An upper bound of the basis number of the semi-strong product of bipartite graphs

M.M.M. Jaradat

(Received April 5, 2005)

Abstract

A basis of the cycle space, $\mathcal{C}(G)$, of a graph G is called a d-fold if each edge of G occurs in at most d cycles of the basis. The basis number, $b(G)$, of a graph G is defined to be the least integer d such that G has a d-fold basis for its cycle space. MacLane proved that a graph G is planar if and only if $b(G) \leq 2$. Schmeichel showed that for $n \geq 5, b\left(K_{n} \bullet P_{2}\right) \leq 1+b\left(K_{n}\right)$. Ali proved that for $n, m \geq 5, b\left(K_{n} \bullet K_{m}\right) \leq 3+b\left(K_{m}\right)+b\left(K_{n}\right)$. Jaradat proved that for any two bipartite graphs G and $H, b(G \wedge H) \leq 5+b(G)+b(H)$. In this paper we give an upper bound of the basis number of the semi-strong product of bipartite graphs. Also, we give an example where the bound is achieved.

AMS 2000 Mathematics Subject Classification. 05C38, 05C75.
Key words and phrases. Cycle space, basis number, fold, bipartite graphs.

§1. Introduction.

Bases of a cycle spaces of graphs have a variety of applications in science and engineering. For example, applications occur in structural flexibility analysis (see [13]), electrical networks (see [6]), and in chemical structures (see [7]). The basis number of a graph is one of the numbers which give rise to a better understanding and interpretations of geometric properties of a graph (see [14]).

In general, required bases are not well behaved under graph operations, that is, the basis numbers, $b(G)$, of graphs are not monotonic (see [15]). A global upper bound $b(G) \leq 2 \gamma(G)+2$ where $\gamma(G)$ is the genus of G is proven in [15].

In this paper, we construct a basis of the cycle spaces of the semi-strong product of bipartite graphs and we give an upper bound of the basis number of the same. Moreover, we give the basis number of the semi-strong product of a class of graphs.

§2. Definitions and preliminaries.

Throughout this paper, we assume that graphs are finite, undirected, simple and connected. We adopt the standard notation $\Delta(G)$ for the maximum degree of the vertices of G. Our terminologies and notations will be as in [4]. Given a graph G, let $e_{1}, e_{2}, \ldots, e_{|E(G)|}$ be an ordering of its edges. Then a subset S of $E(G)$ corresponds to a $(0,1)$-vector $\left(b_{1}, b_{2}, \ldots, b_{|E(G)|}\right)$ in the usual way with $b_{i}=1$ if $e_{i} \in S$, and $b_{i}=0$ if $e_{i} \notin S$. These vectors form an $|E(G)|$-dimensional vector space, denoted by $\left(Z_{2}\right)^{|E(G)|}$, over the field of integers modulo 2. The vectors in $\left(Z_{2}\right)^{|E(G)|}$ which correspond to the cycles in G generate a subspace called the cycle space of G and denoted by $\mathcal{C}(G)$. We shall say that the cycles themselves, rather than the vectors corresponding to them, generate $\mathcal{C}(G)$. It is known that if r is the number of components of G, then $\operatorname{dim} \mathcal{C}(G)=$ $|E(G)|-|V(G)|+r$ (see [5]).

A basis of $\mathcal{C}(G)$ is called d-fold if each edge of G occurs in at most d of the cycles in the basis. The basis number of $G, b(G)$, is the smallest non-negative integer d such that $\mathcal{C}(G)$ has a d-fold basis. The required basis of $\mathcal{C}(G)$ is a basis that is $b(G)$-fold. Let G and H be two graphs, $\varphi: G \longrightarrow H$ be an isomorphism and \mathcal{B} be a (required) basis of $\mathcal{C}(G)$. Then $\{\varphi(c) \mid c \in \mathcal{B}\}$ is called the corresponding (required) basis of \mathcal{B} in H. The complement of a spanning subgraph H of a graph G is the graph obtained from G by deleting the edges of H. The first use of the basis number of a graph was the theorem of MacLane when he proved that a graph G is planar if and only if $b(G) \leq 2$. Schmeichel proved that there are graphs with arbitrary large basis numbers. Moreover, Schmeichel proved that $b\left(K_{n}\right) \leq 3$.

Let G_{1} and G_{2} be two graphs. (1) The direct product $G=G_{1} \wedge G_{2}$ is the graph with the vertex set $V(G)=V\left(G_{1}\right) \times V\left(G_{2}\right)$ and the edge set $E(G)=$ $\left\{\left(u_{1}, u_{2}\right)\left(v_{1}, v_{2}\right) \mid u_{1} v_{1} \in E\left(G_{1}\right)\right.$ and $\left.u_{2} v_{2} \in E\left(G_{2}\right)\right\}$. (2) The semi-strong product $G=G_{1} \bullet G_{2}$ is the graph with the vertex set $V(G)=V\left(G_{1}\right) \times V\left(G_{2}\right)$ and the edge set $E(G)=\left\{\left(u_{1}, u_{2}\right)\left(v_{1}, v_{2}\right) \mid u_{1} v_{1} \in E\left(G_{1}\right)\right.$ and $u_{2} v_{2} \in E\left(G_{2}\right)$ or $u_{1}=v_{1}$ and $\left.u_{2} v_{2} \in E\left(G_{2}\right)\right\}$. (3) The cartesian product $G=G_{1} \times G_{2}$ is the graph with the vertex set $V(G)=V\left(G_{1}\right) \times V\left(G_{2}\right)$ and the edge set $E(G)=$ $\left\{\left(u_{1}, u_{2}\right)\left(v_{1}, v_{2}\right) \mid u_{1} v_{1} \in E\left(G_{1}\right)\right.$ and $u_{2}=v_{2}$ or $u_{2} v_{2} \in E\left(G_{2}\right)$ and $\left.u_{1}=v_{1}\right\}$. It is clear that the semi-strong product is non-commutative.

