

jbj ≤ n−m.

Then

(n−m)/(t− 1) +
∑

0≤j≤t−1

bj ≤
(
(2t− 1)(n− f(n))

)
/(2(t− 1)2).

Proof. If we let c0 =
∑

0≤i≤t−2

(
(t − 1 − i)/(t − 1)

)
bi, cj = 0 (1 ≤ j ≤ t − 2),

ct−1 =
∑

1≤i≤t−1(ibi)/(t−1), then the cj (0 ≤ j ≤ t−1) satisfy the assumptions
of the lemma, and

∑
0≤j≤t−1 bj =

∑
0≤j≤t−1 cj . Thus we may assume bj = 0

for every 1 ≤ j ≤ t− 2. Then we have

0 ≤ (t− 1)b0 ≤ m− (k + 1)(4.3)

bt−1 ≤
(
m− (t− 1)b0

k

)
+ (k + 1)(t− 1)b0(4.4)

2(t− 1)2bt−1 ≤ n−m(4.5)

Case 1. m ≤ f(n).

By (4.4),

b0 + bt−1 ≤
(
m− (t− 1)b0

k

)
+ (t− 1)

(
k + 1 + 1/(t− 1)

)
b0.

Since k+ 1 + 1/(t− 1) < k+ 2 and since 0 ≤ (t− 1)b0 ≤ m− (k+ 1) by (4.3),
we get

(
m− (t− 1)b0

k

)
+ (t− 1)

(
k + 1 + 1/(t− 1)

)
b0 ≤

(
m

k

)

by applying Lemma 4.3 with a = k + 1 + 1/(t− 1), b = b0 and b′ = 0. Hence
b0 + bt−1 ≤

(
m
k

)
. Therefore we obtain

(n−m)/(t− 1) + b0 + bt−1 ≤ n/(t− 1) +
(
m

k

)
−m/(t− 1)

≤ n/(t− 1) +
(
f(n)
k

)
− f(n)/(t− 1)

=
(
(2t− 1)(n− f(n))

)
/(2(t− 1)2)
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by Lemma 4.1.

Case 2. m > f(n).

Subcase 2.1. bt−1 ≤ ((k + 1)n)/
(
2(t− 1)2(k + 1) + 1

)
.

By (4.3),

(n−m)/(t− 1) + b0 + bt−1

≤ (n−m)/(t− 1) +
(
m− (k + 1)

)
/(t− 1)

+ ((k + 1)n)/
(
2(t− 1)2(k + 1) + 1

)

< n/(t− 1) + ((k + 1)n)/(2(t− 1)2(k + 1) + 1).

Since
(
(k+1)n

)
/(2(t−1)2(k+1)+1) <

(
(n−(2t−1)f(n)

)
/(2(t−1)2) by Lemma

4.4 (ii), this implies (n−m)/(t−1)+b0+bt−1 <
(
(2t−1)(n−f(n))

)
/(2(t−1)2).

Subcase 2.2. bt−1 >
(
(k + 1)n

)
/(2(t− 1)2(k + 1) + 1).

Let α be as in the paragraph preceding Lemma 4.2. By (4.5) and the
assumption of this subcase, m < n/(2(t − 1)2(k + 1) + 1), and hence bt−1 >
(k + 1)m, which implies
(
m− (m− α)

k

)
+ (k + 1)(m− α) = (k + 1)m

< bt−1

≤
(
m− (t− 1)b0

k

)
+ (k + 1)(t− 1)b0.

We here consider the function g(x) =
(m−(t−1)x

k

)
+ (t− 1)(k + 1)x. Then the

above inequality is written in the form

g((m− α)/(t− 1)) < bt−1 ≤ g(b0);(4.6)

in particular,

g((m− α)/(t− 1)) < g(b0).(4.7)

Since α > k + 2 by the definiton of α, we have

m− α < m− (k + 1).(4.8)

Since the function g(x) is monotonely decreasing in the interval x ≤ (m −
(k + 1))/(t − 1) by Lemma 4.3, it follows from (4.7), (4.8) and (4.3) that
b0 < (m − α)/(t − 1). Hence it follows from (4.6) that there exists b′0 with
b0 ≤ b′0 < (m− α)/(t− 1) such that g(b′0) = bt−1, i.e.,

bt−1 =
(
m− (t− 1)b′0

k

)
+ (k + 1)(t− 1)b′0.
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Thus by replacing the number b0 in the statement of the lemma by b′0, we may
assume that equality holds in (4.4); that is to say, we have

bt−1 =
(
m− (t− 1)b0

k

)
+ (k + 1)(t− 1)b0(4.9)

and

(4.10) m− (t− 1)b0 > α.

