Vertex disjoint cycles containing specified paths of order 3 in a bipartite graph

Ryota Matsubara and Hajime Matsumura

(Received October 13, 2005)

Abstract

Let k, n be integers with $k \geq 3$ and $n \geq 3 k$, and let G be a bipartite graph having partite sets V_{1}, V_{2} with $\left|V_{1}\right|=\left|V_{2}\right|=n$. We show that if $d_{G}(u)+d_{G}(v) \geq n+2 k-1$ for any $u \in V_{1}$ and $v \in V_{2}$ with $u v \notin E(G)$, then for any vertex disjoint paths $P_{1}, P_{2}, \ldots, P_{k}$ of order $3, G$ contains vertex disjoint cycles $H_{1}, H_{2}, \ldots, H_{k}$ such that $\bigcup_{1 \leq i \leq k} V\left(H_{i}\right)=V(G)$ and H_{i} passes through P_{i} for each i with $1 \leq i \leq k$.

AMS 2000 Mathematics Subject Classification. 05C38, 05C70.
Key words and phrases. Cycle, specified path, bipartite graph.

§1. Introduction

In this paper, all graphs considered are finite, undirected and simple graphs with no loops and no multiple edges. Let $G=(V(G), E(G))$ be a graph. The order $|V(G)|$ of G is often denoted by $|G|$ for short. For $v \in V(G)$, we let $d_{G}(v)$ denote the degree of v in G, and we define $\delta(G)$ by $\delta(G)=\min \left\{d_{G}(v) \mid v \in\right.$ $V(G)\}$. When G is a bipartite graph with partite sets V_{1} and V_{2}, we further define

$$
\sigma_{1,1}(G)=\min \left\{d_{G}(u)+d_{G}(v) \mid u \in V_{1}, v \in V_{2}, u v \notin E(G)\right\}
$$

(if G is a complete bipartite graph, we define $\sigma_{1,1}(G)=\infty$).
When G contains vertex disjoint subgraphs $H_{1}, H_{2}, \ldots, H_{k}$ such that $\bigcup_{i=1}^{k} V\left(H_{i}\right)=V(G)$, we say that G is partitioned into $H_{1}, H_{2}, \ldots, H_{k}$. If a path P is contained in a cycle C (resp. a path Q) as a subgraph, then we write $P \subset C$ (resp. $P \subset Q$).

In this paper, we are concerned with the existence of a partition of a bipartite graph into cycles. A sufficient condition for the existence of a partition into a specified number of cycles in a bipartite graph was given by Wang.

Theorem 1.1 (Wang [3]). Let k, n be integers with $k \geq 1$ and $n \geq 2 k+1$. Let G be a bipartite graph having partite sets with equal cardinality n, and suppose that $\delta(G) \geq \frac{n}{2}+1$. Then G can be partitioned into k cycles.

Wang and Chen et al. independently considered a partition into cycles each of which contains a specified edge, and proved the following theorem.

Theorem 1.2 (Chen et al. [1]; Wang [2, 4]). Let k, n be integers with $k \geq 2$ and $n \geq 3 k$. Let G be a bipartite graph having partite sets with equal cardinality n, and suppose that $\sigma_{1,1}(G) \geq n+k$. Then for any independent edges $e_{1}, e_{2}, \ldots, e_{k}, G$ can be partitioned into k cycles $H_{1}, H_{2}, \ldots, H_{k}$ such that $e_{i} \in E\left(H_{i}\right)$ for each i with $1 \leq i \leq k$.

In this paper, we consider a situation in which vertex disjoint paths of order 3 are specified instead of independent edges. The main result of this paper is the following.

Theorem 1.3. Let k, n be integers with $k \geq 3$ and $n \geq 3 k$. Let G be a bipartite graph having partite sets with equal cardinality n, and suppose that $\sigma_{1,1}(G) \geq n+2 k-1$. Then for any vertex disjoint paths $P_{1}, P_{2}, \ldots, P_{k}$ of order $3, G$ can be partitioned into k cycles $H_{1}, H_{2}, \ldots, H_{k}$ such that $P_{i} \subset H_{i}$ for each i with $1 \leq i \leq k$.

Theorem 1.3 does not hold for $k=2$. Let $n \geq 5$, and let H be a complete bipartite graph of order $2 n-2$ with partite sets $W_{1}=\left\{a_{i} \mid 1 \leq i \leq n-1\right\}$ and $W_{2}=\left\{b_{j} \mid 1 \leq j \leq n-1\right\}$. Let L be a complete graph of order 2 with $V(L) \cap V(H)=\emptyset$, and write $V(L)=\left\{c_{1}, c_{2}\right\}$. Define G by $V(G)=$ $V(H) \cup V(L)$ and $E(G)=E(H) \cup E(L) \cup\left\{c_{1} a_{i} \mid 1 \leq i \leq 3\right\} \cup\left\{c_{2} b_{i} \mid 1 \leq i \leq 3\right\}$. Let $P_{1}=a_{1} b_{1} a_{2}$ and $P_{2}=b_{2} a_{3} b_{3}$ (see Figure 1). Then $c_{1} a_{1} b_{1} a_{2} c_{1}$ is the only cycle which contains c_{1}, passes through one of P_{1} and P_{2} and is disjoint from the other, and similarly for c_{2}. Hence G can not be partitioned into two cycles H_{1}, H_{2} such that $P_{i} \subset H_{i}$ for each i with $1 \leq i \leq 2$, while $\sigma_{1,1}(G)=n+2 k-1=n+3$.

Also the degree sum condition in Theorem 1.3 is best possible in the following sense. Define a bipartite graph G of order $2 n$ by letting $V(G)=$ $A_{1} \cup A_{2} \cup A_{3} \cup A_{4}$ with $\left|A_{1}\right|=1,\left|A_{2}\right|=2 k-1,\left|A_{3}\right|=n-1,\left|A_{4}\right|=$ $n-2 k+1$, and $E(G)=\bigcup_{i=1}^{3}\left\{x y \mid x \in A_{i}, y \in A_{i+1}\right\}$. Write $V\left(A_{1}\right)=\{a\}$, $V\left(A_{2}\right)=\left\{b_{1}, b_{2}, \ldots, b_{2 k-1}\right\}$, and $V\left(A_{3}\right)=\left\{c_{1}, c_{2}, \ldots, c_{n-1}\right\}$. Let $P_{1}=a b_{1} c_{1}$ and $P_{i}=b_{i} c_{i} b_{i+k-1}$ for each i with $2 \leq i \leq k$ (see Figure 2). Then we can not take a cycle passing through P_{1} without using vertices of other specified paths. Consequently, G can not be partitioned into k cycles $H_{1}, H_{2}, \ldots, H_{k}$ such that $P_{i} \subset H_{i}$ for each i with $1 \leq i \leq k$, while $\sigma_{1,1}(G)=n+2 k-2$.

The first step in the proof of Theorem 1.3 is to show the existence of vertex disjoint cycles that contain the specified paths of order 3 .

Theorem 1.4. Let k, n be integers with $k \geq 2$ and $n \geq 3 k$. Let G be a bipartite graph having partite sets with equal cardinality n, and suppose that $\sigma_{1,1}(G) \geq n+2 k-1$. Then for any vertex disjoint paths $P_{1}, P_{2}, \ldots, P_{k}$ of order $3, G$ contains k vertex disjoint cycles $C_{1}, C_{2}, \ldots, C_{k}$ such that $P_{i} \subset C_{i}$ and $\left|C_{i}\right| \leq 6$ for each i with $1 \leq i \leq k$.

The next step is to show that this collection of cycles can be transformed into a collection of cycles that form a partition of G.

Theorem 1.5. Let k, n be integers with $k \geq 3$ and $n \geq 2 k$. Let G be a bipartite graph having partite sets with equal cardinality n, and suppose that $\sigma_{1,1}(G) \geq n+2 k-1$. Let $P_{1}, P_{2}, \ldots, P_{k}$ be vertex disjoint paths of order 3, and suppose that there exist vertex disjoint cycles $C_{1}, C_{2}, \ldots, C_{k}$ such that $P_{i} \subset C_{i}$ for each i with $1 \leq i \leq k$. Then there exist vertex disjoint cycles $H_{1}, H_{2}, \ldots, H_{k}$ such that $\bigcup_{i=1}^{k} V\left(H_{i}\right)=V(G)$ and $P_{i} \subset H_{i}$ for each i with $1 \leq i \leq k$.

