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Abstract. In this paper, testing for the equality of mean components and of
two mean vectors in repeated measures with the intraclass correlation model are
treated when the missing observations occur. We consider a new test statistic
for the equality of mean components in one-sample problem. Further, we derive
a new test statistic for the equality of two mean vectors. The distributions of the
test statistics are given under the general case of missing observations. Finally,
numerical examples by Monte Carlo simulation are conducted to illustrate power
of the method proposed in this paper.
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§1. Introduction

Let x
(i)
1 ,x

(i)
2 , . . . ,x

(i)

n(i) (i = 1, 2) be distributed as Np(µi,Σ
(i)), where µi =

(µ
(i)
1 , µ

(i)
2 , . . . , µ

(i)
p )′. In particular, we consider to test the equality of the mean

components and of two mean vectors when the variables are interchangeable
with respect to variances and covariances—the intraclass correlation model,
that is, when Σ(i) is of the form

Σ(i) = σ2
i [(1 − ρi)Ip + ρi1p1

′

p], 1p = (1, 1, . . . , 1)′ : p × 1.

When the covariance matrix has the intraclass correlation form, many authors
have considered testing for the equality of mean components. For one sample
case, when ρ1 is known but σ2

1 is not, Scheffé [8] and Miller [7] have given
the simultaneous confidence intervals for all contrasts a′µ1 for all non-null p-
dimensional vector a such that a′1p = 0. When both σ2

1 and ρ1 are unknown,
Bhargava and Srivastava [1] has given Scheffé and Tukey types of simultaneous
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confidence intervals. When the observations are the monotone type of miss-
ing, Seo and Srivastava [9] gave the exact distribution of test statistic for the
equality of mean components and Scheffé and Bonferroni types of simultaneous
confidence intervals. Further, when missing observations are not of monotone
type, Seo and Srivastava [9] gave asymptotic simultaneous confidence intervals
by usual maximum likelihood ratio method and an iterative numerical method
which was discussed in Srivastava [10] and Srivastava and Carter [11]. Kanda
and Fujikoshi [3] studied some basic properties of maximum likelihood estima-
tors for a multivariate normal distribution based on monotone type of missing
data. When the complete data are obtained, Hotelling’s T 2-statistic is used
as the usual test statistic for the null hypothesis H 02 : µ1 = µ2 against the
alternative H12: not H02 (see, Hotelling [2]). Recently, when some missing
observations occur, Krishnamoorthy and Pannala [6] considered approximate
methods for constructing confidence region and to test H 02 without assump-
tion of covariance structure. On the other hand, Koizumi and Seo [5] derived
the exact distribution of test statistic for H 02 and the simultaneous confidence
intervals for all contrasts in the intraclass correlation model with monotone
missing data. Koizumi and Seo’s procedure is an extension to that in Seo and
Srivastava [9].

In this paper, we give testing procedures when incomplete data aries. At
first, we consider an exact distribution of test statistic for the null hypothesis

H01 : µ
(1)
1 = µ

(1)
2 = · · · = µ

(1)
p against the alternative H11: not H01 under

the model with uniform covariance structure. Moreover, we derive an exact
test for the hypothesis H02 : µ1 = µ2 in the intraclass correlation model with
missing data. In Section 2, we give a new exact distribution of test statistic
for the equality of mean components with non-monotone type of missing data.
In Section 3, we derive a new exact distribution of test for the equality of two
mean vectors. Finally, we investigate powers of test statistics proposed in this
paper by Monte Carlo simulation.

§2. Testing for the equality of mean components

In this section, we discuss the one-sample problem. For convenience’ sake,
we put µ = (µ1, µ2, . . . , µp) ≡ µ1,Σ ≡ Σ(1) and n ≡ n(1). We consider
to test the equality of the µ`’s, ` = 1, 2, . . . , p, i.e., a test statistic for the
null hypothesis H01 in the intraclass correlation model with missing data.
Data set has some missing components which are of the non-monotone type
(general case). Let n` and pj (j = 1, 2, . . . , n) be the total numbers of the
observed data for `-th row and j-th column, respectively. The data set is
called monotone type of missing observations if n` and pj satisfy n = n1 ≥
n2 ≥ · · · ≥ np and p = p1 ≥ p2 ≥ · · · ≥ pn, otherwise it is called a general case
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of missing observations. We can obtain a subvector without missing part by a
transformation of a sample vector with missing components. As an example,
suppose that we have the observations xj = (x1j , ∗, x3j , ∗, x5j)