Since m > f(n), bt−1 < (n− f(n))/(2(t− 1)2) =
(f(n)
k

)
by (4.5), and hence

(
m− (t− 1)b0

k

)
<

(
f(n)
k

)

by (4.9), which implies

(4.11) m− (t− 1)b0 < f(n).

Now by (4.9) and (4.5),

bt−1 + 2(t− 1)2(k + 1)bt−1

≤
(
m− (t− 1)b0

k

)
+ (k + 1)(t− 1)b0 + (k + 1)(n−m)

=
(
m− (t− 1)b0

k

)
− (k + 1)(m− (t− 1)b0) + (k + 1)n,

and hence

bt−1 ≤
((

m− (t− 1)b0
k

)
− (k + 1)(m− (t− 1)b0)

+ (k + 1)n
) / (

2(t− 1)2(k + 1) + 1
)
,

which implies

(n−m)/(t− 1) + b0 + bt−1

≤ (n−m)/(t− 1) + b0

((
m− (t− 1)b0

k

)

− (k + 1)(m− (t− 1)b0) + (k + 1)n
) / (

2(t− 1)2(k + 1) + 1
)

=
(

((k + 1)(t− 1)(2t− 1) + 1)n+ (t− 1)
(
m− (t− 1)b0

k

)

− ((k + 1)(t− 1)(2t− 1) + 1
)
(m− (t− 1)b0)

)/(
(2(t− 1)2(k + 1) + 1)(t− 1)

)
.
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Consequently it follows from Lemma 4.2 and (4.10) and (4.11) that

(n−m)/(t− 1) + b0 + bt−1

<

((
(k + 1)(t− 1)(2t− 1) + 1

)
n+ (t− 1)

(
f(n)
k

)

− ((k + 1)(t− 1)(2t− 1) + 1
)
f(n)

)
/
(
(2(t− 1)2(k + 1) + 1)(t− 1)

)

=
(
(2t− 1)(n− f(n))

)
/(2(t− 1)2).

Lemma 4.6. Let x, y, x′, y′ be real numbers such that k ≤ x′ < x ≤ y < y′

and x+ y = x′ + y′. Then
(
x

k

)
+
(
y

k

)
<

(
x′

k

)
+
(
y′

k

)
.

Proof. The function ϕ(x) =
(
x
k

)
is strictly convex in the interval x ≥ k. Hence

(
(
x
k

)− (x′k
)
)/(x− x′) < (

(
y′
k

)− (yk
)
)/(y′− y). Since x− x′ = y′− y, this implies(

x
k

)
+
(
y
k

)
<
(
x′
k

)
+
(
y′
k

)
.

Repeated applications of Lemma 4.6 yield:

Lemma 4.7. Let x1, . . . , xb+1 be real numbers such that xi ≥ k + 1 for all
1 ≤ i ≤ b+ 1, and let x =

∑
1≤i≤b+1 xi. Then

∑

1≤i≤b+1

(
xi
k

)
≤ b
(
k + 1
k

)
+
(
x− (k + 1)b

k

)
=
(
x− (k + 1)b

k

)
+ (k + 1)b.

Proof. We proceed by induction on b. If b = 0, the lemma clearly holds. We
may assume b ≥ 1. Then by the induction hypothesis,

∑

1≤i≤b

(
xi
k

)
+
(
xb+1

k

)
≤ (b− 1)

(
k + 1
k

)

+

( ∑
1≤i≤b

xi − (k + 1)(b− 1)

k

)
+
(
xb+1

k

)
.

