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Abstract. Let §(G) denote the minimum degree of a graph G. We prove
that for ¢ > 4 and k > 2, a graph G of order at least (t + 1)k + £¢* with
0(G) > k+ 1t — 1 contains k pairwise vertex-disjoint copies of K ;.
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81. Introduction

We consider only undirected graphs without loops or multiple edges. For a
graph G, we denote by V(G), E(G) and §(G) the vertex set, the edge set and
the minimum degree of G, respectively. A graph F is called a t-claw if F is
isomorphic to Kj ;.

Let H be a fixed connected graph, and let £ > 2 be a fixed integer. In
this paper, we are concerned with the existence of k pairwise vertex-disjoint
copies of H in a graph GG. The main theorem of this paper deals with the case
where |V(G)| > k|V(H)|, but we start with results which deal with the case
where |V(G)| = k|V(H)|. For H = K; with ¢t > 2, Hajnal and Szemerédi [6]
proved that if |V (G)| = kt and 6(G) > 2|V(G)], then G contains k pairwise
vertex-disjoint copies of K; (see also Corrddi and Hajnal [1]). For H = P, with
t(> 3) odd, it is easy to see that if |V(G)| = kt and 0(G) > W, then G
contains k pairwise vertex-disjoint copies of P, (for results concerning the case
where it is assumed that G is connected, the reader is referred to Johansson
[7] and Enomoto, Kaneko and Tuza [4]).

Note that P3 = K 5 is a 2-claw. Thus letting ¢ = 2 in the above result, we
obtain the following proposition.

Proposition 1. Let k > 2 be an integer, and let G be a graph of order 3k such
that 6(G) > (3k — 2)/2. Then G contains k pairwise vertez-disjoint 2-claws.
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In the case where H is a 3-claw, Egawa, Fujita and Ota [2] proved the
following theorem.

Theorem 2 (Egawa, Fujita and Ota [2]). Let k > 2 be an integer, and let
G be a graph of order 4k such that §(G) > 2k. Then G contains k pairwise
vertex-disjoint 3-claws, unless k is odd and G is isomorphic to Koy, o

In Proposition 1 and Theorem 2, the condition on the minimum degree is
sharp. However, if we assume that the order of G is slightly greater than 3k
or 4k, then a much weaker condition on the minimum degree guarantees the
existence of k pairwise vertex-disjoint 2-claws or 3-claws.

Theorem 3 (Ota [8]). Let k > 2 be an integer, and let G be a graph of
order at least 3k + 2 such that 6(G) > k+ 1. Then G contains k pairwise
vertex-disjoint 2-claws.

Theorem 4 (Egawa and Ota [3]). Let k > 2 be an integer, and let G be
a graph of order at least 4k + 6 such that 6(G) > k + 2. Then G contains k
pairwise vertex-disjoint 3-claws.

Based on these results, Ota [8] made the following conjecture.

Conjecture 5 (Ota [8]). Let t > 2, k > 2 be integers, and let G be a graph
of order at least (t + 1)k +t2 —t such that 6(G) > k+t—1. Then G contains
k pairwise vertex-disjoint t-claws.

As is shown in [8], in this conjecture, the condition on the minimum degree
of GG is sharp in the sense that for any fixed ¢t and k, there exists a graph
of arbitrarily large order which has minimum degree k + ¢t — 2 but does not
contain k vertex-disjoint t-claws and, if k is suffciently large compared with
t, then the condition on the order of G is also sharp in the sense that there
exists a graph G with |V(G)| = (t+1)k+t>—t—1 and §(G) > k+t—1 such
that G does not contain k vertex-disjoint t-claws. Theorems 3 and 4 above
show that the conjecture is true for ¢ = 2,3. For ¢t > 4, Ota [8; Theorem 1]
proved the following theorem.

Theorem 6 (Ota [8]). Let t > 4, k > 2 be intgers, and let G be a graph
of order at least (t + 1)k + 2t> — 3t — 1 such that §(G) > k+t—1. Then G
contains k pairwise vertex-disjoint t-claws.

The coefficient —3 of ¢ in the lower bound on |V (G)| was improved to —4
by Fujita in [5].

Theorem 7 (Fujita [5]). Let t > 4, k > 2 be intgers, and let G be a graph
of order at least (t + 1)k + 2t> — 4t + 2 such that §(G) > k+t—1. Then G
contains k pairwise vertex-disjoint t-claws.
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The purpose of this paper is to improve the coefficient of ¢? as follows.

Main Theorem Lett > 4, k > 2 be intgers, and let G be a graph of order at
least (t + 1)k + Xt such that 5(G) > k+t — 1. Then G contains k pairwise
vertex-disjoint t-claws.

We need the following notation and terminology. Let G be a graph. For a
vertex v € V(G), we denote by N(v) = Ng(v) and dg(v) the set of vertices
adjacent to v and the degree of v, respectively; thus dg(v) = |[Ng(v)|. For
S C V(G), we let (S) = (S) denote the subgraph of G induced by S. For
disjoint subsets S and T of V(G), we let E(S,T) = E¢(S,T) denote the set
of edges of GG joining a vertex in S and vertex in T. When S or T contains
of a single vertex, say S = {z} or T = {y}, we write E(x,T) or E(S,y) for
E(S,T).

§2. Preparation for the proof of the main theorem

By way of contradiction, suppose that there exists a graph G with |V (G)|
> (t+1)k+11? and §(G) > k+t—1 such that G does not contain k pairwise
vertex-disjoint t-claws. By Theorem 7, we have |V (G)| < (t+1)k+2t% —4t+1.
Since {%tﬂ > 2t2 — 4t 4+ 2 for 4 < ¢t < 23, this implies ¢t > 24. We may
assume that G is an edge-maximal counterexample. Then G contains k — 1
vertex-disjoint t-claws, say C(N, 02 ... C*=1) Set H = G—(Uf;ll V(CW)).
Let P, P2 P6) he the K; components of H, i.e.,the components of H
isomorphic to K;. Define U = |J°_, V(P®) and W = V(H) — U. We may
assume that OV, 0@, ... 0%~ are chosen so that |E((W))| + 2|E((U))| is
as large as possible.