Our notation is standard except possibly for the following. For a vertex v of a graph G, the neighborhood of v in G is denoted by $N_{G}(v)$; thus $d_{G}(v)=$ $\left|N_{G}(v)\right|$. For a subset S of $V(G)$, we let $N_{G}(S)=\bigcup_{v \in S} N_{G}(v)$ and $d_{G}(S)=$ $\sum_{v \in S} d_{G}(v)$. For a subgraph H of G and a vertex v of G with $v \in V(G)-V(H)$,
let $N_{G}(v) \cap V(H)$ be denoted by $N_{H}(v)$, and let $d_{H}(v)=\left|N_{H}(v)\right|$. For a subgraph H of G and a subset S of $V(G)-V(H)$, we let $N_{H}(S)=\bigcup_{x \in S} N_{H}(x)$ and $d_{H}(S)=\sum_{x \in S} d_{H}(x)$. For a subset S of $V(G)$, we let $\langle S\rangle_{G}$ denote the subgraph induced by S in G, and let $G-S=\langle V(G)-S\rangle_{G}$. For a subgraph H of G, we write $G-H$ for $G-V(H)$.

A cycle is considered to have a fixed orientation. For a cycle $C=x_{1} x_{2} \ldots$ $x_{n} x_{1}$ and for two vertices $x_{i}, x_{j} \in V(C)$ with $i<j<i+n$, we define segments $C\left[x_{i}, x_{j}\right], C^{-}\left[x_{i}, x_{j}\right]$ and $C\left(x_{i}, x_{j}\right)$ of C by $C\left[x_{i}, x_{j}\right]=x_{i} x_{i+1} \cdots x_{j-1} x_{j}$, $C^{-}\left[x_{i}, x_{j}\right]=x_{i} x_{i-1} \cdots x_{j+1} x_{j}$ and $C\left(x_{i}, x_{j}\right)=C\left[x_{i}, x_{j}\right]-\left\{x_{i}, x_{j}\right\}$, respectively (here indices are to be read modulo n). We let v^{+}(resp. v^{-}) denote the successor (resp. the predecessor) of v along C, and define $v^{++}=\left(v^{+}\right)^{+}$(resp. $\left.v^{--}=\left(v^{-}\right)^{-}\right)$; thus if $v=x_{i}$, then $v^{+}=x_{i+1}, v^{-}=x_{i-1}, v^{++}=x_{i+2}$ and $v^{--}=x_{i-2}$. For a path $P=y_{1} y_{2} \cdots y_{m}$ and for two vertices $y_{i}, y_{j} \in V(P)$ with $1 \leq i<j \leq m$, we define segment $P\left[y_{i}, y_{j}\right]$ of P by $P\left[y_{i}, y_{j}\right]=y_{i} y_{i+1} \cdots y_{j-1} y_{j}$. When $P_{1}, P_{2}, \ldots, P_{k}$ are vertex disjoint paths of order 3 , a cycle C is said to be admissible with respect to $\left\{P_{1}, P_{2}, \ldots, P_{k}\right\}$ if there exists i with $1 \leq i \leq k$ such that $P_{i} \subset C$ and $V(C) \cap V\left(P_{j}\right)=\emptyset$ for every j with $1 \leq j \leq k$ and $j \neq i$.

§2. Proof of Theorem 1.4

Throughout the rest of this paper, we let G denote a bipartite graph having partite sets V_{1}, V_{2} with $\left|V_{1}\right|=\left|V_{2}\right|$. Our proof of Theorem 1.4 requires the following lemmas.

Lemma 2.1. Let $P=x y z$ be a path in G with $x \in V_{1}$, and let C be a cycle in G such that $P \subset C$. Further let $u \in V(G-C) \cap V_{1}$ and $v \in V(G-C) \cap V_{2}$.
(i) If $d_{C}(u) \geq 4$, then $\langle V(C) \cup\{u\}\rangle_{G}$ contains a cycle which is shorter than C and passes through P.
(ii) If $d_{C}(v) \geq 3$, then $\langle V(C) \cup\{v\}\rangle_{G}$ contains a cycle which is shorter than C and passes through P.

Proof. (i) Since $x \in V_{1}$ and $d_{C}(u) \geq 4$, there exist $x_{1}, x_{2} \in N_{C}(u)$ such that $\left|C\left[x_{1}, x_{2}\right]\right| \geq 5$ and $P \subset C\left(x_{2}, x_{1}\right)$. Then $u C\left[x_{2}, x_{1}\right] u$ is a cycle shorter than C and $P \subset u C\left[x_{2}, x_{1}\right] u$.
(ii) Since $x \in V_{1}$ and $d_{C}(v) \geq 3$, there exist $x_{1}, x_{2} \in N_{C}(v)$ such that $\left|C\left[x_{1}, x_{2}\right]\right| \geq 5$ and $P \subset C\left[x_{2}, x_{1}\right]$. Then $v C\left[x_{2}, x_{1}\right] v$ is a cycle shorter than C and $P \subset v C\left[x_{2}, x_{1}\right] v$.

Lemma 2.2. Let P be a path of order 3, and let C be a cycle in G with $P \subset C$. Let $u \in V(G-C) \cap V_{1}, v \in V(G-C) \cap V_{2}$, and suppose that $d_{C}(u)+d_{C}(v) \geq \frac{|C|}{2}+3$. Then either $\langle V(C) \cup\{v\}\rangle_{G}$ contains a cycle which
is shorter than C and passes through P, or there exists $w \in N_{C}(u)$ such that $\langle V(C) \cup\{v\}-\{w\}\rangle_{G}$ contains a cycle passing through P.
Proof. If $d_{C}(v) \geq 4$, then by Lemma 2.1, $\langle V(C) \cup\{v\}\rangle_{G}$ contains a cycle which is shorter than C and passes through P. Thus we may assume that $d_{C}(v) \leq 3$. Then $d_{C}(v)=3$ and $d_{C}(u)=\frac{|C|}{2}$, that is, $N_{C}(u)=V(C) \cap V_{2}$. Since $d_{C}(v)=3$, there exist $a, b \in N_{C}(v)$ with $P \subset C[b, a]$. Take $w \in V(C(a, b)) \cap V_{2}$. Then $w \in N_{C}(u)$, and $v C[b, a] v$ is a cycle in $\langle V(C) \cup\{v\}-\{w\}\rangle_{G}$ passing through P.

In the rest of this section, we let G be an edge-maximal counterexample to Theorem 1.4, and write $P_{i}=x_{i} y_{i} z_{i}$ for each i with $1 \leq i \leq k$. The term "admissible" means "admissible with respect to $\left\{P_{1}, P_{2}, \ldots, P_{k}\right\}$," and a cycle is called short if its length is at most 6 . Note that G is not a complete bipartite graph, because otherwise there exist k vertex disjoint admissible cycles of length 4 . Let $x \in V_{1}$ and $y \in V_{2}$ be nonadjacent vertices of G. Then the graph obtained from G by adding the edge $x y$ is not a counterexample by the maximality of G, which implies that G contains $k-1$ vertex disjoint admissible short cycles $C_{1}, C_{2}, \ldots, C_{k-1}$. We choose admissible short cycles $C_{1}, C_{2}, \ldots, C_{k-1}$ so that $\left|\bigcup_{i=1}^{k-1} V\left(C_{i}\right)\right|$ is as small as possible. Without loss of generality, we may assume that $P_{i} \subset C_{i}$ for each i with $1 \leq i \leq k-1$, and we may also assume that $x_{k} \in V_{1}$. Let $L=\left\langle\bigcup_{i=1}^{k-1} V\left(C_{i}\right)\right\rangle_{G}, M=G-L$ and $D_{1}=M-V\left(P_{k}\right)$, and write $|M|=2 m$. Since $n \geq 3 k$, we have $m \geq 3$. If possible, we choose $C_{1}, C_{2}, \ldots, C_{k-1}$ so that $d_{D_{1}}\left(z_{k}\right)>0$ and $d_{D_{1}}\left(x_{k}\right)>0$.
Claim 2.1. We have $d_{D_{1}}\left(z_{k}\right)>0$ and $d_{D_{1}}\left(x_{k}\right)>0$.
Proof. We first remark that we can choose $C_{1}, C_{2}, \ldots, C_{k-1}$ so that $d_{D_{1}}\left(z_{k}\right)>$ 0 . To see this, suppose that $d_{D_{1}}\left(z_{k}\right)=0$ and take any $x \in V\left(D_{1}\right) \cap V_{2}$. Then

$$
d_{M}\left(z_{k}\right)+d_{M}(x) \leq 1+(m-1)=m .
$$

This implies that

$$
\begin{aligned}
d_{L}\left(z_{k}\right)+d_{L}(x) & \geq n+2 k-1-m \\
& =\frac{|L|}{2}+2 k-1 \\
& >\sum_{i=1}^{k-1}\left(\frac{\left|C_{i}\right|}{2}+2\right)
\end{aligned}
$$

Therefore there exists i with $1 \leq i \leq k-1$ such that $d_{C_{i}}\left(z_{k}\right)+d_{C_{i}}(x) \geq \frac{\left|C_{i}\right|}{2}+3$. Hence it follows Lemma 2.2 and the minimality of $|L|$ that there exists $u \in$ $N_{C_{i}}\left(z_{k}\right)$ such that $\left\langle V\left(C_{i}\right) \cup\{x\}-\{u\}\right\rangle_{G}$ contains a cycle C_{i}^{\prime} passing through P_{i}. Consequently, replacing C_{i} by C_{i}^{\prime}, we may assume $d_{D_{1}}\left(z_{k}\right)>0$.