Studying the upper bound of the basis number of product graphs was the main interest of many authors. Schmeichel [15] proved the following results.

Theorem 2.1 (Schmeichel). For each $n \geq 5, b\left(K_{n} \bullet P_{2}\right) \leq 1+b\left(K_{n}\right)$.
Ali [1] studied the basis number of the semi-strong product of complete graphs and he gave the following result:

Theorem 2.2 (Ali). For each $n, m \geq 5, b\left(K_{n} \bullet K_{m}\right) \leq 3+b\left(K_{m}\right)+b\left(K_{n}\right)$.

The direct product was studied by Jaradat [9] who proved the following results.

Theorem 2.3 (Jaradat). For each bipartite graphs G and $H, b(G \wedge H) \leq$ $5+b(G)+b(H)$.

For more papers on the basis number of graph product, we refer readers to [1], [2], [3], [10] and [11]. Based on the above results, one is naturally led to the following questions: Does there exist an upper bound of the basis number of the semi-strong product of two trees independent of their order? Does there exist an upper bound of the basis number of the semi-strong product of two bipartite graphs with respect to the basis number of the factors? These questions will be solved in the affirmative. Moreover, we will give an example to show the upper bounds is achieved. The method employed in this paper is based in part on ideas of Ali [1], Jaradat [9] and Schmeichel [15].

The author organized this paper as follows: In section 3, the author gives an upper bound of the basis number of the semi-strong product of two trees independent of their orders. In section 4, the author gives an upper bound of the basis number of the semi-strong product of bipartite graphs and gives an example where the bound is achieved.

Throughout this paper $f_{B}(e)$ stands for the number of cycles in B containing $e, E(B)=\cup_{b \in B} E(b)$ where $B \subseteq \mathcal{C}(G)$ and \mathcal{B}_{G} stands for a required basis of G.

§3. The semi-strong product of two trees.

In this section, we give an upper bound of the basis number of the semi-strong product of two trees. Let e and e^{\prime} be two edges such that $e=u v$, we define $\mathcal{A}_{e e^{\prime}}$ to be the cycle consists of the edge set $E\left(e \wedge e^{\prime}\right) \cup\left\{e_{u}^{\prime}, e_{v}^{\prime}\right\}$ where $e_{u}^{\prime}=u \times e^{\prime}$ and $e_{v}^{\prime}=v \times e^{\prime}$. Also, for any graph H we define

$$
\mathcal{A}_{e}^{H}=\bigcup_{e^{\prime} \in E(H)} \mathcal{A}_{e e^{\prime}} .
$$

Lemma 3.1. Let T be a tree and $e=u v$ be an edge. Then \mathcal{A}_{e}^{T} is a linearly independent subset of the cycle space $\mathcal{C}(e \bullet T)$. Moreover, any linear combination of cycles of \mathcal{A}_{e}^{T} must contain at least two edges of two different copies of T, i.e. at least one edge of the copy $u \times T$ and at least one edge of the copy $v \times T$.

Proof. The first part, \mathcal{A}_{e}^{T} is linearly independent, follows from being that $E\left(\mathcal{A}_{e e^{\prime}}\right) \cap E\left(\mathcal{A}_{e e^{\prime \prime}}\right)=\phi$ for each $e^{\prime} \neq e^{\prime \prime}$. The second part follows from the fact that, any non-trivial linear combination of cycles of \mathcal{A}_{e}^{T} must contains at
least one element of \mathcal{A}_{e}^{T}, say $\mathcal{A}_{e e^{\prime}}$, and noting that, $e_{u}^{\prime} \in E\left(\mathcal{A}_{e e^{\prime}}\right) \cap E(u \times T)$, $e_{v}^{\prime} \in E\left(\mathcal{A}_{e e^{\prime}}\right) \cap E(v \times T)$ and $e_{u}^{\prime}, e_{v}^{\prime}$ belong to no other element of \mathcal{A}_{e}^{T}. The proof is complete.

Let G and H be two trees. We define

$$
\mathcal{A}_{G}^{H}=\bigcup_{e \in E(G)} \mathcal{A}_{e}^{H}
$$

where \mathcal{A}_{e}^{H} is the linearly independent subset of $\mathcal{C}\left(e \bullet T_{2}\right)$ as defined above.
Lemma 3.2. For any two trees T_{1} and T_{2}, we have that $\mathcal{A}_{T_{1}}^{T_{2}}$ is a linearly independent subset of $\mathcal{C}\left(T_{1} \bullet T_{2}\right)$.

Proof. Let m be the size of T_{1}. We prove the lemma using induction on m. If $m=1$, then T_{1} is an edge, say e. Thus, $\mathcal{A}_{T_{1}}^{T_{2}}=\mathcal{A}_{e}^{T_{2}}$. Therefore, by Lemma 3.1, $\mathcal{A}_{T_{1}}^{T_{2}}$ is linearly independent. Assume that m is greater than or equal to 2 and it is true for less than m. Now, let v be an end vertex of T_{1} and $e^{*}=u v \in E\left(T_{1}\right)$. Let $T_{1}^{\prime}=T_{1}-v$. Then T_{1}^{\prime} is a tree of size $m-1$. Thus, by induction step and Lemma 3.1, both of $\mathcal{A}_{T_{1}^{\prime}}^{T_{2}}=\bigcup_{e \in E\left(T_{1}^{\prime}\right)} \mathcal{A}_{e}^{T_{2}}$ and $\mathcal{A}_{e^{*}}^{T_{2}}$ are linearly independent. Note that, $e^{*} \bullet T_{2}=\left(v \times T_{2}\right) \cup\left(u \times T_{2}\right) \cup\left(e^{*} \wedge T_{2}\right)$ and $\left(u \times T_{2}\right)$ is a tree. Thus any linear combination of cycles of $\mathcal{A}_{e^{*}}^{T_{2}}$ must contain at least one edge of $E\left(v \times T_{2}\right) \cup E\left(e^{*} \wedge T_{2}\right)$. On the other hand any linear combination of $\mathcal{A}_{T_{1}^{\prime}}^{T_{2}}$ contains no edge of $E\left(v \times T_{2}\right) \cup E\left(e^{*} \wedge T_{2}\right)$ because $E\left(v \times T_{2}\right) \cup E\left(e^{*} \wedge T_{2}\right) \subseteq E\left(e^{*} \bullet T_{2}\right)$ and

