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Abstract. The cycle-complete graph Ramsey number r(Cm, Kn) is the small-
est integer N such that every graph G of order N contains a cycle Cm on
m vertices or has independent number α(G) ≥ n. It has been conjectured by
Erdős, Faudree, Rousseau and Schelp that r(Cm, Kn) = (m−1)(n−1)+1 for all
m ≥ n ≥ 3 (except r(C3, K3) = 6). In this paper, we show that r(C6, K8) ≤ 38.
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§1. Introduction

Through out this paper we adopt the standard notations, a cycle on m vertices
will be denoted by Cm and the complete graph on n vertices by Kn. The min-
imum degree of a graph G is denoted by δ(G). An independent set of vertices
of a graph G is a subset of V (G) in which no two vertices are adjacent. The
independence number of a graph G,α(G), is the size of the largest independent
set.

The cycle-complete graph Ramsey number r(Cm,Kn) is the smallest integer
N such that for every graph G of order N , G contains Cm or α(G) ≥ n. The
graph (n− 1)Km−1 shows that r(Cm,Kn) ≥ (m− 1)(n− 1) + 1. In one of the
earliest contributions to graphical Ramsey theory, Bondy and Erdős [4] proved
that for all m ≥ n2 − 2, r(Cm,Kn) = (m − 1)(n − 1) + 1. After that, Faudree
and Schelp [7] and Rosta [14] proved that for m ≥ 4, r(Cm,K3) = 2(m−1)+1.
Later on, Erdős et al. [6] conjectured that r(Cm,Kn) = (m − 1)(n − 1) + 1,
for all m ≥ n ≥ 3 except r(C3,K3) = 6. Nikiforov [12] proved the conjecture
for m ≥ 4n + 2.
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The conjecture was confirmed by Sheng et al. [17] and Bollobás et al. [3]
for n = 4 and n = 5, respectively. Recently, the conjecture was proved by
Schiermeyer [15 ] for n = 6. Most recently, Baniabedalruhman [1], Baniabe-
dalruhman and Jaradat [2] and Cheng et al. [5] independently proved that
r(C7,K7) = 37. Also, In [9] and [10], it was proved that r(C8,K7) = 43 and
r(C8,K8) = 50. In a related work, Radziszowski and Tse [13] showed that
r(C4,K7) = 22 and r(C4,K8) = 26 and Cheng et al. [5] proved that r(C6,K7)
= 31. In [11] Jayawardene and Rousseau proved that r(C5,K6) = 21. Also,
Schiermeyer [16] proved that r(C5,K7) = 25. In this article we prove that
r(C6,K8) ≤ 38.

In the rest of this work N(u) stands for the neighbor of the vertex u, which
is the set of all vertices of G that are adjacent to u. The symbol N [u] denotes
to N(u) ∪ {u}. The symbol 〈V1〉G stands for the subgraph of G whose vertex
set is V1 ⊆ V (G) and whose edge set is the set of those edges of G that have
both ends in V1, and is called the subgraph of G induced by V1.

§2. Main Result

It is known, by taking G = (n−1)Km−1, that r(Cm,Kn) ≥ (m−1)(n−1)+1
and so r(C6,K8) ≥ 36. In this section, we prove that r(C6,K8) ≤ 38. Our
proof consists of a series of seven lemmas.

Lemma 2.1. Let G be a graph of order 38 that contains neither C6 nor an
8-element independent set. Then δ(G) ≥ 7.
Proof. Suppose that G contains a vertex of degree less than 7, say u. Then
|V (G) −N [u]| ≥ 38 − 7 = 31. Since r(C6,K7) = 31, as a result, G −N [u] has
an independent set consisting of 7 vertices. This set with the vertex u is an
independent set consisting of 8 vertices. This is a contradiction. �

Throughout all Lemmas 2.2 to 2.6, we let G be a graph with minimum
degree δ(G) ≥ 7 that contains neither C6 nor an 8-element independent set.