Now suppose that the claim is false. In view of the remark made at the beginning of the proof, we may assume $d_{D_{1}}\left(z_{k}\right)>0$ and $d_{D_{1}}\left(x_{k}\right)=0$. Take $y \in N_{D_{1}}\left(z_{k}\right)$ and $v \in\left(V\left(D_{1}\right) \cap V_{2}\right)-\{y\}$. Arguing as above, we see that there exists j such that $d_{C_{j}}\left(x_{k}\right)+d_{C_{j}}(v) \geq \frac{\left|C_{j}\right|}{2}+3$, and there exists $w \in N_{C_{j}}\left(x_{k}\right)$ such that $\left\langle V\left(C_{j}\right) \cup\{v\}-\{w\}\right\rangle_{G}$ contains a cycle C_{j}^{\prime} passing through P_{j}. Now replacing C_{j} by C_{j}^{\prime}, we obtain a contradiction to the choice of $C_{1}, C_{2}, \ldots, C_{k-1}$ mentioned immediately before the statement of Claim 2.1. This completes the proof of the claim.

Take $y \in N_{D_{1}}\left(z_{k}\right)$ and $z \in N_{D_{1}}\left(x_{k}\right)$, and let $D_{2}=D_{1}-\{y, z\}$. Since G is a counterexample, $x_{k} y, z_{k} z \notin E(G)$, and hence $y \neq z$.
Claim 2.2. $d_{D_{2}}(y)>0$.
Proof. Suppose that $d_{D_{2}}(y)=0$ and take any $u \in V\left(D_{2}\right) \cap V_{1}$. Then since $y x_{k} \notin E(G)$,

$$
d_{M}(u)+d_{M}(y) \leq(m-1)+1=m .
$$

This implies that

$$
\begin{aligned}
d_{L}(u)+d_{L}(y) & \geq n+2 k-1-m . \\
& >\sum_{i=1}^{k-1}\left(\frac{\left|C_{i}\right|}{2}+2\right) .
\end{aligned}
$$

Therefore there exists i with $1 \leq i \leq k-1$ such that $d_{C_{i}}(u)+d_{C_{i}}(y) \geq \frac{\left|C_{i}\right|}{2}+3$. Since C_{i} is short, this forces $\left|C_{i}\right|=6$ and $d_{C_{i}}(u)=d_{C_{i}}(y)=3$. Hence by Lemma 2.1(ii), $\left\langle V\left(C_{i}\right) \cup\{y\}\right\rangle_{G}$ or $\left\langle V\left(C_{i}\right) \cup\{u\}\right\rangle_{G}$ contains a cycle of length 4 passing through P_{i}. This contradicts the minimality of $|L|$.

Now take $z^{\prime} \in N_{D_{2}}(y)$. Since G is a counterexample, $z z^{\prime} \notin E(G)$. Let $D_{3}=D_{2}-\left\{z^{\prime}\right\}$ and $S=\left\{z, x_{k}, y, z^{\prime}\right\}$. Then again since G is a counterexample, we have $N_{D_{3}}(z) \cap N_{D_{3}}(y)=\emptyset$ and $N_{D_{3}}\left(x_{k}\right) \cap N_{D_{3}}\left(z^{\prime}\right)=\emptyset$. Hence

$$
\begin{aligned}
d_{M}(S) & =d_{\left\langle S \cup\left\{y_{k}, z_{k}\right\}\right\rangle_{G}}(S)+d_{D_{3}}(S) \\
& \leq 7+2 m-6 \\
& =2 m+1 .
\end{aligned}
$$

This implies that

$$
\begin{aligned}
d_{L}(S) & \geq 2(n+2 k-1)-(2 m+1) \\
& =2(n-m)+4(k-1)+1 \\
& >\sum_{i=1}^{k-1}\left(\left|C_{i}\right|+4\right) .
\end{aligned}
$$

Therefore there exists i with $1 \leq i \leq k-1$ such that $d_{C_{i}}(S) \geq\left|C_{i}\right|+5$. This implies that $\left|C_{i}\right|=6$, and we have

$$
\begin{equation*}
11 \leq d_{C_{i}}(S) \leq 12 \tag{2.1}
\end{equation*}
$$

Write $C_{i}=x_{i} y_{i} z_{i} a b c x_{i}$.
CASE 1. $x_{i} \in V_{1}$.
By (2.1), $5 \leq d_{C_{i}}(\{z, y\}) \leq 6$, and hence there exists $u \in\{z, y\}$ such that $d_{C_{i}}(u)=3$. Then $C_{i}^{\prime}=u x_{i} y_{i} z_{i} u$ is an admissible cycle shorter than C_{i}, which contradicts the minimality of $|L|$.

CASE 2. $x_{i} \in V_{2}$.
If $\left\{x_{i}, z_{i}\right\} \subseteq N_{C_{i}}\left(z^{\prime}\right)$, then $z^{\prime} x_{i} y_{i} z_{i} z^{\prime}$ is an admissible cycle shorter than C_{i}, a contradiction. Thus $\left\{x_{i}, z_{i}\right\} \nsubseteq N_{C_{i}}\left(z^{\prime}\right)$, and hence

$$
\begin{equation*}
d_{C_{i}}\left(z^{\prime}\right) \leq 2 . \tag{2.2}
\end{equation*}
$$

By (2.1) and (2.2), we obtain $d_{C_{i}}(z)=3, d_{C_{i}}\left(x_{k}\right)=3$ and $d_{C_{i}}\left(z^{\prime}\right)=2$, and hence $b \in N_{C_{i}}\left(z^{\prime}\right)$. Now if we let $C_{i}^{\prime}=z c x_{i} y_{i} z_{i} a z$ and $C_{k}^{\prime}=b x_{k} y_{k} z_{k} y z^{\prime} b$, then C_{i}^{\prime} and C_{k}^{\prime} together with $\left\{C_{1}, C_{2}, \ldots, C_{k-1}\right\}-\left\{C_{i}\right\}$ form k vertex disjoint short admissible cycles. But this contradicts the assumption that G is a counterexample.

This completes the proof of Theorem 1.4.

§3. Proof of Theorem 1.5

Recall that G denotes a bipartite graph having partite sets V_{1}, V_{2} with $\left|V_{1}\right|=$ $\left|V_{2}\right|$. We prepare the following lemmas before proving Theorem 1.5.

Lemma 3.1. Let P be a path in G having order 3, and let C be a cycle in G such that $P \subset C$. Let R be a path in G with $V(C) \cap V(R)=\emptyset$ such that the endvertices of R, u and v, belong to different partite sets. Suppose further that $d_{C}(u)+d_{C}(v) \geq \frac{|C|}{2}+2$. Then there exists a cycle C^{\prime} such that $V\left(C^{\prime}\right)=V(C) \cup V(R)$ and $P \subset C^{\prime}$.

Proof. Write $C=w_{1} w_{2} \cdots w_{r} w_{1}$ with $P=w_{1} w_{2} w_{3}$. By the symmetry of the roles of u and v, we may assume that w_{1} and u belong to the same partite set. Then there exists i with $3 \leq i \leq r-1$ such that $u w_{i+1}, v w_{i} \in E(G)$. Now the cycle C^{\prime} obtained by joining $C\left[w_{i+1}, w_{i}\right]$ and R satisfies $V\left(C^{\prime}\right)=V(C) \cup V(R)$ and $P \subset C^{\prime}$.

Lemma 3.2. Let P be a path in G having order 3, and let Q be a path in G such that $P \subset Q$. Let R be a path with $V(Q) \cap V(R)=\emptyset$ such that the endvertices of R, u and v, belong to different partite sets. Suppose further that $d_{Q}(u)+d_{Q}(v) \geq \frac{|Q|+4}{2}$, Then there exists a path Q^{\prime} having the same endvertices as Q such that $V\left(Q^{\prime}\right)=V(Q) \cup V(R)$ and $P \subset Q^{\prime}$.