$$
\left(\bigcup_{e \in E\left(T_{1}^{\prime}\right)} E\left(e \bullet T_{2}\right)\right) \cap E\left(e^{*} \bullet T_{2}\right)=E\left(u \times T_{2}\right)
$$

Therefore, $\mathcal{A}_{T_{1}}^{T_{2}}=\left(\bigcup_{e \in E\left(T_{1}^{\prime}\right)} \mathcal{A}_{e}^{T_{2}}\right) \cup \mathcal{A}_{e^{*}}^{T_{2}}$ is linearly independent. The proof is complete.

We remark that knowing the number of components in a graph is very important in finding the dimension (basis) of the cycle space of a graph. So we give the following result which is easy to prove.

Lemma 3.3. If G and H are two connected graphs, then $G \bullet H$ is connected.
The following proposition of Jaradat (see [9]) will be used frequently in our work.

Proposition 3.4. For each tree T of order ≥ 3, there is a set of paths $S(T)=$ $\left\{P_{3}^{(1)}, P_{3}^{(2)}, \ldots, P_{3}^{(m)}\right\}$, which called a path sequence, such that
(i) each $P_{3}^{(i)}$ is a path of length 2,
(ii) $\bigcup_{i=1}^{m} E\left(P_{3}^{(i)}\right)=E(T)$,
(iii) every edge uv $\in E(T)$ appears in at most three paths of $S(T)$,
(iv) each $P_{3}^{(j)}$ contains exactly one edge which is not in $\bigcup_{i=1}^{j-1} P_{3}^{(i)}$,
(v) if uv appears in three paths of $S(T)$, then the paths have forms of either uva, uvb and cuv or auv, buv or uvc,
(vi) every edge with an end vertex occurs in at most two paths of $S(T)$.
(vii) $m=|V(T)|-2=|E(T)|-1$.

Proposition 3.5. Let T be a tree and $S(T)$ be a path sequence satisfying the conditions (i) to (vii) of Proposition 3.4. Then, $P_{3}^{(|V(T)|-2)}$ contains an edge which appears in no other paths of $S(T)$ and incidents with an end vertex of T.

Proof. By (iv) of Proposition 3.4, $P_{3}^{(|V(T)|-2)}$ contains an edge which appears in no other paths of $S(T)$, say $a b$, and the other edge appears in at least one more path of $S(T)$. Assume that each end vertex of $P_{3}^{(|V(T)|-2)}$ is not an end vertex of T. Then $T-a b$ is a graph consisting of two components. Moreover, by (ii), each components contains at least one path of $S(T)$. Thus, condition (iv) does not satisfy on $S(T)-\left\{P_{3}^{(|V(T)|-2)}\right\}$. On the other hand, since $a b$ appears only in $P_{3}^{(|V(T)|-2)}$, the condition (iv) is still satisfying on $S(T)-\left\{P_{3}^{(|V(T)|-2)}\right\}$. This is a contradiction. The proof is complete.

Let $e=u v$ be an edge and T be a tree with $S(T)=\left\{P_{3}^{(1)}=a_{1} b_{1} c_{1}, P_{3}^{(2)}=\right.$ $\left.a_{2} b_{2} c_{2}, \ldots, P_{3}^{(|V(T)|-2)}=a_{|V(T)|-2} b_{|V(T)|-2} c_{|V(T)|-2}\right\}$ as in Proposition 3.4. For each $j=1,2, \ldots,|V(T)|-2$, we define

$$
\begin{aligned}
\mathcal{B}_{(u v) P_{3}^{(j)}} & =\left\{\left(u, a_{j}\right)\left(u, b_{j}\right)\left(u, c_{j}\right)\left(v, b_{j}\right)\left(u, a_{j}\right)\right\} \text { and } \\
\mathcal{B}_{(u v) T} & =\cup_{j=1}^{|V(T)|-2} \mathcal{B}_{(u v) P_{3}^{(j)}}
\end{aligned}
$$

Lemma 3.6. $\mathcal{B}_{(u v) T}$ is linearly independent subset of $\mathcal{C}(e \bullet T)$.
Proof. We use induction on $|S(T)|$ to show that $\mathcal{B}_{(u v) T}$ is linearly independent. If $|S(T)|=1$, then $\mathcal{B}_{(u v) T}$ consists only of one cycle and so it is linearly independent. By induction step on $|S(T)|$ and noting that $\mathcal{B}_{(u v) P_{3}^{(|V(T)|-2)}}$ consists only of one cycle, we have that both of $\cup_{i=1}^{|V(T)|-3} \mathcal{B}_{(u v) P_{3}^{(i)}}$ and $\mathcal{B}_{(u v) P_{3}^{(|V(T)|-2)}}$ are linearly independent. By Proposition 3.5, $P_{3}^{(|V(T)|-2)}$ contains an edge,
say $b_{|V(T)|-2} c_{|V(T)|-2}$, which does not appear in any other path of $S(T)$. Thus, $\left(u, b_{|V(T)|-2}\right)\left(u, c_{|V(T)|-2}\right)$ occurs only in $\mathcal{B}_{(u v) P_{3}^{(|V(T)|-2)}}$. Therefore, $\mathcal{B}_{(u v) P_{3}^{(|V(T)|-2)}}$ can not be written as a linear combination of cycles of $\cup_{i=1}^{|V(T)|-3} \mathcal{B}_{(u v) P_{3}^{(i)}}$. And so, $\mathcal{B}_{(u v) T}$ is linearly independent. The proof is complete.