′ for the j-th
column, where “∗” denotes a missing component. Then, we can define as
yj(= (y1j , y2j , y3j)

′) = Bjxj = (x1j , x3j , x5j)
′, where

Bj =




1 0 0 0 0
0 0 1 0 0
0 0 0 0 1


 ,

which is distributed as N3(Bjµ,Σj), Bjµ = (µ1, µ3, µ5)
′ and Σj = σ2[(1 −

ρ)I3+ρ131
′

3] ≡ BjΣB′

j. Therefore, in general, letting yj = (y1j, y2j , . . . , ypjj)
′,

then yj ’s are independently distributed as Npj
(Bjµ,Σj), j = 1, 2, . . . , n,

where Bj is a pj × p matrix and Σj = σ2[(1 − ρ)Ipj
+ ρ1pj

1′

pj
].

Next, let Cj be a pj × pj matrix such that

Cj = Ipj
− νj

pj

1pj
1′

pj
,

where νj = 1± (1− ρ)
1
2 {1 + (pj − 1)ρ}− 1

2 (see, Bharagava and Srivastava [1]).
Then, by the transformation wj(= (w1j , w2j , . . . , wpjj)

′) = Cjyj , we have

wj ∼ Npj
(CjBjµ, γ2Ipj

),

where γ2 ≡ σ2(1 − ρ).

Without loss of generality, the observed original data set {x`j} can be
grouped into s subsets of data with same missing pattern, where the c-th
group(c = 1, 2, . . . , s ≤ 2p − 1) consists of n(c) sample vectors such that p(c)

observations are available in p components. We note that p(c) denotes the

total number of components after excluding the missing part. Let y
(c)
`′j′ and

w
(c)
`′j′ be a (`′, j′) component in the c-th group, respectively. Then we define

the original sample means y
(c)
`′· , y

(c)
·j′ and y

(c)
·· for the c-th group as follows:

y
(c)
`′· =

1

n(c)

n(c)∑

j′=1

y
(c)
`′j′ , y

(c)
·j′ =

1

p(c)

p(c)∑

`′=1

y
(c)
`′j′ , y

(c)
·· =

1

p(c)n(c)

p(c)∑

`′=1

n(c)∑

j′=1

y
(c)
`′j′ .

Similarly, the transformed sample means w
(c)
`′· , w

(c)
·j′ and w

(c)
·· are defined by

w
(c)
`′· =

1

n(c)

n(c)∑

j′=1

w
(c)
`′j′ , w

(c)
·j′ =

1

p(c)

p(c)∑

`′=1

w
(c)
`′j′, w

(c)
·· =

1

p(c)n(c)

p(c)∑

`′=1

n(c)∑

j′=1

w
(c)
`′j′,
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respectively. Hence, we have an unbiased estimator of γ2 for the c-th group as

γ̂(c)2 =
1

f (c)

p(c)∑

`′=1

n(c)∑

j′=1

(
w

(c)
`′j′ − w

(c)
`′· − w

(c)
·j′ + w

(c)
··

)2

=
1

f (c)

p(c)∑

`′=1

n(c)∑

j′=1

(
y

(c)
`′j′ − y

(c)
`′· − y

(c)
·j′ + y

(c)
··

)2
,

where f (c) = (p(c) − 1)(n(c) − 1). Then (f (c)γ̂(c)2)/γ2 has χ2-distribution with
f (c) degrees of freedom under the null hypothesis H 01. Hence, we can also
obtain that

s∑

c=1

f (c)γ̂(c)2

γ2
(2.1)

has χ2-distribution with f1 =
∑s

c=1 f (c) degrees of freedom.