By assumption, H contains no t-claw, or equivalently, every vertex of H has
degree at most t —1. We define n = |V (H)|. Since n = |V(G)| - (t+1)(k—1),
we have %tQ +t+1<mn<2?—-3t+2. For each 1, let aD be the center of
C@ and B = {bgi), bgi), e ,bgi)} be the set of leaves of CV). In the following
argument, we sometimes fix i and set C = C). In such cases, we write
a,B, b, b, ..., b instead of a9, B, bgi), bg), ceey bl(fi), respectively.

We first state seven lemmas concerning the number of edges betweenV (C9)
and V(H), which are proved in [5; Lemmas 2.1 through 2.7]. Fix ¢ with
1 <i <k —1. Thus as mentioned in the preceding paragraph, a denotes the
center of C = C@ and B = {b1,ba,...,b:} denotes the set of leaves of C.

Lemma 2.1. Let v € V(H), and suppose that dg(v) + |E(B,v)| > t. Then
|E(a, V(H) — {v} — Ng(v))| <t —1—dg(v).

Lemma 2.2. If E(a,V(H)) # 0, then |E(b,, V(H))| <t for every b, € B.
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Lemma 2.3. If |((N(by) UN(bg)) NV (H)| > 2t —1 for by, by € B with p # q,
then |E(by, V(H))| <t—2 or |E(by, V(H))| <t —2.

Lemma 2.4. Letv € V(H), and suppose that dg(v)+|E(B,v)| > t+1. Then
|E(bp, V(H) — {v} — Nu(v))| <t—2 for every b, € B.

Lemma 2.5. Let P be a Ky component of H, and suppose that there exists v €
V(H)—V(P) such that dg(v)+|E(V(C),v)| > t+1. Then E(V(C),V(P)) =
0.

Lemma 2.6. Let P be a K; component of H, and suppose that there exists
v € V(H) — V(P) such that |E(V(C),v)| > 2. Then E(B,V(P)) = 0, and
hence it follows that |[E(V (C),V(P))| < t.

Lemma 2.7. Let P be a K; component of H, and suppose that E(V(C),
V(H)—-V(P))#0. Then |[E(V(C),V(P))| < t.

In the rest of this section, we consider the case where s > ¢ + 1. For each
awith 1 <a<t+1, we take u, € V(P(O‘)). Since

k—1t+1 t+1

i=1 a=1 a=1

there exists an index 4 with 1 <i <k—1 such that Y57 |E(V(CD), uy)| >t41.
Then there exist two edges zu, and yug joining V(C(i)) and {uy,ug, ..., U1}
with x,y € V(C(i)), x #y and o # (. Replacing C¥) by t-claws contained in
{zyuV(P@)) and ({y} UV (PW)), we obtain k vertex-disjoint t-claws in G.
This is a contradiction.

83. The case where s =1

We continue with the notation of the preceding section. In order to prove the
main theorem, we shall choose some C'(?’s and show that they together with
some vertices in H contain more t-claws, which contradicts the assumption
that G is a counterexample. In this section, we consider the case where s = ¢.
For each a with 1 < a < t, we take a vertex uq € V(P®), and let v € W.
Define

J={i|1<i<k—1, [E(V(CD) {ur,ug,... ,us,v})| >t+2}.

The following two lemmas are proved in [5; Lemmas 3.1 and 3.2].
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Lemma 3.1. Suppose that C = C® satisfies |E(V(C), {uy,uz, ..., u,v})|
>t+ 2. Then the following hold.

() 2 < |B(V(C),0)| < 1.
(ii) E(B,{ui,uz,...,us,v}) =0.
Lemma 3.2. Y, |[E(V(C®),v)| > |J| + ¢+ 1.
We may assume that J = {1,2,...,m} where m = |J|, and |E(V(CM),

v)| > |E(V(CP),v)| > > |E(V(C™), v)| > 2. By Lemmas 3.1(i) and 3.2,
there exists [ € J with 2 <[ < m such that

l

(3.1) D (BEV(CY)0)| - 1) >t

=1
and such that SIE
have Y, (|[E(V(CY),
SIZH(B(V(CD),v)| -

proved in [5; Lemma 3.3].

(V(C@),v)] = 1) <t —1. By Lemma 3.1(i), we also
v)]—1) <t—1foreach1 <i<l—1,andl—1<
1) <t—1. Thus 2 <[ < t. The following lemma is

Lemma 3.3. We have |E(a(i), {u,ug, ..., u})| > for each 1 <i <lI.

Now by Lemma 3.3, we may assume that we can take [ independent edges
au;, 1 <4 < 1. On the other hand, (3.1) implies that 2221 |E(B®W,v)| > t.
Hence we can take X C N(v) N (Uiz1 B(i)) with |X| = ¢. Then each of
(X U{v}) and {a®} U V(P®)) for 1 < i < contains a t-claw. These are
141 vertex-disjoint ¢-claws in ((J'_, V/(C®)) UV (H)), which contradicts the
assumption that G is a counterexample.

§4. Counting argument

Throughout the rest of this paper, we assume that s < ¢ — 1. In this section,
we find a good vertex in H that can be used later to find an extra t-claw. The
lemmas proved in this section are actually proved in [5], but we include their
proofs for the convenience of the reader. Recall that U is the set of vertices
contained in the K; components of H, and W = V(H) — U. We define

I={i|1<i<k-1, BE(V(CY),W)=0},
J={i|1<i<k—1, i¢I, |[E(V(CY),V(H))|>n—s+1}.