The following proposition (See [8], and [9]) will be used frequently in the sequel.

Proposition 3.7. Let G be a bipartite graph and P_{2} be a path of order 2. Then $G \wedge P_{2}$ consists of two components G_{1} and G_{2} each of which is isomorphic to G.

The graph $T_{1} \bullet T_{2}$ contains the graph $T_{1} \wedge T_{2}$ as a subgraph. Moreover, $V\left(T_{1} \bullet T_{2}\right)=V\left(T_{1} \wedge T_{2}\right)$ and $E\left(T_{1} \bullet T_{2}\right)=E\left(T_{1} \wedge T_{2}\right) \cup M$ where $M=$ $\cup_{u \in V\left(T_{1}\right)} E\left(u \times T_{2}\right)$.

Theorem 3.8. For each two trees T_{1} and T_{2}, we have

$$
b\left(T_{1} \bullet T_{2}\right) \leq \max \left\{\left\{\begin{array}{ll}
3, & \text { if both of } T_{1} \text { and } T_{2} \text { are paths, } \\
4, & \text { if } T_{2} \text { is a path, } \\
5, & \text { if } T_{1} \text { is a path, } \\
6, & \text { if both of } T_{1} \text { and } T_{2} \text { are not paths. }
\end{array}\right\}, \Delta\left(T_{1}\right)\right\}
$$

Proof. Let $S\left(T_{1}\right)=\left\{Q_{3}^{(1)}=u_{1} v_{1} w_{1}, Q_{3}^{(2)}=u_{2} v_{2} w_{2}, \ldots, Q_{3}^{\left(\left|V\left(T_{1}\right)\right|-2\right)}=\right.$ $\left.u_{\left|V\left(T_{1}\right)\right|-2} v_{\left|V\left(T_{1}\right)\right|-2} w_{\left|V\left(T_{1}\right)\right|-2}\right\}$ and $S\left(T_{2}\right)=\left\{P_{3}^{(1)}=a_{1} b_{1} c_{1}, P_{3}^{(2)}=a_{2} b_{2} c_{2}, \ldots\right.$, $\left.P_{3}^{\left(\left|V\left(T_{2}\right)\right|-2\right)}=a_{\left|V\left(T_{2}\right)\right|-2} b_{\left|V\left(T_{2}\right)\right|-2} c_{\left|V\left(T_{2}\right)\right|-2}\right\}$ be path sequences of T_{1} and T_{2} as in Proposition 3.4, respectively. Let $\mathcal{B}\left(T_{1} \wedge T_{2}\right)=\bigcup_{j=1}^{\left(\left|V\left(T_{2}\right)\right|-2\right)} \bigcup_{i=1}^{\left(\left|V\left(T_{1}\right)\right|-2\right)} \mathcal{B}_{i, j}$ where $\mathcal{B}_{i, j}=\left\{\left(u_{i}, b_{j}\right)\left(v_{i}, a_{j}\right)\left(w_{i}, b_{j}\right)\left(v_{i}, c_{j}\right)\left(u_{i}, b_{j}\right)\right\}$. Then, by Lemma 2.1 of Jaradat [8], $\mathcal{B}\left(T_{1} \wedge T_{2}\right)$ is a basis for $\mathcal{C}\left(T_{1} \wedge T_{2}\right)$, hence it is linearly independent subset of $\mathcal{C}\left(T_{1} \bullet T_{2}\right)$. By Proposition 3.5, we may assume that $w_{\left|V\left(T_{1}\right)\right|-2} v_{\left|V\left(T_{1}\right)\right|-2}$ is an edge of T_{1} which appears only on $Q_{3}^{\left(\left|V\left(T_{1}\right)\right|-2\right)}$ and $w_{\left|V\left(T_{1}\right)\right|-2}$ is an end vertex of T_{1}. Define $\mathcal{B}\left(T_{1} \bullet T_{2}\right)=\mathcal{B}\left(T_{1} \wedge T_{2}\right) \bigcup \mathcal{A}_{T_{1}}^{T_{2}}$ $\cup \mathcal{B}_{\left(w_{\left|V\left(T_{1}\right)\right|-2} v_{\left|V\left(T_{1}\right)\right|-2}\right) T_{2}}$ where $\mathcal{A}_{T_{1}}^{T_{2}}$ and $\mathcal{B}_{\left(w_{\left|V\left(T_{1}\right)\right|-2} v_{\left.\left|V\left(T_{1}\right)\right|-2\right)} T_{2}\right.}$ are defined as in Lemma 3.2 and 3.6. Since $E\left(\mathcal{B}_{\left(w_{\left|V\left(T_{1}\right)\right|-2} v_{\left|V\left(T_{1}\right)\right|-2}\right) T_{2}}\right) \subseteq E\left(w_{\left|V\left(T_{1}\right)\right|-2} \times T_{2}\right) \cup$ $E\left(w_{\left|V\left(T_{1}\right)\right|-2} v_{\left|V\left(T_{1}\right)\right|-2} \wedge T_{2}\right)$ and since $E\left(w_{\left|V\left(T_{1}\right)\right|-2} v_{\left|V\left(T_{1}\right)\right|-2} \wedge T_{2}\right)$ is an edge set of a forest (Proposition 3.7), as a result any linear combination of cycles of $\mathcal{B}_{\left(w_{\left|V\left(T_{1}\right)\right|-2} v_{\left.\left|V\left(T_{1}\right)\right|-2\right) T_{2}}\right.}$ must contain at least one edge of $w_{\left|V\left(T_{1}\right)\right|-2} \times T_{2}$ which is not in any cycle of $\mathcal{B}\left(T_{1} \wedge T_{2}\right)$. Thus $\mathcal{B}\left(T_{1} \wedge T_{2}\right) \bigcup \mathcal{B}_{\left(w_{\left|V\left(T_{1}\right)\right|-2} v_{\left|V\left(T_{1}\right)\right|-2}\right) T_{2}}$ is linearly independent. We now show that the cycles of $\mathcal{A}_{T_{1}}^{T_{2}}$ are linearly
independent of the cycles of $\mathcal{B}\left(T_{1} \wedge T_{2}\right) \cup \mathcal{B}_{\left(w_{\left|V\left(T_{1}\right)\right|-2} v_{\left.\left|V\left(T_{1}\right)\right|-2\right)} T_{2}\right.}$. Let