Proof. Write $Q=w_{1} w_{2} \cdots w_{r}$ with $P=w_{j} w_{j+1} w_{j+2}$. We may assume that w_{1} and u belong to the same partite set. Then, regardless of the partite sets which w_{r} and w_{j} belong to, there exists i with $1 \leq i \leq j-1$ or $j+2 \leq i \leq r-1$ such that $u w_{i+1}, v w_{i} \in E(G)$. Now the path Q^{\prime} obtained by joining $Q\left[w_{1}, w_{i}\right]$, R and $Q\left[w_{i+1}, w_{r}\right]$ satisfies $V\left(Q^{\prime}\right)=V(Q) \cup V(R)$ and $P \subset Q^{\prime}$.

Lemma 3.3. Let P be a path of order 3 in G. Let C be a cycle in G with $P \subset C$, and suppose that G contains no cycle D satisfying $P \subset D$ and $V(C) \subsetneq$ $V(D)$. Further let $u \in V(G-C) \cap V_{1}$ and $v \in V(G-C) \cap V_{2}$. Then $d_{C}(u)+$ $d_{C}(v) \leq \frac{|C|}{2}+2$.

Proof. Write $C=w_{1} w_{2} \cdots w_{r} w_{1}$ with $P=w_{1} w_{2} w_{3}$. We may assume that $w_{1} \in V_{1}$. Suppose that $d_{C}(u)+d_{C}(v) \geq \frac{|C|}{2}+3$. Then there exist i and $j(3 \leq i<j \leq r-1)$ with $u w_{i+1}, v w_{i}, u w_{j+1}, v w_{j} \in E(G)$. Now if we let $D=u C\left[w_{i+1}, w_{j}\right] v C^{-}\left[w_{i}, w_{j+1}\right] u$, then we have $P \subset D$ and $V(C) \subsetneq V(D)$. But this contradicts the assumption that there is no such cycle.

Throughout the rest of this paper, we let $k, G, P_{1}, P_{2}, \ldots, P_{k}$ be as in Theorem 1.5, and write $P_{i}=x_{i} y_{i} z_{i}$ for each i with $1 \leq i \leq k$. The term "admissible" means "admissible with respect to $\left\{P_{1}, P_{2}, \ldots, P_{k}\right\}$ ". Choose k vertex disjoint cycles $C_{1}, C_{2}, \ldots, C_{k}$ with $P_{i} \subset C_{i}$ for each i with $1 \leq i \leq k$ so that $\sum_{i=1}^{k}\left|C_{i}\right|$ is as large as possible, and set $L=\left\langle\bigcup_{i=1}^{k} V\left(C_{i}\right)\right\rangle_{G}$. By way of contradiction, suppose that $L \neq G$, and set $M=G-L$. Let M_{0} be a connected component of M.

Claim 3.1. Let $1 \leq i \leq k$, suppose that $x_{i} \in V_{1}$. Then either $N_{C_{i}}\left(M_{0}\right) \cap V_{1}=\emptyset$ or $N_{C_{i}-\left\{y_{i}\right\}}\left(M_{0}\right) \cap V_{2}=\emptyset$.

Proof. Without loss of generality, we may assume that $i=1$. If $\left|M_{0}\right|=1$, then the claim clearly holds. We may assume that $\left|M_{0}\right| \geq 2$. Suppose that $N_{C_{1}}\left(M_{0}\right) \cap V_{1} \neq \emptyset$ and $N_{C_{1}-\left\{y_{1}\right\}}\left(M_{0}\right) \cap V_{2} \neq \emptyset$. Reversing the orientation of C_{1} if necessary, we may assume that there exist $u w, v z \in E(G)$ with $u \in$ $V\left(M_{0}\right) \cap V_{1}, v \in V\left(M_{0}\right) \cap V_{2}$ and $w, z \in V\left(C_{1}\right)-\left\{y_{1}\right\}$ satisfying $P_{1} \subset C_{1}[z, w]$ and $N_{G}\left(M_{0}\right) \cap V\left(C_{1}(w, z)\right)=\emptyset$. If $z=w^{+}$, then in $\left\langle V\left(C_{1}\right) \cup V\left(M_{0}\right)\right\rangle_{G}$ there exists an admissible cycle longer than C_{1}, a contradiction. Hence we may assume that $\left|C_{1}(w, z)\right| \geq 2$. Let D be the cycle obtained by joining $C_{1}[z, w]$ and a path Q connecting u and v in M_{0}. Let $S=\left\{u, v, w^{+}, z^{-}\right\}$. Suppose that $d_{C_{1}[z, w]}\left(w^{+}\right)+d_{C_{1}[z, w]}\left(z^{-}\right) \geq \frac{\left|C_{1}[z, w]\right|+4}{2}$. Then by Lemma 3.2 , there exists a
path Q^{\prime} with endvertices z, w such that $V\left(Q^{\prime}\right)=V\left(C_{1}[z, w]\right) \cup V\left(C_{1}\left[w^{+}, z^{-}\right]\right)$ and $P_{1} \subset Q^{\prime}$. Since $C_{1}[z, w]$ is also a segment of D, this contradicts the maximality of $|L|$. Thus

$$
d_{C_{1}[z, w]}\left(w^{+}\right)+d_{C_{1}[z, w]}\left(z^{-}\right) \leq \frac{\left|C_{1}[z, w]\right|+3}{2} .
$$

Similarly it follows from Lemma 3.1 that

$$
d_{C_{i}}\left(w^{+}\right)+d_{C_{i}}\left(z^{-}\right) \leq \frac{\left|C_{i}\right|}{2}+1 \text { for each } i \text { with } 2 \leq i \leq k
$$

Also

$$
d_{C_{1}[z, w]}(u)+d_{C_{1}[z, w]}(v) \leq \frac{\left|C_{1}[z, w]\right|+3}{2}
$$

by Lemma 3.2, and we have $d_{C_{i}}(u)+d_{C_{i}}(v) \leq \frac{\left|C_{i}\right|}{2}+1$ for each i with $2 \leq$ $i \leq k$ by Lemma 3.1. Since $d_{C_{1}(w, z)}(u)+d_{C_{1}(w, z)}(v)=0, d_{\left\langle V\left(C_{1}(w, z)\right)\right\rangle_{G}}\left(w^{+}\right)+$ $d_{\left\langle V\left(C_{1}(w, z)\right)\right\rangle_{G}}\left(z^{-}\right) \leq\left|C_{1}(w, z)\right|, d_{M}(u)+d_{M}(v) \leq\left|M_{0}\right|$ and $d_{M}\left(w^{+}\right)+d_{M}\left(z^{-}\right) \leq$ $\left|M-M_{0}\right|$, we now obtain

$$
\begin{aligned}
d_{G}(S) & \leq|M|+\left|C_{1}(w, z)\right|+2\left(\frac{\left|C_{1}[z, w]\right|+3}{2}\right)+\sum_{i=2}^{k} 2\left(\frac{\left|C_{i}\right|}{2}+1\right) \\
& =|M|+\sum_{i=1}^{k}\left(\left|C_{i}\right|+2\right)+1 \\
& =2 n+2 k+1 .
\end{aligned}
$$

On the other hand, since $u z^{-}, v w^{+} \notin E(G), d_{G}(S) \geq 2(n+2 k-1)$. But this is a contradiction because $k \geq 3$.

Using an argument similar to the proof of Claim 3.1, we also obtain the following claim.

Claim 3.2. Let $1 \leq i \leq k$, and suppose that $x_{i} \in V_{2}$. Then either $N_{C_{i}-\left\{y_{i}\right\}}\left(M_{0}\right)$ $\cap V_{1}=\emptyset$ or $N_{C_{i}}\left(M_{0}\right) \cap V_{2}=\emptyset$.

Hereafter, we divide the proof into two cases according to the order of M.
3.1. $|M|=2$

Write $V(M)=\{u, v\}$. By symmetry, we may assume that $u \in V_{1}$ and $v \in V_{2}$.
Claim 3.3. Suppose that uv $\notin E(G)$. Then $d_{C_{i}}(u)+d_{C_{i}}(v)=\frac{\left|C_{i}\right|}{2}+2$ for each i with $1 \leq i \leq k$.