Lemma 2.2. If G contains K5 − S3, then |V (G)| ≥ 40.
Proof. Let U = {u1, u2, u3, u4, u5} be the vertex set of K5 − S3 where the
induced subgraph of {u1, u2, u3, u4} is isomorphic to K4. With out loss of
generality we may assume that u1u5, u2u5 ∈ E(G). Let R = G − U and
Ui = N(ui) ∩ V (R) for each 1 ≤ i ≤ 5. Since δ(G) ≥ 7, |Ui| ≥ 3 for all
1 ≤ i ≤ 5. Note that between any two vertices of U there is a path of order 5
except possibly between u1 and u2. Thus, Ui ∩ Uj = ∅ for all 1 ≤ i < j ≤ 5
except possibly for (i, j) = (1, 2). Also note that between any two vertices
of U there is a path of order 4. Hence, for all 1 ≤ i < j ≤ 5 and for all
x ∈ Ui and y ∈ Uj , xy /∈ E(G). Similarly, since between any two vertices of
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U there is a path of order 3, NR(Ui) ∩ NR(Uj) = ∅ for all 1 ≤ i < j ≤ 5.
Therefore, (Ui ∪ NR(Ui)) ∩ (Uj ∪ NR(Uj)) = ∅ for all 1 ≤ i < j ≤ 5 with
(i, j) 6= (1, 2). Moreover, since u1u4u3u2 is a path of length 4, (U1∩NR(U2)) =
(U2 ∪ NR(U1)) = ∅. Let A = ({u1} ∪ U1 ∪ NR(U1)) ∪ ({u2} ∪ U2 ∪ NR(U2)).
Note that |Ui ∪ NR(Ui) ∪ {ui}| ≥ δ(G) + 1 = 8 for each 3 ≤ i ≤ 5. Thus, it is
suffices to show that |A| ≥ 16. If U1 − U2 6= ∅ and U2 − U1 6= ∅, then |A| ≥
|{u1}∪(U1−U2)∪NR(U1−U2)|+|{u2}∪(U2−U1)∪NR(U2−U1)| ≥ 8+8 = 16.
Hence, we may assume that U1 −U2 = ∅ or U2 −U1 = ∅. Then |U1 ∩U2| ≥ 3.
Note that for any x, y ∈ U1 ∩ U2, we have that NG(x) ∩ NG(y) = ∅ because
otherwise G contains C6. Hence,

∑

x∈U1∩U2

|NG[x] − {u1, u2}| ≥ 6|U1 ∩ U2| ≥ 18.

�

Lemma 2.3. If G contains K4, then G contains K5 − S3.
Proof. Let U = {u1, u2, u3, u4} be the vertex set of K4. Let R = G − U
and Ui = N(ui) ∩ V (G) for each 1 ≤ i ≤ 4. Since δ(G) ≥ 7, |Ui| ≥ 4 for all
1 ≤ i ≤ 4. Now we consider the following cases:
Case 1. Ui ∩Uj 6= ∅ for some 1 ≤ i < j ≤ 4. Then it is clear that G contains
K5−S3. In fact, if we take w ∈ Ui∩Uj, then the induced subgraph 〈U ∪ {w}〉G
contains K5 − S3.
Case 2. Ui ∩ Uj = ∅ for each 1 ≤ i < j ≤ 4. Note that between any two
vertices of U there is a path of order 4. Thus for all 1 ≤ i < j ≤ 4 and for
all x ∈ Ui and y ∈ Uj , xy /∈ E(G). Therefore, at least one of 〈Ui〉G where
1 ≤ i ≤ 4 is a complete graph (otherwise, two independent vertices of 〈Ui〉G
for each 1 ≤ i ≤ 4 form an 8-element independent set, a contradiction). Now,
since |Ui| ≥ 4 for all 1 ≤ i ≤ 4, as a result at least one of the induced subgraph
〈Ui ∪ {ui}〉G where 1 ≤ i ≤ 4 contains K5. Hence, G contains K5 − S3. �

Lemma 2.4. If G contains K1 + P4, then G contains K4.
Proof: Let U = {u1, u2, u3, u4, u5} be the vertex set of K1 + P4, where u1 is
a K1 and P4 = u2u3u4u5. Let R = G − U and Ui = N(ui) ∩ V (R) for each
1 ≤ i ≤ 5. Then as in Lemma 2.2, |Ui| ≥ 3 for all 1 ≤ i ≤ 5. Note that between
any two vertices of U−{u1} there are paths of order 5 and 4. Thus, Ui∩Uj = ∅

and xy /∈ E(G) for all x ∈ Ui and y ∈ Uj for any 2 ≤ i < j ≤ 5. Therefore,
〈Ui〉G is complete graph for some 2 ≤ i ≤ 5 (otherwise, two independent
vertices of 〈Ui〉G for each 2 ≤ i ≤ 5 form an 8-element independent set, a
contradiction). Now, since |Ui| ≥ 3 for all 2 ≤ i ≤ 5, at least one induced
subgraph 〈Ui ∪ {ui}〉G where 2 ≤ i ≤ 5 contains K4. Hence, G contains K4.
�
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Lemma 2.5. If G contains K1 + P3, then G contains K1 + P4 or K4