$$
\mathcal{F}=\sum_{e \in A \subseteq E\left(T_{1}\right)} \mathcal{F}_{e}(\bmod 2)
$$

where \mathcal{F}_{e} is a linear combinations of cycles of $\mathcal{A}_{e}^{T_{2}}$. Since each \mathcal{F}_{e} contain at least two edges of two different copies of T_{2} (Lemma 3.1) and since $E\left(\mathcal{A}_{e}^{T_{2}}\right) \cap$ $E\left(\mathcal{A}_{e^{\prime}}^{T_{2}}\right)$ is a subset of a one copy of T_{2}, as a result \mathcal{F} must contain at least two edges of two different copies of T_{2}. On the other hand any linear combination of $\mathcal{B}\left(T_{1} \wedge T_{2}\right) \cup \mathcal{B}_{\left(w_{\left|V\left(T_{1}\right)\right|-2} v_{\left.\left|V\left(T_{1}\right)\right|-2\right)} T_{2}\right.}$ may contain edges of at most one copy of T_{2}, in fact of $w_{\left|E\left(T_{1}\right)\right|-1} \times T_{2}$. Thus, any linear combination of $\mathcal{A}_{T_{1}}^{T_{2}}$ can not be written as a linear combination of cycles of $\mathcal{B}\left(T_{1} \wedge T_{2}\right) \cup \mathcal{B}_{\left(w_{\left|V\left(T_{1}\right)\right|-2} v_{\left|V\left(T_{1}\right)\right|-2}\right) T_{2}}$. Therefore, $\mathcal{B}\left(T_{1} \bullet T_{2}\right)$ is linearly independent. Since

$$
\begin{aligned}
& \left|\mathcal{B}\left(T_{1} \bullet T_{2}\right)\right| \\
= & \left|\mathcal{B}\left(T_{1} \wedge T_{2}\right)\right|+\left|\mathcal{A}_{T_{1}}^{T_{2}}\right|+\mid \mathcal{B}_{\left(w_{\left.\left|V\left(T_{1}\right)\right|-2 v^{2}\left|V\left(T_{1}\right)\right|-2\right)} T_{2} \mid\right.}^{\left|V\left(T_{2}\right)\right|-2} \\
= & \operatorname{dim} \mathcal{C}\left(T_{1} \wedge T_{2}\right)+\sum_{e \in E\left(T_{1}\right)} \sum_{e^{\prime} \in E\left(T_{2}\right)}\left|\mathcal{A}_{e e^{\prime}}\right|+\sum_{i=1} \mid \mathcal{B}_{\left(w_{\left|V\left(T_{1}\right)\right|-2} v_{\left.\left|V\left(T_{1}\right)\right|-2\right)}\right) P_{3}^{(i)} \mid} \\
= & 2\left|E\left(T_{1}\right)\right|\left|E\left(T_{2}\right)\right|-\left|V\left(T_{1}\right)\right|\left|V\left(T_{2}\right)\right|+2+\left|E\left(T_{2}\right)\right|\left(\left|V\left(T_{1}\right)\right|-1\right)+\left|V\left(T_{2}\right)\right|-2 \\
= & 2\left|E\left(T_{1}\right)\right|\left|E\left(T_{2}\right)\right|+\left|E\left(T_{2}\right)\right|\left|V\left(T_{1}\right)\right|-\left|V\left(T_{1}\right)\right|\left|V\left(T_{2}\right)\right|+1 \\
= & \operatorname{dim} \mathcal{C}\left(T_{1} \bullet T_{2}\right),
\end{aligned}
$$

$\mathcal{B}\left(T_{1} \bullet T_{2}\right)$ is a basis for $\mathcal{C}\left(T_{1} \bullet T_{2}\right)$. To complete the proof, we show that $\mathcal{B}\left(T_{1} \bullet T_{2}\right)$ satisfies the fold which is stated in the theorem. Let $e \in E\left(T_{1} \bullet T_{2}\right)$.
(1) If $e \in E\left(T_{1} \wedge T_{2}\right)-E\left(w_{\left|E\left(T_{2}\right)\right|-1} v_{\left|E\left(T_{2}\right)\right|-1} \wedge T_{2}\right)$, then

$$
\begin{aligned}
& f_{\mathcal{B}\left(T_{1} \wedge T_{2}\right)}(e) \leq \begin{cases}2, & \text { if both of } T_{1} \text { and } T_{2} \text { are paths, } \\
3, & \text { if one of } T_{1} \text { and } T_{2} \text { is a path, } \\
5, & \text { if both of } T_{1} \text { and } T_{2} \text { are not paths, }\end{cases} \\
& f_{\mathcal{A}_{T_{1}}}(e)=1
\end{aligned}
$$

and

$$
f_{\mathcal{B}_{\left(w_{\left.\left|V\left(T_{1}\right)\right|-2^{v}\left|V\left(T_{1}\right)\right|-2\right) T_{2}}\right.}(e)=0 . . . ~}
$$