Proof. By Lemma 3.3, we have

$$
d_{G}(u)+d_{G}(v)=\sum_{i=1}^{k}\left(d_{C_{i}}(u)+d_{C_{i}}(v)\right) \leq \sum_{i=1}^{k}\left(\frac{\left|C_{i}\right|}{2}+2\right)=n+2 k-1 .
$$

On the other hand, since $u v \notin E(G), d_{G}(u)+d_{G}(v) \geq n+2 k-1$. Therefore

$$
d_{C_{i}}(u)+d_{C_{i}}(v)=\frac{\left|C_{i}\right|}{2}+2 \text { for each } i \text { with } 1 \leq i \leq k .
$$

Claim 3.4. Let $1 \leq i \leq k$, and suppose that $\left|C_{i}\right| \geq 6$ and $x_{i} \in V_{1}$. Then it is not possible that we have both $d_{C_{i}}(u)=2$ and $d_{C_{i}}(v)=\frac{\left|C_{i}\right|}{2}$.
Proof. Without loss of generality, we may assume that $i=1$. Suppose that $d_{C_{1}}(u)=2$ and $d_{C_{1}}(v)=\frac{\left|C_{1}\right|}{2}$. By Lemma 3.1, uv $\notin E(G)$. Write $C_{1}=$ $a_{1} b_{1} a_{2} b_{2} \cdots a_{r} b_{r} a_{1}$ with $P_{1}=x_{1} y_{1} z_{1}=a_{1} b_{1} a_{2}$. If $N_{C_{1}}(u)=\left\{b_{p}, b_{q}\right\}(2 \leq$ $p<q \leq r)$, then $\left\{v C_{1}^{-}\left[a_{q}, b_{p}\right] u C_{1}\left[b_{q}, a_{p}\right] v, C_{2}, \ldots, C_{k}\right\}$ is a required partition of G, a contradiction. Thus $N_{C_{1}}(u)=\left\{b_{1}, b_{h}\right\}(1<h)$. Since $\left|C_{1}\right| \geq 6$, we have $b_{h-1} \neq y_{1}$ or $b_{h+1} \neq y_{1}$. By symmetry, we may assume that $b_{h-1} \neq y_{1}$. Let $C_{1}^{\prime}=v C_{1}\left[a_{h}, a_{h-1}\right] v$ and $C_{i}^{\prime}=C_{i}$ for each i with $2 \leq i \leq k$. Then $C_{1}^{\prime}, C_{2}^{\prime}, \ldots, C_{k}^{\prime}$ are admissible and $\left|\bigcup_{i=1}^{k} V\left(C_{i}^{\prime}\right)\right|=|L|$. Hence applying Claim 3.3 with the C_{i} replaced by the C_{i}^{\prime}, we obtain

$$
d_{C_{1}^{\prime}}(u)+d_{C_{1}^{\prime}}\left(b_{h-1}\right)=\frac{\left|C_{1}^{\prime}\right|}{2}+2 .
$$

Since we get $N_{C_{1}^{\prime}}(u)=\left\{b_{1}, b_{h}\right\}$ from $N_{C_{1}}(u)=\left\{b_{1}, b_{h}\right\}$, this implies $d_{C_{1}^{\prime}}\left(b_{h-1}\right)=$ $\frac{\left|C_{1}^{\prime}\right|}{2}$; in particular, $b_{h-1} a_{h+1} \in E(G)$. On the other hand, we have $d_{C_{2}^{\prime}}(u)+$ $d_{C_{2}^{\prime}}(v)=\frac{\left|C_{2}^{\prime}\right|}{2}+2$ by Claim 3.3. Hence it follows Lemma 3.1 that there exists a cycle $C_{2}^{\prime \prime}$ such that $P_{2} \subset C_{2}^{\prime \prime}$ and $V\left(C_{2}^{\prime \prime}\right)=V\left(C_{2}\right) \cup\left\{u, b_{h}, a_{h}, v\right\}$. Now if we let $C_{1}^{\prime \prime}=C_{1}\left[a_{h+1}, b_{h-1}\right] a_{h+1}$ and let $C_{i}^{\prime \prime}=C_{i}$ for each i with $3 \leq i \leq k$, then $\left\{C_{1}^{\prime \prime}, C_{2}^{\prime \prime}, \ldots, C_{k}^{\prime \prime}\right\}$ is a required partition of G, a contradiction.

CASE I. M is connected.
Claim 3.5. Let $1 \leq i \leq k$, and suppose that $x_{i} \in V_{1}$. Then $\left|N_{C_{i}}(v)\right| \leq 2$.
Proof. Without loss of generality, we may assume that $i=1$. Suppose that $\left|N_{C_{1}}(v)\right| \geq 3$. By Claim 3.1, we have

$$
\begin{equation*}
N_{C_{1}}(u) \subseteq\left\{y_{1}\right\} . \tag{3.1}
\end{equation*}
$$

Since $\left|N_{C_{i}}(v)\right| \geq 3$, we can choose two vertices $w, z \in N_{C_{1}}(v)$ such that $P_{1} \subset$ $C_{1}(z, w]$ and $N_{C_{1}}(v) \cap V\left(C_{1}(w, z)\right)=\emptyset$.

Case 1. $\left|C_{1}(w, z)\right| \geq 3$.
Let $S=\left\{u, v, w^{+}, z^{--}\right\}$. Suppose that $d_{C_{1}[z, w]}\left(w^{+}\right)+d_{C_{1}[z, w]}\left(z^{--}\right) \geq$ $\frac{\left|C_{1}[z, w]\right|+4}{2}$. Then by Lemma 3.2, there exists a path Q^{\prime} with endvertices z, w such that $V\left(Q^{\prime}\right)=V\left(C_{1}[z, w]\right) \cup V\left(C_{1}\left[w^{+}, z^{--}\right]\right)$and $P_{1} \subset Q^{\prime}$. Let $D=v Q^{\prime} v$. Then $|D| \geq 6$ and $\left|V(D) \cup \bigcup_{i=2}^{k} V\left(C_{i}\right)\right|=|L|$. Note that $u z^{-} \notin E(G)$ by (3.1). Hence applying Claim 3.3 to $D, C_{2}, C_{3}, \ldots, C_{k}$, we obtain

$$
\begin{equation*}
d_{D}(u)+d_{D}\left(z^{-}\right)=\frac{|D|}{2}+2 . \tag{3.2}
\end{equation*}
$$

Note that (3.1) implies $N_{D}(u) \subseteq\left\{v, y_{1}\right\}$. Hence it follows from (3.2) that $N_{D}(u)=\left\{v, y_{1}\right\}$ and $d_{D}\left(z^{-}\right)=\frac{|D|}{2}$. But applying Claim 3.4 to D, C_{2}, C_{3}, \ldots, C_{k}, we see that this is impossible. Thus

$$
d_{C_{1}[z, w]}\left(w^{+}\right)+d_{C_{1}[z, w]}\left(z^{--}\right) \leq \frac{\left|C_{1}[z, w]\right|+3}{2} .
$$

Suppose now that there exists i with $2 \leq i \leq k$ such that $d_{C_{i}}\left(w^{+}\right)+d_{C_{i}}\left(z^{--}\right) \geq$ $\frac{\left|C_{i}\right|}{2}+2$. Then by Lemma 3.1, there exists a cycle C_{i}^{\prime} such that $V\left(C_{i}^{\prime}\right)=$ $V\left(C_{i}\right) \cup V\left(C_{1}\left[w^{+}, z^{--}\right]\right)$and $P_{i} \subset C_{i}^{\prime}$. Let $C_{1}^{\prime}=v C_{1}[z, w] v$ and $C_{j}^{\prime}=C_{j}$ for each j with $2 \leq j \leq k$ and $j \neq i$. Then $\left|C_{1}^{\prime}\right| \geq 6$ and $\left|\bigcup_{j=1}^{k} V\left(C_{j}^{\prime}\right)\right|=|L|$. Hence applying Claim 3.3 to $C_{1}^{\prime}, C_{2}^{\prime}, \ldots, C_{k}^{\prime}$, we obtain

$$
d_{C_{1}^{\prime}}(u)+d_{C_{1}^{\prime}}\left(z^{-}\right)=\frac{\left|C_{1}^{\prime}\right|}{2}+2,
$$

which again contradicts Claim 3.4. Thus $d_{C_{i}}\left(w^{+}\right)+d_{C_{i}}\left(z^{--}\right) \leq \frac{\left|C_{i}\right|}{2}+1$ for each i with $2 \leq i \leq k$. Also $d_{C_{i}}(u)+d_{C_{i}}(v) \leq \frac{\left|C_{i}\right|}{2}+1$ for each i with $2 \leq i \leq k$ by Lemma 3.1 and, since $N_{C_{1}(w, z)}(v)=\emptyset$, it follows from (3.1) that $d_{C_{1}[z, w]}(u)+$ $d_{C_{1}[z, w]}(v) \leq \frac{\left|C_{1}[z, w]\right|+1}{2}+1=\frac{\left|C_{1}[z, w]\right|+3}{2}$. Since $d_{C_{1}(w, z)}(u)+d_{C_{1}(w, z)}(v)=0$, $d_{\left\langle V\left(C_{1}(w, z)\right)\right\rangle_{G}}\left(w^{+}\right)+d_{\left\langle V\left(C_{1}(w, z)\right)\right\rangle_{G}}\left(z^{--}\right) \leq\left|C_{1}(w, z)\right|, d_{M}(u)+d_{M}(v)=2$ and $d_{M}\left(w^{+}\right)+d_{M}\left(z^{--}\right)=0$, we now obtain

$$
\begin{aligned}
d_{G}(S) & \leq 2+\left|C_{1}(w, z)\right|+2\left(\frac{\left|C_{1}[z, w]\right|+3}{2}\right)+\sum_{i=2}^{k} 2\left(\frac{\left|C_{i}\right|}{2}+1\right) \\
& =2 n+2 k+1 .
\end{aligned}
$$

On the other hand, since $w^{+} u, z^{--} v \notin E(G), d_{G}(S) \geq 2(n+2 k-1)$. But this is a contradiction because $k \geq 3$.