For each of groups, we can see
√

n(c)(w
(c)
`′· −w

(c)
·· ) =

√
n(c)(y

(c)
`′· −y

(c)
·· ). Then

p(c)∑

`′=1

(√
n(c)(w

(c)
`′· − w

(c)
·· )

γ

)2

=

p(c)∑

`′=1

(√
n(c)(y

(c)
`′· − y

(c)
·· )

γ

)2

has χ2-distribution with p(c) − 1 degrees of freedom under the null hypothesis
H01, and this statistic is independent of (2.1). Thus, we obtain the following
theorem.

Theorem 1. Suppose that a data set has the general missing observations at

random in the intraclass correlation model. Then a test statistic for the null

hypothesis H01 is given by

F1 =

s∑
c=1

p(c)∑
`′=1

n(c)(y
(c)
`′· − y

(c)
·· )2/p∗

s∑
c=1

f (c)γ̂(c)2/f1

,(2.2)

where the distribution of F1 under the null hypothesis F -distribution with p∗ =∑s
c=1(p

(c) − 1) and f1 =
∑s

c=1(p
(c) − 1)(n(c) − 1) degrees of freedom.

This theorem is different from the result due to Koizumi and Seo [4]. It may
be noted that the value of F1 is directly calculated from the original data set.
Also, when s = 1, the statistic F1 in (2.2) can be reduced as the test statistic
given by Bhargava and Srivastava [1].
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§3. Testing for the equality of two mean vectors

In this section, we consider a test for the equality of two mean vectors. We

assume that x
(i)
j ∼ Np(µi,Σ

(i)), i = 1, 2, j = 1, 2, . . . , n and Σ ≡ Σ(1) = Σ(2).

{x(i)
`j } can be grouped into s subsets of the data which have same missing

pattern, respectively. In a sample from the i-th population, data set for the

c-th group is a p(c) × n(c) matrix and y
(i,c)
`′j′ is a (`′, j′) component in the c-th

group. Data set {x(i,c)
`j } is transformed by B(c) and C(c) as well as Section 2,

that is, B(c) and C(c) are p(c) × p and p(c) × p(c) matrices, respectively. After

these transformations, we can obtain w
(i,c)
j′ ≡ C(c)y

(i,c)
j′ ≡ C(c)B(c)x

(i,c)
j′ and

w
(i,c)
j′ ∼ Np(c)(C(c)B(c)µi, γ

2Ip(c)).

Then we define sample means for each of groups as follows:

y
(i,c)
`′· =

1

n(c)

n(c)∑

j′=1

y
(i,c)
`′j′ , w

(i,c)
`′· =

1

n(c)

n(c)∑

j′=1

w
(i,c)
`′j′ ,

y
(i,c)
·j′ =

1

p(c)

p(c)∑

`′=1

y
(i,c)
`′j′ , w

(i,c)
·j′ =

1

p(c)

p(c)∑

`′=1

w
(i,c)
`′j′ ,

y
(i,c)
·· =

1

p(c)n(c)

p(c)∑

`′=1

n(c)∑

j′=1

y
(i,c)
`′j′ , w

(i,c)
·· =

1

p(c)n(c)

p(c)∑

`′=1

n(c)∑

j′=1

w
(i,c)
`′j′ .

And an unbiased estimator of γ2 for the c-th group is given by

γ̂(i,c)2 =
1

f (c)

p(c)∑

`′=1

n(c)∑

j′=1

(
w

(i,c)
`′j′ − w

(i,c)
`′· − w

(i,c)
·j′ + w

(i,c)
··

)2

=
1

f (c)

p(c)∑

`′=1

n(c)∑

j′=1

(
y

(i,c)
`′j′ − y

(i,c)
`′· − y

(i,c)
·j′ + y

(i,c)
··

)2
,

where f (c) = (p(c) − 1)(n(c) − 1). Hence, we noting unbiased estimator of γ2 is
given by

γ̃2 ≡
2∑

i=1

s∑

c=1

f (c)γ̂(i,c)2

f2
, f2 ≡

2∑

i=1

s∑

c=1

f (c),

and we have

2∑

i=1

s∑

c=1

f (c)γ̂(i,c)2

γ2
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possesses χ2-distribution with f2 degrees of freedom.