Note that k + 1 ≤ ∑1≤i≤b xi − (k + 1)(b − 1) ≤ x − (k + 1)b and k + 1 ≤
xb+1 ≤ x − (k + 1)b. Hence, whether

∑
1≤i≤b xi − (k + 1)(b − 1) ≤ xb+1 or

xb+1 ≤
∑

1≤i≤b xi − (k + 1)(b− 1), we obtain
( ∑

1≤i≤b
xi − (k + 1)(b− 1)

k

)
+
(
xb+1

k

)
≤
(
k + 1
k

)
+
(
x− (k + 1)b

k

)
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by Lemma 4.6. Therefore
∑

1≤i≤b

(
xi
k

)
+
(
xb+1

k

)
≤ (b− 1)

(
k + 1
k

)
+
(
k + 1
k

)
+
(
x− (k + 1)b

k

)

= b

(
k + 1
k

)
+
(
x− (k + 1)b

k

)
.

Lemma 4.8. Let b ≥ 0 be an integer (we allow the possibility that b = 0).
Let W be a finite set. Let Z1, . . . , Zb; Q1, . . . , Qb be subsets of W such that
Zi ∩ Zj = ∅ for all i, j with 1 ≤ i < j ≤ b and such that |Qi| ≤ k for all
1 ≤ i ≤ b. Let R be a family of subsets of cardinality k of W such that
for each R ∈ R and for each 1 ≤ i ≤ b, we have either R ∩ Zi = ∅ or
R ∩ (W − (

⋃
1≤j≤i Zj)−Qi) = ∅. Then the following hold.

(i) |R| ≤
( ∑

1≤i≤b

(|Zi|+ k

k

))
+


|W | −

∣∣∣∣
⋃

1≤i≤b
Zi

∣∣∣∣
k


.

(ii) If Zi 6= ∅ for all 1 ≤ i ≤ b and |W | − |⋃1≤i≤b Zi| ≥ k + 1, then

|R| ≤
(|W | − b

k

)
+ (k + 1)b.

Proof. We first prove (i). If b = 0, (i) clearly holds. Thus we may assume
b ≥ 1. We proceed by induction on b. Set

R′ = {R ∈ R | R ∩ Z1 = ∅},
T = {R ∈ R | R ∩ (W − Z1 −Q1) = ∅}.

By assumption, R = R′ ∪T . Hence

|R| ≤ |T |+ |R′| ≤
(|Z1|+ k

k

)
+
(|W | − |Z1|

k

)
,

which shows that (i) holds for b = 1. Thus we may assume b ≥ 2. Set
W ′ = W − Z1, and set Z ′i = Zi+1 and Q′i = Qi+1 − Z1 for each 1 ≤ i ≤ b− 1.
Then R′, W ′, the Z ′i and the Q′i satisfy the assumptions of the lemma with b
replaced by b− 1. Hence by the induction hypothesis,

|R′ | ≤
( ∑

1≤i≤b−1

(|Z ′i|+ k

k

))
+


|W

′| −
∣∣∣∣
⋃

1≤i≤b−1

Z ′i

∣∣∣∣
k




=

( ∑

2≤i≤b

(|Zi|+ k

k

))
+


|W − Z1| −

∣∣∣∣
⋃

2≤i≤b
Zi

∣∣∣∣
k


 .
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Therefore

|R| ≤ |T |+ |R′|

≤
(|Z1|+ k

k

)
+

( ∑

2≤i≤b

(|Zi|+ k

k

))
+


|W − Z1| −

∣∣∣∣
⋃

2≤i≤b
Zi

∣∣∣∣
k


 .

This proves (i). Since (
∑

1≤i≤b(|Zi| + k)) + (|W | − |⋃1≤i≤b Zi|) = |W | + kb,
(ii) follows from (i) and Lemma 4.7.

§5. Proof of the main theorem

In this section, we let t, k, G, n be as in the Main Theorem, and follow the
notation introduced in Section 3. Also as in Section 4, we write f(n) for
ft,k(n). Since

(
(2t− 1)(n− f(n))

)
/(2(t− 1)2) > n/(t− 1) by Lemma 4.4 (ii),

we may assume |S | > n/(t− 1).
Let H 1, . . . ,H a be the nontrivial components of G . For each 1 ≤ p ≤ a,

write V (H p) = {Tp,1, . . . , Tp,|V (H p)|} (here V (Hp) denotes the vertex set of
Hp, so V (Hp) ⊆ S by the definition of G ), and let Fp denote the subgraph
of G induced by

⋃
1≤i≤|V (H p)| L(Tp,i). Let W = V (G)−⋃1≤p≤a V (Fp).