Case 2. $\left|C_{1}(w, z)\right|=1$.
Write $V\left(C_{1}(w, z)\right)=\{a\}$. Let $C_{1}^{\prime}=v C_{1}[z, w] v$ and $C_{i}^{\prime}=C_{i}$ for each i with $2 \leq i \leq k$. Then $\left|C_{1}^{\prime}\right| \geq 6 . C_{1}^{\prime}, C_{2}^{\prime}, \ldots, C_{k}^{\prime}$ are admissible, and $\left|\bigcup_{i=1}^{k} V\left(C_{i}^{\prime}\right)\right|=$
$|L|$. By (3.1), we also have $a u \notin E(G)$. Hence by Claim 3.3, we obtain

$$
d_{C_{1}^{\prime}}(u)+d_{C_{1}^{\prime}}(a)=\frac{\left|C_{1}^{\prime}\right|}{2}+2
$$

In view of (3.1), this forces $N_{C_{1}^{\prime}}(u)=\left\{v, y_{1}\right\}$ and $\left|N_{C_{1}^{\prime}}(a)\right|=\frac{\left|C_{C^{\prime}}\right|}{2}$. But then we get a contradiction by applying Claim 3.4 to $C_{1}^{\prime}, C_{2}^{\prime}, \ldots, C_{k}^{\prime}$.

Claim 3.6. Let $1 \leq i \leq k$, and suppose that $x_{i} \in V_{1}$. Then $\left|N_{C_{i}-\left\{y_{i}\right\}}(u)\right| \leq 1$.
Proof. Without loss of generality, we may assume that $i=1$. Suppose that $\left|N_{C_{1}-\left\{y_{1}\right\}}(u)\right| \geq 2$. We can choose two vertices $w, z \in N_{C_{1}}(u)$ such that $P_{1} \subset C_{1}(z, w)$ and $N_{C_{1}}(u) \cap V\left(C_{i}(w, z)\right)=\emptyset$. Since $N_{C_{1}}(v)=\emptyset$ by Claim 3.1, the rest of the proof is similar to and easier than that of Claim 3.5.

Using an argument similar to the proof of Claims 3.5 and 3.6, we obtain the following two claims.

Claim 3.7. Let $1 \leq i \leq k$, and suppose that $x_{i} \in V_{2}$. Then $\left|N_{C_{i}-\left\{y_{i}\right\}}(v)\right| \leq 1$.
Claim 3.8. Let $1 \leq i \leq k$, and suppose that $x_{i} \in V_{2}$. Then $\left|N_{C_{i}}(u)\right| \leq 2$.
By Claims 3.1, 3.2, 3.5, 3.6, 3.7 and 3.8, we have $d_{L}(u)+d_{L}(v) \leq 3 k$. Hence $d_{G}(u)+d_{G}(v) \leq 3 k+2$. On the other hand, from the assumption that $\sigma_{1,1}(G) \geq n+2 k-1$, it follows that $d_{G}(x) \geq 2 k$ for all $x \in V(G)$, and hence $d_{G}(u)+d_{G}(v) \geq 4 k$. But this is a contradiction because $k \geq 3$.

CASE II. M is disconnected.
By Claim 3.3, we have

$$
d_{C_{i}}(u)+d_{C_{i}}(v)=\frac{\left|C_{i}\right|}{2}+2 \text { for each } i \text { with } 1 \leq i \leq k .
$$

Suppose that there exists i with $1 \leq i \leq k$ such that $\left|C_{i}\right|=4$. Let $C_{i}^{\prime}=$ $v x_{i} y_{i} z_{i} v$ or $C_{i}^{\prime}=u x_{i} y_{i} z_{i} u$ according as $x_{i} \in V_{1}$ or $x_{i} \in V_{2}$, and let $C_{j}^{\prime}=C_{j}$ for each j with $1 \leq j \leq k$ and $j \neq i$. Then $G-\bigcup_{i=1}^{k} V\left(C_{i}^{\prime}\right)$ is connected. Consequently we are reduced to CASE I, which leads to a contradiction. Thus $\left|C_{i}\right| \geq 6$ for each i with $1 \leq i \leq k$. Since $k \geq 3$, we have $\left|\left\{i \mid x_{i} \in V_{1}\right\}\right| \geq$ 2 or $\left|\left\{i \mid x_{i} \in V_{2}\right\}\right| \geq 2$. Without loss of generality, we may assume that $\left|\left\{i \mid x_{i} \in V_{1}\right\}\right| \geq 2$. We may also assume that $x_{1}, x_{2} \in V_{1}$. We write $C_{1}=$ $a_{1} b_{1} a_{2} b_{2} \cdots a_{r} b_{r} a_{1}$ with $P_{1}=x_{1} y_{1} z_{1}=a_{1} b_{1} a_{2}$.

Claim 3.9.

(i) $\left|\left\{p \mid 2 \leq p \leq r, a_{p} \in N_{G}(v), b_{p} \in N_{G}(u)\right\}\right| \leq 1$.
(ii) $\left|\left\{p \mid 2 \leq p \leq r, a_{p+1} \in N_{G}(v), b_{p} \in N_{G}(u)\right\}\right| \leq 1$ (we take $\left.a_{r+1}=a_{1}\right)$.

Proof. By way of contradiction, suppose that there exist p, q with $2 \leq p<q \leq$ r such that $a_{p}, a_{q} \in N_{G}(v)$ and $b_{p}, b_{q} \in N_{G}(u)$. Let $C_{1}^{\prime}=u C_{1}\left[b_{p}, a_{q}\right] v C_{1}^{-}\left[a_{p}, b_{q}\right] u$. Then $\left\{C_{1}^{\prime}, C_{2}, \ldots, C_{k}\right\}$ is a desired partition of G, which contradicts the assumption that G is a counterexample. Thus (i) is proved, and (ii) can be verified in a similar way.

Claim 3.10.

(i) (a) $\quad\left(N_{G}(u) \cup N_{G}(v)\right) \cap\left\{a_{p}, b_{p}\right\} \neq \emptyset$ for each p with $1 \leq p \leq r$.
(b) $\left|\left\{p \mid 1 \leq p \leq r, a_{p} \in N_{G}(v), b_{p} \in N_{G}(u)\right\}\right|=2$.
(ii) (a) $\left(N_{G}(u) \cup N_{G}(v)\right) \cap\left\{b_{p}, a_{p+1}\right\} \neq \emptyset$ for each p with $1 \leq p \leq r$.
(b) $\left|\left\{p \mid 1 \leq p \leq r, a_{p+1} \in N_{G}(v), b_{p} \in N_{G}(u)\right\}\right|=2$.

Proof. Set $\alpha=\left|\left\{p \mid 1 \leq p \leq r, a_{p} \in N_{G}(v), b_{p} \in N_{G}(u)\right\}\right|$ and $\beta=\mid\{p \mid 1 \leq$ $\left.p \leq r,\left(N_{G}(v) \cup N_{G}(u)\right) \cap\left\{a_{p}, b_{p}\right\}=\emptyset\right\} \mid$. Since $d_{C_{1}}(u)+d_{C_{1}}(v)=\frac{\left|C_{1}\right|}{2}+2$ by Claim 3.3, we have $\alpha=\beta+2$. Since $\alpha \leq 2$ by Claim 3.9, this implies $\alpha=2$ and $\beta=0$. Thus (i) is proved, and (ii) can be verified in a similar way.