(2) If $e \in E\left(w_{\left|E\left(T_{2}\right)\right|-1} v_{\left|E\left(T_{2}\right)\right|-1} \wedge T_{2}\right)$, then

$$
\begin{aligned}
& f_{\mathcal{B}\left(T_{1} \wedge T_{2}\right)}(e) \leq \begin{cases}1, & \text { if } T_{2} \text { is a path, } \\
2, & \text { if } T_{2} \text { is not a path, }\end{cases} \\
& f_{\mathcal{A}_{T_{1}}}(e)=1
\end{aligned}
$$

and
(3) If $e \in E\left(u \times T_{2}\right)$ for any $u \in V\left(T_{1}\right)$ and $u \neq w_{\left|E\left(T_{2}\right)\right|-1}$, then

$$
\begin{aligned}
& f_{\mathcal{B}\left(T_{1} \wedge T_{2}\right)}(e)=0, \\
& f_{\mathcal{A}_{T_{1}}^{T_{2}}}(e) \leq \Delta\left(T_{1}\right)
\end{aligned}
$$

and

$$
f_{\mathcal{B}_{\left(w_{\left.\left|V\left(T_{1}\right)\right|-2^{v}\left|V\left(T_{1}\right)\right|-2\right) T_{2}}\right.}(e)=0 . . . ~}
$$

(4) If $e \in E\left(w_{\left|E\left(T_{2}\right)\right|-1} \times T_{2}\right)$, then

$$
\begin{aligned}
& f_{\mathcal{B}\left(T_{1} \wedge T_{2}\right)}(e)=0, \\
& f_{\mathcal{A}_{T_{1}}^{T_{2}}}(e)=1
\end{aligned}
$$

and

The proof is complete.

§4. The semi-strong product of two bipartite graphs.

In this section, we give an upper bound of the semi-strong product of two bipartite graphs with respect to the basis number of the factors. Let G be a graph. Then T_{G} stand for a spanning tree of G such that $\Delta\left(T_{G}\right)=\min \{\Delta(T) \mid T$ is a spanning tree of $G\}$ (See [2]).

Lemma 4.1. If G is a bipartite graph and T is a tree, then

$$
\left.\begin{array}{rl}
& b(G \bullet T) \\
\leq & \max \left\{b(G)+\left\{\begin{array}{ll}
3, & \text { if both of } T_{G} \text { and } T \text { are paths, } \\
4, & \text { if } T \text { is a path, } \\
5, & \text { if } T_{G} \text { is a path, } \\
6, & \text { if both of } T_{G} \text { and } T \text { are not paths. }
\end{array}\right\}, \Delta\left(T_{G}\right)\right.
\end{array}\right\} .
$$

Proof. Let $\mathcal{B}\left(T_{G} \bullet T\right)$ be the basis of $\mathcal{C}\left(T_{G} \bullet T\right)$ as in Theorem 3.8. By Proposition 3.7, for each $e \in E(T), G \wedge e$ consists of two components each of which is isomorphic to G. Thus, we set $\mathcal{B}_{e}=\mathcal{B}_{e}^{(1)} \cup \mathcal{B}_{e}^{(2)}$ where $\mathcal{B}_{e}^{(1)}$ and $\mathcal{B}_{e}^{(2)}$ are the corresponding required basis of \mathcal{B}_{G} in the two components of G in $G \wedge e$. Let $\mathcal{T}=\bigcup_{e \in E(T)} \mathcal{B}_{e}$ and $\mathcal{B}(G \bullet T)=\mathcal{T} \bigcup \mathcal{B}\left(T_{G} \bullet T\right)$. Since $E\left(\mathcal{B}_{e}^{(1)}\right) \cap E\left(\mathcal{B}_{e}^{(2)}\right)=\phi$ for each $e \in E(T)$ and $E\left(\mathcal{B}_{e}\right) \cap E\left(\mathcal{B}_{e^{\prime}}\right)=\phi$ for each $e \neq e^{\prime}$, we get that \mathcal{T} is linearly independent. We now show that \mathcal{T} is linearly independent of $\mathcal{B}\left(T_{G} \bullet T\right)$. Let $O=\sum_{e \in A \subseteq E(T)} \sum_{i=1}^{\alpha_{e}} c_{e}^{(i)}(\bmod 2)$ where $c_{e}^{(i)} \in \mathcal{B}_{e}$. By Proposition 3.7, $T_{G} \wedge e$ is a forest. Thus, the ring sum $c_{e}^{(1)} \oplus c_{e}^{(2)} \oplus \cdots \oplus c_{e}^{\left(\alpha_{e}\right)}$ contains at least one edge of $E\left(\left(G-T_{G}\right) \wedge e\right)$ where $G-T_{G}$ is the complement of T_{G} of G. Since $E(G \wedge e) \cap E\left(G \wedge e^{\prime}\right)=\phi$ for each $e \neq e^{\prime}$, the ring sum $O=\oplus_{e \in A \subseteq E(T)} \oplus_{i}^{\alpha_{i}} c_{e}^{(i)}$ contains at least one edge of $E\left(\left(G-T_{G}\right) \wedge T\right)$. On the other hand, no cycle of $\mathcal{B}\left(T_{G} \bullet T\right)$ contains such kind of edges. Thus, $\mathcal{B}(G \bullet T)$ is linearly independent. Since,