The following claim follows immediately from Lemma 3.2.

Claim 5.1. Fp is connected for all p with 1 ≤ p ≤ a.

Claim 5.2. V (Fp) ∩ V (Fq) = ∅ and E(V (Fp), V (Fq)) = ∅ for all p, q with
1 ≤ p < q ≤ a.

Proof. Take Tp,i ∈ Hp and Tq,j ∈ Hq. Then Tp,iTq,j /∈ E(G ), and hence
L(Tp,i) ∩ L(Tq,j) = ∅ and E(L(Tp,i), L(Tq,j)) = ∅ by Lemmas 3.5 and 3.11.
Since Tp,i and Tq,j are arbitrary, this means

V (Fp) ∩ V (Fq) = ∅ and E(V (Fp), V (Fq)) = ∅.

For each 1 ≤ p ≤ a, |V (Fp)| =
∑

1≤i≤|V (H p)| |L(Tp,i)| by Lemmas 3.4, 3.5
and 3.11, and hence (t− 1)|V (Hp)| ≤ |V (Fp)| by Lemma 3.10 (iii).
Consequently

(5.1) (t− 1)
∑

1≤p≤a
|V (H p)| ≤

∑

1≤p≤a
|V (Fp)|.
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By Claim 5.2,

(5.2) |W | = n−
∑

1≤p≤a
|V (Fp)|.

By (5.1) and (5.2),

(5.3)
∑

1≤p≤a
|V (H p)| ≤ (n− |W |)/(t− 1).

Since |V (H p)| ≥ 2 for each p, it follows from (5.3) that

(5.4) a ≤ (n− |W |)/(2(t− 1)).

Set R = S −⋃1≤p≤a V (H p).

Claim 5.3. Let S ∈ S − V (H p). Then S ∩ V (Fp) = ∅.
Proof. Let T ∈ V (H p). Then ST 6∈ E(G ). Hence S ∩ L(T ) = ∅ by Lemmas
3.6 and 3.11. Thus S ∩ V (Fp) = S ∩ (

⋃
T∈V (H p) L(T )) = ∅.

Claim 5.4. Let S ∈ R. Then S ⊆W .

Proof. This is because S ∩ V (Fp) = ∅ for each 1 ≤ p ≤ a by Claim 5.3.

Claim 5.5. Let S ∈ R, and let C ∈ K (S)−{F1, . . . , Fa}. Then the following
holds.

(i) If C ∈ L (S), then C is not saturated.

(ii) If we let A = {p | V (Fp) ∩ V (C) 6= ∅}, then V (C)−W =
⋃
p∈A V (Fp).

Proof. Let A be as in (ii). Then by Claims 5.1 and 5.3, V (Fp) ⊆ V (C) for
each p ∈ A, and hence

⋃
p∈A V (Fp) ⊆ V (C) −W . Thus (ii) is proved. Now

let C ∈ L (S), and suppose that C is saturated. By Lemma 3.8, there exists
T ⊆ S with |T | ≥ 2 such that V (C) =

⋃
M∈T L(M) and such that the

subgraph induced by T in G is connected. Then there exists p such that
T ⊆ V (Hp), and hence V (C) ⊆ V (Fp). By (ii), this implies V (C) = V (Fp),
which contradicts the assumption that C /∈ {F1, . . . , Fa}.

Set

Qi = {S ∈ R | |K (S) ∩ {F1, . . . , Fa}| = i} (0 ≤ i ≤ t− 2),

Qt−1 = {S ∈ R | |K (S) ∩ {F1, . . . , Fa}| ≥ t− 1}
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and let bi = |Qi| for each i. Since K (S) ∩K (T ) = ∅ for any S, T ∈ S with
S 6= T , we have

(5.5)
∑

1≤i≤t−1

ibi ≤ a.

By (5.4) and (5.5)

(5.6) 2(t− 1)
∑

1≤i≤t−1

ibi ≤ n− |W |.