Note that since n > 4>+ ¢+ 1 and s < ¢t — 1, we have |E(V(CD), V(H))|
> %t2+3 for each 7 € J.
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Lemma 4.1. There exists v € W such that

(0)+ Y _|E(V(CD),0)] > ]| +t.
e

Proof. Suppose that

(4.1) (0)+ > [E(V( V)| < |J|+t—1 for all veW.

ieJ
We first claim that |E(V(C®W),U)| < t(t + 1) for each i € I. If V(C®) is
joined by edges to at most one component of (U), then the claim is obvious.
If V(C®) is joined to at least two components of (U), then by Lemma 2.7,

|[E(V(CW),U)| < ts < t(t +1). Thus the claim follows. Note that this claim
implies that

(4.2) Y |EWV U)| <tt+1)|1|

el

For i € J, since E(V(C®),W) # 0, it follows from Lemma 2.7 that
|E(V(C™),U)| < ts. Hence

(4.3) Y BV U)| < ts|J|.
ieJ
By the definition of I,
(4.4) Y IBEW(CD),w)| =o.
i€l
By (4.1),

45 > (dﬂm +> |E<v<o<f>>,v>|) < (|| +t—1)(n — ts).

veW i€J

For i ¢ IU.J, we have |E(V(C®W),V(H))| < n — s by the definition of .J.
Hence

(4.6) Y IBV(CD),V(H)) < (n—s)(k— 11| = |J]).
i¢IuJ

Now we estimate the following weighted sum of the degrees of vertices in H
in two ways: =23 da(u) + Y, e da(v). First, since 6(G) > k+t— 1,

(4.7) %ng + 3 da(v) k+t—1)<—|U\+|W!)

uelU veW
=((k+t—1)(n—s).
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On the other hand, by (4.2) through (4.6),

LS do) + Y dol)

uelU veW

t—1

= < +Z|E V(CW), |>
uelU
+Z<dH +Z|E ’)
veW

1(2 drr(u) + <Z+Z+ ) >|E(V(C(")>7U)’)

uel iel  ied  i¢IuJ
+ 3 (a4 S IEWE01) + Y IECE).W)
vEW ieJ i¢IuJ
< T(Z dpg(u) +_|E(V(CD),0)[ + ) |E(V(CY), \)
uelU iel 1eJ
+3 <dH(v) +3 |E(V(C<">),v)!) + Y [B(V(CY),V(H))
vEW icJ i¢IuJ
< Q(t(t —Ds+tt+ )|+ ts|J|)+ (|J|+t—1)(n —ts)

+(n—s)(k—=1—I]—]J])
=(k+t—1Dn—s)+E -1 - (n-s)(I|+1)
11
<(k+t—1)(n—s)+ (-1 - ( - t2+2)(|f|+1)
_ 52 11 5
—(k+t—1)(n—s)— <6t +3)uy (615 +2)
This contradicts (4.7), which completes the proof of Lemma 4.1. O

In the following argument, we consider the vertices in W satisfying the
condition in Lemma 4.1. We define

Wo={veW |du(v)+ > [E(V( )| > |J| +t},
ieJ
which is not empty by Lemma 4.1. We also define
Wy = {v € W | there exists i € J such that dg(v) + |[E(V(CD),v)| >t +1},
Wy = {v e W — W | there exists Jy C J with 2 < ]J0| <t-— dH( )

such that dy (v —i—Z]E v)| > |Jo| + t}.
i€Jp
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Lemma 4.2. The following statements hold:
(i) Wo C W1 U Ws.
(ii) If v is a vertex in Wy with dg(v) =t — 1, then v € Wy.

Proof. Suppose that v € Wy. By the definition of Wy,

Y (BWV(ECY),0)[ = 1) = t = dy(v).

ieJ

Thus there exists Jy C J with 1 < |Jy| < t — dg(v) such that ]E(V(C’(i)),
v)| =1 > 1 for each i € Jy and

Y (E(V(CD),0)] =1) >t —dp(v).

i€Jo
This proves (i). Further if dg(v) =t — 1, then |Jo| = 1. Thus (ii) holds. O

Lemma 4.3. Suppose that Wi = 0. Fiz C = C® with i € J, and let b, € B.
Suppose that E(B,U) =0 and |E(b,,V(H))| > t+1, and let z1,22,...,24-1
be t — 1 wertices in N(b,) NV (H). Then the following inequality holds:
B, V(H))| + |E(by, V()| + XL (dp (i) + |E(V(C), 1))

> |E(V(C),V(H))|+t—1+|E(a,z1,x2,...,2¢-1))|.

Proof. First we claim that |E(B — {b,},V(H) — {x1,22,...,24-1})] <
S ldu(x;) — e, where e = |E((z1,29,...,7¢-1))]. We replace C' by the
t-claw with center b, contained in (a, by, 1,2, ...,2¢—1). Let H = (V(H) —
{z1,22,...,221}) U (V(C) — {a,by})), and let U’ be the union of the vertex
sets of the K components of H'. Also we set S = (B — {b,}) NU".

If S = (), then the claim immediately follows from the maximality of
I[E((W))| + 2|E({U))|. Thus we may assume that S # (. Let y € N(b,) N
(V(H) —{z1,...,2¢-1}). If there exists b, € S such that b,y ¢ E(G), then
each of ({bg,a} U Npg(by)) and ({b,,z1,x2,...,24-1,y}) contains a t-claw, a
contradiction. Thus by € E(G) for every b € S. Hence there exists a K;
component P’ of H' such that {y} US C V(P’). Note that [N (b,) N (V(H) —
{z1,...,24-1})| > 2 by the assumption that |E(b,, V(H))| >t + 1. Since the
above observation holds for any choice of y € N(b,)N(V(H) —{z1,...,24-1}),
it follows that 1 < |S| < ¢t — 2. This implies that (V(C) — {b,}) 2 K.
On the other hand, since W7 = 0 and dy(y) + |[E(V(C),y)| > du(y) +
IB(B,y)| = | By, {£1,22,. ., w1 D]+ By, VH) {1, 22, 00 1)) +18]+
1=|E(y,{z1,22,...,21})| +dp(y) + 1 = |E(y,{x1, 22, ..., 2¢-1})| + t, we
obtain E(y,{x1,x2,...,24-1}) =0 and dy(y) =t — |E(B,y)|.