$$
\begin{aligned}
& |\mathcal{B}(G \bullet T)| \\
= & \left|\mathcal{B}\left(T_{G} \bullet T\right)\right|+|\mathcal{T}| \\
= & 2\left|E\left(T_{G}\right)\right||E(T)|+|E(T)|\left|V\left(T_{G}\right)\right|-\left|V\left(T_{G}\right)\right||V(T)|+1+\sum_{e \in E(T)}\left|\mathcal{B}_{e}\right| \\
= & 2\left|E\left(T_{G}\right)\right||E(T)|+|E(T)|\left|V\left(T_{G}\right)\right|-\left|V\left(T_{G}\right)\right||V(T)|+1+2 \operatorname{dim} \mathcal{C}(G)|E(T)| \\
= & 2|E(T)|\left(\left|E\left(T_{G}\right)\right|+\operatorname{dim} \mathcal{C}(G)\right)+|E(T)||V(G)|-|V(G)||V(T)|+1 \\
= & \operatorname{dim} \mathcal{C}(G \bullet T),
\end{aligned}
$$

$\mathcal{B}(G \bullet T)$ is a basis for $\mathcal{C}(G \bullet T)$. To this end, we show that $\mathcal{B}(G \bullet T)$ satisfies the required fold. Let $e \in E(G \bullet T)$.
(1) if $e \in G \wedge T$, then

$$
\begin{aligned}
& f_{\mathcal{B}\left(T_{G} \bullet T\right)}(e) \leq \begin{cases}3, & \text { if both of } T_{G} \text { and } T \text { are paths, } \\
4, & \text { if } T \text { is a path, } \\
5, & \text { if } T_{G} \text { is a path, } \\
6, & \text { if both of } T_{G} \text { and } T \text { are not paths, }\end{cases} \\
& f_{\mathcal{T}}(e) \leq b(G) .
\end{aligned}
$$

(2) if $e \in u \times T$ for some $u \in V(G)$, then

$$
\begin{aligned}
& f_{\mathcal{B}\left(T_{G} \bullet T\right)}(e) \leq \max \left\{\left\{\begin{array}{ll}
3, & \text { if } T \text { is a path, } \\
4, & \text { if } T \text { is not a path. }
\end{array}\right\}, \Delta\left(T_{G}\right)\right\}, \\
& f_{\mathcal{T}}(e)=0 .
\end{aligned}
$$

The proof is complete.

Theorem 4.2. For each two bipartite graphs G and H, we have

$$
\begin{aligned}
& b(G \bullet H) \\
& \leq \max \left\{b(G)+b(H)+\left\{\begin{array}{ll}
3, & \text { if both of } T_{G} \text { and } T_{H} \text { are paths, } \\
4, & \text { if } T_{H} \text { is a path, } \\
5, & \text { if } T_{G} \text { is a path, } \\
6, & \text { if both of } T_{G} \text { and } T_{H} \text { are not paths. }
\end{array}\right\},\right. \\
& \left.\Delta\left(T_{G}\right)+b(H)\right\} .
\end{aligned}
$$

Proof. Let $\mathcal{B}\left(G \bullet T_{H}\right)$ be the basis of $\mathcal{C}\left(G \bullet T_{H}\right)$ as in Lemma 4.1. For each $e \in E(G)$, let $\mathcal{B}_{e}=\mathcal{B}_{e}^{(1)} \cup \mathcal{B}_{e}^{(2)}$ be the corresponding required basis of \mathcal{B}_{H} in the two components of H in $e \wedge H$. By using the same arguments as in Lemma 4.1 we can prove that each of $\mathcal{Z}=\bigcup_{e \in E(G)} \mathcal{B}_{e}$ and $\mathcal{B}\left(G \bullet T_{H}\right) \bigcup \mathcal{Z}$ is linearly independent. Now, for each $u \in V(G)$, let \mathcal{B}_{u} be the corresponding required basis of \mathcal{B}_{H} in $u \times H$. Set $\mathcal{V}=\bigcup_{u \in V(G)} \mathcal{B}_{u}$, and $\mathcal{B}(G \bullet H)=\mathcal{B}\left(G \bullet T_{H}\right) \bigcup \mathcal{Z} \bigcup \mathcal{V}$. Since $E\left(\mathcal{B}_{u}\right) \cap E\left(\mathcal{B}_{w}\right)=\phi$ whenever $u \neq w$, we conclude that \mathcal{V} is linearly independent. Note that each linear combination of cycles of \mathcal{V} contains at least one edge of $E\left(u \times\left(H-T_{H}\right)\right)$ for some $u \in V(G)$ where $H-T_{H}$ is the complement of T_{H} of H, on the other hand no cycle of $\mathcal{B}\left(G \bullet T_{H}\right) \cup \mathcal{Z}$ contains such an edge. Therefore, $\mathcal{B}(G \bullet H)$ is linearly independent. Since

$$
\begin{aligned}
|\mathcal{B}(G \bullet H)|= & \left|\mathcal{B}\left(G \bullet T_{H}\right)\right|+|\mathcal{Z}|+|\mathcal{V}| \\
= & 2|E(G)|\left|E\left(T_{H}\right)\right|+|V(G)|\left|E\left(T_{H}\right)\right|-|V(G)|\left|V\left(T_{H}\right)\right|+1 \\
& +\sum_{e \in E(G)}\left|\mathcal{B}_{e}\right|+\sum_{u \in V(G)}\left|\mathcal{B}_{u}\right| \\
= & 2|E(G)|\left|E\left(T_{H}\right)\right|+|V(G)|\left|E\left(T_{H}\right)\right|-|V(G)|\left|V\left(T_{H}\right)\right|+1 \\
& +2|E(G)| \operatorname{dim} \mathcal{C}(H)+|V(G)| \operatorname{dim} \mathcal{C}(H) \\
= & 2|E(G)|\left(\left|E\left(T_{H}\right)\right|+\operatorname{dim} \mathcal{C}(H)\right) \\
& +|V(G)|\left(\left|E\left(T_{H}\right)\right|+\operatorname{dim} \mathcal{C}(H)\right)-|V(G)||V(H)|+1 \\
= & \operatorname{dim} \mathcal{C}(G \bullet H),
\end{aligned}
$$