If |W | ≤ k, then
(|W |
k

) ≤ |W |/k ≤ |W |/(t − 1), and hence it follows from
(5.3) and Claim 5.4 that |S | ≤ (n − |W |)/(t − 1) +

(|W |
k

) ≤ n/(t − 1), which
contradicts the assumption that |S | > n/(t− 1). Thus

|W | ≥ k + 1.(5.7)

Now label the members of
⋃

0≤i≤t−2 Qi as Q1, . . . , Qh (h =
∑

0≤i≤t−2 bi) so
that

(5.8) L(Qj) 6⊆ L(Qi) for any i, j with 1 ≤ i < j ≤ h
(it is possible that h = 0). In the case where h ≥ 2, if possible, we choose our
labeling so that L(Qh−1) 6⊆ L(Qh). For each 1 ≤ i ≤ h, let ji (0 ≤ ji ≤ t− 2)
be the index such that Qi ∈ Qji , and take Ci,1, . . . , Ci,t−1−ji ∈ L (Qi) −
{F1, . . . , Fa} (the existence of such components follows from the definition of
Qji). Let W0 = ∅. For i with 1 ≤ i ≤ h, we define Xi,l (1 ≤ l ≤ t − 1 − ji)
and Wi inductively as follows: Xi,l = (V (Ci,l) ∩W ) −Wi−1, Wi = Wi−1 ∪
(
⋃

1≤l≤t−1−ji Xi,l). Then

(5.9) W ⊇Wh =
⋃

1≤i≤h

( ⋃

1≤l≤t−1−ji
Xi,l

)
(disjoint union).

Arguing as in [2; Claims 6.3 and 6.4 and 6.5], we obtain the following three
claims. We include sketches of their proofs for the convenience of the reader.

Claim 5.6. Xi,l 6= ∅ for every i, l with 1 ≤ i ≤ h and 1 ≤ l ≤ t− 1− ji.
Proof. Set A = {p | V (Fp) ∩ V (Ci,l) 6= ∅}. By Claim 5.5 (ii), V (Ci,l) −W =⋃
p∈A V (Fp). Set J = {j | 1 ≤ j ≤ i − 1, L(Qj) ⊆ V (Ci,l)}. Suppose that

Xi,l = ∅. Then (V (Ci,l) ∩W ) −Wi−1 = ∅, and hence V (Ci,l) ∩W ⊆ Wi−1 ⊆⋃
1≤j≤i−1 L(Qj). On the other hand, for each 1 ≤ j ≤ i − 1 with j 6∈ J ,

L(Qj)∩V (Ci,l) = ∅ by (5.8) and Lemma 3.5 (note that {Qα | 1 ≤ α ≤ h} ⊆ R,
and thus QiQj /∈ E(G ) by the definition of R). Consequently V (Ci,l) ∩W ⊆⋃
j∈J L(Qj) ⊆ V (Ci,l), and hence V (Ci,l) = (

⋃
p∈A V (Fp)) ∪ (

⋃
j∈J L(Qj)).

Since V (Fp) =
⋃
T∈V (Hp) L(T ) for each p ∈ A, this means that V (Ci,l) is

saturated, which contradicts Claim 5.5 (i).
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Claim 5.7. Suppose that either h ≥ 2 and L(Qh−1) ⊆ L(Qh), or h = 1, and let
C ∈ K (Qh)− {Ch,1, . . . , Ch,t−1−jh , F1, . . . , Fa}. Then (V (C)∩W )−Wh 6= ∅.

Proof. Since C and the Ch,l (1 ≤ l ≤ t − 1 − jh) are distinct members of
K (Qh), (V (C) ∩ W ) ∩ (Wh − Wh−1) = ∅. Thus it suffices to show that
(V (C) ∩W )−Wh−1 6= ∅. Suppose that

(5.10) (V (C) ∩W )−Wh−1 = ∅.

If C ∈ L (Qh), we can get a contradiction by arguing as in the proof of Claim
5.6. Thus we may assume C /∈ L (Qh). Then

(5.11) V (C) ∩ L(Qh) = ∅.