Now replace C' by the t-claw contained in (by, z1,x2,...,2¢—1,y), and set
H" = ((V(C) —{bp}) U(V(H) — {z1,22,...,24-1,y})). Then since (V(C) —
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{bp}) is connected and not isomorphic to Ky, the union of the vertex sets of
the K; components of H” coincides with U. Therefore it follows from the
maximality of |E((W))| + 2|E((U))]| that

t—1
0< (S dnte) +du) - ) ~ (U - 0,1,V - (1,220 1)

i=1
—E(B = {bp}y)l) +|E(a, B — {b})|}

t—1
= (St +du) - ) ~ (BB - 1. V) = for,22,.. s

=1

BB,y - 1)+ (t - 1)}
t—1

— (Tt ) - B = (4,).V ()~ o2,
=1

as claimed. Consequently

t—1
|E(a, V(H))| + [E(by, V(H))| + Y |E(V(C), 1)
i=1

=[E(V(C),V(H)|+ |E({a,bp},gx1,a:2, o T-1})]
—|E(V(C) —A{a,b,}, V(H) —{z1,22,...,24-1})]

t—1
> |B(V(C), V)| + (t - 1+ |Ba, {er, a0, .. 11 })]) — (Z dir (i) — )
=1

t—1
= [E(V(C),V(H)|+t -1+ |E({a,21,23,...,x1))| = > _ du().
i=1

This completes the proof of Lemma 4.3. O

85. Property of Jy
We continue with the notation of the preceding sections. In this section and
the next section, we consider the case where W7 = (.
Case 1: Wi = 0.
We take a vertex v € Wy, and fix it. By Lemma 4.2(i), v € Wa. Also by
Lemma 4.2(ii), dg(v) < ¢t — 2. By the definition of Wy, there exists Jy C J

with 2 < [Jo| <t — dp(v) such that dg(v) + Y e, ([E(V(CD),v)| — 1) > t.
We choose such a subset Jy of J so that |Jy| is as small as possible. Then

(5.1) di(v) + Z (|E(V(CY), )| =1) <t—1 for each i€ Jy,
j€Jo—{i}
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and hence
(5.2) |E(V(C®),v)| >2 for each i€ Jp.
By (5.1) and (5.2), we have

(5:3) d(v) + Y (B(V(CY),0)=1) <t—|M|
icJo—M

for any nonempty subset M of Jy. By Lemma 2.6, (5.2) implies

(5.4) E(BY U) =0 for each ic Jp.

Lemma 5.1. For each C = C% with i € Jy, one of the following statements
hold:

(i) [E(a, V(H) —{v} = Nu(v))| 2 t — du(v); or
(ii) E(a,V(H)) =0 and |E(b,,W)| > 2t* 4+ 3t + 1 for some b, € B.

Proof. Since i € Jy C J,
11 ,
(5.5) |[E(V(C),V(H))|>n—s+1> Kt + 3.

Suppose that (i) does not hold. Then |E(a,V(H))| < (t —1—dg(v)) + (1 +
|INg(v)|) = t. If E(a,V(H)) # 0, then by Lemma 2.2, |[E(b,V(H))| < ¢ for
every b € B, and hence |[E(V(C),V(H))| = |E(a,V(H))| + |[E(B,V(H))| <
t+12, which contradicts (5.5). Thus E(a,V(H)) = (). This together with (5.4)
implies E(V(C),V(H)) = E(B,W). Hence by (5.5), there exists b, € B such
that |E(b,, W)| > t+ 1. Take x1,x2,...,24—1 € N(b,) N W. Since W; = 0,
dp(z;) + |E(x;, V(C))| <t for each 1 < i <t — 1. Consequently by Lemma
L3, |E(by, W)| = |E(by, V(E)| = [E(V(C), V(E)| +t—1— (5= du (w:) +
|E(z;, V(C)|}) > 242 +3+t—1—t(t—1) = 3t>+2t+2 > 2t — 1. By Lemma
2.3, this implies that |E(b, W)| < t — 2 for each b € B — {b,}. Therefore it
follows from (5.5) that |E(by, W)| > M2 +3 — (t —1)(t — 2) > 262 + 3t + 1.
This completes the proof of Lemma 5.1. O

We may assume that Jo = {i | 1 < i < |Jp|}. We may also assume that
there exists an integer h with 0 < h < |.Jy| such that C' = C¥) satisfies (i) in
Lemma 5.1 for all 1 <4 < h, and C' = C satisfies (ii) in Lemma 5.1 for all
h+1<:< |J0’ Let J071:{Z'|1§Z'§h} and J072:{2'|h+1 <1< |J0|}
For C = C" with i € Jo,2, we may assume that bgi) is the vertex bg) satisfying
the condition of Lemma 5.1(ii). Our first aim is to obtain an upper bound for
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D icTos |E(V(CY),V(H))| (see Lemma 5.4). Recall that dg(v) <t —2. Thus
it follows from (5.4) and Lemma 5.1(ii) that for each i € Jp 2,

(5.6) |E®Y,V(H) — {v} — Ng(v)| = [EG],W)| — |E®, {v} U Ng ()]
> [E@, W) -1 - dg(v)
> [E@, W) —t+1
zgt2+2t+2.

Lemma 5.2. |Jy2| > %t — 1.

Proof. Suppose that |Jo 2| < [2t] — 2. Recall that
Y (EV(CD),0)] =1) 2t —dp(v).
i€Jo

This inequality implies that for each ¢ (1 < i < |Jp|), we can choose a subset
X@ ¢ N@w)nV(C®) so that

[Jol

XV < [B(V(CD),0)| -1, ZIX |=t—du(v)

and
a® ¢ X@ for 1<i<h, bgi) ¢ X for h+1<i< |Jo]-

Then we can find a t-claw with center v in ({v}UNpy (v)UU‘Zioll X ). Note that
by the condition in Lemma 5.1(ii), we have a( ¢ X also for h+1<i < | Jol.