$\mathcal{B}(G \bullet H)$ is a basis for $\mathcal{C}(G \bullet H)$. To this end, it is an easy task to see that $\mathcal{B}(G \bullet H)$ satisfied the required fold which is stated in the theorem. The proof is complete.

Now, we give an example where the bounds in Theorems 3.8 and 4.2 are achieved.

Corollary 4.3. For each two paths P_{n} and P_{m}, we have $b\left(P_{n} \bullet P_{m}\right)=3$ if $n \geq 3$ and $m \geq 4$.

Proof. By Theorem 4.2 and MacLane's result, it is enough to show that $P_{n} \bullet P_{m}$ is non planar. Let $P_{n}=u_{1} u_{2} \ldots u_{n}$ and $P_{m}=v_{1} v_{2} \ldots v_{m}$. Consider the subgraph H whose vertex set $\left\{\left(u_{1}, v_{2}\right),\left(u_{2}, v_{1}\right),\left(u_{3}, v_{2}\right),\left(u_{2}, v_{2}\right),\left(u_{1}, v_{3}\right)\right.$, $\left.\left(u_{2}, v_{3}\right),\left(u_{3}, v_{3}\right),\left(u_{2}, v_{4}\right)\right\}$ and whose edge set consists of the following nine paths: $P_{1}=\left(u_{1}, v_{2}\right)\left(u_{2}, v_{1}\right), P_{2}=\left(u_{2}, v_{1}\right)\left(u_{3}, v_{2}\right), P_{3}=\left(u_{2}, v_{1}\right)\left(u_{2}, v_{2}\right), P_{4}=$ $\left(u_{2}, v_{2}\right)\left(u_{2}, v_{3}\right), P_{5}=\left(u_{2}, v_{3}\right)\left(u_{3}, v_{2}\right), P_{6}=\left(u_{1}, v_{2}\right)\left(u_{2}, v_{3}\right), P_{7}=\left(u_{2}, v_{2}\right)$ $\left(u_{3}, v_{3}\right), P_{8}=\left(u_{3}, v_{2}\right)\left(u_{3}, v_{3}\right)$ and $P_{9}=\left(u_{1}, v_{2}\right)\left(u_{1}, v_{3}\right)\left(u_{2}, v_{4}\right)\left(u_{3}, v_{3}\right)$. Then H is homeomorphic to $K_{3,3}$. Therefore $P_{n} \bullet P_{m}$ is non planar. The proof is complete.

Acknowledgment

The author would like to thank Prof. C.Y. Chao and the referee for their valuable comments.

References

[1] A.A. Ali, The basis number of complete multipartite graphs, Ars Combin. 28, 41-49 (1989).
[2] A.A. Ali and G.T. Marougi, The basis number of cartesian product of some graphs, The J. of the Indian Math. Soc. 58, 123-134 (1992).
[3] A.S. Alsardary and J. Wojciechowski, The basis number of the powers of the complete graph, Discrete Math. 188, no. 1-3, 13-25 (1998).
[4] J.A. Bondy and U.S.R. Murty, "Graph Theory with Applications", America Elsevier Publishing Co. Inc., New York, 1976.
[5] W. -K. Chen, On vector spaces associated with a graph, SIAM J. Appl. Math., 20, 525-529, (1971)
[6] L. O. Chua and L. Chen, On optimally sparse cycles and coboundary basis for a linear graph, IEEE Trans. Circuit Theory, 20, 54-76 (1973).
[7] G. M. Downs, V. J. Gillet, J. D. Holliday and M. F. Lynch, Review of ring perception algorithms for chemical graphs, J. Chem. Inf. Comput. Sci., 29, 172187 (1989).
[8] W. Imrich and S. Klavzar, Product Graphs: Structure and Recognition, Wiley, New York, 2000.
[9] M.M.M. Jaradat, On the basis number of the direct product of graphs, Australas. J. Combin. 27, 293-306 (2003).
[10] M.M.M. Jaradat, The basis number of the direct product of a theta graph and a path, Ars Combin. 75, 105-111 (2005).
[11] M.M.M. Jaradat and M.Y. Alzoubi, An upper bound of the basis number of the lexicographic product of graphs, Australas. J. Combin. 32, 305-312 (2005).
[12] M.M.M. Jaradat, On the Edge-Chromatic Numbers, the Basis Numbers, and the Hamiltonian Decomposition of the Graph Products, Ph.D. Thesis. University of Pittsburgh (2001).
[13] A. Kaveh, Structural Mechanics, Graph and Matrix Methods. Research Studies Press, Exeter, UK, 1992
[14] S. MacLane, A combinatorial condition for planar graphs, Fundamenta Math. 28, 22-32 (1937).
[15] E.F. Schmeichel, The basis number of a graph, J. Combin. Theory Ser. B 30, no. 2, 123-129 (1981).
M.M.M. Jaradat

Department of Mathematics, Yarmouk University
Irbid-Jordan
E-mail: mmjst4@yu.edu.jo