Claim 3.11. There exist s, t with $2 \leq s<t \leq r$ such that $N_{C_{1}}(u)=\left\{b_{1}\right\} \cup$ $\left\{b_{p} \mid s \leq p \leq t\right\}$ and $N_{C_{1}}(v)=\left\{a_{p} \mid 1 \leq p \leq s\right\} \cup\left\{a_{p} \mid t+1 \leq p \leq r\right\}$.
Proof. By Claims 3.9(i) and 3.10(i)(b),

$$
\begin{aligned}
& a_{1} \in N_{G}(v), b_{1} \in N_{G}(u) \\
& \left|\left\{p \mid 2 \leq p \leq r, a_{p} \in N_{G}(v), b_{p} \in N_{G}(u)\right\}\right|=1 .
\end{aligned}
$$

Similarly by Claims 3.9(ii) and 3.10(ii) (b),

$$
\begin{aligned}
& a_{2} \in N_{G}(v), b_{1} \in N_{G}(u), \\
& \left|\left\{p \mid 2 \leq p \leq r, a_{p+1} \in N_{G}(v), b_{p} \in N_{G}(u)\right\}\right|=1 .
\end{aligned}
$$

Write $\left\{p \mid 2 \leq p \leq r, a_{p} \in N_{G}(v), b_{p} \in N_{G}(u)\right\}=\{s\}$ and $\left\{p \mid 2 \leq p \leq r, a_{p+1} \in\right.$ $\left.N_{G}(v), b_{p} \in N_{G}(u)\right\}=\{t\}$. Suppose that $s>t$. Then since $b_{s} \in N_{G}(u)$ and $a_{r+1}=a_{1} \in N_{G}(v)$, it follows from Claim 3.10(i)(a) that there exists p^{\prime} with $s \leq p^{\prime} \leq r$ such that $b_{p^{\prime}} \in N_{G}(u)$ and $a_{p^{\prime}+1} \in N_{G}(v)$. But since $t<p^{\prime}$, this contradicts Claim 3.9(ii). Thus $s \leq t$. If there exists p^{\prime} with $2 \leq p^{\prime} \leq s-1$ such that $b_{p^{\prime}} \in N_{G}(u)$, then by Claim 3.10(i)(a), there exists q^{\prime} with $p^{\prime} \leq q^{\prime} \leq s-1$ such that $b_{q^{\prime}} \in N_{G}(u)$ and $a_{q^{\prime}+1} \in N_{G}(v)$, which again contradicts Claim 3.9(ii). Thus $\left(N_{G}(u) \cup N_{G}(v)\right) \cap\left\{a_{p}, b_{p}\right\}=\left\{a_{p}\right\}$ for each p with $2 \leq p \leq s-1$. Similarly $\left(N_{G}(u) \cup N_{G}(v)\right) \cap\left\{a_{p}, b_{p}\right\}=\left\{a_{p}\right\}$ for each p with $t+1 \leq p \leq r$. If $s=t$, then it follows that $N_{C_{1}}(u)=\left\{b_{1}, b_{s}\right\}$ and $N_{C_{1}}(v)=\left\{a_{p} \mid 1 \leq p \leq r\right\}$, which contradicts Claim 3.4. Thus $s<t$. Now since $b_{s} \in N_{C_{1}}(u)$, we see from Claims 3.10(i)(a) and 3.9(ii) that $\left(N_{G}(u) \cup N_{G}(v)\right) \cap\left\{a_{p}, b_{p}\right\}=\left\{b_{p}\right\}$ for each p with $s+1 \leq p \leq t-1$.

We can now complete the proof for the case where $|M|=2$. We write $C_{2}=c_{1} d_{1} c_{2} d_{2} \cdots c_{h} d_{h} c_{1}$ with $P_{2}=x_{2} y_{2} z_{2}=c_{1} d_{1} c_{2}$. Applying Claim 3.11 to C_{2}, we see that there exists q with $3 \leq q \leq h$ such that $c_{q} \notin N_{C_{2}}(v)$ and $d_{q-1}, d_{q} \in N_{C_{2}}(u)$. Let $C_{1}^{\prime}=C_{1}, C_{2}^{\prime}=u C_{2}\left[d_{q}, d_{q-1}\right] u$ and $C_{i}^{\prime}=C_{i}$ for each i with $3 \leq i \leq k$. We apply Claim 3.11 with the C_{i} replaced by the C_{i}^{\prime} (so u is replaced by c_{q}). Note that $C_{1}=C_{1}^{\prime}$, and hence $N_{C_{1}}(v)=N_{C_{1}^{\prime}}(v)$. Consequently it follows that $N_{C_{1}}\left(c_{q}\right)=N_{C_{1}}(u)=\left\{b_{1}\right\} \cup\left\{b_{p} \mid s \leq p \leq t\right\}$. Now if we let $C_{1}^{\prime \prime}=v C_{1}\left[a_{t+1}, a_{s}\right] v, C_{2}^{\prime \prime}=u C_{2}\left[d_{q}, d_{q-1}\right] c_{q} C_{1}\left[b_{s}, b_{t}\right] u$ and $C_{i}^{\prime \prime}=C_{i}$ for each i with $3 \leq i \leq k$, then $\left\{C_{1}^{\prime \prime}, C_{2}^{\prime \prime}, \ldots, C_{k}^{\prime \prime}\right\}$ is a required partition of G. This is a contradiction.

This concludes the discussion for the case $|M|=2$.

3.2. $|M| \geq 4$

Claim 3.12. Let $u \in V(M) \cap V_{1}$ and $v \in V(M) \cap V_{2}$ with $u v \notin E(G)$. Then $d_{M}(u)+d_{M}(v) \geq \frac{|M|}{2}-1$.

Proof. By Lemma 3.3, we have

$$
d_{L}(u)+d_{L}(v) \leq \sum_{i=1}^{k}\left(\frac{\left|C_{i}\right|}{2}+2\right)=\frac{|L|}{2}+2 k .
$$

Hence

$$
d_{M}(u)+d_{M}(v) \geq n+2 k-1-\left(\frac{|L|}{2}+2 k\right)=\frac{|M|}{2}-1 .
$$

CASE A. M is disconnected.
Let M_{0} be a connected component of M which has the smallest order (among all connected components of M). Let $M_{1}=M-M_{0}$. We may assume that $\left|V\left(M_{0}\right) \cap V_{1}\right| \geq\left|V\left(M_{0}\right) \cap V_{2}\right|$. Then $\left|V\left(M_{1}\right) \cap V_{1}\right| \leq\left|V\left(M_{1}\right) \cap V_{2}\right|$. Take $u \in V\left(M_{0}\right) \cap V_{1}$ and $v \in V\left(M_{1}\right) \cap V_{2}$. We divide the proof into the following two subcases according to the value of $\left|M_{0}\right|$.

Subcase A.1. $\left|M_{0}\right| \geq 2$.
In this case, the component containing v also has order at least 2 . Thus there exists $v^{\prime} \in V\left(M_{0}\right)$ with $u v^{\prime} \in E(G)$, and there exists $u^{\prime} \in V\left(M_{1}\right)$ with
$u^{\prime} v \in E(G)$. Let $S=\left\{u, v, u^{\prime}, v^{\prime}\right\}$. By Lemma 3.1,

$$
\begin{aligned}
& d_{L}(u)+d_{L}\left(v^{\prime}\right) \leq \sum_{i=1}^{k}\left(\frac{\left|C_{i}\right|}{2}+1\right)=\frac{|L|}{2}+k \\
& d_{L}\left(u^{\prime}\right)+d_{L}(v) \leq \sum_{i=1}^{k}\left(\frac{\left|C_{i}\right|}{2}+1\right)=\frac{|L|}{2}+k
\end{aligned}
$$

Since we clearly have $d_{M}(u)+d_{M}\left(v^{\prime}\right) \leq\left|M_{0}\right|$ and $d_{M}\left(u^{\prime}\right)+d_{M}(v) \leq\left|M_{1}\right|$, this implies

$$
\begin{aligned}
d_{G}(S) & \leq\left|M_{0}\right|+\left|M_{1}\right|+2\left(\frac{|L|}{2}+k\right) \\
& =|M|+|L|+2 k \\
& =2 n+2 k
\end{aligned}
$$

On the other hand, since $u v, u^{\prime} v^{\prime} \notin E(G)$, we have $d_{G}(S) \geq 2(n+2 k-1)$, which is a contradiction.