We define Y = V(C®D) = X® for 1 < i < h and Y@ = {a® p{} for
h+1<i<l|Jo|. We take disjoint subsets Z(®) of V(H) — {v} — NH( ) for
1 <4 < |Jo| so that

Z®W c N@@®), |29 = X9 for 1 <i<h,

72O c N, 12O =t -1 for h+1<i<|J.
1

This can be done by determining Z®) from i = 1 up to |Jy|, because for
1<i<h,

|Jol

Z\X !<Z\X /| =t—du(v) < [E(@Y,V(H) — {v} = Nu(v))l



160 S. CHIBA

by Lemma 5.1(i) and, if Jy 2 # 0, then for h + 1 < i < |Jy|,

|+ (t—1)(i - h) <Z|E V(CU),0)] = 1) + (t — 1)|Jo2]

HM:

< (t— |Jo,2]) + (t = 1)[Jo2| =t + (t — 2)[Jo2|

gt+(t—2)([gﬂ —2) §t+(t—2)(gt—1>
< §t2—9t—|—2

6 ' 6
< [E®Y,V(H) — {v} — Ng(v))|

by (5.3) and (5.6). Then for each i with 1 < i < |Jo|, (YD UZ®) contains a t-
claw with center a?) or bgz) depending on whether ¢ < h or ¢ > h+1. Obviously

these t-claws and the t-claw in ({v} U Ng(v) U U|J°| X @) are pairwise vertex-
disjoint. This contradicts the assumption that G is a counterexample, and
completes the proof of Lemma 5.2. O

Lemma 5.3.

Z|E O w |<7t3
6

ZGJ() 2

Proof. Suppose that > ;c ; |E(b§i),W)| > | 23], Set

A= {z € Joo ‘ \EQD, W)| > 2 - gt+2}.

We show that
1
. > | = .
(5.7) Al > LGtJ +1

Suppose that |A| < t. Recall that n < 2¢> — 3t +2 (see the second paragraph
of Section 2). Since |Jp2| < |Jo| <t and A C Jp2, we get

ST e W) =Y B, W)+ ST B, W)

’LEJ() 2 €A ZEJO’Q_A

< |A|(2% -3t +2) + (t — |A,)(t2 -
G %315) +t(1 - %t—i—2)

1 13 5
< 7t<t2 _ —t) t(t2 2 2)
<5 g+ st
4
_ T + 2t — 431 < Zt?’,
6 36 6

5
24 2)
ot



VERTEX-DISJOINT T-CLAWS IN GRAPHS 161

a contradiction. Thus (5.7) is proved.
By (5.7), we may assume that there exists an integer b’ with h < h' <

|Jo| — Lf | —1 such that |E(bgZ V)| <2 - L t| +1forallh+1<i<Ah, and

\E( 1 W) > t2=2t+2forall ' +1 <i < |Jy|. Let Jo o = {i | h+1<i<h'}
and Jyo = {i | ' +1 < i < [Jo|} (if B’ = h, then Jj, = 0). Recall that
dp(v) + |Jo| < t. Hence it follows from Lemma 5.2 and Lemma 5.1(ii) that
for each i € Jj o,

(5.8) B, W — {v} = Ny(v)| > [EGY, W)~ 1 - dp(v)
> [E@Y, W) — 1+ |Jo| — t
> (%t2+3t+1)—1+(%t—1>—
5., 17

=24 -1,
6 T

and it follows from Lemma 5.2 and the choice of 1’ that for each i € Jg,,

(5.9 [BGY W —{v} - Ny()| > [E@{, W) =1 dy(v)
> [B@P, W)~ 1+ |Jo] —t
> (t —%t+2)—1+(%t—1)—
=t —t.

We now argue as in the proof of Lemma 5.2. For each i (1 <i < |Jy|), we
can choose a subset X ¢ N(v) NV (C®) so that

[Jol

XV < [B(V(CY),0)] -1, ZIX | =t—du(v)

and
a® ¢ XD for1<i<h, b ¢ XDforh+1<i<l|Jyl.

Then we can find a t-claw with center v in ({v}UNpy (v)UU‘Zioll X®). Note that
by the condition in Lemma 5.1(ii), we have a( ¢ X also for h+1<i < |Jol.

We define Y = V(C®) — X® for 1 <4 < h and Y® = {a® b } for
h+1<i<l|Jo|. We take disjoint subsets Z(®) of V(H) — {v} — NH( ) for
1 <@ < |Jp| so that

ZW c N@®), |z = |X9D| for 1<i<h,
ZO c N, 120 =t—1 for h+1<i< |-
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This can be done by determining Z®*) from i = 1 up to |Jy|, because for
1<i<h,

|Jol

ZIX(] | <Z|X” | =t—du(v) < |E(aW,V(H) - {v} = Ny (v))|

by Lemma 5.1(i), and for h+1 < i < b/, since | Jg o] = h'=h < h' < t—|§t| -1,
we have

XD+ (t-1)(G—h gz )] = 1) 4+ (t = 1)]Jg |
J=1

||M;

1

(t — | Joa|) + (t — 1)(::- EtJ _ 1)

IN

1 1

< Zt41 t—l(t—ktJ—l)

Sgttir-1) 5

1 5 5, 4

< —t+4+14+—-tt—1)==t*——t+1
_6+ +6( ) 5 6+

< [EQ", V(H) — {v} — Ng(v))|

by (5.3), Lemma 5.2 and (5.8) and, for b’ + 1 < i < |.Jp|,

XD+ @t =1)(i—-h) < (t—1)i

o,
I Mv
I,

Dol
1)
(1, V(H) = {v} = N (v))

by (5.9). Then for each i with 1 < i < |J|, (YD UZ®) contains a t-claw with
center a(® or bg) depending on whether ¢ < h or ¢ > h + 1. Obviously, these
t-claws and the t-claw in ({v}UNg(v) UUlfll X @) are pairwise vertex-disjoint.
This contradicts the assumption that G is a counterexample, and completes
the proof of Lemma 5.3. 0

VANVAN

(t
(t
B

IN

Lemma 5.4.

13
> BV (CY), )y§€t3—3t2+2t.

1€Jo,2

Proof. For each i € Jya, we have |E(b, W)| <t — 2 for every b € B — {bgi)}
by Lemma 2.2. Also E(V(C®W), W) = E(B® W) for each i € Jy2 by the first
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assertion of Lemma 5.1(ii). Hence by Lemma 5.3,

ST EVED),w) = Y (EED, W)+ S [EBY - (b}, W)

i€Jo2 i€Jo 2 i€Jo 2
< 26+ Woal(t = 1)t~ 2)
< gt?’ +t(t—1)(t —2)
= %3t3 — 3% + 2t,
as desired. n

We now consider edges among the C(9),

Lemma 5.5. For each i € Jya, there exists | € {1,2,...,k — 1} — {i} such
that |E(a®,V(CW))| > 2.