Assume for the moment that h ≥ 2 and L(Qh−1) ⊆ L(Qh). Then by the choice
of our labeling mentioned immediately after (5.8), we have L(Q′h−1) ⊆ L(Q′h)
for any labeling Q′1, . . . , Q

′
h of

⋃
0≤i≤t−2 Qi which satisfies (5.8). This implies

L(Qi) ⊆ L(Qh) for all 1 ≤ i ≤ h− 1. Hence by (5.11), V (C) ∩ L(Qi) = ∅ for
all 1 ≤ i ≤ h− 1 which, in view of (5.10), implies that

(5.12) V (C) ∩W = (V (C) ∩W )−Wh−1 = ∅.

Note that if h = 1, then (5.10) immediately implies (5.12). Thus (5.12) holds.
But in view of Claim 5.5 (ii) and Claim 5.2, (5.12) implies that C = Fp for some
p with 1 ≤ p ≤ a, which contradicts the assumption that C /∈ {F1, . . . , Fa}.

Claim 5.8. |Wh| ≤ |W | − (k + 1).

Proof. If h = 0, the claim immediately follows from (5.7). Thus we may
assume h ≥ 1. By (5.8) and Lemma 3.6, Qh ∩ L(Qi) = ∅ for all i, and hence

(5.13) Qh ∩Wh = ∅.

Assume first that h ≥ 2 and L(Qh−1) 6⊆ L(Qh). Then by (5.8) and Lemma
3.6, we obtain Qh−1 ∩ Wh = ∅. Since Qh−1, Qh ⊆ W by Claim 5.4, this
together with (5.13) implies that |Wh| ≤ |W | − |Qh ∪Qh−1| ≤ |W | − (k + 1).
Assume now that h ≥ 2 and L(Qh−1) ⊆ L(Qh) or h = 1. Let C be as in
Claim 5.7. Then since Qh ⊆W by Claim 5.4, Claim 5.7 and (5.13) imply that
|Wh| ≤ |W | − |Qh| − |(V (C) ∩W )−Wh| ≤ |W | − (k + 1).

Claim 5.9.
∑

0≤j≤t−2(t− 1− j)bj ≤ |W | − (k + 1).
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Proof. Recall that for each 1 ≤ i ≤ h, ji denotes the index such that Qi ∈ Qji ,
and thus bj = |{i | 1 ≤ i ≤ h, ji = j}| for each 0 ≤ j ≤ t − 2. Therefore by
(5.9) and Claims 5.6 and 5.8,

∑

0≤j≤t−2

(t− 1− j)bj =
∑

1≤i≤h
(t− 1− ji)

≤
∑

1≤i≤h

( ∑

1≤l≤t−1−ji
|Xi,l|

)

=
∣∣∣∣
⋃

1≤i≤h

( ⋃

1≤l≤t−1−ji
Xi,l

)∣∣∣∣

= |Wh| ≤ |W | − (k + 1).

Claim 5.10. For any i, l with 1 ≤ i ≤ h and 1 ≤ l ≤ t− 1− ji, no member of⋃
0≤j≤t−1 Qj intersects with both Xi,l and W −Wi−1 −Xi,l −Qi.

Proof. Recall that {Qα | 1 ≤ α ≤ h} =
⋃

0≤j≤t−2 Qj ⊆
⋃

0≤j≤t−1 Qj = R.
Also note that a vertex in Xi,l and a vertex in W −Wi−1 −Xi,l −Qi belong
to distinct components of G − Qi. Since no two members of R mesh with
each other by the definition of R, this means that no member of

⋃
0≤j≤t−1 Qj

intersects with both Xi,l and W −Wi−1 −Xi,l −Qi.

In view of Lemma 4.8 (ii), Claim 5.10 together with Claims 5.6 and 5.8
implies

(5.14)
∑

0≤j≤t−1

bj ≤
(|W |− ∑

0≤j≤t−2
(t−1−j)bj

k

)
+ (k+ 1)

∑

0≤j≤t−2

(t− 1− j)bj .

We now obtain

|S | =
∑

1≤p≤a
|V (H p)|+

∑

0≤i≤t−1

bi

≤ (n− |W |)/(t− 1) +
∑

0≤i≤t−1

bi (by (5.3))

≤ ((2t− 1)(n− f(n))
) /

(2(t− 1)2)
(by (5.6), (5.14), Claim 5.9 and Lemma 4.5).

This completes the proof of the Main Theorem.
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