Proof. Let U = {u1, u2, u3, u4} be the vertex set of K1 + P3 where K1 = u1

and P3 = u2u3u4. Now, if u2u4 ∈ E(G), then 〈U〉G is K4. Thus, in the
rest of this lemma we may assume that u2u4 /∈ E(G). Let R = G − U and
Ui = N(ui) ∩ V (R) for each 1 ≤ i ≤ 4. Since δ(G) ≥ 7, |Ui| ≥ 4 for i = 1, 3
and |Ui| ≥ 5 for i = 2, 4. We now consider the following cases:

Case 1. Ui ∩ Uj = ∅ for all 2 ≤ i < j ≤ 4. Note that between any two
vertices of U there is a path of order 4. Thus, for all 2 ≤ i < j ≤ 5, if x ∈ Ui

and y ∈ Uj , then xy /∈ E(G). Hence, either α(〈U2〉G) ≤ 2 or α(〈U4〉G) ≤ 2
or 〈U3〉G is a complete graph (otherwise, three independent vertices of 〈Ui〉G
for each i = 2, 4 and two independent vertices of 〈U3〉G form an 8-element
independent set, a contradiction). Now, if 〈U3〉G is a complete graph, then
〈U3〉G contains K4 because |U3| ≥ 4. Also, if α(〈U2〉G) ≤ 2 or α(〈U4〉G) ≤ 2,
say α(〈U2〉G) ≤ 2, then 〈U2〉G contains either K3 or P4. And so 〈U2 ∪ {u2}〉G
contains either K4 or K1 + P4.

Case 2. U2 ∩ U3 6= ∅, say u5 ∈ U2 ∩ U3. Then G contains K1 + P4, where u3

is a K1 and P4 = u5u2u1u4.

Case 3. U3 ∩ U4 6= ∅, say u5 ∈ U3 ∩ U4. Then G contains K1 + P4, where u3

is a K1 and P4 = u5u4u1u2.

Case 4. U2 ∩ U4 6= ∅, say u5 ∈ U2 ∩ U4. If u5u3 ∈ E(G), then G contains
K1 + P4 where K1 = u3 and P4 = u5u4u1u2. Thus, in the rest of this lemma
we assume that u5u3 /∈ E(G). Now let U

′

= {u1, u2, u3, u4, u5}, R
′

= G − U
′

and U
′

i = N(ui) ∩ V (R
′

) for each 1 ≤ i ≤ 5. We now have the following:
(1) If U

′

2
∩ U

′

3
6= ∅, then we get a similar case to Case 2 and so G contains

K1 + P4. Therefore, in the rest of this case we can assume that U
′

2
∩ U

′

3
= ∅.

(2) U
′

2
∩ U

′

5
= ∅ (otherwise, if x ∈ U

′

2
∩ U

′

5
, then xu2u1u3u4u5x is a C6, a

contradiction). (3) U
′

3
∩U

′

5
= ∅ (otherwise, if x ∈ U

′

3
∩U

′

5
, then xu3u2u1u4u5x

is a C6, a contradiction). Note that u1 and u3 are symmetric in the role. Thus,
as in the above, we may assume that u5u1 /∈ E(G). This means |U

′

5
| ≥ 5. Also,

as in the above, we may assume that U
′

1
∩U

′

2
= ∅ and we have that U

′

1
∩U

′

5
= ∅.

Similarly, U
′

1
∩U

′

3
= ∅ (because, if x ∈ U

′

1
∩U

′

3
, then xu1u2u5u4u3x is a C6, a

contradiction). Consequently there is no edge joining u1 to U
′

2
∪U

′

3
∪U

′

5
. Also,

note the following: (I) for each x ∈ U
′

2
and y ∈ U

′

3
, xy /∈ E(G) (Otherwise,

xyu2u1u4u3x is a C6, a contradiction). (II) for each x ∈ U
′

2
and y ∈ U

′

5
, xy /∈

E(G) (Otherwise, xyu2u3u4u5x is a C6, a contradiction). (III) for each x ∈ U
′

3

and y ∈ U
′

5
, xy /∈ E(G) (Otherwise, xyu3u1u4u5x is a C6, a contradiction).

Therefore, either
〈

U
′

2

〉

G
is complete or

〈

U
′

3

〉

G
is complete or α(

〈

U
′

5

〉

G
) ≤ 2

(Otherwise, α(
〈

{u1} ∪ U
′

2
∪ U

′

3
∪ U

′

5

〉

G
) ≥ 1 + 2 + 2 + 3 = 8, a contradiction).