Proof. By the definition of Jy o, we have E(a™,V(H)) = §. Hence from the
assumption that 6(G) > k +t — 1, it follows that

> |E@, V(C))| > (k+t—1)—t=k—1,
je{l,..k—1}—{i}

which immediately implies the desired conclusion. ]
Having Lemma 5.5 in mind, we define
L={l]1<1<k-1, |E@Y,v(CWY))|>2 for some i€ Jya— {I}}.

Lemma 5.6. We have |[E(V(CW),V(H))| < t(t —2) + 1 for each | € L; in
particular LN J = ().

Proof. Let | € L. By the definition of L, there exists i € Jy2 — {l} such that
|E(a®, V(CW))| > 2. Then N(a®) N BO £ . Take by € N(a®)n BO.
Claim 5.6.1 E(a),V(H)) = 0.

Proof. Soppose that E(a®),V (H)) # (. Take z € N(a®) NV (H). Then each
of ({a®, b U (BO — (5"})) and ({a®,z}U(BY — {"1)) contains a t-claw
and, since |E(b{", W)| > 3¢243t+1 by the definition of Jo o, ({6 JU(N (")
(V(H) —{z}))) also contains a t-claw, a contradiction. O

Claim 5.6.2 |EGY, V(H))| <t—1.
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Proof. Suppose that \E(bg),V(H))\ > t. Since |[E(V(C®),a®)| > 2, there
exists z € N(a) NV (CW) with x # b](gl). Also take a subset X of N(bg)) N
V(H) with | X| = . Then each of ({a®, 2} U (B® — {3{"})), ({p’}U X) and
<{b§i)} U (N(bgi)) N(V(H) — X))) contains a t-claw , a contradiction. O

Claim 5.6.3 |E(b, V(H))| <t —2 for every b€ BO — (1.

Proof. Suppose that there exists bg) e BO - {bg)} such that \E(bél), V(H))|>

t — 1. Take a subset X of N(bgl)) NV(H) with |X| =t — 1. Then each of
i l i % i %

{a®, 6 10U(BO—{b{"}), ({a®), b }UX) and ({B"}UN )NV (H) - X))

contains a t-claw, a contradiction. ]

Combining Claims 5.6.1 through 5.6.3, we obtain |E(V(C®), V(H))| <
t—1+(t—1)(t—2) =t(t—2)+ 1. Since |[E(V(CY),V(H))| > &2 + 3 for
each j € J by the definition of J, we also get [ ¢ J. This completes the proof
of Lemma 5.6. O

Lemma 5.7. Let | € L, and let ¢ € Jpa be an index such that
|E(a®, V(C®))| > 2. Then E(aW),V(CW)) =0 for every j € Joa — {i}.

Proof. Suppose that there exists j € Jyo — {i} such that E(al), V(CW)) # 0,
and take y € N(a0) nV(C®). Since |E(a®,V(CW))| > 2, there exists
z € N@®)nV(CO) with z # y. Then each of ({a®,z} U (B® — {p\"1))
and ({a9), y}U(BY) — {bgj)}» contains a t-claw. Since 4, j € Jy 2, we can take
disjoint subsets X @ and X of V/(H) such that

X0 =X =t, X0 N @), X9 cNEY).

Then each of <{b§z)} UX®) and <{bgj)} U X U)) contains a t-claw, and thus we
get a contradiction. O

Note that it follows from Lemmas 5.2, 5.5 and 5.7 that

5
(5.10) L 2 |Jozl 2 gt~ 1.

86. Another counting argument

In this section, we complete the proof for Case 1. Let Jy, Jo.1, Jo,2, L be as in
the preceding section. Set I’ =1 — L and J' = J — Jy 2. Thus

{1,...,k—=1}=T"uJ UJo2ULU({1,....k—1} -1 —J—L)

(disjoint union).
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Lemma 6.1. There exists v' € W such that
)+ Y IB(V(CD), )| = ]+t
ieJ’
Proof. We argue as in the proof of Lemma 4.1. Suppose that

(6.1) V) + ) IE(V(CD), ) < T+t -1 for all v € W.
e’

As in the proof of Lemma 4.1, we have |E(V(C®),U)| < t(t + 1) for i € I'.
Hence

(6.2) Y IE(WV U)| < t(t+ 1)

iel’

For i € J', since E(V(C®W),W) # 0, it follows from Lemma 2.7 that
|E(V(C™),U)| < ts. Hence

(6.3) S IE(W(CD),U)| < ts|.]'].
ieJ’
By (5.4) and Lemma 5.1(ii),
(6.4) > IBE(V(ED), ) =0.
1€Jo,2

By the definition of I,

(6.5) S IE(W(CY), W) =0,
el’

By (6.1),
(6.6) > (du@)+ > |BE(V( ))) < (|| +t—1)(n — ts).

v'eW ieJ’
By Lemma 5.6,
(6.7) Y BV (W), V(H))| < (#* -2t +1)|L].

€L

For i ¢ I' UJ' U Jy2 UL, we have |[E(V(C®),V(H))| < n— s by the definition
of J. Hence

(6.8) Y. BV(EY),vH))

i%I/UJ’UJO,QUL
<(n=s)(k—1—|I'=|J] = |Jo2| = |L]).
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Now since §(G) > k+1t —1,

(6.9) %ng + 3 dalv k+t—1)(—|U|+|W|>
uelU v'eWw
=(k+t—1)(n—s).