Let w(i,c) ≡ (w
(i,c)
1· , w

(i,c)
2· , . . . , w

(i,c)

p(c)
·
)′ for each of groups. Then under the

null hypothesis

n(c)(w(1,c) − w(2,c))′(w(1,c) − w(2,c))

2γ2

has χ2-distribution with p(c) degrees of freedom. Hence,

s∑

c=1

n(c)(w(1,c) − w(2,c))′(w(1,c) − w(2,c))

2γ2
∼ χ2

p∗∗,

where p∗∗ ≡∑s
c=1 p(c). Therefore, we obtain the following theorem.

Theorem 2. Suppose that a data set has the general missing observations

at random in the intraclass correlation model. Then a test statistic for the

equality of two mean vectors is given by

F2 =

s∑
c=1

n(c)(w(1,c) − w(2,c))′(w(1,c) − w(2,c))

2p∗∗γ̃2
,(3.1)

where the distribution of F2 under the null hypothesis H02 is F -distribution

with p∗∗ =
∑s

c=1 p(c) and f2 =
∑2

i=1

∑s
c=1(p

(c)−1)(n(c)−1) degrees of freedom.

§4. Simulation studies

In this Section, we investigate power of statistics in (2.2) and (3.1) by Monte
Carlo simulation.

The power of a test statistic in (2.2) is given by

Pr (F1 > Fp∗,f1,α | H11) = β1,(4.1)

where Fp∗,f1,α is the upper 100α percentage point of F -distribution with p∗

and f1 degrees of freedom. Put p = 4, n1 = n2 = 40, n3 = n4 = 20, σ2 = 1 and
ρ = 0.5. Then we calculate the β1 when the value of µi is changed. Results of
Monte Carlo simulations for the power β1 are given in Table 1.

The power of a test statistic in (3.1) is given by

Pr (F2 > Fp∗∗,f2,α | H12) = β2.(4.2)

Since F2 statistic in (3.1) is essentially distributed as central F -distribution
under the null hypothesis, the distribution of F2 in (3.1) under the alternative
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Table 1: Power of test statistic in (2.2)
|µ1 − µ2| β1 |µ1 − µ3| β1

0 0.050 0 0.050
0.2 0.163 0.2 0.113
0.4 0.574 0.4 0.544
0.6 0.928 0.6 0.723
0.8 0.997 0.8 0.943
1.0 1.000 1.0 0.995

Table 2: Power of test statistic in (3.1)

|µ(1)
1 − µ

(2)
1 | β2 |µ(1)

3 − µ
(2)
3 | β2

0 0.050 0 0.050
0.2 0.100 0.2 0.076
0.4 0.304 0.4 0.173
0.6 0.651 0.6 0.372
0.8 0.911 0.8 0.635
1.0 0.990 1.0 0.852
1.2 1.000 1.2 0.962
1.4 1.000 1.4 0.994

hypotheses is non-central F -distribution with p∗∗ and f2 degrees of freedom
and non-centrality parameter ξ2, where ξ2 is given by

ξ2 =
2∑

i=1

s∑
c=1

(µ1 − µ2)
′B(c)′C(c)′(γ2V (c))−1C(c)B(c)(µ1 − µ2),

V (c)−1
= diag(n(c), n(c), . . . , n(c)). Therefore we can obtain the powers β1 and

β2 by integrating probability density function of non-central F -distribution.
Setting the parameters are the same the one sample problem. Results of Monte
Carlo simulations for the power β2 are given in Table 2.

We note that test statistic has a high power when the sample size is large.
The more missing parts are, the smaller powers β1 and β2 are.

In conclusion, we have derived the exact distributions of new test statistics
for H01 and H02 under the assumption of intraclass correlation model with
general missing observations. We have given explicit unbiased estimators when
the covariance matrix has the uniform covariance structure. By using its
estimator, we have derived new exact distributions of test statistics for H 01

and H02. In order to evaluate new test statistics we have investigated the
powers of ones. Hence our test statistics have higher powers. We may be noted
that our test statistics in (2.2) and (3.1) are useful testing for the equality of
means even if data sets involves the missing observations.
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