Now, if
〈

U
′

2

〉

G
is complete or

〈

U
′

3

〉

G
is complete, then G contains K4. Also,
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if α(
〈

U
′

5

〉

G
) ≤ 2, then as above,

〈

U
′

5

〉

G
contains either K3 or P4. And so

〈

U
′

5
∪ {u5}

〉

G
contains either K4 or K1 + P4. �

Lemma 2.6. If G contains K3, then G contains K1 + P3 or K4

Proof. Let U = {u1, u2, u3} be the vertex set of K3. Let R = G − U and
Ui = N(ui) ∩ V (G) for each 1 ≤ i ≤ 3. Since δ(G) ≥ 7, |Ui| ≥ 5 for all
1 ≤ i ≤ 3. Now we split our work into the following two cases:
Case 1: Ui ∩Uj 6= ∅ for some 1 ≤ i < j ≤ 3. Then G contains K1 + P3. The
result is obtained.
Case 2: Ui ∩ Uj = ∅ for all 1 ≤ i < j ≤ 3. Let zi ∈ Ui for each 1 ≤ i ≤ 3.
Let Z = {z1, z2, z3} and R

′

= G − (U ∪ Z). Let Zi = N(zi) ∩ V (R
′

). If
|E 〈Z〉G | ≥ 2, then 〈Z ∪ U〉G contains a cycle of order 6. Thus we may assume
that |E 〈Z〉G | ≤ 1. Then |Zi| ≥ 5 for each 1 ≤ i ≤ 3. Note that between any
two vertices of U there are paths of order 2 and 3. Hence Zi ∩ Zj = ∅ and
xy /∈ E(G) for each x ∈ Zi, y ∈ Zj and 1 ≤ i < j ≤ 3. Now, α(〈Zi〉G) ≤
2 for some 1 ≤ i ≤ 3 (Otherwise, if α(〈Zi〉G) ≥ 3 for each 1 ≤ i ≤ 3,
α(〈Z1 ∪ Z2 ∪ Z3〉G) ≥ 3+3+3 = 9. Thus α(G) ≥ 9, a contradiction). Without
loss of generality we may assume that α(〈Z1〉G) ≤ 2. By an argument similar
to the above and since |Z1| ≥ 5, 〈Z1 ∪ {z1}〉G contains either K1 + P4 or K4.
Hence, G contains K1 + P3 or K4. �

Lemma 2.7. Let G be a graph of order 38 that contains neither C6 nor an
8-element independent set. Then G contains K3.
Proof. Suppose that G does not contain K3. Then |N(u)| ≤ 7 for any u ∈
V (G) (because otherwise, if u is a vertex with |N(u)| ≥ 8, then the induced
subgraph < N(u) >G does not contain P2. Hence, the induced subgraph
< N(u) >G is a null graph, and so , α(G) ≥ 8. This is a contradiction).
Now, for any two independent vertices u1 and u2, |N [u1] ∪ N [u2]| ≥ 13 (To
see that, suppose that |N [u1] ∪ N [u2]| ≤ 12. Then |V (G)| − |N [u1] ∪ N [u2]| ≥
38 − 12 = 26. But, r(C6,K6) = 26, hence G − {N [u1] ∪ N [u2]} contains an
independent set of 6 vertices. Thus, this independent set with u1 and u2 is an
independent set of 8 vertices, a contradiction).
Now, by Lemma 2.1, δ(G) ≥ 7. Thus |N(u1)| = 7 and N(u1) is independent.
Similarly, |N(u2)| = 7 and N(u2) is independent. Hence |N(u1) ∩ N(u2)| =
|N [u1]∩N [u2]| = |N [u1]|+|N [u2]|−|N [u1]∪N [u2]| ≤ 3. Let N

′

(u1) = N(u1)−
(N(u2) ∩ N(u1)) and N

′

(u2) = N(u2) − (N(u1) ∩ N(u2)). Then |N
′

(u1)| =
|N

′

(u2)| ≥ 4. Since α(G) ≤ 7, we have |N(X) ∩ N
′

(u2)| ≥ |X| for each
X ⊆ N

′

(u1). Therefore by the Matching Theorem of Hall, there is a perfect

matching between N
′

(u1) and N
′

(u2), which implies that
〈

N
′

[u1] ∪ N
′

[u2]
〉

G

contains C6 where N
′

[u1] = N
′

(u1) ∪ {u1} and N
′

[u2] = N
′

(u2) ∪ {u2}. This
is a contradiction. �
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Theorem 2.8. The cycle-complete Ramsey number r(C6,K8) ≤ 38.
Proof : We prove it by contradiction. Suppose that G is a graph of order 38
which contains neither C6 nor an 8-element independent set. Then by Lemma
2.7, G contains K3. Also, by Lemma 2.1, δ(G) ≥ 7. Thus, by Lemmas 2.6, 2.5,
2.4, 2.3, and 2.2, |V (G)| ≥ 40. This is a contradiction. Thus, r(C6,K8) ≤ 38.
�
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