On the other hand, by (6.2) through (6.8), Lemma 5.4 and (5.10) ,

tzl Y do(w) + 3 da(@)

uel v'ew
t—1 -— :
= > (@) + 3 IE(V(CD), )
uelU =1

k-1
+ ) (dH(v')+Z|E(V(c<i>),v')|)
=1

v'eWw

H(Ca+ (T4 ¥ JEwen.)

uel i€’ i€’ €L igI'UJ'UJo oUL

+ > (dH(v’)+Z |E(V(CW),v)])

v'eWw iEJ’
+ 2 [B(CO), W)+ 3 |E(V(CD), W)
1€Jo,2 i€l

+ ) Byv(EW),w)
i¢IIUJ/UJ072UL

< (St + IV E). 0]+ Y !EW(C(”)’U”)

uelU icl’ ieJ’

+Z<dH )+ D> IE(V(CD), ) S BEV( W)

v'eWw ieJ’ ZEJO 2

+Y IBEVECEO) VHE) + > |E(V(CY),V(H))
ieL ¢ I'UJ"UJo 2UL

< %(t(t —Ds+tt+ DI +ts|J'|) + (|J| +t—1)(n —ts)

+ (%ﬁ?’ 3624 2t) + (# — 2 + 1|
+(n—s)(k—1—|I'| = [J'| = |Jo2| — |LI)
=(k+t—Dn—-—s)—n-—s—t2+D|I'|—(n—ys)
—

13
n— s)(|Joal + | L]) + (Ft?’ — 324 2t> +(£2 =2t + 1)L
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<(k+t—1)(n—s)— (%R +2) - (%# +2)(|Jo,2| L)
+ (%t?’ _ 32 2t) (82— 2t + 1)L
= (k—l—t—l)(n—s)—l—%gt?’—%9752—&—215—2
- (%t2+2)|J02| - (%t2+2—t2+2t—1)|L\
< (k+t—1)(n—s)+%3t3 %t2+2t—2
— (%ﬁ + 2) (%t - 1) — (%# ot 4 1) (%t - 1)
= (k+t—1)(n—s)—%t3 263 2+2t+1
This contradicts (6.9), which completes the proof of Lemma 6.1. ]

Now by Lemma 6.1, there exists v' € W such that dg(v') + >, |E(
V(CD), 0| > || +t, e, ey ([E(V(CD), )| = 1) > ¢ — dp(v'). Then
since Wy = 0, there exists J) C J' with 2 < |J}| < t —dg(v') < ¢ such
that ZZEJ/(|E( (COY, ") —1) >t — dy(v'). We choose J§ so that |J}| is
as small as possible. Arguing as in the proof of Lemmas 5.1 and 5.2, we see
that there exist at least 2¢ — 1 indices i € J| such that E(a @) V(H)) = 0 and

‘E(p W) > 5t2+3t+1forsomeb() € B@, Set

E(@¥, V(H)) =0, and there exists b(i) e BY

Joo = {z e Jh
such that |E(b{), W)| > 6t2 +3t+ 1}
(i)

Thus \JO ol > 515 1. Fori € Jj 5 we may assume that by” satisfies the condition

\E( 1 W) > 5t2 + 3t + 1. By the definition of J', Jo2 N Jj, = 0. Hence
|Jo2 U Jgo| > %t —2>t+1. Let K be a subset of Jo2 U Jj, such that
K| =t+1.

Lemma 6.2. For eachi € K, |[E(a®,V(CU))| <1 for every j € K — {i}.

Proof Suppose that |E(a®,V(CU ))| > 2. Take z € N(a®)NV(CY)) with
x # b . Then ({a®, z}U(B® — {b })> contains a t-claw. Since ]E(bgi), W)l >
2124+ 3t+1 and ]E(bgj), W)| > 2t% + 3t + 1, we can take disjoint subsets X
and XU) of V(H) such that |[X®| = |XU)| = ¢, X® c N@), X0) ¢
N(bgj)). Then each of ({bgl)} UX®) and <{b(1j)} U X 0U)Y contains a t-claw, a
contradiction. O
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We are now in a position to complete the proof for Case 1. Set K' =
{1,2,...,k =1} — K. Then |K'| = k—1—(t+1) = k—1t— 2. Since
E(a),V(H)) =0 for each i € K and §(G) > k+t —1, it follows from Lemma
6.2 that

E({d" |ie K}, | V(CW)) ' ‘ V(CWY)
JEK' €K ]eK'
>|K|(k+t—1—t—t)
= |K[(k—t—1)
= |K|(|K'[ +1)

=(|K'|+1)(t+1).

Hence there exists an index j € K’ such that |[E({a® | i € K},V(CY)))| >
t+1. This implies that there exist two edges za® and ya(™ joining V(CW))
and {a® \ZEK}WlthmyE V(CU), 2 # y and | # m. Then each of
{a®, 23 U(BO = (391)) and ({a™,y} U (B™ — {{™})) contains a t-claw.
Since I,m € K C Jpo U J672, we can take disjoint subsets X and X (™) of
V(H) such that | XO| = | XM™| = ¢, XO ¢ Ny, X™ ¢ N®™). Then
each of ({bgl)} UX®) and <{bgm)} U X ™)) contains a t-claw. This contradicts

the assumption that G is a counterexample. This concludes the discussion for
Case 1.

§7. Proof of the main theorem

In this section, we consider the case where Wy # ().

Case 2: Wy £ 0.

Let v € Wi. By the definition of Wi, we can take a t-claw C = C
with ¢ € J such that dg(v) + |[E(V(C),v)| > t+ 1. By Lemma 2.5, we have
E(V(C),U) =0, and hence

(7.1)  |E(V(C),W)| = [E(V(C),V(H)) =n—s+1> %ﬁ +3,

Lemma 7.1. E(a, W) = .

Proof. Suppose that E(a, W) # (). Then by Lemma 2.2, |E(b, W)| < ¢ for each
b € B. On the other hand, we see from Lemma 2.1 that |E(a, W)| = |E(a, W —
{0} — Nu(0))] + |E(a, {0} U Ng(@))] < (¢ — 1 — du(v)) + (1 + [Ng(0)]) = .
Hence |E(V(C),W)| = |E(a,W)| + |E(B,W)| < t + t*, which contradicts
(7.1). O
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Note that it follows from Lemma 7.1 that
(7.2) dg(v) + |E(B,v)| >t + 1.
Hence by Lemma 2.4,
(7.3) |E(b, W —{v} = Nu(v))| <t —2 for every b€ B,
which implies that
(7.4) |E(b,W)| <2t—2 for every be B.