Subcase A.2. $\left|M_{0}\right|=1$.
Since $d_{M}(u)=0$, it follows from Claim 3.12 that $d_{M}(v)=\frac{|M|}{2}-1$. Since this holds for any $v \in V\left(M_{1}\right) \cap V_{2}, M_{1}$ is a complete bipartite graph. From the proof of Claim 3.12, we also see that $d_{C_{i}}(u)+d_{C_{i}}(v)=\frac{\left|C_{i}\right|}{2}+2$ for each i with $1 \leq i \leq k$, which in particular implies that

$$
\begin{equation*}
d_{C_{i}}(v) \geq 2 \text { for each } i \text { with } 1 \leq i \leq k \tag{3.3}
\end{equation*}
$$

Take $u^{\prime} \in V\left(M_{1}\right) \cap V_{1}$. By (3.3) and Claims 3.1 and 3.2,

$$
\begin{equation*}
N_{C_{i}}\left(u^{\prime}\right) \subseteq\left\{y_{i}\right\} \text { for each } i \text { with } 1 \leq i \leq k \tag{3.4}
\end{equation*}
$$

and hence $d_{G}\left(u^{\prime}\right) \leq \frac{|M|}{2}+k$. Now take $b \in\left(V\left(C_{1}\right) \cap V_{2}\right)-\left\{y_{1}\right\}$. Since (3.4) holds for any $u^{\prime} \in V\left(M_{1}\right) \cap V_{1}$, we have $N_{M}(b) \subseteq\{u\}$, and hence $d_{G}(b) \leq \frac{|L|}{2}+1$. Therefore $d_{G}\left(u^{\prime}\right)+d_{G}(b) \leq\left(\frac{|M|}{2}+k\right)+\left(\frac{|L|}{2}+1\right)=n+k+1$. On the other hand, since $u^{\prime} b \notin E(G)$, we have $d_{G}\left(u^{\prime}\right)+d_{G}(b) \geq n+2 k-1$, which is a contradiction.

CASE B. M is connected.
Claim 3.13. Let $1 \leq i \leq k$, and suppose that $x_{i} \in V_{1}$. Then $\left|N_{C_{i}}(M) \cap V_{1}\right| \leq$ 1.

Proof. Without loss of generality, we may assume that $i=1$. Suppose that $\left|N_{C_{1}}(M) \cap V_{1}\right| \geq 2$. Then $N_{C_{1}}(M) \cap V_{2} \subseteq\left\{y_{1}\right\}$ by Claim 3.1. Choose two vertices $w, z \in N_{C_{1}}(M) \cap V_{1}$ so that $P_{1} \subset C_{1}[z, w]$ and $N_{G}(M) \cap V\left(C_{1}(w, z)\right)=\emptyset$.

Take $v \in N_{M}(w)$ and $v^{\prime} \in N_{M}(z)$, and let Q be a path joining v and v^{\prime} in M. Then $\left\langle V\left(C_{1}[z, w]\right) \cup V(M)\right\rangle_{G}$ contains an admissible cycle D such that $V(D)=V\left(C_{1}[z, w]\right) \cup V(Q)$. Suppose that $\left|C_{1}(w, z)\right|=1$. Write $V\left(C_{1}(w, z)\right)=\{b\}$. If $v \neq v^{\prime}$, then we get a contradiction to the maximality of $|L|$; if $v=v^{\prime}$, then since $N_{M}(b)=\emptyset, G-V(D)-\bigcup_{i=2}^{k} V\left(C_{i}\right)$ is disconnected, and hence we are reduced to CASE A, which also leads to a contradiction. Thus $\left|C_{1}(w, z)\right| \geq 3$. Take $u \in V(M) \cap V_{1}$. Let $S=$ $\left\{w^{+}, z^{--}, u, v\right\}$. Suppose that $d_{C_{1}[z, w]}\left(w^{+}\right)+d_{C_{1}[z, w]}\left(z^{--}\right) \geq \frac{\left|C_{1}[z, w]\right|+4}{2}$. Then it follows Lemma 3.2 that there exists a cycle D^{\prime} such that $P_{1} \subset D^{\prime}$ and $V\left(D^{\prime}\right)=V(D) \cup V\left(C_{1}\left[w^{+}, z^{--}\right]\right)=\left(V\left(C_{1}\right)-\left\{z^{-}\right\}\right) \cup V(Q)$. If $v \neq v^{\prime}$, then this contradicts the maximality of $|L|$. If $v=v^{\prime}$, then since $N_{M}\left(z^{-}\right)=\emptyset$, we are reduced to CASE A. Thus $d_{C_{1}[z, w]}\left(w^{+}\right)+d_{C_{1}[z, w]}\left(z^{--}\right) \leq \frac{\mid C_{1}[z, w]+3}{2}$. Similarly it follows from Lemma 3.1 that $d_{C_{i}}\left(w^{+}\right)+d_{C_{i}}\left(z^{--}\right) \leq \frac{\left|C_{i}\right|}{2}+1$ for each i with $2 \leq i \leq k$. Also $d_{C_{i}}(u)+d_{C_{i}}(v) \leq \frac{\left|C_{i}\right|}{2}+1$ for each i with $2 \leq i \leq k$ by Lemma 3.1, and we have $d_{C_{1}[z, w]}(u)+d_{C_{1}[z, w]}(v) \leq \frac{\left|C_{1}[z, w]\right|+3}{2}$ because $N_{C_{1}}(u) \subseteq\left\{y_{1}\right\}$ by Claim 3.1. Since $d_{C_{1}(w, z)}(u)+d_{C_{1}(w, z)}(v)=0$, $d_{\left\langle V\left(C_{1}(w, z)\right\rangle_{G}\right.}\left(w^{+}\right)+d_{\left\langle V\left(C_{1}(w, z)\right)\right\rangle_{G}}\left(z^{--}\right) \leq\left|C_{1}(w, z)\right|, d_{M}(u)+d_{M}(v) \leq|M|$ and $d_{M}\left(w^{+}\right)+d_{M}\left(z^{--}\right)=0$, we now obtain

$$
\begin{aligned}
d_{G}(S) & \leq|M|+\left|C_{1}(w, z)\right|+\left|C_{1}[z, w]\right|+3+\sum_{i=2}^{k} 2\left(\frac{\left|C_{i}\right|}{2}+1\right) \\
& =2 n+2 k+1 .
\end{aligned}
$$

On the other hand, since $w^{+} u, z^{--} v \notin E(G)$, we have $d_{G}(S) \geq 2(n+2 k-1)$, which is a contradiction.

Using an argument similar to the proof of Claim 3.13, we obtain the following claim.

Claim 3.14. Let $1 \leq i \leq k$, and suppose that $x_{i} \in V_{2}$. Then $\mid N_{C_{i}-\left\{y_{i}\right\}}(M) \cap$ $V_{1} \mid \leq 1$.

We are now in a position to complete the proof of Theorem 1.5. By symmetry, we may assume that $\left|\left\{i \mid x_{i} \in V_{1}\right\}\right| \geq\left|\left\{i \mid x_{i} \in V_{2}\right\}\right|$. Let $t=\left|\left\{i \mid x_{i} \in V_{1}\right\}\right|$. Since $k \geq 3$, we have $t \geq 2$. At the cost of relabeling, we may assume that $x_{1} \in V_{1}$. Take $a \in\left(V\left(C_{1}\right) \cap V_{1}\right)-N_{C_{1}}(M)$ and $v \in V(M) \cap V_{2}$. Then since $d_{M}(a)=0$ and $d_{L}(a) \leq \frac{|L|}{2}$, we have $d_{G}(a) \leq \frac{|L|}{2}$. By Claims 3.13 and 3.14, $d_{L}(v) \leq t+2(k-t)=2 k-t$. Hence $d_{G}(v)=d_{M}(v)+d_{L}(v) \leq \frac{|M|}{2}+2 k-t$. Therefore $d_{G}(a)+d_{G}(v) \leq n+2 k-t \leq n+2 k-2$. But since $a v \notin E(G)$, this contradicts the assumption that $\sigma_{1,1}(G) \geq n+2 k-1$.

This completes the proof of Theorem 1.5.

Acknowledgement

We would like to thank Professors Yoshimi Egawa and Katsuhiro Ota for the advice they gave to us during the preparation of this paper. This work was partially supported by the JSPS Research Fellowships for Young Scientists (to H.M.).

References

[1] G.Chen, H.Enomoto, K.Kawarabayashi, D.Lou, K.Ota, A.Saito, Vertex-disjoint cycles containing specified edges in a bipartite graph, Australas. J. Combin. 23 (2001), 37-48.
[2] H.Wang, Covering a bipartite graph with cycles passing through given edges, Australas. J. Combin. 19 (1999), 115-121.
[3] H.Wang, On 2-factors of a bipartite graph, J. Graph Theory 31 (1999), 101-106.
[4] H.Wang, Proof of a conjecture on cycles in a bipartite graph, J. Graph Theory 31 (1999), 333-343.

[^0]
[^0]: Ryota Matsubara
 Department of Mathematical Information Science, Tokyo University of Science
 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
 E-mail: j1102703@ed.kagu.tus.ac.jp
 Hajime Matsumura
 Department of Mathematics, Keio University
 Hiyoshi 3-14-1, Kohoku-ku, Yokohama 223-8522, Japan
 E-mail: musimaru@comb.math.keio.ac.jp