By (7.1) and Lemma 7.1, we also have
11 ,
(7.5) |E(B,W)| > Et + 3.

Hence |E(B,W —{v} — Ny (v))| > ¥+ 3 — |B|(1+dg(v)) > 2t? + 3, which
together with (7.3) implies that

(7.6) E(B —{b},W —{v} — Ng(v)) # 0 for every b€ B.

Set S = {b€ B||E(b,W)| > 4t} Note that S # 0 by (7.5).

Case 2.1: dg(v) < L%tJ
Take b, € S. By (7.2), ({v} U Ng(v) U (N(v) N (B — {by}))) contains a
t-claw. Slnce dp(v) < L% |, it follows from the definition of S that

B W = {0} = Nao))] = 2= (14| 24))
— t —1.

Hence ({a,b,} U (N(by) N (W — {v} — Ng(v)))) also contains a t-claw, a con-
tradiction.

Case 2.2: dg(v) > | 2t] + 1.
Write dg(v) = L%tJ +1+h. Since dy(v) <t—1, we have 0 < h < [¢t] —2.
By (7.2),

(7.7) |E(B,v)| >t+1— (EtJ +1+h)
[

Set T = {w € Ny (v) | du(w) > | 3¢] +1}.
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Lemma 7.2. We have |E(B,w)| < [§t] for allw € T U {v}.

Proof. Suppose that there exists w € T'U {v} such that |[E(B,w)| > [4t] + 1.
Since dy(w) > | 2t|+1, we can take a subset X of Nz (w) such that | X| = | 2¢].
Take b, € S. Then |E(B — {by},w)| > [§t|. Hence ({w} UX U (N(w)N (B —
{bp}))) contains a t-claw. By the definition of S, |E(b,, W — {w} — X)| >
|E(bp, W)| —1—|X| >t —1—[3t] >t—1. Hence ({a,by} U (N(by) N (W —
{w} — X))) contains a t-claw, a contradiction. O

Lemma 7.3. We have dg(w) + |E(B,w)| <t for allw € Ny(v) —T.

Proof. Suppose that there exists w € Ny (v) —T such that dy(w)+|E(B,w)|>
t+ 1. Take by, € S. Then ({w} U Ny (w)U (N(w) N (B —{by})))) contains a
t-claw. Since w ¢ T, dy(w) < |2t]. Hence it follows from the definition of S
that

E(by, W — {w} — Nig(w))| > %t ~(1+ PtJ)
=t—1.

Consequently ({a,b,} U (N(by) N (W — {w} — Ng(w)))) contains a t-claw, a
contradiction. O

By Lemmas 7.2 and 7.3,

[E(B, {v} U Ng(v))l
= [E(Bv)|+ Y |EBw)|+ Y |EBw)

weT wENg (v)-T
1 1
<|zt]+mize]+ > @—du()
6 6
weNy (v)-T
1 1
S6t+1+|T\<6t+1)+|NH(v)—T\t— Y du(w)
weNg (v)-T
1 1
= gt 1+ SHT|+T] + [Nu(v)|t — T - > dp(w)
weNg (v)-T
1 5 5
:6t+1—6t|T\+]T|+q6tJ+1+h>t— ST dy(w)
weNy (v)-T
5, 75
<224 bttt — 2T+ |T]+1— i (w).
< Gt ht+ gt — T+ [T+ > du(w)

weNg (v)-T
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Hence by (7.5),

(7.8)

|E(B,W —{v} = Nu(v))l
= [E(B,W)| = |E(B, {v} U Nu(v))|

11, 5., 7 5
> 2 43— (22 +ht+—t— StT|+|T|+1— d
> (6 ht gt = ST+ T +1— Y H<w>>
wENg (v)-T
:tz—zt—ht+§tyT\—\T|+2+ > du(w).
6 6

weNy (v)-T

By (7.7), we can take a subset B’ of N(v) N B with |[B/| = [$t] — h — 1.
Then since |T'| < dg(v) <t—1,h < [%t] — 2 and t > 24, it follows from (7.3)
and (7.8) that

(7.9)

|E(B — B, W — {v} = Nu(v))]

7 5
2
> t* = ot = ht + AT = [T] +2+ ) dg(w)

6
wEN (v)-T

S(ERSEE

7 5 1
>2 e — —(Zt— -
> - ct—ht+tT - [T]+2+ Y du(w) (675 h)(t 2)

wENH(v)—T
—§t2—§t—1t\T|+2—2h+|T\(t—1)+ > dp(w)
"6 6 6 "
’wENH(’U)—T
>0 2 L2 —ome -+ S du(w)
~6 6 6 "
’wENH(U)—T
—ét2—%t+2—2h+|T](t—1)+ > du(w)
6 6 HAW
wENH(’U)—T
2, 2 1
> 2422 _ Z+| — _
> St St 42 2([615] 2+ ITE-1)+ Y du(w)
weNg (v)-T
22
> St =t A+ [T —1) + > du(w)
weNg (v)—T

STle-1+ Y dulw).

weNg (v)-T
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On the other hand,

(7.10) [E(({v} UNg ()] +[E(Ng(v), W = {v} = Nu(v))
< Y dpw)=) dgw)+ DY dy(w)
wENg (v) weT wENg (v)-T
<ITIt-1D+ > do(w)
weENg (v)-T

Replace C' by the t-claw with center v contained in ({v} U Ny (v) U B').
Let H = ((V(H) — {v} — Ng(v)) U (V(C) — B’)), and let U’ be the union
of the vertex sets of the K; components of H'. Also set W' = V(H') —U".
Then by Lemma 7.1 (and by (7.6) if |B’| = 1), {a} U (B — B’) is not contained
in a K; components of H', which means U’ = U. Therefore by (7.9) and
(7.10), [E((W")| + 2|[E((U"))| > |[E((W))| + 2|E((U))|. This contradicts the
maximality of |E((W))| + 2|E((U))|, which completes the proof for Case 2.2.

This completes the proof of the main theorem.
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